
IDEAS FOR THE PROVISION OF ONTOLOGY ACCESS
IN GRID ENVIRONMENTS

Miguel Esteban Gutiérrez
Ontology Engineering Group
Universidad Politécnica de Madrid
Campus de Montegancedo s/n, 28660, Boadilla del Monte
Madrid, Spain
mesteban@fi.upm.es

Asunción Gómez-Pérez
Ontology Engineering Group
Universidad Politécnica de Madrid
Campus de Montegancedo s/n, 28660, Boadilla del Monte
Madrid, Spain
asun@fi.upm.es

Abstract Ontologies are the backbone of the Semantic Web. Current grid architectures
do not consider their usage, and there are no protocols nor standards in the
Grid community for dealing with them. Therefore, the provision of appropriate
means for accessing, querying and using ontologies effectively is a key factor
if we want to enrich the current grid with semantic technologies and to support
progress towards the next generation Grid, that is, the Semantic Grid.

Keywords: Ontologies, semantic grid, semantic technologies, WS-DAIOnt, WS-DAI, OGSA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148656642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

1. Introduction
The increasing use of semantic technologies has reached almost every compu-

ter-related field, including the Grid. The next generation Grid should virtualise
the notion of distribution in computation, storage, and communication over un-
limited resources using well-defined computational semantics, as the Semantic
Grid [7] is proposing. A grid node may provide new resources and services and
their functional and non functional properties should be explicitly defined by
means of ontologies, formal and explicit specifications of shared conceptualiza-
tions [15]. Therefore, if semantic technologies are to be used, it is fundamental
to provide the appropriate means for accessing, querying and using ontologies
in the Grid.

In this chapter, we analyse the problem of accessing, querying and using
ontologies concerned with the current Grid architecture, taking as starting point
the lessons learnt about this topic in the Semantic Web.

The chapter is organised as follows: Section 2 collects some of the most
important lessons learnt in the Semantic Web regarding ontology access, query
and use. Section 3 comprises an analysis of the ontology access problem in
the context of the current Grid. Section 4 presents WS-DAIOnt, a proposed
mechanism for ontology access in the current Grid. Finally, Section 5 concludes
with the current state of development.

2. Lessons Learnt from the Semantic Web
Recently, the W3C has recommended three languages: RDF 1, RDFS 2 and

OWL3, to represent knowledge in the Semantic Web.
In addition, several ontology development tools (i.e., Protégé4, WebODE5,

KAON6) support the creation of ontologies in such languages. There are also
ontology query languages like SPARQL [13], RDQL [14], RQL [12], SeRQL
[5] used for retrieving RDF(S) and OWL ontologies, and inference engines like
FaCT7 and RACER [11] that infer knowledge and data that are not explicitly
declared in the ontologies. Normally, these querying and inference tools are
strongly related to the language in which the ontology is implemented. Such
languages differ in their expressiveness (the kind of knowledge that can be
represented) and in their inference mechanisms (the kind of reasoning they

1http://www.w3.org/RDF/
2http://www.w3.org/TR/rdf-schema/
3http://www.w3.org/2001/sw/WebOnt/
4http://protege.stanford.edu/
5http://webode.dia.fi.upm.es/WebODEWeb/
6http://sourceforge.net/projects/kaon/
7http://www.cs.man.ac.uk/ horrocks/FaCT/



Running head goes here 3

carry out). For a detailed description and comparison of languages and tools
we recommend [10].

The diversity of existing ontology languages and tools causes the translation
problem, which appears when an ontologist decides to reuse an ontology (or
part of it) with a tool other than the one used in its development, or in a language
other than those in which the ontology is available. On the other hand, several
APIs and query languages permit accessing ontologies implemented in a given
language and an ontology user (or an application that uses the ontology) should
know how to retrieve the ontology content using those APIs. As example, we
can say that RDF(S) ontologies can be stored in Sesame8, 3store9, Joseki10,
Jena11, Kowari12 or even Oracle with its support for RDF(S)13, and each has
its own means for accessing the RDF(S) ontologies.

In this scenario interoperability and portability problems arise since the
heterogeneity (different characteristics, properties and capabilities) of the lan-
guages and tools used for the development and storage of the ontologies might
prevent the reutilization of these ontologies in different infrastructures because
of their technological differences, namely, their limitations, restrictions and
requirements.

At present, there are some language specific initiatives in the Semantic Web
community devoted to solving specific problems, such as the W3C SPARQL
query language, created to provide a RDF(S) query language for accessing to
RDF(S) stores14 [13], or the DIG interface, targeted to providing a common
API for description logic-based systems interoperability [4].

Despite all these initiatives, the Semantic Web community does not have a
standard mechanism or protocol for accessing ontologies implemented regard-
less of the language and tool used for its development.

3. Possibilities for Providing Ontology Access in the Grid
Up to now, current grid architectures have not taken into consideration on-

tology use; therefore, no protocols nor standards are available in the grid com-
munity to access and use them.

To use ontologies as other resources in the Grid, we must be able to access
their contents physically, as we do with any other available resource. Therefore,
the first requirement for using ontologies is to have the appropriate means for

8http://www.openrdf.org/
9http://threestore.sourceforge.net/
10http://www.joseki.org/
11http://jena.sourceforge.net/
12http://www.kowari.org/
13http://www.oracle.com/technology/tech/semantic technologies/
14Targeted at retrieving data, not creating, deleting or updating data.



4

accessing them. Building on these basic capabilities, it will be possible to
develop and deploy ontology-based functionalities in the Grid.

In this section we discuss where ontology access fits in the Open Grid Ser-
vices Architecture (OGSA), and how ontology access services can be imple-
mented. By ontology access we mean the mechanism or protocol needed for
providing physical access to ontologies; by ontology access services we refer
to the set of services that provide the means for accessing ontologies that are
deployed as resources inside an OGSA-based grid.

3.1 Laying Ontology Access Services in OGSA
The Open Grid Services Architecture specification [8] is the blueprint for

standard-based service-oriented grid computing. The specification collates the
requirements for such an architecture15 and also identifies the set of capabil-
ities (offered as services) that may be needed in order to satisfy the defined
requirements: infrastructure services, job management services, data services,
resource management services, security services, self-management services
and information services. For a detailed description of both requirements and
capabilities, please refer to [8].

Ontologies can be queried as to their content. Content includes the concepts
and relationships, as well as intensional information about those concepts, as
for example, the definitions that apply to a particular class. Ontology access
services should then provide access to all this information and even support
queries over this information. Thus, ontology access services can be seen as
a particular type of data service, a service that holds some data and provides
mechanisms for creating, retrieving, updating and deleting these data. Accord-
ing to this, the most sensible mechanism for providing ontology access services
should be based on the existing infrastructure in OGSA for data access.

The following subsection reviews the data access and integration facilities
in OGSA, as these must be known to fully understand the rest of the chapter.

3.1.1 The OGSA Data Access and Integration Facilities. The Global
Grid Forum (GGF) Data Access and Integration Working Group has a number
of specifications that support data access on the Grid. The Web Services Data
Access and Integration Core Specification [1], a.k.a. WS-DAI, and the accom-
panying realizations [2, 6, 3], provide a general mechanism for defining data
services (whose key characteristic is that it offers the possibility of updating
and retrieving the data from the data resource with which it interfaces) and
specialised mechanisms for accessing specific data resources respectively.

15They range from interoperability and support for dynamic and heterogeneous environments and resources
to resource sharing across organizations to data access to scalability, availability and extensibility.



Running head goes here 5

The top level WS-DAI specification provides a basic and extensible frame-
work for defining data service interfaces, messages and properties. With such a
framework, the set of port types, operations and properties – which are needed
to provide access to specific data resources – can be defined in a standard way.
However, WS-DAI does not describe the particular interactions it performs with
the data resource (in terms of, for example, query languages).

The underlying WS-DAI realizations describe the specific operations needed
to interact with specific data resources, i.e., relational databases using SQL,
XML sources using XQuery, etc. The upper level specification is irrelevant to
the types of query that get passed through — they say nothing about the query
language, result formats etc. The interfaces, messages and properties used must
be defined in accordance with the WS-DAI framework.

Note that when building an application that interacts with a WS-DAI re-
source, it should be known beforehand which kind of resource will be used so
that the appropriate WS-DAI realization is used. WS-DAI provides the most
general properties of the data service as a grid service that the application may
need to know about, while the realization provides the specific mechanisms for
interacting with the data service.

3.2 Ontology Access through the OGSA Data Access and
Integration Facilities

In order to integrate the ontology access services within the WS-DAI frame-
work described in the previous section, several alternative approaches can be
adopted according to how the framework is used and where the new services
fit.

The approaches range from the mere use of the WS-DAI framework to the
extension of this framework to fit our purposes. Here, we also present the idea
of abstract realization, a realization which is not a plain realization of WS-
DAI but a set of guidelines that explain how to use the WS-DAI framework for
defining sets of related realizations.

In this section, we analyse each of the possible approaches and give exam-
ples that showe possible implementations of each approach; the Semantic Web
languages RDF(S) and OWL illustrate these examples.

3.2.1 Several vanilla realizations. The first and most naı̈ve approach
consists in providing a specific access mechanism for each ontology language
that is to be used; in our case, this means supplying a WS-DAI realization to
each possible Semantic Web ontology language.

The specific realizations must adhere to the syntax guidelines given by the
WS-DAI framework for defining the access mechanism. The concrete technical
aspects needed to access data sources containing ontologies developed with each



6

specific Semantic Web ontology language are defined in its related realization.
However, these realizations may have nothing in common, as the semantics of
each realization is conditioned by the necessities and requirements of the access
mechanism provided for each language, as it happens in the following example.

Here we have two basic realization designs for accessing respirces, one for
RDF(S) and other OWL, both developed independently.

The RDF(S) realization may provide access to RDF(S) by relaying on the
graph nature of the RDF model: every model is composed of a set of nodes
and links between the nodes. The nodes represent specific resources while the
links represent properties of the source node resources.

Figure 1. Sample RDF(S) vanilla realization

Following this idea, the realization can provide a set of interfaces that deliver
functionalities for dealing with models with data structures that represent nodes
(resources) and links (properties). Figure 1 represents a sample set of interfaces
(already grouped in services) and the signatures of some of the messages pro-
vided by the main interfaces.

The design of the OWL realization can follow other approach, as for in-
stance, an object-oriented one. According to this approach, the realization
would provide interfaces which deal with data structures that mimic the con-
ceptual elements defined in the OWL model: classes, properties, individuals,
restrictions, etc. Figure 2 represents a sample set of interfaces and the signatures
of some of the messages provided by the main interfaces.



Running head goes here 7

Figure 2. Sample OWL vanilla realization

Even though both realizations offer valid mechanisms for accessing their
respective resources, we cannot ensure, according to this design approach, any
homogeneity degree between the realizations, as there are no common guide-
lines that guarantee such homogeneity:

Data model structure: nothing is said about how to structure the data
model that is to be used in the messages. In this scenario, the RDF(S)
realization uses a graph-based data model, while the OWL realization
employs a component-like data model. Therefore, the interaction with
the ontology services needs to be adapted to the specific operational model
derived from the data model.

Naming conventions: each realization uses its own prefixes and suffixes
for denoting the names of the messages; for instance, the RDF(S) realiza-
tion defines the messages adding the prefixes ‘get’, ‘add’ and ‘remove’
whilst the OWL realization names the messages with similar semantics
using the prefixes ‘retrieve’, ‘create’ and ‘delete’; furthermore, this latter
realization defines messages with different semantics using a prefix (add)
that clashes with other in the RDF(S) realization. When switching from
one realization to other, the user will have to use another data model and
to learn which are the concrete semantics of each type of message (being
the type defined by the prefix and suffix combination).

Access modalities: the RDF(S) realization provides messages for creat-
ing, retrieving and deleting contents, while the OWL realization has an
additional functionality for updating the contents. Therefore, if we switch
from an ontology developed in OWL to another developed in RDF(S),
we have to simulate this extra functionality, as it is not present in the
RDF(S) realization. It might happen that missing functionalities cannot
be simulated due to the specific design of the other realization; in that



8

case the patterns of interaction with the ontology in the user’s application
should have to be reviewed.

Access granularity: in the case of the RDF(S) realization, access to the
contents is provided in different granularity degrees: we can interact
directly with a model, with a set of components (nodes and links) or with
specific components. The richer the messages provided in each level are,
the better the interaction with the RDF(S) resource will be. On the other
hand, the OWL realization just provides access to specific components
of the model. Again, when switching from one realization to other, we
will have to reorganize the ontology-based business logic in order to use
the services properly.

Architectural organization: messages with similar semantics are defined
in different conceptual components. Whilst the creation of components
in the RDF(S) realization is carried out in the ModelAccess interface, in
the OWL realization this is delegated to the Factory interfaces associated
to each component.

According to this scenario, the same interoperability problems that arise in
the Semantic Web community appear when following this design approach:
we end up having different mechanisms for accessing ontologies represented
in RDF(S) and OWL, each one designed according to different criteria, which
provide zero interoperability. Therefore, the ontology access service client
must know beforehand the language in which the ontology is available, because
he/she will have to use one or other realization for modelling the ontology-based
business logic of the application. As it follows, switching from one language to
other might cause severe changes in the ontology-based business logic, which
is the main issue we are trying to solve.

3.2.2 Two-layer realization. The idea here is to separate the common
operations from the specific ones, following a two-layer organisation. On the
one hand, the upper layer would contain a base WS-DAI realization defining
the common specific operations that must be provided by every ontology access
mechanism. On the other hand, the lower layer would contain WS-DAI real-
izations based on the base realization; each realization, which should be related
to an ontology language, would define the specific operations for accessing
ontologies developed in that particular ontology language.

In terms of operations, the two-layer realization approach introduces the idea
of a common API that must be followed by each final realization (and so by
each implementation). There are several ways of creating this API, here we
present two of them:



Running head goes here 9

Functional approach. The API contains the operations that represent
functionalities for ontology access and management similar to those of-
fered by ontology resources. According to this approach, the definition
of the operations would be driven by the possibilities of the ontology
resources.
Functionalities can be selected in various ways, for instance, according
to the desired granularity of the operations (the finer the grain detail is,
the more functionalites will have to be provided by the API) or according
to the size of the target API: we may want to minimize the number
of functionalities provided by the API, so this becomes simple although
rigid; or to maximize the number of operations so it becomes more flexible
but rather complex.

Conceptual approach. The API contains operations that deal with the
conceptual elements available in the knowledge representation formalism
of the ontology resources. Following this approach, the definition of the
operations is driven by the necessities of the conceptual model, nor by
the way the ontology resource deals with it, i.e. managing taxonomies,
reasoning over inherited properties, etc.
The number of operations of the API would depend on the modelling
elements chosen (the more elements, the more functionalities needed for
dealing with them) and the orthogonality of the operations desired (the
more independence between the functionalities and the operands, the
more operations to provide).

Thanks to this two-layer organisation, the basic ontology access interfaces
can be standardised, thus lowering the risks of interoperability issues in the
upper layer, that is, the one that contains the common operations. In Figure
3 we can see that the SchemaAccess interface defines common taxonomical
management operations such as retrieving the parents and siblings of a given
class, and these operations are common to both underlying realizations.

Unfortunately, no standardisation guidelines are provided for defining the
specific operations to be set up in the realizations of the lower layer, nor which
kind of operations can be defined in those interfaces. Therefore, interoperability
problems might appear in some particular features of concrete languages.

We can see in Figure 3 an example of this case. It shows that the new
operations added in the RDF(S) realization just provide extra functionalities
for dealing with the elements defined in the base realization following the same
naming convention, whereas the OWL realization provides new functionalities
for operating over specific elements of the OWL model (restrictions) with its
own naming conventions.

Regardless of the approach taken for the development of the API, enforcing
the fulfillment of an API poses serious disadvantages. On the one hand, if



10

Figure 3. Sample two-layer realizations for RDF(S) and OWL

the API that is to be fitted defines more operations than those provided by the
resources, we may have a set of operations that not usable that will weaken the
operational model defined by the API. On the other hand, if the API defines fewer
operations than those provided by the resources, the potential of those resources
is weakened because many of its capabilities will not be usable through the API.

Despite these disadvantages, we gain a strong advantage when APIs are en-
forced: the standardisation of the operations that will be used hereafter, which
helps to reduce interoperability problems across realizations and implementa-
tions.

3.2.3 An extension of WS-DAI. Another approach consists in providing
an extension to WS-DAI that, using the WS-DAI framework as basis, defines the
specific structural elements needed for defining ontology access mechanisms,
which are not defined in the basic WS-DAI framework.

Once the extension is defined, it would be used as the basis for creating
specific realizations that would provide ad-hoc access mechanisms to access
ontologies developed with concrete knowledge representation formalisms or
languages. However, this approach has its pros and cons, as we will see in the
following example.

In our sample extension, ontology resources (an specific type of data re-
sources) are composed of components which, in their turn, may also be com-
posed of other components. For dealing with these, an extra type of interface
will be used. The interface will be named appending the suffix ‘Components’
to the name of the data resource it operates with. The interface will provide



Running head goes here 11

BREAD functionalities 16, named with preffix the type of operation and the
suffix ‘Component’.

Figure 4. Implementations of the sample extension of WS-DAI

Figure 4 shows implementations of the sample extension for RDF(S) and
OWL. Thanks to the extra structural elements defined in the extension, some
kind of homogeneity is achieved, i.e. operations share a naming convention,
messages with similar semantics are grouped in the same interfaces, etc. Thus,
the interoperability problem decreases although unfortunately this effect is lim-
ited to these new structural elements.

However, in spite of the homogeneity achieved, the use of extra structural
elements makes ontology access services different from plain WS-DAI data
access services; therefore, whenever a user needs these services, he/she must
know about their specificities to use them properly.

This requirement implies interoperability problems between data services:
while a user of ontology access services would be able to understand and exploit
plain WS-DAI data services, a user of plain WS-DAI data services would not be
able to utilize the ontology access services since he/she has no way of inferring
the semantics of the new structural elements used in the declaration of the
ontology access services.

3.2.4 An abstract realization. This last approach is based on the two
previous ones and is targeted at solving the problem of enforcing the fulfillment
of a common API, and at creating extra structural elements.

The idea hera is to provide a means for defining the capabilities that might be
offered via an ontology access service and the ways in which they are offered,

16Browse, read, edit, add and delete.



12

and to provide a mechanism for publishing the specific capabilities implemented
by an ontology access service, so a client can discover and exploit them. This
can be done by means of an abstract realization.

As we reviewed in section 3.1.1, the objective of the base WS-DAI core
specification is to define a base framework for defining data access services that
can be adapted to particular necessities. To achieve this, the base specification
provides a set of patterns that defines messages and properties. With these
patterns, concrete realizations define the set of WS-DAI-based elements needed
for accessing a specific kind of data resource.

An abstract realization is a realization that does not define specific messages
nor properties for providing a particular access mechanism; it defines a set of
WS-DAI compliant patterns for defining interfaces, messages and properties
oriented to the specification of an adaptable set of related data access mecha-
nisms.

In our case, the abstract realization should be created for defining ontology
access mechanisms. Later realizations of this abstract realization can choose
which capabilities to implement and then define them with the patterns found
in the base abstract realization. Let’s see in the following example how this
could be achieved.

The first step consists in selecting the elements of the data model that is to
be supported. In the case of the RDF(S) and OWL languages, these elements
are well-known and defined. Therefore, we could say that the ontology access
mechanism must be able to operate over the union of both models: classes,
properties, restrictions, individuals, etc. Specific realizations will choose which
elements to support. In order to shorten the example, we can think that the
valid elements are just classes, properties and restrictions, and that classes and
restrictions are linked to properties (and viceversa).

Then, we have to select which kind of operations we want to provide in order
to operate over the supported data model. In our example we show basic CRUD
operations: create, retrieve, update and delete. The create operation provides
an id for the element created, and that id is used in the rest of the operations for
referring to that concrete element.

Once we have defined the data model and the way we can operate with
it, we have to define the patterns that will drive the definition of the related
infrastructure:

Interface creation patterns:

Pattern I1: A description interface named ‘element’Description
will be created for each element of the model.

Pattern I2: An access interface named ‘element’Access will be
created for each element of the model.



Running head goes here 13

Pattern I3: If an element is linked to any other element, a factory
interface named ‘element’Factory will be created for that element.

Messages creation patterns:

Pattern M1: A message named ‘operation’‘element’ will be cre-
ated in the appropriate access interface for each ‘element’ that
supports the operation ‘operation’17.

Pattern M2: If an element ei is linked to another element ej , a
message named retrieve‘ej’Factory will be created in the factory
interface of the element ei.

Properties creation patterns:

Pattern P1: A property named ‘linkedTo’ will be defined in each
description interface. If an element ei is linked to any other ele-
ment ej the value of the property will be the list of elements ej to
which ei is linked. Otherwise, the property will be nil.

Pattern P2: A property named ‘operationsSupported’ will be de-
fined in each description interface. If an element ei supports an
operation opj , the value of the property will be the list of operations
opj supported by the element ei.

With all of these patterns we can then produce our RDF(S) and OWL real-
izations (see Figure 5). As we can see, in the case of classes and properties, the
names of the interfaces and messages are shared in both RDF(S) and OWL, so
switching from one realization to other (when dealing with classes and proper-
ties) would not require changes in the ontology-based business logic.

Following this approach, each realization can choose the capabilities re-
quired, and by means of the patterns defined in the abstract realization, the
interfaces, messages and properties are defined in an homogeneous and stan-
dard way.

3.3 Conclusions
The OGSA specification defines a set of requirements that must be fulfilled

by any implementation of the specification; it also defines a set of capabilities
(services) that might be offered via implementations to fulfil these requirements.

According to these requirements and capabilities, the data access and inte-
gration facilities defined by OGSA constitute the most sensible niche for fitting
the ontology access services inside the OGSA architecture. The data access

17opj is one of ‘create’, ‘retrieve’, ‘update’, ‘delete’



14

Figure 5. Sample RDF(S) and OWL realizations using the abstract realization approach

and integration facilities are governed by the WS-DAI specification, which is
still under development inside of the GGF.

In the previous subsections, we have presented several approaches that pro-
vide ontology access using the WS-DAI specification as a basis; these ap-
proaches range from the realizations to the extensions.

The first approach clearly requires complete new implementations for any
additional language introduced, as nothing is reused from other realizations.
The second approach, on the contrary, provides some reuse by means of de-
signing a two-layer mechanism that proposes a set of common functionalities.
The cost of such reuse is the issue of factoring out a sensible subset of func-
tionalities valid for any possible ontology language, which may end up posing
interoperability problems between the services and the ontology resources.

The third approach consists in creating an extension to WS-DAI. This alter-
native suggests that there are characteristics and properties which distinguish
ontology access services from vanilla data access services. Nevertheless, ex-
ploiting these differences by means of extra structural features may imply inter-
operability problems between plain data services and ontology access services.

Finally, the fourth approach suggests that there might be characteristics that
distinguish ontology access services from plain data services, but also, that
there are subtle differences between ontology resources that must be also taken
into consideration. The fourth approach proposes a way for defining operations
in a common format (taking into account these differences between ontology
resources), so that some kind of standardisation is introduced in the underlying
realizations.

Therefore, and bearing in mind the objectives of reducing the amount of
different ontology access mechanisms and of facilitating the interoperability
between them, the best design approach is the abstract realization one.



Running head goes here 15

4. WS-DAIOnt: a Proposal of an Ontology Access
Mechanism in the Grid

The WS-DAIOnt specification [9], which is the short term for “Web Services
Data Access and Integration: The Ontology Realization”, and the accompany-
ing realizations (WS-DAIOnt-RDF(S), . . . ) define the data access infrastructure
needed for dealing with ontologies in grid environments.

WS-DAIOnt is based on the WS-DAI specification and provides a framework
for defining ontology access service interfaces by means of the WS-DAI vo-
cabulary, and for enhacing it with the patterns and properties needed to provide
specific ontology access mechanisms. Specific ontology data sources are then
addressable according to concrete WS-DAIOnt realizations, i.e. WS-DAIOnt-
RDF(S).

In the following subsections, both the foundations of WS-DAIOnt and the
components of WS-DAIOnt will be described.

4.1 WS-DAIOnt Foundations
The WS-DAIOnt specification is being designed following the abstract real-

ization approach described in Section 3.2.4. The foundational pillars that drive
the design of the specification are the following:

Unified basic terminology. Currently, knowledge representation for-
malisms use their own terminology for naming the knowledge mod-
elling components (ontology elements) they use. Thus, frames-based
formalisms use the name ‘class’ for referring to what it is named ‘con-
cept’ in description logics.

Whereas humans are able to match the names as synonyms and use both
of them indistinctly, software agents are not able to do so. Therefore, in-
teroperability problems might appear because of this terminology tangle.

WS-DAIOnt defines a neutral vocabulary for naming the ontology el-
ements to be used when dealing with ontologies in grid environments,
taking into account the specific modeling components of different knowl-
edge representation formalisms (frames, semantic networks, description
logics . . . )

This common and standard vocabulary avoids the use of multiple different
vocabularies that would hamper the understanding of the provided data
components and functionalities.

Ontology components relationships patterns. Each knowledge represen-
tation formalism defines a set of modeling elements and the way they
are related to each other. For instance, in the frames formalism slots are



16

defined locally (in frames), whereas in description logics properties are
defined globally (and can then be restricted to specific classes).

WS-DAIOnt defines how to specify the concrete ways in which ontol-
ogy components can be related, and which is the expected semantics of
these relationships, so clients can deduce how to conceptually use them
properly.

Ontology components usage patterns. WS-DAIOnt defines how the in-
terfaces, messages and properties must be specified in terms of WS-DAI
patterns, in order to provide functionalities in a standard way. Therefore,
clients can deduce how expected functionalities have to be exploited.

Ontology access services behaviours. WS-DAIOnt defines the expected
behaviour of the predefined common components and functionalities,
so that every concrete implementation must adhere to these behaviours.
Therefore, clients may expect some kind of homogeneous behaviour
across realizations and implementations.

4.2 WS-DAIOnt Components
The two main components of WS-DAIOnt are the WS-DAIOnt Data Model

and the WS-DAIOnt Port Types.
The WS-DAIOnt Data Model defines how the data managed by the specified

interfaces is virtually structured. The data model works as a metamodel from
and to which other knowledge representation formalisms may be mapped — by
means of these mappings the interfaces provide a common way for accessing
heterogeneous ontologies.

The data model defines the unified terminology to be used in WS-DAIOnt re-
garding the data components and also defines the possible relationships patterns
among them.

The organization of the data model has two dimensions:

Layered structure. The components are divided in two layers, the core
layer and the extended layer. On the one hand, the core layer contains
the common modeling components found in most of the representative
knowledge representation formalisms. On the other hand, the extended
layer will contain those modeling elements not considered for the core
layer because of their specificity or because they are yet to appear.

Model and data separation. The components are also divided with re-
gard to their concerns: those used for the conceptualization are grouped
together in the model part, and those used for dealing with individuals
are grouped in the data part.



Running head goes here 17

The WS-DAIOnt Port Types proposes a hierarchy of port types (interfaces),
providing different granularity levels of access to the data model components
for the sake of usability.

The upper levels of the hierarchy are general purpose interfaces that are
fixed in the WS-DAIOnt specification and are mandatory for every underlying
realization. The lower levels of the hierarchy are realization-dependent. In
order to create the port types in a standard way, WS-DAIOnt defines a set
of message design and organization criteria based on the components of the
WS-DAIOnt data model usage and relationships patterns.

5. Conclusions
Ontology access provisioning is crucial if we want to enrich the Grid with

semantic technologies. Furthermore, due to the increasing number of existing
ontology languages and tools, an effective mechanism that guarantees inter-
operability between ontology access mechanisms must be developed. Up to
date no protocols nor mechanisms are available in the OGSA architecture for
dealing with ontologies in an effective manner.

By extending WS-DAI with WS-DAIOnt and the accompanying realizations,
we provide the current grid architecture with a standard way of supplying ontol-
ogy access and management capabilities, making ontologies available in grid
environments like other specialized data resources usable across virtual orga-
nizations, thus enabling the future integration of semantic technologies in the
grid architecture.

WS-DAIOnt, and the accompanying realizations, are still under development
as part of the OntoGrid project.

Acknowledgments
We would like to thank all of those who have helped us anyhow: Sean

Bechhofer, Óscar Corcho, Rosario Plaza and Mª del Carmen Suárez de Figueroa.
This work is supported by the OntoGrid project (FP6-511513) and by a

U.P.M. pre-doctoral grant.

References
[1] M. Antonioletti, M. Atkinson, A. Krause, S. Malaika, S. Laws, N. W. Paton D. Pearson,

and G. Riccardi. Web Services Data Access and Integration – The Core (WS-DAI)
Specification, Version 1.0. GWD-R, Global Grid Forum, DAIS Working Group, Jun
2006.

[2] M. Antonioletti, B. Collins, A. Krause, S. Laws, J. Magowan, S. Malaika, and N.W.
Paton. Web Services Data Access and Integration - The Relational Realisation (WS-DAIR)
Specification, Version 1.0. GWD-R, Global Grid Forum, DAIS Working Group, Jun 2006.

[3] M. Antonioletti, S. Hastings, A. Krause, S. Langella, S. Laws, S. Malaika, and N.W.
Paton. Web Services Data Access and Integration – The XML Realization (WS-DAIX)



18

Specification, Version 1.0. GWD-R, Global Grid Forum, DAIS Working Group, Jun 2006.

[4] S. Bechhofer. The DIG Description Logic Interface: DIG/1.1. Specification, DL Imple-
mentation Group (DIG), Feb 2003.

[5] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. In I. Horrocks and J. Hendler, editors, The
Semantic Web - ISWC 2002: First International Semantic Web Conference, number 2342
in Lecture Notes in Computer Science, pages 54–68. Springer, May 2002.

[6] B. Collins. Web Services Data Access and Integration - The File Realization (WS-DAIF).
Informational recommendation, Global Grid Forum, DAIS Working Group, Oct 2004.

[7] D. De Roure, N. R. Jennings, and N. R. Shadbolt. The Semantic Grid: Past, Present and
Future. Proceedings of the IEEE, 93(3):669–681, Mar 2005.

[8] I. Foster (Ed), D. Berry, A. Djaoui, A. Grimshaw, H. Kishimoto (Ed) B. Horn, F. Maciel,
A. Savva (Ed), F. Siebenlist, R. Subramaniam, J. Treadwell, and J. Von Reich. The Open
Grid Services Architecture, Version 1.5. GWD-I, Global Grid Forum, OGSA Working
Group, Mar 2006.

[9] M. Esteban Gutiérrez (Ed), S. Bechhofer, O. Corcho, M. Fernández-López, A. Gómez-
Pérez, Z. Kaoudi, I. Kotsiopulos, M. Koubarakis, Mª C. Suárez-Figueroa, and V. Tamma.
Specification and Design of Ontology Grid Compliant and Grid Aware Services. Deliv-
erable D3.1, OntoGrid Consortium, Apr 2005.

[10] Asunción Gómez-Pérez, Óscar Corcho, and Mariano Fernández-López. Ontological En-
gineering : with examples from the areas of Knowledge Management, e-Commerce and the
Semantic Web. Advanced Information and Knowledge Processing. Springer, first edition,
Jul 2004.

[11] V. Haarslev and R. Moeller. Racer: A core inference engine for the Semantic Web. In
D. Fensel, K. P. Sycara, and J. Mylopoulos, editors, The Semantic Web - ISWC 2003, Sec-
ond International Semantic Web Conference, number 2870 in Lecture Notes in Computer
Science. Springer, Oct 2003.

[12] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A
Declarative Query Language for RDF. In 11th International World Wide Web Conference.
ACM, May 2002.

[13] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Working draft,
W3C, Feb 2006.

[14] A. Seaborne. RDQL – A Query Language for RDF. Member Submission, W3C, Jan
2004.

[15] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge engineering: Principles
and methods. Data & Knowledge Engineering, 25(1–2):161–197, Mar 1998.


