
Ontology Repositories

Jens Hartmann1, Raúl Palma2, and Asunción Gómez-Pérez2

1 Center for Computing Technologies (TZI)
University of Bremen, Germany
e-Mail: jh@tzi.de

2 Ontology Engineering Group, Laboratorio de Inteligencia Artificial
Facultad de Informática, Universidad Politécnica de Madrid, Spain
e-Mail: {palma,asun}@fi.upm.es

Summary. The growing use and application of ontologies in the last years has led
to an increased interest of researchers and practitioners in the development of on-
tologies, either from scratch or by reusing existing ones. Reusing existing ontologies
instead of creating new ones from scratch has many benefits: It lowers the time
and cost of development, avoids duplicate efforts, ensures interoperability, etc. In
fact, ontology reuse is one of the key enablers for the realization of the Semantic
Web. However, currently, ontologies are mostly developed from scratch, due to sev-
eral reasons. First, ontologies are usually tailored to work for specific applications,
restricting its potential reusability. Second, developers usually follow a monolithic
approach when developing ontologies, usually covering different domains, hampering
the reusability of relevant parts for other applications. Third, ontologies are rather
difficult to find due to the lack of standards for documenting them and appropriate
tools supporting intelligent ontology discovery and selection by end users. In this
chapter, we define a generic ontology repository framework that enables the imple-
mentation of fully-fledged ontology repositories providing the technological support
to the aforementioned issues. We distinguish between the ontology repository itself
and the software to manage the repository, and describe their main aspects and
services. Finally, we present two exemplary systems based on this framework.

1 Introduction

Knowledge reuse and access is one of the leading motivations for the Seman-
tic Web. Driven by those intensions an increasing amount of ontologies can
be found nowadays on the Web distributed among personal or institutional
web pages. One of the key problems the ontology engineering community has
to face at the moment is that most ontologies are built from scratch—rather
than reusing existing ones—leading to high engineering efforts and costs. One
of the main reasons is that most existing ontologies are build having a specific
application scenario in mind, making them similar to custom software. This

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148656635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Jens Hartmann, Raúl Palma, and Asunción Gómez-Pérez

leads to ontologies that are tailored to work with specific applications, but are
not knowledge representation artifacts in the traditional sense. When design-
ing these ontologies, engineers focus on expected behavior in the application
rather than on reuse and interoperability with other ontologies. Another prob-
lem is that ontologies trying to cover domains in the knowledge representation
sense are often too big to be reused efficiently. These ontologies try to cap-
ture the complete domain knowledge whilst ontology engineers normally only
need to reuse certain parts for their ontology. Nevertheless, having modular
ontologies is not enough to facilitate the reusability of ontologies if developers
are not able to find them efficiently. We need an appropriate infrastructure
that enables an intelligent ontology discovery and selection by end users.

Currently, initial collections of ontologies have been created during the last
years, e.g. the DAML Library3. Apparently these resources are mostly created
by hand and annotated manually. Many of these ontologies fail to follow con-
sistent representation and storage conventions, so humans and machines are
hampered by finding and reusing them. The process of identifying and access-
ing ontological resources, which can be summarized as ontology retrieval, is
consequently affected by non-existing mechanisms and standards for storing
and representing ontologies.

These circumstances point out the strong requirement for novel meth-
ods facilitating an efficient access and reuse of ontologies within a large scal-
able and reliable infrastructure, so called ontology repositories. The storage of
knowledge encoded by ontologies can only be part of the solution. Crucial for
ontology repositories is that additional knowledge about ontologies, so called
meta knowledge, is managed together in such a repository.

We propose a Generic Ontology Repository Framework (GORF) includ-
ing specific module support, tailored to exactly those requirements. We
base our framework on experiences gained by realizing our ontology repos-
itory Onthology4 and previous work on the ontology metadata vocabulary
OMV5. After their deployment, it became evident that having a central place
to find ontologies and ontology modules alone does not solve the problem of
quality assurance or knowing which module is the most suited for a specific
task. We therefore integrate an Open Rating System (ORS) into our repos-
itory to assist in the retrieval process and prove quality assurance through
feedback from the community itself. To fill the initial void of modules, existing
ontologies can be partitioned (depending on their knowledge representation
formalism e.g. using the approach and tool mentioned in [6]) to create relevant
modules.

In the following we discuss essential aspects of ontology repositories. To
begin with, in section 2 we describe the historical development from data to
ontology repositories. In section 3 we will describe the generic architecture

3 c.f. http://www.daml.org/ontologies/
4 c.f. http://www.onthology.org/
5 c.f. http://omv.ontoware.org/

Ontology Repositories 3

of an ontology repository and corresponding management systems. Core el-
ements and services of an Ontology Repository are discussed in section 4.
Further we illustrate management systems for ontology repositories in sec-
tion 5 and exemplify a centralized versus a decentralized solution in section 6.
We conclude in section 7 and comment on further steps.

2 From Data Repositories to Ontology Repositories

In this section we present an overview of how repositories have evolved
throughout time from general purpose data repositories to specialized on-
tology repositories.

In literature exist many different meanings and definitions to what a data
repository is, and in general to what a repository is. Hence we will first discuss
what we understand by a data repository, instead of giving another definition.
We consider a data repository as a collection of digital data that is available to
one or more entities (e.g. users, systems) for a variety of purposes (e.g. learn-
ing, administrative processes, research, etc.) and that has the characteristics
proposed by Heery R. and Anderson, S. [16]:

• content is deposited in a repository, whether by the content creator, owner
or third party

• the repository architecture manages content as well as metadata
• the repository offers a minimum set of basic services e.g. put, get, search,

access control
• the repository must be sustainable and trusted, well-supported and well-

managed

The term data library is usually used in the literature to refer to subject
specific datasets (e.g. climate data library, time series data library, geospa-
tial data library, etc.). Moreover, a data library tends to house local data
collections and provides access to them through various means. Thus, in gen-
eral a data library usually provides access to the complete dataset instead of
providing the basic services (e.g. search, put, get) a data repository offers.

Around the middle 1990s the term digital library (previously also known
as electronic library or virtual library) was first made popular by the
NSF/DARPA/NASA Digital Libraries Initiative. According to [1] a digital
library is a managed collection of information, with associated services, where
the information is stored in digital formats and accessible over a network. The
information stored can be very diverse and used by many different users. In
general a digital library is considered similar to a traditional library (i.e. it
used by users to find information that others have created, and use it for study,
reference, or entertainment) but it takes advantage of the new technologies to
deliver the information to users.

Data warehouses [17] became popular during the late 1980s and early
1990s. The purpose of a data warehouse is to perform analysis of the stored
data for management’s decision making. Data is entered into this repository

4 Jens Hartmann, Raúl Palma, and Asunción Gómez-Pérez

periodically, usually in an append-only manner. A data repository however,
does not necessarily have that analysis functionality provided by a data ware-
house.

Similarly to data repository, it is also possible to find many different mean-
ing and definitions to what is a knowledge base. Yet, in general, a knowledge
base is a central repository of knowledge artifacts. Usually a knowledge base
may use an ontology to formally represent its content and its classification
scheme, but it may also include unstructured or unformalized information ex-
pressed in natural language or procedural code. Also, in contrast to a data
repository, usually the purpose of the knowledge base is to allow automated
deductive reasoning over the stored knowledge (i.e. decide how to act by run-
ning formal reasoning procedures over the base of knowledge).

It is not surprising that some years ago, the ontology and semantic web
community became interested in using repositories to hold semantic content
(e.g. ontologies). Within the last years, ontologies have seen an enormous
development and application in many domains, especially in the context of
the semantic web. Academia and industry are developing and using ontologies
to provide new technologies and support daily operations. Therefore, currently
there exists a large amount of ontologies developed by many different parties
which makes necessary the means to share and reuse them.

Initial efforts to collect the base of existing ontologies proposed the cre-
ation of library systems (i.e. known as Ontology library systems) that offered
various functions for managing, adapting and standardizing groups of ontolo-
gies [8]. These systems defined an important environment in grouping and
reorganizing ontologies for further re-use, integration, maintenance, mapping
and versioning. They defined an evaluation model based on the functional-
ity the library system provided. Examples of library systems are: WebOnto,
Ontolingua, DAML Ontology Library System, SchemaWeb, etc.

Currently, efforts are put in the creation of ontology repositories. An on-
tology repository is similar to what Ding et al defined as an ontology library
system [8], but they also have some differences. In the remaining of this chap-
ter we will propose an widely-accepted definition of these terms.

3 Generic Ontology Repository Framework

Ontology reuse is still rarely encountered today. This is partly due to the
problem of finding suitable ontologies to reuse, and the way most ontologies
are created, namely without reusability in mind. Also, most of the established
ontologies containing domain knowledge are simply too big to be easily reused,
and no quality information is available on web ontologies.

We argue that ontology engineers can adopt from software engineers a way
how ontologies could be designed, namely modular. This way, small, reusable
components (ontology modules) are produced during creation. To manage
and provide access to ontologies we propose an Generic Ontology Repository

Ontology Repositories 5

Framework GORF with specific module and rating support. So not only on-
tologies or modules can be found in a single place, one can also see reviews
about their quality or their usefulness in different scenarios. This way ontology
engineers have a one-stop-shop for reusable knowledge artifacts.

The term ontology repository can be seen as evolved term coming from
the classical understanding of data repositories [17]. In the remaining we rely
on the following understanding of an ontology repository and corresponding
management systems.

Definition 1 (Ontology Repository & Management System). An On-
tology Repository (OR) is a structured collection of ontologies (schema
and instances), modules and additional meta knowledge by using an Ontol-
ogy Metadata Vocabulary. References and relations between ontologies and
their modules build the semantic model of an ontology repository. Access
to resources is realized through semantically-enabled interfaces applicable for
humans and machines. Therefore a repository provides a formal query lan-
guage.

Software to manage an ontology repository is known as Ontology Reposi-
tory Management System (ORMS). An ORMS is a system to store, organize,
modify and extract knowledge from an Ontology Repository.

The main driving motivation creating ontology repositories is to support
knowledge access and reuse for humans and machines. Hence ontology reposi-
tories on the one hand act as a storage facility and on the other provide access
to knowledge through defined interfaces and policies. To achieve these goals,
comprehensive facets must be considered by an ontology repository when han-
dling ontologies. In general, these facets can be separated into access-related
and storage-related aspects. A general requirement is that ontology reposito-
ries can support the entire ontology lifetime, i.e. ranging from the ontology
engineering process to the desired application within specialized tools or tasks.
Additionally, long term knowledge conservation is one of the crucial ontology
repository tasks.

On a technical level, practical realizations of ontology repositories might
differ in their concrete implementation. In contrast to that, relevant compo-
nents or services on a conceptual level are reusable among different technical
solutions. Consequentially, we now present a conceptual framework for ontol-
ogy repositories. Based on different ontology repository implementations and
realizations in the past [14], we identified a set of relevant components and
services which are embedded into a scalable and reliable framework.

To be more specific the Generic Ontology Repository Framework (GORF)
extends conceptually the SEAL (SEmantic portAL) [15] framework and pre-
liminary work on ontology repositories, as described in [14]. As a result, the
remaining framework GORF facilitates semantic-driven access and reuse of
ontologies, thereby maintaining the vision of the semantic web. Furthermore,
the framework remains scalable and can be distributed and interconnected

6 Jens Hartmann, Raúl Palma, and Asunción Gómez-Pérez

PIM

......

Knowledge Processes & Services

Organization

Storage

Intranet /

Extranet
Databases Files Ontologies

Sources

Query Processor
Transaction &
Consistency

Replication

Modularization
Lifecycle

(Evolution) Meta Model Validation
Index /
Registry

Portals

E
x
te

n
s
io

n
A

P
I

Rating Mapping Evaluation

Trust
Security (Access Control,

Rights Management)

Translation

Reasoning

Core Extensions

Access & Interfaces

External Services

Presentation

Search

Personalization

Engineering
Tools

Registries /
Repositories

Semantic
Portals

OR / ORMS Interface

Ontology Repository Management System (ORMS)

Retrieval Browse Management

Ontology Repository (OR)

3rd Party

Fig. 1. The GORF Architecture

to other repositories—like the one used in KMI’s Watson6—using e.g. web
services. We assume that there will be technically heterogeneous solutions for
6 c.f. http://watson.kmi.open.ac.uk/

Ontology Repositories 7

semantic applications and especially for ontology repositories on the WWW.
To ensure an easy and efficient knowledge exchange between applications,
knowledge workers, and repositories, GORF acts as a framework identifying
required components and services on a conceptual level, as shown in Fig. 1.

GORF distinguishes between the ontology repository itself and software to
manage the repository. The latter one is called Ontology Repository Manage-
ment System (ORMS). We claim that such knowledge intensive applications
are also build using semantic technologies, as shown in [12]. In the following
we briefly discuss the main aspects and services of an Ontology Repository
and an ORMS.

4 Ontology Repositories

The framework for ontology repositories includes five conceptual layers. These
layers can be seen as knowledge workflows, from the bottom to the top layer.
In the following, we discuss each layer briefly.

4.1 Knowledge Access

Maintaining the vision of the Semantic Web [3], the architecture provides in-
terfaces for humans and machines. Presenting knowledge to users involves a
sophisticated visualization of knowledge for users with different interests and
experiences. Thus, the framework must provide adaptable views on the stored
knowledge, as shown in [15]. Although an ontology represents a commonly
shared conceptualization of a domain, users typically have their own personal
views and may request different visualizations. Therefore, an ontology repos-
itory should provide personalization services, which can become key success
factors.

To sum up, the following aspects show up as elementary access functions.

• Presentation & Visualization: The access layer generates flexible
graphical user interfaces for users in different formats, e.g. HTML out-
put. Underlying templates define where, how, and when the framework
presents knowledge to the user. Furthermore, the framework is able to
dynamically generate ontology browsing interfaces and navigation bars,
So, the presented framework for ontology repositories must provide several
views of the stored knowledge. The presentation layer generates graphi-
cal user interfaces for users, e.g. by producing HTML output. Underlying
templates define where, how, and when the framework presents knowledge
to the user. Portals based on SEAL dynamically generate the ontologys
browsing interface and navigation bar. To support users interacting with
the portal, we developed a context-sensitive help system that provides
useful tips and explanations based on the current context.

• Searching & Querying a repository: Our framework offers several
search and query functionalities to the user. These include both standard
full-text search forms and complex query forms, such as allowing a query
for specific concepts or using simple query logic for a set of queries.

8 Jens Hartmann, Raúl Palma, and Asunción Gómez-Pérez

• Personalization: Although an ontology represents a commonly shared
conceptualization of a domain, users typically have their own personal
views and may request different visualizations. So, a semantic portal, es-
pecially a community one, should provide personalization services, which
can become key enablers for successful repositories.

Besides functionalities for accessing knowledge and rendering its presenta-
tion, the access component defines the interface used by the ORMS to manage
the OR.

4.2 Knowledge Processes & Services

Crucial to ontology repositories are processes and services for handling the
stored knowledge within the repository.

• Rating: GORF will support an Topic-Specific Trust Open Rating System
(TS-ORS) that can provide means to ensure the quality of ontologies and
modules in the repository. Open Rating Systems (ORS) [10] have become
increasingly popular over the last years. Nowadays, businesses have real-
ized their value in customer satisfaction and information, and a variety
of websites employ them. Examples are Epinions7, where products can be
reviewed, Slashdot8, where articles and news can be reviewed, Amazon9

(in the user review section), and iTunes10 where users can review music.
The general idea of ORS is to give everyone a voice, not only the so-called
experts. One nice aspect about not excluding anyone is that ORS scale
even when the rate of new content is growing steadily. Normally, in ORS,
a meta-rating approach is used. This means that reviews are rated useful
or not by other users. Based on these meta-reviews, a Web of Trust can
be computed [11] and reviews and products can be ranked. One of the
problems of the original algorithms and models [10, 11] proposed for ORS
was that they were inflexible in the way objects could be reviewed (only
complete objects) and how trust could be expressed (only globally). This
is problematic because most people are only experts in certain fields and
not in all. Another problem is that content in the system could only be
rated as a whole, not specific properties separately. When applying ORS
to review complicated content like ontologies [22], this is not sufficient.
Users have to be able to review only those parts of the content they un-
derstand or have expertise on reviewing. To solve this problem, Lewen et
al introduced topic-specific trust in ORS [19] and extended the underlying
ORS model, making it a TS-ORS.

• Mapping: Mapping—frequently also called alignment—of ontologies is a
core task to achieve interoperability and therefore a foundational service of

7 c.f. www.epinions.com
8 c.f. www.slashdot.org
9 c.f. www.amazon.com

10 c.f. www.apple.com/itunes

Ontology Repositories 9

an ontology repository. Because most ontologies reflect a subject-oriented
view of the world, different people will model knowledge differently. Being
able to link these different representations is important for the success of
the Semantic Web. Thus, an ontology repository needs to support mapping
mechanisms.

• Evaluation: In contrast to ontology rating that is a subjective assessing
of an ontology, ontology evaluation can be seen as an assessment of the
quality and the adequacy of an ontology or parts of it regarding a specific
aim, goal or context. So far, several methods for evaluating ontologies
have been proposed. An overview can be found in [29]. Selected evaluation
strategies can be implemented in an evaluation component and applied in
a large repository.

• Trust: Trust is an ongoing and currently not fully solved research problem
in the area of the Semantic Web. However, we see trust management as an
important functionality for managing knowledge in ontology repositories.
The ORS partly addresses this issue in GORF.

• Security: Due to intellectual property rights, commercial licenses, patents
or copyrights, not all knowledge artifacts may be accessible by the public.
Therefore clear access control and right management functionalities are
required. While knowledge access might be restricted, meta knowledge like
OMV [13] remains accessible and processable. As a result, commercially
used knowledge artifacts can be identified in a repository while the access
is secured by specialized services like payment systems.

Additional processes or services might be added or attached through an
extension component. For example, reasoning or validation services might be
included here.

4.3 Knowledge Organization

The developed framework GORF can handle massive amounts of knowledge
stored in a repository. Additionally, the technology allows for having multiple
portals as access points on top of one ontology repository. Using the knowl-
edge representation mechanism, we developed several continuative knowledge-
organization methods to provide fast and effective access to knowledge.

• Modularization: The introduced framework aims to use ontology mod-
ules as key elements to be stored in a repository—alongside existing
ontologies—for the reasons motivated beforehand. The core idea be-
hind ontology modularization is the identification of reusable knowl-
edge artifacts which are adaptable to different tasks and remain domain-
independent. In contrast to an ontology, which aims at providing a domain-
specific conceptualization in one construct for a set of tasks, a module
represents a shared, domain-independent conceptualization which is adap-
tive to and intended for re-occurring tasks and applications. In general,
ontology modules are comparable to software libraries in the software en-
gineering domain.

10 Jens Hartmann, Raúl Palma, and Asunción Gómez-Pérez

A key pre-condition for modularization is an expressive modeling language
for ontologies, e.g. [5]. Currently first approaches can be found in literature
for the modularization of ontologies and connecting these modules [30].
These approaches are, however, mostly driven by the underlying logic—
except the ones working on structural information, like graph-based mod-
ularization approaches (for an overview we refer to [7]).
The main principle of modularization is described in an abstract way
whereby we distinguish the process of modularization on existing ontolo-
gies and modularization whilst an ontology is being created. The first task,
modularization on existing ontologies, can be considered as an ontology
re-engineering task and the latter one represents an ontology engineering
task. We assume that in most cases the effort required to identify useful
modules in large and possibly unknown ontologies is too expensive for man-
ual modularization. So automatic or at least semi-automatic mechanisms
are required. First steps in this direction can be found in [6], where the
ontology engineering environment itself provides means to extract mod-
ules out of existing ontologies, keeping the logical entailments intact. So
the main challenge in extracting modules from existing ontologies is to
identify modules that are best suited for reuse and maintenance issues.
When new ontologies are created, they can be designed with a module-
based approach in mind. Software engineers are used to program following
the object-oriented modeling paradigm [26], meaning they encapsulate re-
quired behavior in smaller blocks according to functionality. If ontology
engineers would follow the same principle, the task of ontology engineer-
ing could become less cumbersome and less costly, due to an increase in
reusable knowledge components, namely ontology modules.
At a certain point ontology modules are likely to require connections to
other modules or ontologies to provide the functionality required for the
given application. Techniques for linking ontologies and modules range
from simple use of the owl:imports statement to fully fledged linking mech-
anisms [4, 2, 9]. These techniques differ in the assumptions they make
regarding the source and target ontologies or modules. Some approaches
require that the local domains and terminologies are disjoint [18], others
require the use of special semantics. For an evaluation of their proper-
ties and usefulness in a distributed scenario as well as a more detailed
introduction of their internal workings, see [30].
Which formalism the ontology engineer uses at the end to connect on-
tologies or modules is dependent on requirements of the specific appli-
cation [20]. For our purposes it is just important to note that different
formalisms exist, and modular ontologies can be created using different
modules.

• Lifecycle: The support for evolution of knowledge, in particular for on-
tologies, is a major requirement for ontology repositories. In contrast to
static content, ontologies are changing and demand mechanisms for updat-
ing and evolving knowledge over time. [27] defines an ontology evolution

Ontology Repositories 11

process model based on a requirement analysis. The approach relies on a
declarative specification of change requests and evolution strategies. The
approach has been practically realized within the KAON [21] ontology
engineering framework. Such evolution mechanisms can be included into
GORF through so called lifecycle components.

• Meta Model: Ontologies are commonly used as a shared means of com-
munication between computers and between humans and computers. Ergo
ontologies should be represented, described, exchanged, shared and ac-
cessed based on open standards such as the W3C standardized web on-
tology language OWL. However, most ontologies today exist without any
additional information about authorship, domain of interest and other
metadata about ontologies. Therefore, searching and identifying existing
ontologies which are potentially reusable because they are for example ap-
plied in similar domains, used within similar applications, or have similar
properties, is a rather hard and tedious task.
We argue that meta knowledge (seen as meta model) in the sense of ma-
chine processable information for the Web11 helps to improve accessibility
and reuse ontologies. Further, it can provide other useful resource infor-
mation to support maintenance. We claim that metadata does not only
help when it is applied (or attached) to documents, but also to ontologies.
As a consequence, ontologies which are annotated by metadata require an
infrastructure including metadata support—like the registry component
in the GORF. Metadata simply consisting of attribute-value pairs is not
sufficient for efficient knowledge access and reuse. Therefore first metadata
vocabularies for ontologies have been developed [25, 13] and successfully
applied in numerous applications [14]. In a more language centered way
an approach relating UML with ontologies has been developed [5].

• Validation: Integrating different knowledge sources requires capable val-
idation services. Validation components mainly analyze and validate the
syntax of ontologies.

• Registry & Indices: Knowledge artifacts may exist as entities, modules,
schemes, or ontologies as a whole. Those artifacts are indexed by a registry
component (OMR -Ontology Metadata Registry).
The OMR provides services for storage, cataloging, discovery, manage-
ment, and retrieval of ontology metadata definitions. The OMR provides
the means to support advanced semantic searches of ontologies based on
their characteristics. In general the OMR can be a GORF component or
an independent system.
Analogically to the Dublin Core Metadata Initiative’s (DCMI) Metadata
Registry12, the OMR is designed to promote the discovery and reuse of
existing ontologies. It provides users, and applications, with an authori-

11 c.f. http://www.w3.org/Metadata/
12 http://dublincore.org/dcregistry/

12 Jens Hartmann, Raúl Palma, and Asunción Gómez-Pérez

tative source of information about the characteristics of ontologies, thus
simplifying the discovery process.
Registry services and indices accelerate access to a repository, especially
for search. Generally, indices are useful for concepts, relations, and full-
text search capability. Our facilities offer repository administrators the
possibility to freely define further indices.

Summarizing, the knowledge organization layer provides efficient methods
for handling and organizing knowledge in repositories.

4.4 Knowledge Storage

To support the envisioned large, scalable application scenario of GORF, we
use a highly scalable storage mechanism. Distributed repositories are set up
in a cluster for handling several requests. Therefore the storage layer includes
components for querying, transactions and replication of knowledge within
such repositories.

• Query Processor: The query processing component handles queries for
single knowledge artifacts in a repository. As query language we prefer
standardized languages like the well-known SPARQL13 query language.

• Transaction & Consistency: Performing and handling access to knowl-
edge simultaneously requires sophisticated mechanisms preventing incon-
sistencies. Thus, transaction and consistency components analyze and
check queries against the underlying knowledge storages.

• Replication: Being designed for scenarios with a high number of users
and queries, GORF provides adaptable knowledge replication mecha-
nisms. Those mechanisms replicate knowledge storages and additionally
distribute them among pre-defined spaces.

The knowledge storage layer provides mechanisms for handling and ac-
cessing distributed knowledge sources, which are described below.

4.5 Knowledge Sources

The presented approach provides a sophisticated framework for integrating
knowledge from different sources like files, data bases, ontologies or other
semantic portals. The framework is capable of using existing sources along
with their attached infrastructure. Therefore, our framework can rest atop
existing technologies and act as a kind of semantic layer for these technologies
to use the developed integration mechanisms.

Knowledge sources are typically distributed and heterogeneous, and tend
to change during semantic interrelation, aggravating the task of integrating
information into one common knowledge repository. The layer comprises two
modules. The generic knowledge integration module shares and integrates

13 c.f. http://www.w3.org/TR/rdf-sparql-query/

Ontology Repositories 13

knowledge from previously unknown sources. The interconnected-integration
module handles sources that are closely interconnected technically and se-
mantically. This module mainly integrates content such as other portals and
semantic metadata.

5 Ontology Repository Management Systems

An Ontology Repository Management System (ORMS) is a semantically-
enabled software to store, organize, modify and extract knowledge from an
Ontology Repository. Two systems, namely Oyster14 and Onthology15 [14]
are already available to the end user.

In general, the main tasks of an ORMS are providing access to knowledge
resources, supporting retrieval and allocating sufficient management mecha-
nisms.

Retrieval

Ontology retrieval for humans and machines is a key functionality of an ontol-
ogy repository management system. The retrieval component provides mech-
anisms to manage search and discovery functions of an ontology repository.
For example consider the allocation of indices or the provision of metadata.

Browsing and Navigation

Semantically-driven navigation through knowledge stocks enables users to
identify new and potentially useful knowledge artifacts within a repository.
The navigation through repositories can be guided by specialized ontologies
for semantic navigation, as introduced in [15]. The browsing and navigation
component therefore allows mainly the selection of such navigation ontologies.
Based on a usage analysis [28], a repository manager is able to evolve deployed
navigation ontologies.

Management

An ontology repository is administrated through a management component
which contains all administrative functionalities required to store, organize
and maintain the knowledge within a repository. In general, manageable com-
ponents in a repository provide interfaces to the management component. The
main task hereby is to collect all manageable functionalities and to enable a
standardized and centralized access to all relevant administrative functional-
ities. The entire business logic is implemented within each repository com-
ponent itself. Thus, the management component itself does not contain real
business logic. As a result, components within GORF are easily interchange-
able and the whole framework remains flexible and scalable.
14 c.f. http://oyster.ontoware.org/
15 c.f. http://www.onthology.org/

14 Jens Hartmann, Raúl Palma, and Asunción Gómez-Pérez

To sum up, an Ontology Repository Management System (ORMS) is a
powerful tool to manage ontology repositories, even several distributed ones
together. This way, established workflows and processes can be easily inter-
changed among other repositories reducing maintenance efforts and increasing
the usability of such repositories.

6 Centralized vs. decentralized Systems

We now present exemplary running systems based on GORF. In detail, we
present two complementary applications, namely the decentralized P2P sys-
tem Oyster and the centralized ontology portal Onthology. In general, the
two tools differ in their usage perspective and are appropriate for different
tasks. However, as we will see, only the combined application of both tools
will offer users the full potential of ontology management.
6.1 Centralized Systems

Ensuring a scalable and reliable access to ontologies, optimization techniques
are required. One well-known approach is a hybrid storage mechanism from
the data warehouse area which materializes content to provide faster access.
We present the conceptual design of a centralized ontology portal and its im-
plementation, so-called Onthology standing for “anthology of ontologies”.

Scope

Centralized systems allow to reflect long-term community processes in which
some ontologies become well accepted for a domain or community and others
become less important. Such well accepted ontologies and in particular their
metadata need to be stored in a central metadata portal which can be accessed
easily by a large number of users whereby the management procedures are well
defined. Hence, a main goal of a centralized metadata portal is to act as large
evidence storage of metadata resp. their related ontologies to facilitate access,
reuse and sharing as required for the Semantic Web.

Actors

We identified several different user roles for Onthology: The visitor is an
anonymous user, he is allowed to browse the public content of the portal. A
visitor can become a user by completing an application form on the website.
In order to avoid unnecessary administrative work, a user is added automati-
cally to the membership database. Users can customize their portal, e.g. the
content of their start-page or their bookmarks. If a user wants to submit
metadata to the portal, this submission has to be reviewed before it is pub-
lished. Onthology establishes a review process in order to ensure a certain
level of quality. Reviewers check the new submissions before they are pub-
lished. The technical administrator is responsible for any other task mainly
the maintenance of the portal.

Ontology Repositories 15

Functionalities

Functionalities of Onthology can be separated into two groups based on
the usage. Indeed, basic functionalities which are provided to every user who
accesses the portal and sophisticated functionalities for reviewers and admin-
istrators. The main operations a user can perform on the repository are (i)
Search, (ii) Submit and (iii) Export.

The search and export can be performed by any visitor without being reg-
istered to the repository. Since providing new metadata is based on a certain
community confidence, a visitor has to register at the portal to be able to
submit data.

Architecture

Onthology consists of an ontology repository and an ORMS. Exemplary,
Sesame16 or KAON17 can be used as back-end metadata storage solution
for an ontology-based representation. Furthermore, access and in particu-
lar the management of the repository must be guaranteed, too. Therefore,
Onthology is based on the proposed framework GORF. It supports queries
to multiple sources, but beyond that also intensive use of the schema infor-
mation itself to allow for automatic generation of navigational views such
as navigation hierarchies that appear as has- part-trees or has- subtopic
trees in the ontology. In addition to that mixed ontology and content-based
presentation is supported. Further information can be found at [13, 25].
6.2 Decentralized Systems

In this section we describe the distributed ontology registry (Oyster).
Oyster[23] is a Peer-to-Peer application that exploits semantic web tech-

niques in order to provide a solution for exchanging and re-using. In order to
achieve this goal, Oyster implements the proposal for a metadata standard
OMV[25] as the way to describe ontologies.

Oyster Design

The Oyster system18 was designed using a service-oriented approach, and
it provides a well defined API. Accessing the registry functionalities can be
done using directly the API within any application, invoking the web service
provided or using the included java-based GUI as a client for the distributed
registry. As part of the design, Oyster identifies an ontology metadata entry
by the URI of the ontology it describes, therefore two ontology metadata
entries are considered the same when the URI of both ontologies are the
same. However, due to the distributed nature and potentially large size of the
16 http://www.openrdf.org/
17 http://kaon.semanticweb.org/
18 For a complete information and for downloading Oyster system we refer the reader

to http://ontoware.org/projects/Oyster/

16 Jens Hartmann, Raúl Palma, and Asunción Gómez-Pérez

Peer-to-Peer network, two ontology metadata entries might refer to the same
ontology but have different URI, in which case they are considered duplicates.

In Oyster, ontologies are used extensively in order to provide its main
functions described in the following:

Creating and importing metadata: Oyster enables users to create metadata
about ontologies manually, as well as to import ontology files and to automat-
ically extract the ontology metadata available, letting the user fill in missing
values. The ontology metadata entries are aligned and formally represented
according to two ontologies: (1) the OMV ontology, (2) a topic hierarchy (i.e.
the DMOZ topic hierarchy), which describes specific categories of subjects to
define the domain of the ontology.

Formulating queries: A user can search for ontologies using simple keyword
searches, or using more advanced, semantic searches. Here, queries are formu-
lated in terms of these two ontologies. This means queries can refer to fields
like name, acronym, ontology language, etc. or queries may refer to specific
topic terms.

Routing queries: Users may query a single specific peer (e.g. their own
computer, because they can have many ontologies stored locally and finding
the right one for a specific task can be time consuming, or users may want to
query another peer in particular because this peer is a known big provider of
information), or a specific set of peers (e.g. all the members of a specific orga-
nization), or the entire network of peers (e.g. when users have no idea where
to search), in which case queries are routed automatically in the network.

Processing results: Finally, results matching a query are presented in a
result list. The answer of a query might be very large, and contain many du-
plicates due to the distributed nature and potentially large size of the P2P
network. Such duplicates might not be exact copies because of the semi struc-
tured nature of the metadata, so the ontologies are used again to measure
the semantic similarity between different answers and to remove apparent du-
plicates. As proposed by the ontology metadata standard, all the different
realizations of an ontology (ontology documents) can be grouped by the same
ontology base to give a more organized view of the results.

Oyster Architecture

The high-level design of the architecture of a single Oyster node in the Peer-
to-Peer system is shown in Figure 2. In the following, we discuss the individual
components of the system architecture.

The Local Repository of a node contains the metadata about ontologies
that it provides to the network. It supports query formulation and processing
and provides the information for peer selection. In Oyster, the Local Reposi-
tory is based on KAON2 and it supports SPARQL as its query language.

The Knowledge Integrator component is responsible for the extraction and
integration of knowledge sources (i.e. ontologies) into the Local Repository.
Oyster supports automatic extraction of metadata for OWL, DAML+OIL,

Ontology Repositories 17

Oyster Web Service

Query Manager

Local Repository

Oyster API

AnswerQuery

Local Access

Advertisements P2P
Network
P2P

Network
Remote Access

Peer

Peer

P
2P

 N
etw

ork
S

ublayerInformer

Knowledge
Integrator

Oyster GUIs

Registration

 Oyster
Java
GUI

 Local/Remote

Fig. 2. Overview of Oyster Architecture

and RDF-S ontology languages. This component is also in charge of how
duplicate query results are detected and merged.

The Query Manager is the component responsible for the coordination of
the process of distributing queries. It receives queries from the user interface,
API or from other peers. Either way it tries to answer the query or distribute
it further according to the content of the query. The decision to which peers
a query should be sent is based on the scope of the query (i.e. a specific set of
peers or entire network) and optionally on the knowledge about the expertise
of other peers.

The Informer component is in charge of proactively advertising the avail-
able knowledge of a Peer in the Peer-to-Peer network and to discover peers
along with their expertise. This is realized by sending advertisements about
the expertise of a peer. In Oyster, these expertise descriptions contain a set of
topics (i.e. ontology domains) that the peer is an expert in. Peers may accept
these advertisements, thus creating a semantic link to the other peer. These
semantic links form a semantic topology, which is the basis for intelligent
query routing.

The Peer-to-Peer network sub-layer is the component responsible for the
network communication between peers. It provides communication services
for the data exchange with remote nodes, i.e. to propagate advertisement
messages and to realize the access to remote repositories. In Oyster, we rely
on an RMI-based implementation, however, other communication protocols
would be possible as well.

The API, WS and GUI components provide alternative ways for accessing
Oyster functionalities. The API defines a set of methods that expose all the

18 Jens Hartmann, Raúl Palma, and Asunción Gómez-Pérez

registry functionalities, while the web service encapsulates the API exposing
only a reduced subset. The GUIs provide ready-to-use clients that access the
registry via the WS or the API. However, Oyster also include a former java-
based GUI that access directly the registry.

Additional registry functionalities can be provided by engineering compo-
nents. Some of these components are described in [24].

6.3 Discussion

Both presented applications are covering a variety of different tasks. Indeed,
for a user who wants to store metadata individually similar to managing his
personal favorite song list, a repository is required to which a user has full
access and can perform any operation (e.g. create, edit or delete metadata)
without any consequences to other users. Exemplary, users from academia or
industry might use a personal repository for a task-dependent investigation,
or ontology engineers might use it during their ontology development process
to capture information about different ontology versions. We argue, that a
decentralized system is the technique of choice, since it allows the maximum
of individuality while it still ensures exchange with other users.

Centralized systems allow to reflect long-term community processes in
which some ontologies become well accepted for a domain or community and
others become less important. Such well accepted ontologies and in particular
their metadata need to be stored in a central metadata portal which can be
accessed easily by a large number of users whereby the management proce-
dures are well defined. Obviously, personal repositories are quite limited from
this perspective. Actually, the Oyster system and Onthology are not neces-
sarily two completely separated repositories. Indeed, they are interconnected
and they exchange metadata between each other. We are currently supporting
the access of metadata stored in Onthology from any Oyster peer.

The benefit of connecting both systems lies mainly in the simple use of
existing ontology metadata information within Oyster. So, while users are
applying or even developing their own ontologies they can manage their own
metadata along with other existing metadata in one application (in Oyster).
If some metadata entries from Oyster have reached a certain confidence, an
import into Onthology can be performed easily. In combination, both sys-
tems ensure efficient and effective ontology metadata management for various
use cases.

7 Conclusions

Ontology repositories will be a crucial cornerstone facilitating efficient knowl-
edge access and reuse especially in the context of the Semantic Web. We have
presented our Generic Ontology Repository Framework GORF including rat-
ing and module support. We expect that there will be a shift in ontology
engineering towards developing ontologies in a modular way. We are opti-
mistic that then the critical mass of ontology modules in our repository can

Ontology Repositories 19

be reached, and ontology engineers will start reusing them and providing new
ones.

Already existing realizations like Onthology and Oyster illustrate the
benefits of such systems. We assume that ontology repositories will play an
important role in realizing the Semantic Web vision.

Acknowledgement. Research reported in this chapter was partially supported by two
European Projects: The Network of Excellence KnowledgeWeb (FP6-507482) and
the NeOn Project (FP6-027595).

References

1. W. Y. Arms. Digital Libraries. The MIT Press, 2001.
2. J. Bao, D. Caragea, and V. Honavar. Towards collaborative environments for

ontology construction and sharing. In International Symposium on Collaborative
Technologies and Systems (CTS 2006), pages 99–108. IEEE Press, 2006.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American Magazine, 284(5):34–43, 2001.

4. A. Borgida and L. Serafini. Distributed description logics: Directed domain
correspondences in federated information sources. In OTM Federated Conference
CoopIS/DOA/ODBASE, pages 36–53, 2002.

5. S. Brockmans, R. M. Colomb, E. F. Kendall, E. Wallace, C. Welty, G. T. Xie,
and P. Haase. A Model Driven Approach for Building OWL DL and OWL
Full Ontologies. In I. C. et al., editor, The Semantic Web - ISWC 2006: 5th
International Semantic Web Conference, volume 4273 of LNCS, pages 187–200,
Athens, Ga, USA, NOV 2006. Springer.

6. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the Right
Amount: Extracting Modules from Ontologies. In Proc. of the Sixteenth Inter-
national World Wide Web Conference (WWW 2007), 2007.

7. M. d’Aquin, M. Sabou, and E. Motta. Modularization: a Key for the Dynamic
Selection of Relevant Knowledge Components. In 1st International Workshop
on Modular Ontologies (WoMo 2006), co-located with ISWC, 2006.

8. Y. Ding and D. Fensel. Ontology library systems: The key to successful ontology
reuse, 2001.

9. B. C. Grau, B. Parsia, and E. Sirin. Working with multiple ontologies on the
semantic web. In International Semantic Web Conference, pages 620–634, 2004.

10. R. Guha. Open Rating Systems. Technical report, Stanford University, CA,
USA, 2003.

11. R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of Trust and
Distrust. In Proc. of the Thirteenth International World Wide Web Conference,
pages 403–412, New York, NY, MAY 2004. ACM Press.

12. J. Hartmann. Ontology-based Modeling and Realization of Knowledge Man-
agement Systems. PhD thesis, University of Karlsruhe (TH), Institute AIFB,
D-76128 Karlsruhe, 2007.

13. J. Hartmann, R. Palma, Y. Sure, P. Haase, and M. C. Suárez-Figueroa. OMV
– Ontology Metadata Vocabulary. In C. Welty, editor, ISWC 2005 Workshop
on Ontology Patterns for the Semantic Web, NOV 2005.

20 Jens Hartmann, Raúl Palma, and Asunción Gómez-Pérez

14. J. Hartmann, R. Palma, Y. Sure, M. C. Suárez-Figueroa, P. Haase, A. Gómez-
Pérez, and R. Studer. Ontology metadata vocabulary and applications. In
International Conference on Ontologies, Databases and Applications of Seman-
tics. In Workshop on Web Semantics (SWWS), LNCS 3762, pages 906–915.
Springer, OCT 2005.

15. J. Hartmann and Y. Sure. An Infrastructure for Scalable, Reliable Semantic
Portals. IEEE Intelligent Systems, 19(3):58–65, MAY 2004.

16. R. Heery and S. Anderson. Digital repositories review, February 2005.
17. W. H. Inmon and W. H. Inmon. Building the Data Warehouse, 3rd Edition.

John Wiley & Sons, Inc., New York, NY, USA, 2002.
18. O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of descrip-

tion logics. In Description Logics Workshop, CEUR-WS Vol 81, 2003.
19. H. Lewen, K. Supekar, N. F. Noy, and M. A. Musen. Topic-Specific Trust

and Open Rating Systems: An Approach for Ontology Evaluation. In Pro-
ceedings of the 4th International Workshop on Evaluation of Ontologies for the
Web (EON2006) at the 15th International World Wide Web Conference (WWW
2006), Edinburgh, UK, MAY 2006.

20. F. Loebe. Requirements for logical modules. In 1st International Workshop on
Modular Ontologies (WoMo 2006), co-located with ISWC, 2006.

21. A. Maedche, B. Motik, and L. Stojanovic. Managing Multiple and Distributed
Ontologies in the Semantic Web. VLDB Journal, 12(4):286–302, 2003.

22. N. F. Noy, R. Guha, and M. A. Musen. User ratings of ontologies: Who will
rate the raters? In Proc. of the AAAI 2005 Spring Symposium on Knowledge
Collection from Volunteer Contributors, Stanford, CA, 2005.

23. R. Palma and P. Haase. Oyster - sharing and re-using ontologies in a peer-to-
peer community. In International Semantic Web Conference, pages 1059–1062,
2005.

24. R. Palma, P. Haase, Y. Wang, and M. d’Aquin. D1.3.1 Propagation models and
strategies. Technical report, Universidad Politécnica de Madrid, NOV 2007.

25. R. Palma, J. Hartmann, and P. Haase. OMV - Ontology Metadata Vocabulary
for the Semantic Web. Technical report, Universidad Politécnica de Madrid,
University of Karlsruhe, 2008. v2.4. Available at http://omv.ontoware.org/.

26. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
oriented modeling and design. Prentice-Hall, Inc. Upper Saddle River, NJ, USA,
1991.

27. L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, Uni-
versität Karlsruhe (TH), Universität Karlsruhe (TH), Institut AIFB, D-76128
Karlsruhe, 2004.

28. N. Stojanovic, J. Hartmann, and J. Gonzalez. The OntoManager - a system
for usage-based ontology management. In Proceedings of FGML Workshop.
Special Interest Group of German Information Society (FGML - Fachgruppe
Maschinelles Lernen der GI e.V.), 2003.

29. D. Vrandecic and Y. Sure. How to design better ontology metrics. In W. May
and M. Kifer, editors, Proceedings of the 4th European Semantic Web Conference
(ESWC’07), Innsbruck, Austria, JUN 2007. Springer. to appear.

30. Y. Wang, J. Bao, P. Haase, and G. Qi. Evaluating Formalisms for Modular
Ontologies in Distributed Information Systems. In M. Marchiori and J. Z. Pan,
editors, Proceedings of The First International Conference on Web Reasoning
and Rule Systems (RR2007), LNCS 4524, pages 178–182, Innsbruck, Austria,
JUN 2007. Springer.

Index

Generic Ontology Repository Frame-
work (GORF), 5

onthology, 14
Ontology Metadata, 11
Ontology Metadata Registry (OMR),

11
Ontology Repository (OR), 5

Ontology Repository Management
System (ORMS), 5, 13

Open Rating System (ORS), 8

oyster, 15

Topic-Specific Trust Open Rating
System (TS-ORS), 8

