
Departamento de Inteligencia Artificial
Facultad de Informática

PhD Thesis

A Method for Reusing and
Re-engineering Non-ontological

Resources for Building
Ontologies

Author : Msc. Boris Marcelo Villazón Terrazas
Advisor : Prof. Dr. Asunción Gómez Pérez

2011

ii

Tribunal nombrado por el Sr. Rector Magfco. de la Universidad Politécnica de
Madrid, el dı́a...............de.............................de 20....

Presidente :

Vocal :

Vocal :

Vocal :

Secretario :

Suplente :

Suplente :

Realizado el acto de defensa y lectura de la Tesis el dı́a..........de......................de
20...... en la E.T.S.I. /Facultad..

Calificación ..

EL PRESIDENTE LOS VOCALES

EL SECRETARIO

iii

iv

Abstract
Current well-known methodologies for building ontologies do not consider the
reuse and possible subsequent re-engineering of existing knowledge resources.
The ontologization of non-ontological resources has led to the design of several
specific methods, techniques and tools. These are mainly specific to a particular
resource type, or to a particular resource implementation. Thus, everytime ontol-
ogy engineers are confronted with the task of re-engineering a new resource into
an ontology, they develop ad-hoc solutions for transforming such resource into a
single ontology.

Within the context of the NeOn project, we propose a novel methodology for
building ontology networks: the NeOn Methodology, a methodology based on sce-
narios. One of these scenarios is Building Ontology Networks by Reusing and Re-
engineering Non-Ontological Resources. As opposed to custom-building silos of
single ontologies from scracth, this new scenario emphasizes the re-engineering
of knowledge resources for building ontologies that are connected with other on-
tologies in the ontology network. The scope of this thesis lies in this scenario of
the NeOn Methodology and in the use of re-engineering patterns for transforming
non-ontological resources components into ontology representational primitives.
Specifically, this thesis presents the following main contributions:

• A categorization of non-ontological resources, made by defining the term
non-ontological resources and by proposing a three-level categorization of
them according to the type, data model, and implementation of the resource.

• A metadata vocabulary, NoRMV, for describing non-ontological resources.

• Methodological guidelines for reusing available non-ontological resources,
which have reached some degree of consensus by the community when
building ontologies.

• Methodological guidelines for transforming the non-ontological resources
selected into ontologies by re-engineering patterns.

• A set of re-engineering patterns for transforming classification schemes, the-
sauri, and lexica into ontologies.

• A software library, NOR2O, that implements the transformations suggested
by the re-engineering patterns when building ontologies.

The integrated framework proposed in this thesis allows speeding up the ontol-
ogy development, thus saving time and effort.

v

vi

Resumen
Las metodologı́as disponibles para el desarrollo de ontologı́as no tienen en cuenta
la reutilización y posible re-ingenierı́a de recursos de conocimiento disponibles.
La ontologización de recursos no-ontológicos ha dado lugar al diseño de varios
métodos, técnicas y herramientas. Éstas son especı́ficas para un tipo o imple-
mentación particular del recurso que se va transformar. Por lo tanto, cada vez
que los ingenieros ontológicos se enfrentan a la re-ingenierı́a de un nuevo recurso
en una ontologı́a, tienen que desarrollar soluciones ad-hoc para poder transformar
dicho recurso en una ontologı́a.

Dentro del contexto del proyecto NeOn, se ha propuesto la Metodologı́a NeOn,
una metodologı́a novedosa basada en escenarios, para desarrollar ontologı́as en red.
Uno de estos novedosos escenarios es el de la Construcción de Ontologı́as medi-
ante la Reutilización y Re-ingenierı́a de Recursos No-ontológicos. Al contrario que
la construcción personalizada de silos de ontologı́as simples partiendo desde cero,
este nuevo escenario destaca la re-ingenierı́a de recursos de conocimiento para la
construcción de ontologı́as que están conectadas con otras dentro de la red de on-
tologı́as. El ámbito de esta tesis se circunscribe al escenario de la Metodologı́a
NeOn ası́ como al uso de patrones de re-ingenierı́a para transformar los compo-
nentes de recursos no-ontológicos en elementos de una ontologı́a. Esta tesis pre-
senta especı́ficamente las siguientes contribuciones:

• Una categorización de recursos de conocimiento, definiendo el término de
recurso no-ontológico y presentado una clasificación de los mismos de acuer-
do al tipo, modelo de datos e implementación.

• Un vocabulario de metadatos para describir los recursos no-ontológicos,
NoRMV.

• Guı́as metodológicas para el proceso de reutilización de recursos no-ontológi-
cos, que hayan alcanzado un grado de consenso dentro de una comunidad,
para la construcción de ontologı́as.

• Guı́as metodológicas para el proceso de re-ingenierı́a de recursos no-ontológi-
cos en ontologı́as, mediante el uso de patrones de re-ingenierı́a.

• Una librerı́a de patrones de re-ingenierı́a para transformar esquemas de clasi-
ficación, tesauros y lexicones en ontologı́as.

• Una librerı́a de software, NOR2O, que implementa las transformaciones su-
geridas por los patrones de re-ingenierı́a para la construcción de ontologı́as.

Todo el marco propuesto en esta tesis permite acelerar el desarrollo de on-
tologı́as reduciendo ası́ costes de tiempo y esfuerzo.

vii

viii

Acknowledgements
This thesis is the result of part of my work as a research assistant within the

Ontology Engineering Group (OEG) at the Universidad Politécnica de Madrid,
Spain. I want to mention that most of this work was performed in the context of
two European Projects: the NeOn Project (FP6-027595), and the SEEMP Project
(FP6-027347).

There are many people I want to thank since they kindly supported me in so
many different ways for the successful completion of this thesis.

First of all, I would like to thank in a very special way Prof. Dr. Asunción
Gómez-Pérez, my supervisor and guide during these years. In this period of my
research, she gave me a fair amount of freedom to develop myself and, at the
same time she encouraged and supported me, providing the necessary guidance to
achieve the best results. Actually, she is the reason I decided to start my research
in the semantic web field.

During the elaboration of this thesis, I found out that, in many cases, infor-
mal conversations with friends and colleagues were of great importance to clarify
ideas. So, I want to thank all the members of the OEG group for the interesting
discussions we had in all these years: Mari Carmen, Elena, Ándres, Ángel, José
Ángel, Vı́ctor, Raúl, Óscar, Lupe, Mariano, Jaime, Inma, among others. In addi-
tion, I would like to thank Rosario Plaza for helping me with the writing of the
document. I also want to extend my gratitude to all the friends with whom I shared
many wonderful moments during my staying in Madrid. I will always remember
them, specially Fernando, Jan, Vı́ctor, Elena, Mauricio, Alex, Jean Paul, Ángel,
Óscar, Mari Carmen, José Ángel, Raúl, Marı́a, Freddy, Dani(s), Miguel Angel,
Luis, Idafen, Carlos, Ghis, César, Rafa, Miguel, Jorge, Esther(s), José, Adrian,
Ana, Sole, and José Alberto. Also to the OEG outsiders, Ester, Nicholas, Moisés,
Mar, Miguel, David, Guillermo, Ana, Juan, Jezz, Olga, Miriam, Ivan, Miguelon,
German, Marco, Edwin, Marı́a Cecilia, Yadira, Juani, Raziel, and Ernesto.

I want to thank the people involved in the NeOn and SEEMP projects: Caterina,
Margarita, Marta, Jane, Yves, Soho, Claudio, Peter, Mathieu, Yimin, Martin, José
Manuel, Tómas, German, Emanuelle, Irene, Salvatore, Luka, Jerome, Sofia, Dario,
and Mick.

I must acknowledge Aldo Gangemi and the people I met during my research
visit to the CNR in Italy: Valentina, Eva, Alessandro, Enrico, Marı́a, Alison, and
Juani.

My sincere thanks are due to Michael Hausenblas and Richard Cyganiak, who
gave me the opportunity to visit DERI in Ireland. Thanks also to Souleiman, Szy-
mon, Antoine, Jürgen, Aidan, Axel, Nuno, Fadi, Lukas, Franco as well as the other
foosball-mates. I also want to extend my thanks to my flat-mates Katie, Sarah,
Myles, Khavin, Rajiv, Marc, and Martionus for standing by me through the good
and the bad.

My special gratitude to my family in Spain: Magin, Paula, Isabel, Don Alfredo,
Dra. Edith, Doña Betzy, Don Micky, Don José, Doña Charo, and Fabricio.

ix

I want to thank my friends, Consuelo, Nestor, Omar, Juanjo, Beto, Nippur,
Ronald, Mauricio, Gonzalo, Telma, Pomky, and the Asterix group because they
gave me peace and confidence, especially in those moments of weakness for being
so far from home and helped me to concentrate on the things that matter.

I would like to express my deepest thank to my brother, Javier, who always
believed in me. Without his support I would not have been able to make this
thesis come true. Finally, I owe my family my sincerest gratitude because they
always supported and believed in me: my grandmother Marı́a Tráncito, my parents
Demetrio and Chela, and my aunt Mardonia.

To all of them, very many thanks.

x

Agradecimientos

Esta tesis es el resultado de una parte de mi trabajo como investigador en el
Ontology Engineering Group, OEG, de la Universidad Politécnica de Madrid. La
mayor parte de este trabajo ha sido realizado en el contexto de los proyectos eu-
ropeos NeOn (FP6-027595) y SEEMP (FP6-027347).

Me gustarı́a agradecer a muchas personas por el apoyo recibido para la culmi-
nación de esta tesis.

En primer lugar, quiero agradecer de manera especial a mi tutora Asunción
Gómez-Pérez. Durante todo este tiempo de investigación, ella me concedió cierta
libertad, pero al mismo tiempo, ella me ayudaba proporcionándome la guia nece-
saria para conseguir los resultados esperados. De hecho, gracias a ella me decanté
a investigar en el campo de la Web Semántica.

A lo largo de la elaboración de esta tesis, he podido darme cuenta que en mu-
chos casos las conversaciones con amigos y colegas fueron de gran importancia
para clarificar algunas ideas. Por lo tanto, quiero agradecer a todos los miembros
del grupo OEG por las discusiones interesantes que tuvismos durante todos estos
años: Mari Carmen, Elena, Ándres, Ángel, José Ángel, Vı́ctor, Raúl, Óscar, Lupe,
Mariano, Jaime e Inma. Además, quiero agradecer a Rosario Plaza por ayudarme
en la escritura del documento de tesis. Al mismo tiempo quiero agradecer a todos
los amigos con los que compartı́ gratos momentos durante mi estancia en Madrid.
Siempre los recordaré, especialmente a Fernando, Jan, Vı́ctor, Elena, Mauricio,
Alex, Jean Paul, Ángel, Óscar, Mari Carmen, José Ángel, Raúl, Marı́a, Freddy,
Dani(s), Miguel Angel, Luis, Idafen, Carlos, Ghis, César, Rafa, Miguel, Jorge, Es-
ther(s), José, Adrian, Ana, Sole y José Alberto. También a los amigos fuera de
OEG, Ester, Nicholas, Moisés, Mar, Miguel, David, Guillermo, Ana, Juan, Jezz,
Olga, Miriam, Ivan, Miguelon, German, Marco, Edwin, Marı́a Cecilia, Yadira,
Juani, Raziel y Ernesto.

También quiero dar las gracias a todas las personas con las que trabajé en los
proyectos NeOn y SEEMP, particularmente a Caterina, Margarita, Marta, Jane,
Yves, Soho, Claudio, Peter, Mathieu, Yimin, Martin, José Manuel, Tómas, Ger-
man, Emanuelle, Irene, Salvatore, Luka, Jerome, Sofia, Dario y Mick.

Agradecer afectuosamente a Aldo Gangemi y todas las personas con las que
trabajé y conocı́ durante mi estancia en el CNR en Italia, a Valentina, Eva, Alessan-
dro, Enrico, Marı́a, Alison, y Juani.

Mi más sincero agradecimiento a Michael Hausenblas y Richard Cyganiak, que
me dieron la oportunidad de visitar DERI en Irlanda. Gracias a Souleiman, Szy-
mon, Antoine, Jürgen, Aidan, Axel, Nuno, Fadi, Lukas, y los colegas del futbolı́n.
También tengo que agradecer a mis compañeros de piso y amigos Katie, Sarah,
Myles, Khavin, Rajiv, Marc, y Martionus. La estancia en Galway me enriqueció
profesionalmente y personalmente.

Mi gratitud especial a mi familia en España: Magin, Paula, Isabel, Don Al-
fredo, Dra. Edith, Doña Betzy, Don Micky, Don José, Doña Charo, y Fabricio.

xi

Quiero agradecer a mis amigos, Consuelo, Nestor, Omar, Juanjo, Beto, Nip-
pur, Ronald, Mauricio, Gonzalo, Telma, Pomky, y los miembros del grupo Asterix.
Ellos me brindaron paz y confianza, especialmente en aquellos momentos de de-
bilidad por estar lejos de casa, que me ayudaron a concentrarme en las cosas que
importan.

Quiero expresar mi agradecimiento más profundo a mi hermano, Javier, que
siempre confió en mı́. Sin su apoyo y paciencia no hubiera sido capaz de realizar
esta tesis realidad. Finalmente, quiero agradecer a mi familia, que siempre confió
en mı́, mi abuelita Marı́a Tráncito, mis padres, Demetrio y Chela, y mi tı́a Mardo-
nia.

Para todos ellos, muchı́simas gracias.

xii

Contents

1 INTRODUCTION 1
1.1 Context . 1

1.1.1 Overview of Some Methodologies for Building Ontologies 1
1.1.2 Non-ontological Resources 3
1.1.3 NeOn Methodology for Building Ontology Networks . . . 4
1.1.4 Patterns in Ontology Engineering 5

1.2 Thesis Structure . 6
1.3 Dissemination of Results . 8

2 STATE OF THE ART 11
2.1 A Comparative Framework of Methods and Tools for Reusing and

Re-engineering NORs into Ontologies 11
2.1.1 Evaluation Framework 11
2.1.2 Methods for Reusing and Re-engineering Non-ontological

Resources . 15
2.1.3 Tools for Re-engineering Non-ontological Resources . . . 27
2.1.4 Results and Conclusions 35

2.2 Patterns for Re-engineering . 43
2.2.1 Software Re-engineering 43
2.2.2 Software Patterns . 47
2.2.3 Ontology Patterns . 48

2.3 Summary and Discussion . 50

3 OBJECTIVES AND CONTRIBUTIONS 53
3.1 Objectives . 54
3.2 Contributions to the State of the Art 55
3.3 Assumptions . 57
3.4 Hypotheses . 57
3.5 Restrictions . 58

4 RESEARCH METHODOLOGY 61
4.1 General Framework for Describing the Method 61
4.2 Description of the Processes . 64

xiii

4.3 Requirements for the Proposed Method 65
4.3.1 Generic Requirements 65
4.3.2 Specific Requirements 66

5 REUSING NON-ONTOLOGICAL RESOURCES 69
5.1 Non-ontological Resources . 69
5.2 Non-ontological Resource Metadata Vocabulary 75

5.2.1 NoRMV Core Metadata Entities 76
5.3 Method for Reusing Non-ontological Resources 77

5.3.1 Activity 1. Search Non-ontological Resources 77
5.3.2 Activity 2. Assess the Set of Candidate Non-ontological

Resources. 78
5.3.3 Activity 3. Select the Most Appropriate Non-ontological

Resources . 81
5.4 Summary . 82

6 PATTERN BASED RE-ENGINEERING METHOD 85
6.1 Re-engineering Model for Non-ontological Resources 85
6.2 Requirements for the Transformation 87
6.3 Patterns for Re-engineering Non-ontological Resources 88
6.4 Semantics of the Relations among the NOR Terms 90
6.5 Formal Definition of the Ontologies Generated 92
6.6 Method for Re-engineering Non-ontological Resources 93

6.6.1 Activity 1. Non-ontological Resource Reverse Engineering. 93
6.6.2 Activity 2. Non-ontological Resource Transformation. . . 94
6.6.3 Activity 3. Ontology Forward Engineering 96

6.7 Summary . 96

7 PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES 99
7.1 Classification Scheme . 99

7.1.1 Components of a Classification Scheme 99
7.1.2 Classification Scheme Formal Definition 100
7.1.3 Classification Scheme Data Models 101
7.1.4 Classification Scheme Implementations 102

7.2 Patterns for Re-engineering Classification Schemes into Ontologies 103
7.2.1 Patterns for the TBox Transformation 103
7.2.2 Patterns for the ABox Transformation 121

7.3 Summary . 134

8 PATTERNS FOR RE-ENGINEERING THESAURI 135
8.1 Thesaurus . 135

8.1.1 Components of a Thesaurus 137
8.1.2 Thesaurus Formal Definition 138
8.1.3 Thesaurus Data Models 139

xiv

8.1.4 Thesaurus Implementations 140
8.2 Patterns for Re-engineering Thesauri into Ontologies 142

8.2.1 Patterns for the TBox Transformation 143
8.2.2 Patterns for the ABox Transformation 152

8.3 Summary . 160

9 PATTERNS FOR RE-ENGINEERING LEXICA 161
9.1 Lexicon . 161

9.1.1 Components of a Lexicon 163
9.1.2 Lexicon Formal Definition 165
9.1.3 Lexicon Data Models . 165
9.1.4 Lexicon Implementations 167

9.2 Patterns for Re-engineering Lexica into Ontologies 168
9.2.1 Patterns for the TBox Transformation 168
9.2.2 Patterns for the ABox Transformation 177

9.3 Summary . 185

10 TECHNOLOGICAL SUPPORT 187
10.1 NOR2O . 187

10.1.1 NOR Connector . 187
10.1.2 Transformer . 189
10.1.3 Semantic Relation Disambiguator 191
10.1.4 External Resource Service 191
10.1.5 OR Connector . 192

10.2 PR-NOR Library at the ODP Portal 193
10.3 Summary . 194

11 EVALUATION 195
11.1 Evaluation of the Methodological Guidelines 196

11.1.1 Understandability, Applicability and Usability of the Method-
ological Aspects of Re-engineering within a Master Course 196

11.1.2 Understandability, Applicability and Usability of the Method
for Reuse and Re-engineering within the SEEMP Project . 199

11.1.3 Understandability, Applicability and Usability of the Method
within the mIO! Project 205

11.1.4 Summary . 208
11.2 Evaluation of the Technological Support 209

11.2.1 Quality Evaluation of the Patterns and NOR2O 210
11.2.2 Usability Evaluation of the Software Library 212
11.2.3 Applicability and Usability of NOR2O within the GeoLinked-

Data Project . 214
11.2.4 Summary . 216

11.3 Evaluation Summary . 216

xv

12 CONCLUSIONS AND FUTURE WORK 219
12.1 Review of the Contributions . 220
12.2 Hypotheses Verification . 225
12.3 Future Work . 226

BIBLIOGRAPHY 227

xvi

List of Figures

1.1 Scenarios for building ontologies and ontology networks [SF10] . 5

2.1 Non-ontological resources categorization 12
2.2 Transformation approaches . 14
2.3 Software levels of abstraction [Byr92] 44
2.4 General model for software re-engineering [Byr92] 46
2.5 Ontology Design Pattern categorization [GP08] 49

3.1 Thesis main contributions . 54

4.1 Inputs considered when developing the method for reusing non-
ontological resources . 62

4.2 Inputs considered when developing the method that allows re-engineering
non-ontological resources . 63

4.3 Inputs considered to obtain the patterns for re-engineering non-
ontological resources . 64

5.1 Non-ontological resource categorization 70
5.2 Example of classification scheme 74
5.3 NoRMV: A metadata vocabulary for non-ontological resources . . 76
5.4 Non-ontological resource reuse filling card 78
5.5 Activities for the non-ontological resource reuse process 79

6.1 Re-engineering model for non-ontological resources 86
6.2 Non-ontological resource re-engineering filling card 94
6.3 Re-engineering process for non-ontological resources 95

7.1 Main components of the UML representation of the classification
scheme [ISO04] . 100

7.2 Classification scheme categorization 102

8.1 Thesaurus standards evolution [Lab07] 136
8.2 UML representation of the thesaurus components [ISO86] 137
8.3 Excerpt of the AGROVOC thesaurus 139
8.4 AGROVOC thesaurus modelled with the record-based model . . . 140
8.5 AGROVOC thesaurus modelled with the relation-based model . . 140

xvii

8.6 AGROVOC thesaurus, spreadsheet implementation for the record-
based model . 141

8.7 AGROVOC thesaurus, XML implementation for the record-based
model . 141

8.8 Thesauri categorization . 142

9.1 UML representation of the lexicon main components [FGC+06] . 163
9.2 Excerpt of WordNet lexicon . 166
9.3 WordNet modelled with the record-based model 166
9.4 WordNet modelled with the relation-based model 166
9.5 Excerpt of a WordNet database implementation 167
9.6 Lexicon categorization . 168

10.1 Modules of the NOR2O software library. 188
10.2 Graphical representation of the NOR Connector XSD file. 188
10.3 Graphical representation of the PRNOR XSD file. 190
10.4 Graphical representation of the OR XSD file. 192
10.5 Re-engineering ODPs at the ODP Portal 193

11.1 SEEMP Reference Ontology . 204
11.2 mIO! Ontology Network . 209
11.3 The results of SUMI questionnaires for the NOR2O Software Library213
11.4 Generation of RDF instances from the excel spreadsheet data. . . 216

xviii

List of Tables

2.1 Comparison of the methods according to the NOR features 28
2.2 Comparison of the methods according to the reuse process features 29
2.3 Comparison of the methods according to the transformation pro-

cess features . 30
2.4 Comparison of the methods according to the ontology features . . 31
2.5 Comparison of the tools according to the NOR features 36
2.6 Comparison of the tools according to the transformation process

features . 37
2.7 Comparison of the tools according to the ontology features 38

3.1 Mapping between objectives and contributions with associated as-
sumptions, hypotheses and restrictions 60

5.1 Assessment table for the NORs 82

6.1 Template of pattern for re-engineering non-ontological resource . 89
6.2 Set of patterns for re-engineering NORs 90

7.1 Pattern for re-engineering a classification scheme following the
path enumeration data model into an ontology schema. 104

7.2 Pattern for re-engineering a classification scheme following the ad-
jacency list data model into an ontology schema 108

7.3 Pattern for re-engineering a classification scheme following the
snowflake data model into an ontology schema. 112

7.4 Pattern for re-engineering a classification scheme following the
flattened data model into an ontology schema. 116

7.5 Pattern for re-engineering a classification scheme following the
path enumeration data model into an ontology. 121

7.6 Pattern for re-engineering a classification scheme following the ad-
jacency list data model into an ontology. 124

7.7 Pattern for re-engineering a classification scheme following the
snowflake data model into an ontology. 128

7.8 Pattern for re-engineering a classification scheme following the
flattened data model into an ontology. 131

xix

8.1 Pattern for re-engineering a thesaurus following the record-based
data model into an ontology schema. 143

8.2 Pattern for re-engineering a thesaurus following the relation-based
model, into an ontology schema. 147

8.3 Pattern for re-engineering a thesaurus following the record-based
data model into an ontology. 153

8.4 Pattern for re-engineering a thesaurus following the relation-based
model into an ontology. 157

9.1 Pattern for re-engineering a lexicon following the record-based data
model into an ontology schema. 169

9.2 Pattern for re-engineering a wordnet lexicon following the relation-
based data model into an ontology schema. 173

9.3 Pattern for re-engineering a lexicon following the record-based data
model into an ontology. 178

9.4 Pattern for re-engineering a lexicon following the relation-based
data model into an ontology. 181

10.1 PR-NOR Library web accesses 194

11.1 Evaluation criteria . 196
11.2 Answers to the proposed questionnaire 198
11.3 Assessment table for SEEMP Occupation Standards 201
11.4 Standards, codes and classifications reused 202
11.5 Resources transformed in the SEEMP project 203
11.6 SEEMP Reference Ontology statistical data 204
11.7 Assessment table for the mIO! geographical locations 207
11.8 mIO! Ontology statistical data 208
11.9 Resources utilized in the experiment 210
11.10Similarity values of every ontology generated with the Gold Stan-

dard ontology. 211

12.1 A comparative analysis of the three most representative methods
and the pattern-based method. NOR features 223

12.2 A comparative analysis of the three most representative methods
and the pattern-based method. Reuse features 223

12.3 A comparative analysis of the three most representative methods
and the pattern-based method. Transformation features 224

12.4 A comparative analysis of the three most representative methods
and the pattern-based method. Ontology features 225

xx

xxi

xxii

Chapter 1

INTRODUCTION

1.1 Context

Ontologies are being used to model a domain of knowledge and to share informa-
tion. They are found in knowledge engineering, artificial intelligence, computer
science, and the Semantic Web, among others fields, as a form of knowledge rep-
resentation of the world, or some part of it.

The word ontology is taken from Philosophy, where it means a systematic ex-
planation of existence. In the field of Artificial Intelligence there are many defini-
tions for it, a collection of which appears in [GPFLC03]. Neches [NFF+91] was
the first to define an ontology, which he did as follows: “Ontology defines the basic
terms and the relations that include the vocabulary of a specific area, in addition
to the rules to combine terms and relations to define extensions to the vocabu-
lary”. Gruber [Gru93b, Gru93a] defines the ontology as “An explicit specification
of a conceptualization”, being this definition the most referenced in the literature.
Borst [Bor97] slightly modifies Gruber’s definition by saying that “Ontologies are
defined as a formal specification of a shared conceptualization”. These last two def-
initions have been merged and explained by Studer et al. [SBF98] as “An ontology
is a formal, explicit specification of a shared conceptualization. Conceptualization
refers to an abstract model of some phenomenon. Explicit means that the type of
concepts used and the constraints on their use are explicitly defined. Formal refers
to the fact that the ontology should be machine-readable. And shared reflects the
notion that an ontology captures consensual knowledge, that is, it is not private of
some individual, but accepted by a group”.

1.1.1 Overview of Some Methodologies for Building Ontologies

Research on Ontology Engineering methodologies has provided methods and tech-
niques for developing ontologies from scratch. Well-recognized methodological
approaches such as METHONTOLOGY [GPFLC03], On-To-Knowledge [SSSS01],
and DILIGENT [PTS04] issue guidelines that help researchers to develop ontolo-
gies. However, researchers face an important limitation: no guidelines are provided

1

CHAPTER 1. INTRODUCTION

for building ontologies by re-engineering some knowledge resources widely used
within a particular community.

During the last decade, specific methods, techniques and tools were proposed
for building ontologies from available knowledge resources. First, ontology learn-
ing methods and tools were proposed to extract relevant concepts and relations
from structured, semi-structured, and non-structured resources [GPMM04, MS01]
in order to form a single ontology. One important constraint of these methods and
tools is that they propose ad-hoc solutions to transforming such resources, mainly
texts, into ontologies. Hepp et al. [Hep06, HdB07, Hep07] stated that employing
methods and techniques when ontologizing non-ontological resources to the level
of ontologies is key for the success of semantic technology and this for two main
reasons: (1) if the use of semantic technologies for real-world data integration chal-
lenges is required, it is possible to refer to the original conceptual elements, and
(2) for many domains, the existing category systems, XML schemas, and norma-
tive entity identifiers are the most efficient resources for engineering ontologies.

The literature presents a wide set of methods and tools for the ontologization of
non-ontological resources. This ontologization of resources has led to the design
of several specific methods, techniques and tools [HdB07, HVTS08, GGMO03,
GC05]. These are mainly specific to a particular resource type, or to a particular
resource implementation. Thus, every time ontology engineers are faced with a
new resource type or implementation, they develop ad-hoc solutions to transform-
ing such resource into a single ontology.

The analysis of the ontologies developed by distinct research groups in differ-
ent international and national projects have revealed that there are different alter-
native ways or possibilities to build ontologies by reusing and re-engineering the
available knowledge resources used by a particular community. However, at this
stage we can state that all the projects perform an ad-hoc transformation of the
resources available for building ontologies.

• Knowledge Web1 deals with the aligning and versioning of ontologies as
well as the use of best practices or patterns related to W3C activities.

• The SEKT2 project focuses on argumentative development of ontologies.

• The UMLS Project3 describes the experiences gained while transforming the
UMLS Semantic Network into OWL ontology.

• The UK PRODIGY4 describes the transformation of tangled hierarchies -
those derived from ambiguous “broader than / narrower than” thesauri in
library science - into formal ontologies.

1http://knowledgeweb.semanticweb.org
2http://www.sekt-project.org
3http://www.nlm.nih.gov/mesh/umlsforelis.html
4http://www.cks.nhs.uk/home

2

http://knowledgeweb.semanticweb.org
http://www.sekt-project.org
http://www.nlm.nih.gov/mesh/umlsforelis.html
http://www.cks.nhs.uk/home

1.1. CONTEXT

• The Knowledge Nets5 project aims to investigate the impact of the Seman-
tic Web technologies on electronic markets; one particular objective of this
project is to build ontologies by reusing existing taxonomies for the descrip-
tion of skills as well as the classification of job profiles and industrial sectors
within the job recruitment domain.

• Jimeno-Yepes et al. [JYJRBLRS09] explore how to use terminological re-
sources for ontology engineering. They describe an approach for the proper
creation and use of a shared thesaurus in the development of ontologies.
They have applied their approach to a real scenario, the Health-e-Child (HeC)
project6 and have evaluated the impact of filtering and re-organizing several
resources.

• The e-POWER project7 aims to integrate heterogeneous components by means
of a semantically-enhanced middleware, which operates between the portal
and the web services interfacing the functionalities of back-offices.

As it can be inferred from above, a new ontology development paradigm started
approximately in 2007, whose emphasis was on the reuse and possible subse-
quent re-engineering of knowledge resources, as opposed to custom-building
new ontologies from scratch. However, in order to support and promote such reuse-
based approach, new methods, techniques, and tools are needed.

1.1.2 Non-ontological Resources

The knowledge resources, reused in the aforementioned projects for building on-
tologies, contain, readily available, a wealth of category definitions and reflect
some degree of community consensus. In this thesis, we refer to non-ontological
resources (NOR)8 as those knowledge resources whose semantics have not yet
been formalized explicitly by means of ontologies. Examples of NORs are classi-
fication schemes, thesauri, lexica, and folksonomies, among others. This type of
resources encodes different types of knowledge and can be implemented in differ-
ent ways.

Our analysis of the literature has revealed different ways of categorizing non-
ontological resources. Thus Maedche et al. [MS01] and Sabou et al. [SAd+07]
classify non-ontological resources into unstructured (e.g. free text), semi-structured
(e.g. folksonomies) and structured (e.g. databases) resources; whereas Gangemi
et al. [GPS98] distinguish catalogues of normalized terms, glossed catalogues,
and taxonomies. Finally, Hodge [Hod00] proposes characteristics such as struc-
ture, complexity, relationships among terms, and historical functions for classi-
fying them. However, an accepted and agreed upon typology of non-ontological
resources does not exist yet.

5http://wissensnetze.ag-nbi.de/
6http://www.health-e-child.org/
7http://lri.jur.uva.nl/˜epower/
8Along this thesis we use either NOR or Non-ontological resource without distinction.

3

http://wissensnetze.ag-nbi.de/
http://www.health-e-child.org/
http://lri.jur.uva.nl/~epower/

CHAPTER 1. INTRODUCTION

As mentioned before, an ontology [SBF98] has to reflect the notion of captur-
ing consensual knowledge. Capturing this consensual knowledge is not an easy
task to accomplish, especially if the ontology is built from scratch.

Furthermore, non-ontological resources usually contain terminology already
agreed upon by a broad community of people, who have a given protocol for that.
So, at least the labels used for naming terms are agreed on by consensus. Therefore,
it is important to (1) select the appropriated resources, and (2) transform them
into ontologies. In this way, the ontologies generated will have reached consensus
within the ontological community. In addition, this reuse and possible subsequent
re-engineering of existing resources will also speed up the ontology development;
therefore, we will save time, effort and resources.

Along with this thesis we will work with non-ontological resources, specif-
ically classification schemes, thesauri and lexica.

1.1.3 NeOn Methodology for Building Ontology Networks

Starting in 2007, the NeOn project9 has made some noteworthy contributions to
ontological engineering; however, the most important one is the design of the NeOn
Methodology [SF10, GPSF09], which includes the definition of a new ontology
development process, life cycle models based on methods, as well as the techniques
and tools to be used during the ontology building.

The NeOn Methodology is a scenario-based methodology. It proposes nine
scenarios for building ontology networks collaboratively, emphasizing the reuse
and re-engineering of knowledge resources. The identified scenarios that may arise
during the ontology (network) development are the following:
• Scenario 1: From specification to implementation.
• Scenario 2: Reusing and re-engineering non-ontological resources.
• Scenario 3: Reusing ontological resources.
• Scenario 4: Reusing and re-engineering ontological resources.
• Scenario 5: Reusing and merging ontological resources.
• Scenario 6: Reusing, merging and re-engineering ontological resources.
• Scenario 7: Reusing ontology design patterns.
• Scenario 8: Restructuring ontological resources.
• Scenario 9: Localizing ontological resources.

Figure 1.1 presents a set of the nine identified scenarios for building ontologies
and ontology networks. The directed arrows with numbered circles associated rep-
resent the different scenarios. Each scenario is decomposed into different processes
or activities that are represented with coloured circles or with rounded boxes. Such
processes and activities are defined in the NeOn Glossary of Activities [SFGP08].
The figure also shows (as dotted boxes) the available knowledge resources to be
reused and possible outputs (implemented ontology networks and alignments) re-
sulting from the execution of some of the scenarios presented.

9http://www.neon-project.org

4

http://www.neon-project.org

1.1. CONTEXT

Figure 1.1: Scenarios for building ontologies and ontology networks [SF10]

The scope of this thesis is to propose novel methods, techniques and tools
for supporting scenario 2, which reuses and re-engineers non-ontological re-
sources for building ontology networks.

1.1.4 Patterns in Ontology Engineering

In the (Object-Oriented) software community, patterns are used to describe soft-
ware design structures that can be used over and over again in different systems.
They provide a general solution that has to be applied in a particular context, in
which the design considerations serve to decide whether the pattern is useful and
how it could be implemented best [EPJ06]. A kind of software patterns are the
re-engineering software patterns [PS98]. These patterns describe how to change a
legacy system into a new, refactored system that fits current conditions and require-
ments. Their main goal is to offer a solution for re-engineering problems. They are
also on a specific level of abstraction, describe a process of re-engineering without
proposing a complete methodology, and sometimes can suggest which type of tool
to use.

In the ontology engineering community the idea of applying patterns for mod-
elling ontologies was proposed by Peter Clark [CTP00]. Since then, relevant works

5

CHAPTER 1. INTRODUCTION

on patterns have appeared, such as the Semantic Web Best Practices and Deploy-
ment Working Group10, the Ontology Design Patterns Public Catalog11, the On-
tology Design Patterns (ODP) Portal12, and the Linked Data Patterns13, which is a
catalogue of Linked Data [Biz09] patterns. According to Presutti et al. [GP08] On-
tology Design Patterns are modelling solutions used to solve a recurrent ontology
design problem. They distinguish different types of Ontology Design Patterns by
grouping them into six families. Each family addresses different kinds of problems
and can be represented with different levels of formality. ODPs reduce the effort
of building ontologies.

As stated in the section 1.1.1, the re-engineering methods, techniques and tools
that ontologize non-ontological resources are mainly specific to a particular re-
source type or to a particular resource implementation. Along this thesis we pro-
pose a set of re-engineering patterns for transforming available non-ontological
resources, which have reached some degree of consensus, into ontologies. Also,
we will try to demonstrate that the use of re-engineering patterns for transforming
non-ontological resources into ontologies has several advantages: patterns (1) em-
body expertise in guiding a re-engineering process, (2) improve the efficiency of
the re-engineering process, (3) make the transformation process easier for ontology
engineers, and (4) speed up the ontology development process.

Thus, in this thesis we propose methodological guidelines to address these re-
search problems, as well as a set of patterns that make explicit the hidden transfor-
mation decisions in the conversion scripts used in the ad-hoc approaches. Hence,
it will be easier for ontology engineers to (1) reuse the hidden transformation deci-
sions according to the type and implementation of the resources, and (2) perform
the transformation of the resources into ontologies by saving time and effort.

Therefore, here we propose a model as well as methods and tools for trans-
forming non-ontological resources into ontologies by using re-engineering pat-
terns.

1.2 Thesis Structure

The remainder of the thesis proceeds as follows:

• Chapter 2 describes the state of the art of the topics of interest in this work.
For each topic we analyze the limitations and open research problems, em-
phasizing those to which we provide solutions.

• Chapter 3 provides a presentation of the objectives and main contributions
of the thesis. Because of the limitations found in the state of the art, we
describe first the overall objectives of the thesis and then the specific ones.

10http://www.w3.org/2001/sw/BestPractices/OEP/
11http://www.gong.manchester.ac.uk/odp/html/index.html
12http://ontologydesignpatterns.org
13http://patterns.dataincubator.org/book/

6

http://www.w3.org/2001/sw/BestPractices/OEP/
http://www.gong.manchester.ac.uk/odp/html/index.html
http://ontologydesignpatterns.org
http://patterns.dataincubator.org/book/

1.2. THESIS STRUCTURE

Then, we introduce our contributions to the current state of the art, followed
by the presentation of the assumptions, hypotheses and restrictions of this
work.

• Chapter 4 explains the research methodology followed when designing the
method for reusing and re-engineering non-ontological resources into on-
tologies, and the general framework for describing such a method.

• Chapter 5 presents our contribution to the topic of reusing non-ontological
resources. First we provide a definition of the non-ontological resources.
Then, we present a categorization of non-ontological resources. Finally,
we describe the methodological guidelines proposed for the non-ontological
reuse process.

• Chapter 6 introduces a general method for re-engineering non-ontologi-
cal resources into ontologies. We start by introducing the model for re-
enginee-ring non-ontological resources with re-engineering patterns. Then,
we describe the methodological guidelines proposed for the non-ontological
resource re-engineering process.

• Chapter 7 presents the patterns for re-engineering classification schemes
into ontologies. First we define classification schemes and describe their
main characteristics. Then we depict the set of patterns we have created for
transforming classification schemes into ontologies.

• Chapter 8 describes the patterns for re-engineering thesauri into ontolo-
gies. We start by defining thesauri and describing their main characteristics.
Then we present the set of patterns we have created for transforming thesauri
into ontologies.

• Chapter 9 presents the patterns for re-engineering lexica into ontologies.
First we define lexica and describe their main characteristics. Then we depict
the set of patterns we have created for transforming lexica into ontologies.

• Chapter 10 describes the technological support for the model and method
proposed. First, we present the software library, NOR2O, that carries out the
transformation process suggested by the patterns. Next, we depict a pattern
library that includes the set of patterns for re-engineering non-ontological
resources into ontologies.

• Chapter 11 is dedicated to evaluation. We have divided this chapter into
two parts. The first one describes the evaluation, which is focused on all
the methodological aspects related to the reuse and re-engineering of non-
ontological resources for building ontologies. The second part deals with
the evaluation of the technology.

• Chapter 12 provides the conclusions and future lines of work.

7

CHAPTER 1. INTRODUCTION

1.3 Dissemination of Results

To conclude the introduction, it is important to remark that parts of this thesis have
been internationally disseminated.

A summary of the whole thesis has been published in

B. Villazón-Terrazas, M. C. Suárez-Figueroa, and A. Gómez Pérez. “A
Pattern-Based Method for Re-engineering Non-Ontological Resources into On-
tologies”. International Journal on Semantic Web and Information Systems
(IJSWIS). Amit Sheth (Ed.) (Kno.e.sis Center, Wright State University, USA)
Volume 7 (2010).

Our contribution presented in Chapter 5 has been partially published in:

• A. Gómez-Pérez, J. Ramı́rez and B. Villazón-Terrazas. “Reusing Human
Resources Management Standards for Employment Services”. Proceedings
of the Workshop on First Industrial Results of Semantic Technologies, co-
located with ISWC 2007 + ASWC 2007, Busan, Korea, November 11th,
2007.

• A. Gómez-Pérez, J. Ramı́rez and B. Villazón-Terrazas “An Ontology for
Modelling Human Resources Management based on standards”. In: 11th In-
ternational Conference on Knowledge-Based Intelligent Information & En-
gineering Systems, 12-14 September, 2007, Vietri sul Mare, Italy.

• A. Gómez-Pérez, J. Ramı́rez and B. Villazón-Terrazas. “Methodology for
Reusing Human Resources Management Standards”. In: 19th International
Conference on Software Engineering and Knowledge Engineering, 9-11 July,
2007, Boston, USA.

Some of the contributions of Chapters 6, 7, 8, 9, and 10 have been published
in:

• A. Garcia-Silva, A. Gómez-Pérez, M.C. Suárez-Figueroa, B. Villazón-Terra-
zas (2008). “A Pattern Based Approach for Reengineering Non-ontological
Resources into Ontologies”. In ASWC 08: Proceedings of the 3rd Asian
Semantic Web Conference on the Semantic Web (pp. 167181). Berlin, Hei-
delberg : Springer-Verlag.

Contributions of Chapter 10 have been published in:

• B. Villazón-Terrazas, A. Gómez Pérez, and J.P. Calbimonte. “ NOR2O: a
Library for Transforming Non-Ontological Resources to Ontologies ”. Ex-
tended Semantic Web Conference, ESWC 2010, Greece.

• B. Villazón-Terrazas, M. C. Suárez-Figueroa, and A. Gómez Pérez. “Pat-
tern for Re-engineering a Term-based Thesaurus, which Follows the Record-
based model, to a Lightweight Ontology”. Workshop on Ontology Patterns

8

1.3. DISSEMINATION OF RESULTS

(WOP 2009). International Semantic Web Conference (ISWC 2009). Wash-
ington D.C. USA.

• B. Villazón-Terrazas, M. C. Suárez-Figueroa, and A. Gómez Pérez. “Pattern
for Re-engineering a Classification Scheme, which Follows the Path Enu-
meration Data Model, to a Taxonomy”. Workshop on Ontology Patterns
(WOP 2009). International Semantic Web Conference (ISWC 2009). Wash-
ington D.C. USA.

• B. Villazón-Terrazas, M. C. Suárez-Figueroa, and A. Gómez Pérez. “Pattern
for Re-engineering a Classification Scheme, which Follows the Adjacency
List Data Model, to a Taxonomy”. Workshop on Ontology Patterns (WOP
2009). International Semantic Web Conference (ISWC 2009). Washington
D.C. USA.

Part of the contribution presented in Chapter 11 has been partially published
in:

• B. Villazón-Terrazas, J. Ramı́rez, M. C. Suárez-Figueroa, and A. Gómez
Pérez. “A Network of Ontology Networks for building e-Employment
Advanced Systems”. International Journal on Expert Systems with Ap-
plications (ESWA). J. Liebowitz (Ed.) ELSEVIER. (2011).

• A. de León, V. Saquicela, L.M. Vilches, B. Villazón-Terrazas, F. Priyatna,
and O. Corcho. “Geographical linked data: a Spanish use case”. In Pro-
ceedings of the 6th international Conference on Semantic Systems (Graz,
Austria, September 01 - 03, 2010). A. Paschke, N. Henze, and T. Pellegrini,
Eds. I-SEMANTICS ’10. ACM, New York, NY, 1-3.

• I. Celino, D. Cerizza, M. Cesarini, E. Della Valle, F. De Paoli, J. Estublier,
M. Grazia Fugini, A. Gómez Pérez, M. Kerrigan, P. Guarrera, M. Mez-
zanzanica, J. Ramirez, B. Villazón-Terrazas, and G. Zhao. “SEEMP: A
Networked Marketplace for Employment Services”. In Vassilios Peristeras,
Tomas Vitvar, and Konstantinos Tarabanis (eds.) Semantic Technologies for
E-Government, Springer, 2009.

• E. Della Valle, D. Cerizza, I. Celino, M. Grazia Fugini, J. Estublier, G. Vega,
M. Kerrigan, A. Gómez Pérez, J. Ramı́rez, B. Villazón-Terrazas, G. Zhao,
M. Cesarini, and F. De Paoli. “The SEEMP Approach to Semantic Interoper-
ability for e-Employment”. In Robeto Garcı́a (ed.): Semantic Web Method-
ologies for E-Business Applications: Ontologies, Processes and Manage-
ment Practices, (IDEA Group Publishing), 2008.

The ontology built within the SEEMP project14 by applying the methodological
guidelines introduced in this thesis, which appears in Chapter 11, was registered

14http://www.seemp.org

9

http://www.seemp.org

CHAPTER 1. INTRODUCTION

as a patent in the Registro de la Propiedad Intelectual “Comunidad de Madrid”.
Reference M-404/2009.

10

Chapter 2

STATE OF THE ART

In this chapter we present an exhaustive analysis of the state of the art of the top-
ics of interest covered in this thesis and a discussion on the limitations of the re-
search works on the state of the art. We start with the presentation of a framework
for comparing the methods and tools that permit reusing and re-engineering non-
ontological resources when building ontologies. Then, we provide the background
on patterns for re-engineering. Finally, we conclude by summarizing the limita-
tions found in the state of the art.

2.1 A Comparative Framework of Methods and Tools for
Reusing and Re-engineering NORs into Ontologies

In this section we present a comparative study of the most outstanding methods
and tools for reusing and re-engineering non-ontological resources into ontologies.
To carry out this study we have established a common framework with which to
compare the main characteristics of the different methods and tools.

The section is organized as follows: Section 2.1.1 introduces the framework
for evaluating the methods and tools employed when reusing non-ontological re-
sources and re-engineering them into ontologies. Section 2.1.2 describes the meth-
ods for reusing and re-engineering non-ontological resources. Section 2.1.3 depicts
the tools available for this purpose. Finally, Section 2.1.4 presents the results and
conclusions of the methods and tools evaluated in this comparative study.

2.1.1 Evaluation Framework

In this section we set up a framework for comparing the methods and tools re-
quired to reuse non-ontological resources and re-engineer them into ontologies.
The framework is organized in four dimensions (the non-ontological resource, the
reuse process, the transformation process, and the resultant ontology) that gather
several features with which to compare the approaches proposed in the literature.
The first dimension analyses the features of a NOR; the second covers the selection

11

CHAPTER 2. STATE OF THE ART

of the NORs; then, the third is focused on the transformation process, whereas the
fourth is centred on the features of the resultant ontology.

2.1.1.1 Features of the non-ontological resource

In this thesis we propose a categorization of non-ontological resources, according
to three different features presented in Figure 2.1: (1) the type, which refers to the
kind of inner organization of the information; (2) the data model, that is, the design
data model used to represent the knowledge encoded by the resource; and (3) the
resource implementation.

Figure 2.1: Non-ontological resources categorization

• With respect to the type of non-ontological resources we classify them into
(1) glossaries, (2) lexicons, (3) classification schemes, (4) thesauri, and (5)
folksonomies.

• The data model [Car02] is the abstract model that describes how data is
represented and accessed. It can be different even for the same type of
non-ontological resource. Besides, it is an important artefact for the re-
engineering process, because it helps to understand how the resource in-
formation is organized [GGPSFVT08]. In the following chapters we present
several data models for each of the non-ontological resources.

• With regard to the implementation we can classify non-ontological resources
into (1) databases, (2) XML files, (3) flat files, and (4) spreadsheets.

12

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

2.1.1.2 Features of the reuse process

• The research work provides some methodological guidelines that support
the selection of the resources to be transformed.

• The reuse process is supported by a tool or a set of tools.

• The research work keeps track of the provenance1 of the resource, i.e., a
reference to the non-ontological resource for every ontology generated.

2.1.1.3 Features of the transformation process

• The transformation process may follow one of the following approaches:
(1) ABox transformation [CHPG09], which transforms the resource schema
into an ontology schema, and the resource content, into ontology instances;
(2) TBox transformation [CHPG09], which transforms the resource content
into an ontology schema; or (3) Population, which transforms the resource
content into instances of an available ontology. Figure 2.2 depicts each of the
possible transformations. The ABox transformation leaves the informal se-
mantics of the transformed resources mostly untouched, whereas, the TBox
transformation tries to enforce a formal semantics into them.

• The research work performs the transformation either (1) on the syntactic
level; or (2) on the semantic level. The syntactic level deals with the abil-
ity to structure the representation in structured sentences, formulas or asser-
tions. This level includes the transformations of resource component defi-
nitions according to the grammars of the source and target formats [Cor05],
in other words, it includes a structure-preserving transformation that should
reflect the resource structure as closely as possible. The semantic level deals
with the ability to construct the propositional meaning of the representation
[Cor05], which basically is a specific interpretation of the non-ontological
resource.

• The research work makes explicit the semantics hidden in the relations of
the non-ontological resource terms, e.g., subClassOf , partOf .

• The research work relies on (1) additional resources, or (2) a human do-
main expert for making explicit the semantics hidden in the relations of the
NOR terms.

• The transformation process can be (1) automatic, (2) semi-automatic, and
(3) manual.

1Provenance focuses on describing and understanding where and how data is produced, actors
involved in its production, and processes applied before the arrival of data to the collection from
which it is now accessed [GPC08].

13

CHAPTER 2. STATE OF THE ART

• The research work provides some methodological guidelines that support
the transformation process.

• The list of the techniques employed in the transformation process are clearly
identified: mapping rules, re-engineering patterns, etc.

• The transformation process is supported by a tool or a set of tools.

Figure 2.2: Transformation approaches

2.1.1.4 Features of the resultant ontology

• The ontology generated is either lightweight or heavyweight.

• The components of the ontology generated are classes, attributes, relations,
or instances.

14

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

• The ontology implementation language is OWL or RDF(S).

• The research work generates a single ontology or several ontologies. How-
ever, we do not distinguish whether the ontologies generated are intercon-
nected or not.

2.1.2 Methods for Reusing and Re-engineering Non-ontological Re-
sources

In this section, we describe the most significant methods for reusing and re-enginee-
ring non-ontological resources taking into account the features previously identi-
fied in the framework. To do this, we analyse the literature from two complemen-
tary perspectives: First, in Section 2.1.2.1 we describe the methods for building
ontologies by means of transforming different types of resources (classification
schemes, thesauri, lexicons and folksonomies). Second, in Section 2.1.2.2 we an-
alyze the methods based on the implementation of the resources (database, XML,
flat file and spreadsheet).

2.1.2.1 Methods centred on the non-ontological resource type

In this section we present the most outstanding methods on reusing and re-enginee-
ring non-ontological resources. Specifically, we summarize methods for building
ontologies from classification schemes, folksonomies, lexica and thesauri.

Methods for building ontologies from classification schemes The two main
methods for transforming classification schemes are the GenTax [HdB07] method
and Hakkarai-nen et al’s method [HHST06].

• GenTax is a method presented by Hepp et al. [HdB07] for deriving semi-
automatically consistent RDF(S) and OWL ontologies from hierarchical cat-
egorization schemas. For this method, a hierarchical categorization schema
can be a taxonomy, a thesaurus, or a hierarchical classification, and any of
them has to be implemented in a database. The three types of resources have
in common the inclusion of a set of categories and some form of hierarchical
order. This method does not take into consideration the data model of the
input resource.

Gentax assumes that the non-ontological resource is already selected for its
transformation; therefore, it provides neither methodological guidelines nor
tools for the reuse process. Moreover, GenTax does not manage the resource
provenance information, so the resultant ontology does not keep the refer-
ence to the non-ontological resource.

This method performs a semi-automatic TBox transformation, considering
the syntactic and semantic levels. It makes explicit the semantics of the
relations of the NOR categories. It also sets an ad-hoc and some taxonomic

15

CHAPTER 2. STATE OF THE ART

relations among the NOR categories. It provides methodological guidelines
for the transformation, but does not clearly identify the techniques employed
in the transformation. The transformation process is supported by a tool,
SKOS2GenTax, which consists of a Java program, that accesses the NOR
categories via an ODBC link.

Finally, the method produces a single lightweight ontology in OWL DLP or
RDF(S). The ontology components generated are classes and relations.

• Hakkarainen et al. [HHST06] present a study of the semantic relationship
between the ISO 15926-22 and OWL DL. The ISO 15926 is a standard for
integrating, sharing, exchanging, and handing-over data between computer
systems. The ISO 15926-2 is built on EXPRESS3 and stored in a flat file.
This standard consists of 201 entity data types; the top level entity data type
is thing, with its subtypes of a possible individual and abstract object. All
other entities are subtypes of them.

The method presented by Hakkarainen et al. transforms a specific non-
ontological resource, the ISO 15926-2 standard, but it provides neither method-
ological guidelines nor tools for the reuse process. Moreover, the method
does not keep the resource provenance information, so the resultant ontol-
ogy does not keep the reference to the non-ontological resource.

This method consists of (a) two transformation protocols, which are based
on transformation rules, and (b) two inverse transformation protocols, which
have the purpose of examining the possible loss of semantics. The method
peforms a semi-automatic TBox transformation and considers the syntactic
and semantic levels. It translates the whole set of subtype relations into sub-
ClassOf relations. Additionally, it provides a set of methodological guide-
lines for the transformation and relies on transformation rules as the tech-
nique employed. However, not a single tool supporting the method is men-
tioned.

The transformation protocols generate a lightweight single ontology in OWL
DL. The ontology components generated are classes, attributes, and rela-
tions.

Methods for building ontologies from folksonomies The two main methods for
transforming folksonomies are T-ORG [ASC07], developed by Abbasi et al., and
the one developed by Maala et al. [MDA07].

• Abbasi et al. [ASC07] present a mechanism to transform a set of tags of
a given folksonomy into instances of an available ontology. These authors,
however, do not mention where tags are stored.

2http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=29557

3the EXPRESS file is a computer-interpretable of ISO 15926-2 http://www.iso.org/
iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047

16

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29557
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29557
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

Their method assumes that non-ontological resource is already selected for
its transformation, so it provides neither methodological guidelines nor tools
for the reuse process. Moreover, the method does not consider the resource
provenance information, so the resultant ontology does not keep the refer-
ence to the non-ontological resource.

The method consists in (1) selecting the ontologies relevant to the tags by
means of Swoogle4; (2) pruning and refining the ontology; and (3) classi-
fying the tags with lexico-syntactic patterns. It performs an automatic pop-
ulation, taking into consideration the syntactic level. However, it does not
make explicit the semantics of the relations of the NOR categories, though
it provides methodological guidelines for the transformation. The T-ORG
tool, described in section 2.1.3, gives support to this method.

This method populates several lightweight ontologies, i.e., the ontology com-
ponents generated are instances, although it does not mention the ontology
language used.

• Maala et al.’s method [MDA07] describes a conversion process from Flickr5

tags to RDF descriptions. These authors present a method for automatically
converting a set of tags into a RDF description in the context of photos on
Flickr. It must be observed, however, that they do not mention where the
Flickr tags are stored.

This method transforms a specific non-ontological resource, Flickr tags, but
it provides neither methodological guidelines nor tools for the reuse process.
Nor does the method take into account the resource provenance information,
so the resultant ontology does not keep the reference to the non-ontological
resource.

Its authors analyse the tagging habits and the tagging content of the pho-
tos. To accomplish this, they rely on additional resources for the conversion
such as (1) WordNet, which has been completed with extra information, (2)
a database containing geographical locations and (3) an ontology of things.
The method performs an automatic population, though it only considers the
syntactic level. However, it does not make explicit the semantics of the rela-
tions of the NOR elements, although it provides methodological guidelines
for the transformation. Nor does it clearly identify the techniques employed
in the transformation. In addition, not a single tool supporting the method is
mentioned.

This method populates a lightweight single ontology and the ontology com-
ponents generated are instances, which are expressed in RDF.

4http://swoogle.umbc.edu
5http://www.flickr.com/

17

http://swoogle.umbc.edu
http://www.flickr.com/

CHAPTER 2. STATE OF THE ART

Methods for building ontologies from lexica The two main methods for trans-
forming lexica are presented in [vAGS06] and [GNV03, GGMO03] and both are
focused on WordNet.

• The method of van Assem et al. [vAGS06] proposes a standard conver-
sion of WordNet [Fel98] into the RDF/OWL representation language. This
method employs version 2.0 of Princenton’s WordNet Prolog distribution6,
which contains eighteen files: one file represents synsets, word senses and
words, and the remaining seventeen represent their relationship. This method
takes into account the internal data model of the lexicon, and devises how the
lexicon data is represented and accessed for the transformation. It also pro-
vides resource provenance information, so the resultant ontology keeps the
reference to WordNet. However, it provides neither methodological guide-
lines nor tools for the reuse process.

In this method the authors include a process for designing the conversion of
the resource, as well as a set of the requirements for the conversion. Some of
the requirements include the following recommendations: (a) the conversion
should fully transform WordNet into RDF/OWL; (b) the conversion should
be convenient to carry out; (c) the conversion should reflect as much as possi-
ble the original structure of WordNet; and (d) the conversion should provide
OWL semantics while still being interpretable by pure RDF(S) tools.

Basically, the method consists in (1) creating a set of classes for each of the
main components of WordNet: classes for every word, synset and sense; (2)
modelling words, synsets and senses belonging to WordNet as instances of
the previously created classes; and (3) coding part/s of the semantics related
to each instance by means of the URIs used to identify each instance.

The method performs a semi-automatic ABox transformation, considering
the syntactic level, but it does not make explicit the semantics of the rela-
tions of the NOR elements. However, it provides methodological guidelines
for the transformation although it does not clearly identify the techniques
employed in the transformation. The transformation process is supported by
Swi-Prolog7 tool.

This method produces a single lightweight ontology in RDF(S)/OWL Full.
The ontology components generated are classes, attributes, relations, and
instances.

• Gangemi et al. [GNV03, GGMO03] present a method that explains how
WordNet information can be bootstrapped, mapped, refined and modular-
ized. It employs WordNet 1.6, which is stored in relational databases. It also
takes into account the internal data model of the resource and devises how
the lexicon data is represented and accessed for the transformation.

6http://wordnet.princeton.edu/obtain
7http://www.swi-prolog.org/packages/semweb.html

18

http://wordnet.princeton.edu/obtain
http://www.swi-prolog.org/packages/semweb.html

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

This method assumes that the non-ontological resource is already selected
for its transformation; however, it provides neither methodological guide-
lines nor tools for the reuse process. Nor does it keep the resource prove-
nance information, so the resultant ontology does not keep the reference to
the non-ontological resource.

This is a hybrid method because it employs top-down techniques and tools
from formal ontologies and bottom-up techniques from computational lin-
guistics and machine learning. It can automatically extract association rela-
tions from WordNet elements and interpret those associations in terms of a
set of conceptual relations, formally defined in the DOLCE8 ontology.

The method consists in (1) bottom-up learning of association links (A-links),
in which WordNed glosses are analysed, and A-links between a synset and
the synsets in its gloss are created; and(2) top-down learning, in which the
DOLCE ontology is used to interpret A-links in terms of axiomatic concep-
tual relations.

The method performs a semi-automatic TBox transformation, regarding the
syntatic and semantic levels. Moreover, it makes explicit the semantics of
the relations of the WordNet concepts (originally called synsets) by applying
natural language techniques to their glosses and then using DOLCE ontol-
ogy for making explicit the semantics of the ad-hoc relations (A-links). It
provides methodological guidelines for the transformation. However, not a
single tool supporting the method is mentioned.

The method generates a single lightweight ontology implemented in DAML+OIL.
The components of the ontology generated are classes, attributes, and rela-
tions.

Methods for building ontologies from thesauri The six main methods for trans-
forming thesauri are presented in [Hah03, HS03], [vAMSW04], [vAMMS06],
[WSWS01],[HVTS08],[SLL+04, LS06].

• Hahn et al. [Hah03, HS03] present a method that extracts conceptual knowl-
edge from an informal medical thesaurus, UMLS9, which is stored in ASCII
files, and semi-automatically converts this conceptual knowledge into LOOM10.
This method takes into account the internal data model of the thesaurus.

The method assumes that the non-ontological resource, UMLS, is already se-
lected for its transformation. Therefore, it provides neither methodological
guidelines nor tools for the reuse process. Besides, it ignores the resource
provenance information, so the resultant ontology does not keep the refer-
ence to the non-ontological resource.

8http://www.loa-cnr.it/DOLCE.html
9http://www.nlm.nih.gov/research/umls/

10http://www.isi.edu/isd/LOOM/

19

http://www.loa-cnr.it/DOLCE.html
http://www.nlm.nih.gov/research/umls/
http://www.isi.edu/isd/LOOM/

CHAPTER 2. STATE OF THE ART

Its authors formalize a model of partonomic reasoning that does not exceed
the expressiveness of the well-understood concept language ALC11. Hahn
et al. aim to extract conceptual knowledge from two major sub-domains of
the UMLS, anatomy and pathology, in order to construct a formally sound
knowledge base founded on an/the ALC-type description logic language.

This method performs a semi-automatic TBox transformation and takes into
account the syntactic and semantic levels. It makes explicit the semantics of
the relations of the UMLS elements by means of a biomedical domain expert.
It treats the partOf/hasPart, isA, siblingOf, and associatedWith relations. It
also introduces methodological guidelines for performing the transforma-
tion of the resource and relies on Ontology Design Patterns for partonomic
relations. Besides, it utilizes a LOOM classifier for automatic consistency
checking of the ontology generated.

This method produces a single heavyweight ontology expressed in formal
description logics, LOOM. The ontology components generated are classes
and relations.

• Van Assem et al. [vAMSW04] present a method for converting thesauri
from their native format to RDF(S) and OWL Full. The method deals with
resources implemented in (1) a proprietary text format, (2) a relational database,
and (3) an XML representation. However, it ignores the internal data model
of the resource.

This method provides neither methodological guidelines nor tools for the
reuse process. And nor does it take into account the resource provenance
information; therefore, the resultant ontology does not keep the reference to
the non-ontological resource.

The method consists of (1) preparation, in which the following character-
istics of the thesaurus are analysed: conceptual model, relation between the
conceptual and implementation model, and relations to standards; (2) syntac-
tic conversion, which includes a structure-preserving translation and expli-
cation of the syntax of the resource; (3) semantic conversion, which includes
the explication of semantics and specific interpretation of the thesaurus; and
(4) standardization, which is an optional step for mapping a thesaurus onto a
standard schema.

Additionally, this method performs a semi-automatic TBox transformation,
taking into account the syntactic and semantic levels. It makes explicit the
semantics of the relations of the thesaurus terms by means of a domain ex-
pert. Besides, it considers the subClassOf and ad-hoc relations. It also pro-
vides methodological guidelines for performing the transformation of the
thesaurus though it provides neither information about the techniques em-
ployed nor a tool to support the method.

11ALC allows for the construction of concept hierarchies.

20

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

This method produces a single lightweight ontology in RDF(S)/OWL Full.
The ontology components generated are classes, attributes, and relations.

• Van Assem et al. [vAMMS06] present a method for converting thesauri into
the SKOS [MB05] RDF/OWL schema. This SKOS schema is a W3C rec-
ommendation developed by the W3C Semantic Web Best Practices Working
Group. The method provides neither information about the format of the
thesaurus, nor its internal data model. It is worth mentioning that the authors
provide a description of the development of the method and of the method
itself.

The development of this method is based on a process that has the following
tasks: (1) defining the goal and requirements of the method; (2) comparing
the available methods for transforming thesauri into ontologies; (3) develop-
ing the steps of the method (for this task the authors relied on the method
of Miles et al. [Mil05]); (4) applying the method to IPSV12, GTAA13 and
MeSH14 thesauri; and (5) evaluating the method.

The method provides neither methodological guidelines nor tools for the
reuse process. And it ignores the resource provenance information; there-
fore, the resultant ontology does not keep the reference to the non-ontological
resource.

In a nutshell, the steps of the method are (1) to analyse the implementation
and the documentation of the resource; (2) to define mappings between input
data items and output SKOS RDF; and (3) to develop an algorithm for the
transformation program.

This method performs an automatic population, i.e., creates instances of the
SKOS schema, taking into account the syntactic level. However, it does
not make explicit the semantics of the relations of the thesaurus terms. In
addition, it provides methodological guidelines for performing the transfor-
mation of the thesaurus though it does not provide information about the
techniques employed. It relies on an ad-hoc tool for performing the transfor-
mation.

This method populates a single lightweight ontology. The ontology compo-
nents generated are instances expressed in SKOS RDF.

• Wielinga et al. [WSWS01] present a method for transforming the Art and
Architecture Thesaurus (AAT) into an RDF(S) ontology. The AAT is the
most elaborate and standardized body of knowledge concerning classifica-
tions of art objects. AAT is published via a searchable online Web interface15

12Integrated Public Sector Vocabulary http://www.esd.org.uk/standards/ipsv/
13Common Thesaurus for Audiovisual Archives http://informatieprofessional.

googlepages.com/gtaa
14Medical Subject Headings http://www.nlm.nih.gov/mesh/
15http://www.getty.edu/research/conducting_research/vocabularies/

aat/

21

http://www.esd.org.uk/standards/ipsv/
http://informatieprofessional.googlepages.com/gtaa
http://informatieprofessional.googlepages.com/gtaa
http://www.nlm.nih.gov/mesh/
http://www.getty.edu/research/conducting_research/vocabularies/aat/
http://www.getty.edu/research/conducting_research/vocabularies/aat/

CHAPTER 2. STATE OF THE ART

and is also available in XML files. This method takes into consideration the
internal data model of the ATT thesaurus.

Since the method transforms a specific non-ontological resource, the ATT
thesaurus, it provides neither methodological guidelines nor tools for the
reuse process. Moreover, the method does not consider the resource prove-
nance information, so the resultant ontology does not keep the reference to
the non-ontological resource.

Basically, the method consists in: (1) converting the full ATT hierarchy into a
hierarchy of concepts; (2) augmenting a number of concepts with additional
attributes; and (3) adding knowledge about the relation between possible
values of fields and nodes in the knowledge base.

The method performs a semi-automatic TBox transformation, taking into ac-
count the syntactic and semantic levels. It makes explicit the semantics of the
relations of the thesaurus terms. It considers only the subClassOf relations
and provides methodological guidelines for performing the transformation of
the thesaurus. However, it provides neither information about the employed
techniques nor a tool to support the method.

Additionally, it produces a lightweight ontology. The ontology components
generated are classes, attributes, and relations and they are implemented in
RDF(S).

• Hyvönen et al. [HVTS08] present a method for transforming thesauri into
ontologies. This method has been applied to the YSA thesaurus16. It pro-
vides neither information about the format of the thesaurus nor the internal
data model of the thesaurus.

This method assumes that the non-ontological resource, YSA, is already se-
lected for its transformation. Therefore, it provides neither methodological
guidelines nor tools for the reuse process. Nor does it manage the resource
provenance information; therefore, the resultant ontology does not keep the
reference to the non-ontological resource.

On the other hand, it performs a semi-automatic TBox transformation, re-
garding the syntactic and semantic levels and makes explicit the subClassOf
and partOf relations by using DOLCE 17 ontology. It also provides method-
ological guidelines for performing the transformation of the resource and
relies on an ad-hoc tool; however, it does not provide information about the
techniques employed.

The resultant heavyweight ontology, based on the YSA thesaurus, is the
General Finnish Ontology YSO18. The ontology components generated are
classes, attributes, and relations, all expressed in RDF(S).

16http://vesa.lib.helsinki.fi/
17http://www.loa-cnr.it/DOLCE.html
18http://www.yso.fi/onto/yso

22

http://vesa.lib.helsinki.fi/
http://www.loa-cnr.it/DOLCE.html
http://www.yso.fi/onto/yso

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

• Soergel et al. [SLL+04], and Lauser et al. [LS06] present a method for
re-engineering the traditional thesaurus, AGROVOC19, which is stored in a
database, into an ontology. This method considers the internal data model of
the thesaurus.

Moreover, it assumes that the AGROVOC thesaurus is already selected for
its transformation. Therefore, it provides neither methodological guidelines
nor tools for the reuse process. Nor does it provide the resource provenance
information; therefore, the resultant ontology does not keep the reference to
the non-ontological resource.

On the other hand, the method of Soergel et al. explores the applicability
of the rules-as-you-go approach to improve the re-engineering process. The
steps of the transformation process are (1) to define the ontology structure;
(2) to fill in values from one or more legacy KOS to the extent possible;
and (3) to edit manually using an ontology editor and to make the existing
information more precise by adding new information. In order to automate
the process, Soerger et al. planned to build an inventory of patterns, namely,
content ontology design patterns specific for the agricultural domain; how-
ever, the inventory has not yet been built.

Lauser et al. present the basic OWL model, which was extracted manually
from the analysis of AGROVOC schema, using the results of the Soergel et
al.’s work; and they point out as a future line of work the conversion of the
AGROVOC content into ontology instances. They plan to develop a Web
based tool for maintaining the resultant ontology.

Their method performs a manual TBox transformation, considering the syn-
tactic and semantic levels. This method makes explicit the subClassOf and
ad-hoc relations by means of a domain expert. It provides methodological
guidelines for performing the transformation of the resource.

Besides, this method produces a heavyweight ontology. The components of
the ontology generated are classes, attributes, and relations, all expressed in
OWL DL.

2.1.2.2 Methods centred on the ton-ontological resource implementation

In this section we present the most relevant methods we have found in the litera-
ture: research works for building ontologies from databases, XML, flat files and
spreadsheets.

Methods for building ontologies from databases The two main methods for
building ontologies from databases are presented in [SSV02],[BCGP04, Bar07].

19http://www.fao.org/aims/ag_intro.htm

23

http://www.fao.org/aims/ag_intro.htm

CHAPTER 2. STATE OF THE ART

• Stojanovic et al. [SSV02] present an integrated and semi-automatic ap-
proach for generating shared-understandable metadata of data-intensive Web
applications. Their method deals with resources stored in relational databases,
and takes into consideration the internal data model of the resources.

It assumes that the resource is already selected for its transformation. There-
fore, it provides neither methodological guidelines nor tools for the reuse
process. Nor does it provide the resource provenance information, so the re-
sultant ontology does not keep the reference to the non-ontological resource.

This method consists of the following steps: (1) the capture of information
from relational schema through reverse engineering (it should be added that
user interaction is necessary in this step); (2) the analysis of the informa-
tion obtained and the maping of database entities into ontological entities
with a set of mapping rules; (3) the evaluation, validation and refining of the
mapping; and (4) the creation of a knowledge base, i.e. data migration.

The method performs a semi-automatic ABox transformation, taking into
consideration only the syntactic level. However, it does not make explicit the
semantics of the relations of the NOR elements, though it provides method-
ological guidelines and employs mapping rules as a technique for the trans-
formation. For the automation of the mapping process, it relies on KAON-
REVERSE20, a tool for connecting semi-automatically relational database to
ontologies.

In addition, it produces a lightweight ontology and generates ontology in-
stances. The resultant ontology is expressed in F-Logic21, and the ontology
instances are expressed in RDF.

• Barrasa et al. [BCGP04, Bar07] present an integrated framework for the
formal specification, evaluation and exploitation of the semantic cor-respondences
between ontologies and relational data sources. These authors introduce a
method that deals with resources stored in relational databases and that takes
into consideration the internal data model of the resources.

The framework consists of the following two main components: (1) R2O,
which is a declarative language for the description of arbitrarily complex
mapping expressions between ontology elements (concepts, attributes and
relations) and relational elements (relations and attributes); and (2) ODEMap-
ster processor, which generates Semantic Web instances from relational in-
stances based on the mapping description expressed in an R2O document.

The method assumes that the database is already selected for its transfor-
mation. Therefore, it provides neither methodological guidelines nor tools
for the reuse process. Nor does it consider the resource provenance infor-

20http://kaon.semanticweb.org/alphaworld/reverse/
21http://flora.sourceforge.net/aboutFlogic.php

24

http://kaon.semanticweb.org/alphaworld/reverse/
http://flora.sourceforge.net/aboutFlogic.php

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

mation; therefore, the resultant ontology does not keep the reference to the
non-ontological resource.

This method consists in (1) discovering semi-automatically mappings be-
tween the database and ontology elements, user interaction is necessary in
some special cases; (2) expressing those mappings in a formal language,
R2O; (3) evaluating and verifying those mappings manually; and (4) ex-
ploiting those mappings for retrieving the data using ODEMapster.

The method performs an automatic population of an ontology, taking into
consideration the syntactic level. However, it does not make explicit the se-
mantics of the relations of the NOR elements, although it provides method-
ological guidelines for the transformation.

Finally, it generates ontology instances expressed in RDF.

Methods for building ontologies from XML files The three main methods for
building ontologies from XML files are presented in [GC05, AM05, CXH04].

• Garcı́a et al. [GC05] introduce a method to create an ontology from the
XML schema and to populate it with instances created from the XML data.
The method does not take into account the internal data model of the re-
source.

This method assumes that the resource, stored in an XML file, is already
selected for its transformation. Therefore it provides neither methodological
guidelines nor tools for the reuse process. Nor does it consider the resource
provenance information, so the resultant ontology does not keep the refer-
ence to the non-ontological resource.

The method consists of the following steps: (1) XSD2OWL Mapping, in
which the semantics implicit in the schema is captured with the XSD2OWL
tool; and (2) XML2RDF Mapping, in which a translation of the XML meta-
data instances to RDF instances is performed with the XML2RDF tool.

This method performs a semi-automatic ABox transformation, taking into
account only the syntactic level. However, it does not make explicit the se-
mantics of the relations of the NOR elements, although it provides method-
ological guidelines and employs mapping rules as a technique for the trans-
formation.

Finally, it produces a single lightweight ontology. The ontology components
generated are classes, attributes, relations, and instances, all expressed in
RDF/OWL Full.

• An et al. [AM05] present a method for translating an XML web document
into an instance of an OWL DL ontology. The method does not consider the
internal data model of the resource.

25

CHAPTER 2. STATE OF THE ART

The method assumes that the resource, stored in an XML file, is already
selected for its transformation. Therefore, it provides neither methodological
guidelines nor tools for the reuse process. Moreover, the method does not
keep the resource provenance information, so the resultant ontology does not
keep the reference to the non-ontological resource.

This method takes advantage of the semi-automatic mapping discovery tool
[ABM05] for the relationship between XML schema and the ontology. It
performs a semi-automatic population, considering only the syntactic level.
It does not make explicit the semantics of the relations of the NOR elements
and does not provide methodological guidelines.

Finally, it populates an ontology. The ontology components generated are
and instances, all expressed in RDF.

• Cruz et al. [CXH04] present a method that transforms XML schema into
an ontology and preserves the XML document structure, i.e., by modelling
the knowledge implicit in XML schema with RDF(S). This method does not
take into account the internal data model of the resource.

The method assumes that the resource, stored in an XML file, is already se-
lected for its transformation. Therefore, it provides neither methodological
guidelines nor tools for the reuse process. Nor does it consider the resource
provenance information; so the resultant ontology does not keep the refer-
ence to the non-ontological resource.

Basically, the method consists of the following phases: (1) element-level
transformation, which defines the basic classes and properties of the on-
tology; (2) structure-level transformation, which encodes the hierarchical
structures of the XML schema into the ontology; and (3) query driven data
migration, which transforms the query expressed in RDQL22 into XQuery23

query and creates the RDF instances that satisfies the query.

This method performs a semi-automatic ABox transformation, taking into
account only the syntactic level, but it does not make explicit the semantics
of the relations of the NOR elements. Besides, it provides methodological
guidelines and employs mapping rules as a technique for the transformation.

Finally, it produces a single lightweight ontology. The ontology components
generated are classes, attributes, relations, and instances, all expressed in
RDF(S).

Methods for building ontologies from flat files The main method to transform-
ing flat file is presented in [FB06].

22http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
23http://www.w3.org/TR/xquery/

26

http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
http://www.w3.org/TR/xquery/

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

• Foxvog et al. in [FB06] present a method that transforms Electronic Data
Interchange (EDI)24 messages into ontologies. There are two major EDI
standards: the EDIFACT [Ber94], which is defined as an open standard by
the United Nations, and the ASC X1225 standard, which is primarily used in
the United States. This method is centred on the ASC X12 standard, whose
messages are stored in flat files. However, it does not take into account the
internal data model of the resource.

The method assumes that the resource, EDI standard, is already selected for
its transformation. Therefore, it provides neither methodological guidelines
nor tools for the reuse process. Nor does it consider the resource prove-
nance information; for this reason, the resultant ontology does not keep the
reference to the non-ontological resource.

This method, which transforms ASC X12 messages into ontologies, consists
in creating (1) a vocabulary for specifying the formats of the messages; and
(2) a set of instances.

It also performs a semi-automatic ABox transformation, considering only
the syntactic level, and provides methodological guidelines. However, it
does not make explicit the semantics of the relations of the NOR elements.

Finally, it produces several lightweight ontologies. The ontology compo-
nents generated are classes, attributes, relations, and instances, all expressed
in OWL Full, CycL, and WSML.

2.1.2.3 Comparison of the methods

Tables 2.1, 2.2, 2.3 and 2.4 summarize the methods presented according to the fea-
tures related to the non-ontological resource, the reuse process, the transformation
process, and the resultant ontology.

2.1.3 Tools for Re-engineering Non-ontological Resources

In this section, we describe the most significant non-ontological resource re-engine-
ering tools according to the features identified in section 2.1.1. This section is
organized into tools centred on the non-ontological resource type (section 2.1.3.1)
and tools centred on the non-ontological resource implementation (section 2.1.3.2).
Some of the tools give support to the methods presented in section 2.1.2. Also, it
is worth mentioning that the tools provide (1) neither support for selecting the
non-ontological resources for their subsequent transformation, (2) nor provenance
information support.

24http://www.ifla.org/VI/5/reports/rep4/42.htm#chap2
25http://www.x12.org/

27

http://www.ifla.org/VI/5/reports/rep4/42.htm#chap2
http://www.x12.org/

CHAPTER 2. STATE OF THE ART

Table 2.1: Comparison of the methods according to the NOR features

Type of Data
model

Resource

Research work resource is known implemented in
Hepp et al. [HdB07] Classification

scheme, the-
sauri

No Database

Hakkarainen et al.
[HHST06]

Classification
scheme

Yes Flat file

Abbasi et al. [ASC07] Folksonomy No Not mentioned
Maala et al. [MDA07] Folksonomy No Not mentioned
Van Assem et al.
[vAGS06]

Lexica Yes Prolog

Gangemi et al. [GNV03,
GGMO03]

Lexica Yes Database

Hahn et al. [Hah03, HS03] Thesauri Yes ASCII files
Van Assem et al.
[vAMSW04]

Thesauri No proprietary text
format, database,
XML

Van Assem et al.
[vAMMS06]

Thesauri No Not mentioned

Wielinga et al. [WSWS01] Thesauri Yes XML
Hyvönen et al. [HVTS08] Thesauri No Not mentioned
Soergel et al. [SLL+04,
LS06]

Thesauri Yes Database

Stojanovic et al. [SSV02] Not specified Yes Database
Barrasa et al. [BCGP04,
Bar07]

Not specified Yes Database

Garcı́a et al. [GC05] Not specified No XML
An et al. [AM05] Not specified No XML
Cruz et al. [CXH04] Not specified No XML
Foxvog et al. [FB06] Not specified No Flat file

2.1.3.1 Tools centred on the non-ontological resource type

This section presents some of the tools we have found in the literature related to
the building of ontologies by re-engineering non-ontological resources. Such tools
transform classification schemes, folksonomies, lexica and thesauri into ontolo-
gies.

A tool for transforming classification schemes into ontologies
SKOS2GenTax26 is an online tool that converts hierarchical classifications, avail-

26http://www.heppnetz.de/projects/skos2gentax/

28

http://www.heppnetz.de/projects/skos2gentax/

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

Table 2.2: Comparison of the methods according to the reuse process features

Methodological Tool Provenance
Research work Guidelines Support
Hepp et al. [HdB07] No No No
Hakkarainen et al.
[HHST06]

No No No

Abbasi et al. [ASC07] No No No
Maala et al. [MDA07] No No No
Van Assem et al.
[vAGS06]

No No Yes

Gangemi et al. [GNV03,
GGMO03]

No No No

Hahn et al. [Hah03, HS03] No No No
Van Assem et al.
[vAMSW04]

No No No

Van Assem et al.
[vAMMS06]

No No No

Wielinga et al. [WSWS01] No No No
Hyvönen et al. [HVTS08] No No No
Soergel et al. [SLL+04,
LS06]

No No No

Stojanovic et al. [SSV02] No No No
Barrasa et al. [BCGP04,
Bar07]

No No No

Garcı́a et al. [GC05] No No No
An et al. [AM05] No No No
Cruz et al. [CXH04] No No No
Foxvog et al. [FB06] No No No

able in the W3C SKOS27 format, into RDF(S) or OWL DL ontologies. This tool
uses the GenTax algorithm described in [HdB07]. The input resource can be speci-
fied by its URL, or it can be uploaded directly to the Web site. This resource should
be available in SKOS RDF format.

A tool for transforming folksonomies into ontologies
Abbasi et al. [ASC07] present T-ORG, a system that organizes folksonomies by

classifying the tags attached to them into predefined categories. The input resource
is a flat folksonomy tagspace. T-ORG gives technological support to the method
described in [ASC07].

27http://www.w3.org/2004/02/skos/

29

http://www.w3.org/2004/02/skos/

CHAPTER 2. STATE OF THE ART

Table
2.3:C

om
parison

ofthe
m

ethods
according

to
the

transform
ation

process
features

R
esearch

w
ork

Transform
ation

A
pproach

Transform
ation

A
spects

Sem
anticsof

N
O

R
relations

A
dditional

R
esources/

D
om

ain

E
xpert

A
utom

atic
/

Sem
i-

autom
atic

/

M
anual

M
ethodological

G
uidelines

Technique
Toolsupport

H
epp

etal.[H
dB

07]
T

B
ox

syntactic,
sem

antic
subC

lassO
f,

ad-hoc
relation

N
o

Sem
i-autom

atic
Y

es
N

otm
entioned

SK
O

S2G
enTax

H
akkarainen

etal.
[H

H
ST

06]
A

B
ox

syntactic,
sem

antic
subC

lassO
f,

ad-hoc
relation

N
o

Sem
i-autom

atic
Y

es
Transform

ation
rules

N
otm

entioned

A
bbasietal.[A

SC
07]

Population
syntactic

N
o

Sw
oogle

G
oogle

A
utom

atic
Y

es
L

exico
Syntactic
Patterns

T-O
R

G

M
aala

etal.[M
D

A
07]

Population
syntactic

N
o

W
ordN

et,
G

eographical
locations,

O
ntology

of
things

A
utom

atic
Y

es
N

otm
entioned

N
otm

entioned

van
A

ssem
etal.

[vA
G

S06]
A

B
ox

syntactic
N

o
N

o
Sem

i-autom
atic

Y
es

N
otm

entioned
Sw

i-Prolog

G
angem

ietal.
[G

N
V

03,G
G

M
O

03]
T

B
ox

syntactic,
sem

antic
ad-hoc

relations
D

O
L

C
E

Sem
i-autom

atic
Y

es
N

L
P

Techniques
N

otm
entioned

H
ahn

etal.
[H

ah03,H
S03]

T
B

ox
syntactic,
sem

antic
subC

lassO
f,

partO
f,ad-hoc

relation

N
o

Sem
i-autom

atic
Y

es
O

ntology
D

esign
Patterns

A
d-hoc

tool

van
A

ssem
etal.

[vA
M

SW
04]

T
B

ox
syntactic,
sem

antic
subC

lassO
f,

ad-hoc
relation

N
o

Sem
i-autom

atic
Y

es
N

otm
entioned

A
d-hoc

tool

van
A

ssem
etal.

[vA
M

M
S06]

Population
syntactic

N
otm

entioned
N

o
A

utom
atic

Y
es

N
otm

entioned
Sw

i-Prolog

W
ielinga

etal.
[W

SW
S01]

T
B

ox
syntactic,
sem

antic
subC

lassO
f

N
otm

entioned
Sem

i-autom
atic

Y
es

N
otm

entioned
A

d-hoc
tool

H
yvönen

etal.
[H

V
T

S08]
T

B
ox

syntactic,
sem

antic
subC

lassO
f,

partO
f

D
O

L
C

E
Sem

i-autom
atic

Y
es

N
otm

entioned
A

d-hoc
tool

Soergeletal.
[SL

L
+

04,L
S06]

T
B

ox
syntactic,
sem

antic
subC

lassO
f,

ad-hoc
relation

N
o

M
anual

Y
es

N
otm

entioned
N

otm
entioned

Stojanovic
etal.

[SSV
02]

Population
syntactic

ad-hoc
relation

N
o

Sem
i-autom

atic
Y

es
M

apping
rules

K
A

O
N

-
R

E
V

E
R

SE

B
arrasa

etal.
[B

C
G

P04,B
ar07]

Population
syntactic

subC
lassO

f,
ad-hoc

relation
N

o
Sem

i-autom
atic

Y
es

M
apping

rules
O

D
E

M
apster

G
arcı́a

etal.[G
C

05]
A

B
ox

syntactic
ad-hoc

relation
N

o
Sem

i-autom
atic

Y
es

M
apping

rules
X

SD
2O

W
L

X
M

L
2R

D
F

A
n

etal.[A
M

05]
A

B
ox

syntactic
ad-hoc

relation
N

o
Sem

i-autom
atic

N
o

N
otm

entioned
D

iscovery
tool

C
ruz

etal.[C
X

H
04]

A
B

ox
syntactic

N
otm

entioned
N

o
Sem

i-autom
atic

Y
es

M
apping

rules
A

d-hoc
tool

Foxvog
etal.[FB

06]
A

B
ox

syntactic
N

otm
entioned

N
o

Sem
i-autom

atic
Y

es
N

otm
entioned

A
d-hoc

tool

30

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

Table 2.4: Comparison of the methods according to the ontology features

Lightweight/ Components Implementation Single/
Research Work Heavyweight language Several
Hepp et al. [HdB07] Lightweight classes, relations RDF(S) / OWL

DLP
Single

Hakkarainen et al.
[HHST06]

Lightweight classes, attributes,
relations

OWL DL Single

Abbasi et al. [ASC07] Lightweight instances Not mentioned Several
Maala et al. [MDA07] Lightweight instances RDF Single
Van Assem et al.
[vAGS06]

Lightweight classes, attributes,
relations, instances

RDF(S) / OWL
Full

Single

Gangemi et al. [GNV03,
GGMO03]

Lightweight classes, attributes,
relations

DAML+OIL Single

Hahn et al. [Hah03,
HS03]

Heavyweight classes, relations LOOM / ALC Single

Van Assem et al.
[vAMSW04]

Lightweight classes, attributes,
relations

RDF(S) / OWL
Full

Single

Van Assem et al.
[vAMMS06]

Lightweight instances SKOS RDF Single

Wielinga et al.
[WSWS01]

Lightweight classes, attributes,
relations

RDF(S) Single

Hyvönen et al.
[HVTS08]

Heavyweight classes, attributes,
relations

RDF(S) Single

Soergel et al. [SLL+04,
LS06]

Heavyweight classes, attributes,
relations

OWL DL Single

Stojanovic et al.
[SSV02]

Lightweight instances F-Logic / RDF Single

Barrasa et al. [BCGP04,
Bar07]

Lightweight instances RDF Single

Garcı́a et al. [GC05] Lightweight classes, attributes,
relations, instances

OWL Full/ RDF Single

An et al. [AM05] Lightweight instances RDF Single
Cruz et al. [CXH04] Lightweight classes, attributes,

relations, instances
RDF(S) Single

Foxvog et al. [FB06] Lightweight classes, attributes,
relations, instances

CycL / OWL
Full / WSML

Several

31

CHAPTER 2. STATE OF THE ART

2.1.3.2 Tools centred on the non-ontological resource implementation

In this section we present some of the tools we found in the literature related to
the re-engineering of non-ontological resources and centred on their implementa-
tion. We first introduce some research works to transform databases, XML files,
spreadsheet files and flat files into ontologies.

Tools for transforming databases into ontologies The four main tools for trans-
forming databases are KAON-REVERSE, ODEMapster, D2R Server and Top-
Braid Composer. Next we describe each one of them.

• KAON-REVERSE28 is a tool that supports the reverse engineering method
presented in [SSV02] for transforming databases into ontologies. This tool
performs an ABox transformation of the databases, generating ontologies in
F-Logic and instances in RDF.

• ODEMapster29 is the processor in charge of carrying out the exploitation
of the mappings defined with R2O [Bar07]. This tool is intended to cre-
ate instances of an available ontology on demand or in a batch processing.
The ontologies have to be expressed in OWL or RDF(S), and the instances
generated are expressed in RDF.

• D2R Server30 is a tool for publishing the content of relational databases on
the Semantic Web. This tool does not consider the data model of the resource
stored in the database.

It is intended to create instances of an ontology on demand or in a batch
processing, that is, to populate ontologies. D2R Server performs a semi-
automatic conversion and does not consider the internal data model of the
resource. Nor does it provide the resource provenance information, so the
resultant ontology does not keep the reference to the database. D2R Server
consists of: (1) a D2RQ mapping language, a declarative language for de-
scribing the relation between an ontology and a relational model; and (2)
a D2RQ engine, that is, a plug-in for the Jena and Sesame Semantic Web
toolkits. This engine uses the mappings to rewrite Jena and Sesame API
calls into SQL queries against the database and passes query results up to
the higher layers of the frameworks.

This tool populates a single ontology. The resultant ontology instances are
expressed in RDF.

• TopBraid Composer31 is an enterprise-class modelling environment for de-
veloping Semantic Web Ontologies. TopBraid Composer can convert databa-

28http://kaon.semanticweb.org/alphaworld/reverse/
29www.oeg-upm.net/index.php/en/downloads/9-r2o-odempaster
30http://www4.wiwiss.fu-berlin.de/bizer/d2r-server
31http://www.topbraidcomposer.com/

32

http://kaon.semanticweb.org/alphaworld/reverse/
www.oeg-upm.net/index.php/en/downloads/9-r2o-odempaster
http://www4.wiwiss.fu-berlin.de/bizer/d2r-server
http://www.topbraidcomposer.com/

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

ses into ontologies, but does not consider the internal data model of the re-
source. This tool has a relational database importer, D2RQ32 in its platform.
TopBraid performs an ABox transformation, though it does not provide the
resource provenance information; therefore, the resultant ontology does not
keep the reference to the database.

TopBraid Composer performs the following tasks for converting databases
into ontologies: (1) static import of schema, where tables become classes,
columns become properties and link tables become object properties; and
(2) dynamic import of actual data, where rows become instances on the fly,
i.e., data can stay where it is.

The tool produces a single ontology whose components are classes, attributes,
relations, and instances. The resultant ontology is expressed in RDF/OWL
(Full, DL or Lite).

Tools for transforming XML files into ontologies The main tools are XSD2-
OWL, XML2RDF, and TopBraid Composer.

• XSD2OWL and XML2RDF33 are tools that support the method for trans-
forming XML files into ontologies [GC05]. The input files are (1) an XML
schema definition (XSD) file, which describes the XML schema; and (2) an
XML file, which contains the XML instances. This tool does not consider
the data model of the resource stored in the XML.

It produces a single lightweight ontology whose components are classes,
attributes, relations, and instances, all expressed in RDF/OWL Full.

• TopBraid Composer also can convert XML files into ontologies. This tool
does not consider the data model of the resource stored in the XML.

It performs a semi-automatic ABox transformation and a Population, taking
into consideration the syntactic level. Besides, it relies on mapping rules as
a technique for performing the transformation.

The ontology components generated are classes, attributes, relations, and
instances. The resultant ontology is expressed in RDF/OWL (Full, DL or
Lite) and the tool generates a single lightweight ontology.

Tools for transforming flat files into ontologies The four main tools for trans-
forming flat files are TopBraid Composer, ConvertToRdf, flat2rdf and Java BibTeX-
To-RDF converter.

• TopBraid Composer can also convert flat files into ontologies. This tool
performs a semi-automatic ABox transformation, taking into account the
syntactic level.

32http://www4.wiwiss.fu-berlin.de/bizer/d2rq/
33http://rhizomik.net/redefer/

33

http://www4.wiwiss.fu-berlin.de/bizer/d2rq/
http://rhizomik.net/redefer/

CHAPTER 2. STATE OF THE ART

The ontology components generated are classes, attributes, relations, and
instances. The resultant ontology is expressed in RDF/OWL (Full, DL or
Lite), and the tool generates a single lightweight ontology.

• ConvertToRdf34 is a tool for automatically converting delimited text data
into RDF via a simple mapping mechanism. The input resources are delim-
ited text files. This tool does not consider the data model of the resource
stored in the XML.

It performs a semi-automatic population of an available ontology from the
data stored in the flat file. And it produces a single lightweight ontology.
The resultant ontology instances are expressed in RDF.

• flat2rdf35 is a simple Perl script that converts classic Unix text database files
into RDF.

The input resources are classic Unix text files (e.g., /etc/passwd). This
tool populates semi-automatically an available ontology.

The tool generates a single lightweight ontology. The resultant ontology
instances are expressed in RDF.

• Java BibTeX-To-RDF Converter36 allows converting BibTeX files into an
RDF format according the SWRC ontology37.

The input resources are plain BiBTex files (i.e. text files). This tool populates
automatically an ontology from the information stored in the BiBTex files

The resultant ontology instances are expressed in RDF.

Tools for transforming spreadsheet files into ontologies The four main tools
for transforming spreadsheet files are TopBraid Composer, Excel2rdf, RDF123,
and XLWrap.

• TopBraid Composer can also convert spreadsheets into ontologies. The
tool receives Excel spreadsheets as input, but it does not consider the inter-
nal resource data model. Besides, it performs semi-automatically an ABox
transformation.

The ontology components generated are classes, attributes, relations, and
instances. The resultant ontology is expressed in RDF/OWL (Full, DL or
Lite) and the tool deals with a single lightweight ontology.

• Excel2rdf38 is a Microsoft Windows program that converts Excel files into
valid RDF. It populates semi-automatically an ontology, but it does not con-
sider the data model of the resource for the transformation.

34http://www.mindswap.org/˜mhgrove/convert/
35http://simile.mit.edu/repository/RDFizers/flat2rdf/
36http://www.aifb.uni-karlsruhe.de/WBS/pha/bib/index.html
37http://ontoware.org/projects/swrc/
38http://www.mindswap.org/˜Erreck/excel2rdf.shtml

34

http://www.mindswap.org/~mhgrove/convert/
http://simile.mit.edu/repository/RDFizers/flat2rdf/
http://www.aifb.uni-karlsruhe.de/WBS/pha/bib/index.html
http://ontoware.org/projects/swrc/
http://www.mindswap.org/~Erreck/excel2rdf.shtml

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

The resultant ontology instances are expressed in RDF.

• RDF123 [HFP+06] is a highly flexible open source tool for transforming
semi-automatically spreadsheet data into RDF. It works on CSV files and
also Google spreadsheets.

This tool populates semi-automatically an available ontology. Every row of
a spreadsheet will generate a row graph, and the RDF graph produced for
the whole spreadsheet is the merge of all row graphs, eliminating duplicated
resources and triples.

RDF123 consists of the following two components: (1) an RDF123 applica-
tion, that is, a component whose main purpose is to give users an interactive
and easy-to-use graphical interface for creating the map graph and outputting
the map graph in RDF syntax; and (2) a RDF123 Web Service, which aims
to provide a public service that translates online spreadsheets into RDF.

This tool populates more than one ontology and the resultant ontology in-
stances are expressed in RDF.

• XLWrap [LW09] is a spreadsheet-to-RDF wrapper that is capable of trans-
forming spreadsheets into arbitrary RDF graphs based on a mapping specifi-
cation. The tool supports Microsoft Excel and OpenDocument spreadsheets
such as comma (and tab) separated value (CSV) files and it can load local
files or download remote files via HTTP.

This tool populates semi-automatically ontologies. Every row of a spread-
sheet will generate a row graph, and the RDF graph produced for the whole
spreadsheet is the merge of all row graphs, eliminating duplicated resources
and triples.

This tool populates more than one ontology; thus, the resultant ontology
instances are expressed in RDF.

2.1.3.3 Comparison of the tools

Tables 2.5, 2.6 and 2.7 present the tools according to the features related to the
non-ontological resource, the transformation process and the resultant ontology.

2.1.4 Results and Conclusions

After having analysed the state of the art of the methods and tools for re-engineering
non-ontological resources, we present the results of applying the evaluation frame-
work described in section 2.1.1. The results are provided according to the features
of the groups identified, namely, non-ontological resource, reuse process, transfor-
mation process, and resultant ontology.

35

CHAPTER 2. STATE OF THE ART

Table 2.5: Comparison of the tools according to the NOR features

Type of Data model Resource
Tool resource model is

known
implemented in

SKOS2GenTax Classification
schemes,
thesauri

No SKOS RDF

T-ORG Folksonomy No Not mentioned
KAON-
REVERSE

Not specified Yes Database

ODEMapster Not specified Yes Database
D2R Server Not specified No Database
TopBraid Com-
poser

Not specified No Database, XML,
Flat file, Spread-
sheet

XSD2OWL and
XML2RDF

Not specified No XML

ConvertToRdf Not specified No Delimited text
data file

flat2rdf Not specified No Flat file
Java BibTeX-To-
RDF Converter

Not specified No Flat file

Excel2rdf Not specified No Spreadsheet
RDF123 Not specified No Spreadsheet
XLWrap Not specified No Spreadsheet

2.1.4.1 Results according to non-ontological resource

Table 2.1 and table 2.5 summarize the methods and tools presented according to
the characteristics of the non-ontological resource: type of resource, knowledge
about the data model, and resource implementation.

Methods

• According to the type of non-ontological resource, we can state that most
of the methods are focused on thesauri, classification schemes, lexicons and
folksonomies, and then there is a small group which do not contemplate the
type of resource. Only one method is focused on thesauri and classification
schemes.

• In relation to the data model, we can observe the half of the methods does not
contemplate the data model of the resource for the transformation, whereas
the other half does.

36

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

Ta
bl

e
2.

6:
C

om
pa

ri
so

n
of

th
e

to
ol

s
ac

co
rd

in
g

to
th

e
tr

an
sf

or
m

at
io

n
pr

oc
es

s
fe

at
ur

es

To
ol

Tr
an

sf
or

m
at

io
n

A
pp

ro
ac

h

Tr
an

sf
or

m
at

io
n

A
sp

ec
ts

Se
m

an
tic

so
f

N
O

R
re

la
tio

ns

A
dd

iti
on

al

R
es

ou
rc

es
/

D
om

ai
n

E
xp

er
t

A
ut

om
at

ic
/

Se
m

i-

au
to

m
at

ic
/

M
an

ua
l

Te
ch

ni
qu

e

SK
O

S2
G

en
Ta

x
T

B
ox

sy
nt

ac
tic

,
se

m
an

tic
su

bC
la

ss
O

f,
ad

-h
oc

re
la

tio
n

N
o

Se
m

i-
au

to
m

at
ic

N
ot

m
en

tio
ne

d

T-
O

R
G

Po
pu

la
tio

n
sy

nt
ac

tic
N

o
Sw

oo
gl

e
A

ut
om

at
ic

L
ex

ic
o

Sy
nt

ac
tic

Pa
tte

rn
s

K
A

O
N

-R
E

V
E

R
SE

A
B

ox
sy

nt
ac

tic
N

o
N

o
Se

m
i-

au
to

m
at

ic
M

ap
pi

ng
ru

le
s

O
D

E
M

ap
st

er
Po

pu
la

tio
n

sy
nt

ac
tic

N
o

N
o

Se
m

i-
au

to
m

at
ic

M
ap

pi
ng

ru
le

s

D
2R

Se
rv

er
Po

pu
la

tio
n

sy
nt

ac
tic

N
o

N
o

Se
m

i-
au

to
m

at
ic

M
ap

pi
ng

ru
le

s

To
pB

ra
id

C
om

po
se

r
A

B
ox

sy
nt

ac
tic

N
o

N
o

Se
m

i-
au

to
m

at
ic

M
ap

pi
ng

ru
le

s

X
SD

2O
W

L
an

d
X

M
L

2R
D

F
A

B
ox

sy
nt

ac
tic

N
o

N
o

Se
m

i-
au

to
m

at
ic

M
ap

pi
ng

ru
le

s

C
on

ve
rt

To
R

df
Po

pu
la

tio
n

sy
nt

ac
tic

N
o

N
o

Se
m

i-
au

to
m

at
ic

N
ot

m
en

tio
ne

d

fla
t2

rd
f

Po
pu

la
tio

n
sy

nt
ac

tic
N

o
N

o
Se

m
i-

au
to

m
at

ic
N

ot
m

en
tio

ne
d

Ja
va

B
ib

Te
X

-T
o-

R
D

F
C

on
ve

rt
er

Po
pu

la
tio

n
sy

nt
ac

tic
N

o
N

o
A

ut
om

at
ic

N
ot

m
en

tio
ne

d

E
xc

el
2r

df
Po

pu
la

tio
n

sy
nt

ac
tic

N
o

N
o

Se
m

i-
au

to
m

at
ic

N
ot

m
en

tio
ne

d

R
D

F1
23

Po
pu

la
tio

n
sy

nt
ac

tic
N

o
N

o
Se

m
i-

au
to

m
at

ic
N

ot
m

en
tio

ne
d

X
LW

ra
p

Po
pu

la
tio

n
sy

nt
ac

tic
N

o
N

o
Se

m
i-

au
to

m
at

ic
M

ap
pi

ng
ru

le
s

37

CHAPTER 2. STATE OF THE ART

Table 2.7: Comparison of the tools according to the ontology features

Lightweight/ Components Implementation Single/
Tool Heavyweight language Several
SKOS2GenTax Lightweight classes,

attributes,
relations

OWL DLP/
RDF(S)

Single

T-ORG Lightweight instances Not mentioned Several
KAON-REVERSE Lightweight classes,

attributes,
relations,
instances

F-Logic / RDF Single

ODEMapster Lightweight instances RDF Single
D2R Server Lightweight instances RDF Single
TopBraid Composer Lightweight classes,

attributes,
relations,
instances

RDF/OWL (Full,
DL or Lite)

Single

XSD2OWL and
XML2RDF

Lightweight classes,
attributes,
relations,
instances

OWL Full/ RDF Single

ConvertToRdf Lightweight instances RDF Single
flat2rdf Lightweight instances RDF Single
Java BibTeX-To-
RDF Converter

Lightweight instances RDF Single

Excel2rdf Lightweight instances RDF Single
RDF123 Lightweight instances RDF Several
XLWrap Lightweight instances RDF Several

• With regard to the implementation of the non-ontological resource, we can
state that most of the methods are focused on databases, some on XML, and
flat files, and some are independent of the resource implementation. In ad-
dition, one method is focused on resources implemented in Prolog, whereas
another method includes resources implemented in proprietary format, rela-
tional database, and XML.

Tools

• In relation to the type of non-ontological resource, we can observe that most
of the tools do not consider the type of the resource, since they are focused
on the resource implementation. In addition, one tool considers classification
schemes and thesauri, whereas another considers folksonomies.

• As for the data model, most of the tools do not consider the data model for

38

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

the transformation.

• With regard to the implementation, almost all the tools are focused on the
resource implementation, many of them on databases, and some on spread-
sheets, XML and flat files. Only one tool provides an integrated environ-
ment that considers resources implemented in databases, XML, flat files,
and spreadsheets.

To sum up we can affirm that most of the methods and tools presented are
based on ad-hoc transformations for the resource type and the resource implemen-
tation. Only a few take advantage of the resource data model, an important artefact
in the re-engineering process [GGPSFVT08]. There is not integrated framework,
method or corresponding tool that considers the resource types, data models and
implementations identified in a unified way. Thus, we can conclude that there is a
clear need for some sort of re-engineering methods and tools that simultaneously

• Cope with the overall set of non-ontological resources, i.e., classification
schemes, thesauri, and lexica.

• Consider the internal data model of the resource.

• Deal with non-ontological resources implemented in databases, XML files,
flat files, or spreadsheets.

2.1.4.2 Results according to the reuse process

Table 2.2 summarizes the methods described above regarding the features of the
reuse process: methodological guidelines for the selection of the resource, tool sup-
port and provenance information. We can conclude that the whole set of methods
assumes that the non-ontological resources are already selected for their transfor-
mation; therefore, they do not provide methodological guidelines for the selection
of the resource. Consequently, there is not tool support for this process. It should
be noted that only one method keeps the reference to the non-ontological resource.

In conclusion, we can say that there is a clear need for some sort of methods
and tools that

• Provide guidelines for the selection of the most appropriate resources for
building an ontology.

• Consider the provenance information of the resource.

2.1.4.3 Results according to transformation process

Table 2.3 and table 2.6 summarize the methods and tools presented above regarding
the features of the transformation process, namely, the transformation approach;
the transformation performed on the syntactic and semantic level; the explicitation
of the hidden semantics in the relations of the resource terms; the use of additional

39

CHAPTER 2. STATE OF THE ART

resources or a domain expert for making explicit the hidden semantics of the re-
lations; the degree of automation; the provision of methodological guidelines; and
the list of the techniques employed.

Methods

• With regard to the transformation approach, the majority of the methods per-
form a TBox transformation, many others perform an ABox transformation
and some perform a population. However, no method includes the possibility
to perform the three transformation approaches.

• Regarding the transformation at the syntactic and semantic levels, we can
observe that this feature is closely related to the transformation approach
performed by the methods. As mentioned in section 2.1.1.3, the ABox trans-
formation disregards the informal semantics of the transformed resources,
so the transformation is performed only at the syntactic level; and this also
happens to the Population. On the contrary, the TBox transformation tries
to enforce a formal semantics on the resources, so the transformation is per-
formed at the syntactic and semantic levels.

• As for the explicitation of the hidden semantics of the relations of the re-
source components, we can state that the methods performing a TBox trans-
formation make explicit the semantics in the relations of the resource compo-
nents. Most of those methods identify subClassOf relations, others identify
ad-hoc relations, and some identify partOf relations. However, only a few
methods make explicit the three types of relations.

• With respect to how the methods make explicit the hidden semantics in the
relations of the resource components, we can say that three methods rely
on the domain expert for making explicit the semantics, and two rely on an
external resource, e.g., DOLCE ontology. Moreover, there are two methods
that rely on external resources though not for making explicit the hidden
semantics, but for finding out a proper ontology and populating it.

• Regarding the degree of automation, almost all the methods perform a semi-
automatic transformation of the resource, three are performed automatically,
and one is done manually.

• As for the provision of the methodological guidelines, almost all the methods
provide methodological guidelines for the transformation. However, these
guidelines are not finely detailed; for instance, they do not provide informa-
tion about who is in charge of performing a particular task/activity, nor when
that task/activity has to be carried out.

• With regard to the techniques employed, most of the methods do not mention
them at all. Only a few methods establish techniques as transformation rules,
lexico-syntactic patterns, mapping rules and natural language techniques.

40

2.1. A COMPARATIVE FRAMEWORK OF METHODS AND TOOLS FOR
REUSING AND RE-ENGINEERING NORS INTO ONTOLOGIES

• As for the tool support, most of the methods rely on ad-hoc tools for the
transformation, but only a few integrate a public available tool, such as,
KAON-REVERSE, ODEMapster, XSD2OWL, or XML2RDF.

Tools

• Regarding the transformation approach, most of the tools perform a pop-
ulation, some perform an ABox transformation, and one performs a TBox
transformation. However, no tool includes the possibility to perform the
three transformation approaches.

• With respect to the transformation at the syntactic and semantic levels, as
we observed, before this feature is closely related to the transformation ap-
proach performed by the tools. The ABox transformation is performed only
at the syntactic level, and this also happens to the Population. On the con-
trary, the TBox transformation is performed at the syntactic and semantic
level. However, almost of all the tools perform a population, three perform
an ABox and a TBox transformation.

• With regard to the explicitation of the hidden semantics in the relations of the
resource terms, we can state that the tool performing the TBox transforma-
tion is the only one that makes explicit the semantics hidden in the relations
of the NOR terms.

• As for how the tools make explicit the hidden semantics in the relations of
the resource terms, the only tool that makes this explicitation it does it by
setting both ad-hoc and taxonomic relations among the NOR terms, though
it does not state which relation is the correct. Moreover, there is one tool
that relies on an external resource, though it does not do it for expliciting the
hidden semantics, but for finding out a proper ontology for populating it.

• With respect to the degree of automation, almost all the tools perform a semi-
automatic transformation of the resource, and only two tools perform an
automatic transformation.

• Regarding the techniques employed, the majority of the tools do not mention
them at all. Only a few methods specify techniques as mapping rules and
lexico syntactic patterns.

In summary, after having analysed the features related to the transformation
process, we can conclude that (1) methods are mostly focused on the TBox trans-
formation approach, whereas tools are focused on the population; (2) only a few
methods and tools make explicit the hidden semantics in the relations of the NOR
components, and most of them rely on the domain expert for doing it; (3) almost all
the methods provide a methodological guidelines for the transformation, but they
are not finely detailed; (4) only a few methods and tools specify the techniques

41

CHAPTER 2. STATE OF THE ART

employed for the transformation, and (5) there is not any integrated framework,
method or corresponding tool that considers the possibility to perform the three
transformation approaches. In a nutshell, we can state that there is a clear need for
some sort of re-engineering methods and tools that

• Include the three transformation approaches (TBox, ABox and Population).

• Make explicit the hidden semantics in the relations of the NOR terms, by
means of external resources in an semi-automatic way, for saving the trans-
formation time,

• Provide fully detailed guidelines for the transformation, including informa-
tion on who is in charge of performing a particular task/activity and when
this task/activity has to be carried out.

• Integrate in a single framework the method and its corresponding tool sup-
porting for the transformation.

• Employ techniques that improve the efficiency of the re-engineering process.

2.1.4.4 Results according to the ontology

Tables 2.4 and 2.7 summarize the methods and tools presented regarding the fea-
tures of the resultant ontology, namely, whether the ontology is lightweight or
heavyweight; the ontology components; the ontology implementation language;
and whether one or more ontologies are generated.

Methods

• With respect to whether the ontology is lightweight or heavyweight, most
of the methods generate lightweight ontologies; only three rely on domain
experts to generate heavyweight ontologies.

• Regarding the ontology components, we can observe that this feature is
closely related to the transformation approach performed by the methods.
Methods that perform TBox transformation, generate classes, relations, and
optionally attributes. Methods that perform ABox transformation, generate
classes, attributes, relations and instances. Methods that perform population,
generate instances.

• With regard to the ontology implementation language, even though there is
a large variety of languages, the ontology languages mostly used are OWL
for the ontology and RDF for the instances.

• As for whether the methods generate one or several ontologies, almost all
the methods generate a single ontology.

42

2.2. PATTERNS FOR RE-ENGINEERING

Tools

• Regarding whether the ontology generated is lightweight or heavyweight,
we can state that almost all generate lightweight ontologies.

• Concerning the ontology components, we can observe that this feature is
closely related to the transformation approach performed by the tools, just
like in the case of the methods.

• With respect to the ontology implementation language, and taking into ac-
count that almost all the tools generate ontology instances, the language most
used is RDF.

• As for whether the tools generate one or several ontologies, we can state that
almost all the tools generate a single ontology.

After having analysed the features related to the resultant ontology, we can
confirm the lack both of re-engineering methods and tools supporting several on-
tologies, and of the generation of ontologies with classes, attributes, relations and
instances.

2.2 Patterns for Re-engineering

In this section we analyse the role patterns play in software and ontology engineer-
ing, emphasizing specifically the re-engineering patterns.

2.2.1 Software Re-engineering

This section is based on the landmark work of Byrne [Byr92], one of the most
prominent specialists on software re-engineering. In a nutshell, software re-engineering
takes a legacy software that is expensive to maintain or whose system architecture
or implementation is obsolete and remakes it with current software and/or hard-
ware technology. The difficulty of this process lies in understanding the existing
system. Very often requirements, design and code documentation are no longer
available, or are very out of date, so it is unclear what functions have to be moved.

Several definitions have been given for software re-engineering, but the one
most widely accepted comes from Chikofsky [CCI90]. He defines software re-
engineering as the examination and alteration of a software system to reconstitute
it in a new form and the subsequent implementation.

2.2.1.1 Levels of abstraction

Understanding how software is developed is useful for understanding how soft-
ware can be re-engineered. The concept of levels of abstraction that underlies the
development process also underlies the re-engineering process. This concept is

43

CHAPTER 2. STATE OF THE ART

Figure 2.3: Software levels of abstraction [Byr92]

used to model software development as a sequence of phases, in which each phase
corresponds to a particular level of abstraction [Byr92], as shown in Figure 2.3.

Next, we describe briefly the software levels of abstraction proposed by [Byr92].

• The conceptual level describes, in general terms, the functional characteris-
tics of a system, i.e., the concept of the system (its reason for existence).

• The requirements level depicts in detail the functional characteristics of a
system, though it does not provide details of the internal system.

• The design level describes the system characteristics, such as architectural
structure, system components, interfaces between components, algorithmic
procedures, and data structures. Here, we face two degrees of abstraction
levels: (1) the high-level design, which expresses the architectural structure
of a system, and (2) the detailed-design, which expresses the internal struc-
ture of system components.

• The implementation level focuses on the description of the implementation
characteristics, and is represented in a language understood by the computer.

Byrne [Byr92] also has made a set of assumptions for software re-engineering
based on the software levels of abstraction. Next, we describe briefly each of them.

Assumption 1. The re-engineering of a software system produces a new form of
the system that is better, in some way, than the original form. This assump-
tion answers the question of why software is re-engineered. There are many
different reasons for software re-engineering, and most of them assume that
the available software needs to be improved.

Assumption 2. Software re-engineering begins with an existing system represen-
tation expressed at some level of abstraction. The concept of levels of ab-
straction contributes to the understanding of software re-engineering. Thus,

44

2.2. PATTERNS FOR RE-ENGINEERING

we can say that,on the one hand, software development starts with an idea
for a system and creates a system representation for each abstraction level.
On the other hand, software re-engineering starts with an existing system
representation.

Assumption 3. To alter a system characteristic, we have to work at the level of
abstraction at which information about that characteristic is explicitly ex-
pressed. This is related to the issue of how to identify the abstraction level
at which the re-engineering work should be carried out. Re-engineering
changes the characteristics of a software system. To alter information about
a system characteristic we have to work at either abstraction level where the
characteristic is introduced, or at any level below that.

Assumption 4. A system characteristic can be altered by working within a level
of abstraction below the level at which information about the characteristic
is explicitly expressed. However, the best re-engineering result might not be
achieved. “Best possible result” means that the target system has the desired
system characteristics and properties.

Assumption 5. A system characteristic cannot be altered by working at a level of
abstraction above the level where information on the characteristic is intro-
duced. A characteristic cannot be altered, in the sense of manipulating in-
formation about that characteristic, by working at a higher abstraction level
containing no information on that characteristic.

2.2.1.2 Software re-engineering principles

According to [Byr92] there are three principles underlying a re-engineering method,
which are Refinement, Abstraction and Alteration.

Refinement. This principle states that the gradual decrease in the abstraction
level of a system representation is caused by successively replacing available sys-
tem information with more detailed information.

Abstraction. This principle establishes that if a system representation at a partic-
ular abstraction level is missing or not up-to-date, then it is possible to reconstruct
that representation.

Alteration. Alteration is the making of one or more changes to a system rep-
resentation without changing the degree of abstraction. Alteration includes the
addition, deletion, and modification of information.

45

CHAPTER 2. STATE OF THE ART

2.2.1.3 General model for software re-engineering

Here we present the general software re-engineering model proposed by Byrne
[Byr92]. Assumption 3 and the Principle of Alteration both show the level of
abstraction at which certain types of change can be made. The Principle of Refine-
ment is the basis for forward engineering, which creates a target system implemen-
tation. This model suggests that re-engineering begins with the available system
implementation and produces a target system implementation.

Figure 2.4: General model for software re-engineering [Byr92]

The sequence of reverse engineering, re-designing (or re-coding, re-specifying,
re-thinking) and forward re-engineering rests on the three re-engineering principles
of Abstraction, Alteration, and Refinement.

Reverse Engineering. Reverse Engineering is the process of analysing a subject
system to identify the system’s components and their relationships and to create
representations of the system in another form or at a higher level of abstraction. In
reverse engineering, the requirements and essential design, structure and content
of the legacy system must be recaptured. Reverse engineering does not involve
changes in the system or creating a new system; it is the process of examining the
system without changing its overall functionality.

Alteration or Transformation. To alter a system characteristic, the work is done
at the level of abstraction at which information on that characteristic is explicitly
expressed. To translate the existing code to a target language no reverse engineer-
ing is needed because the alteration (re-coding) is done at the implementation level.
As the level of abstraction increases, the alteration tasks change and the amount
and tasks of reverse engineering also change. As for re-design changes, they might
include restructuring a design architecture, altering a system’s data model or a
database, etc. To re-specify requirements, reverse engineering techniques must be
applied to the implementation and design in order to obtain the functional charac-
teristics. Regarding the re-thinking changes, they can result in drastic changes to a

46

2.2. PATTERNS FOR RE-ENGINEERING

system, i.e., manipulating the concepts embodied in an existing system to create a
new system that operates in a different problem domain.

Forward Engineering. The new target system is created by moving downward
through the levels of abstraction, that is, a gradual decrease in the abstraction level
of the system representation, by successively replacing system information with
more detailed information. This downward movement is actually a forward move-
ment through the standard software development, i.e., forward engineering.

2.2.2 Software Patterns

In this section we introduce briefly the role that patterns play in software and on-
tology engineering, focusing specially on software re-engineering patterns.

Patterns were introduced by Christopher Alexander [Ale79] to encode knowl-
edge and experience when designing buildings. He defines a pattern as the core of
a solution to a problem in context. The solution can be applied in different situ-
ations and has to be adapted to fit the needs of the specific situation [Ale79]. In
the (Object-Oriented) software community, patterns are used to describe software
design structures that can be used over and over again in different systems. Patterns
provide a general solution that has to be applied in a particular context, where the
design considerations are used to decide whether the pattern is useful and how it
could be best implemented [EPJ06].

2.2.2.1 Software design patterns

Software design patterns [Tic97] describe proven solutions to recurring software
design problems. A software design pattern consists of one or several software
design elements (such as interfaces, classes, objects, methods, functions, processes,
threads), relationships among the elements (for example, association, inheritance,
delegation, invocation, and creation), and a behavioural description. Examples of
design patterns are the Layered System and the Model-View-Controller.

The purpose of design patterns is to capture “design know-how” and to make
it reusable. Design patterns can improve the structure of software, speed up imple-
mentation, simplify maintenance, and help to avoid architectural drift. Design pat-
terns also improve communication among software developers and can empower
less experienced developers to produce high-quality designs [Tic97].

There are several classifications of software design patterns. The classifica-
tion proposed by Gamma et al. [GHJV95] uses two orthogonal dimensions: (1)
purpose, in which they define three categories, namely, creational, structural and
behavioural patterns, and (2) scope, in which they distinguish whether a pattern ap-
plies primarily to classes or to objects. Buschmann et al. [BMR+96] propose three
categories, namely, architectural patterns, design patterns, and idioms. In addition
to these, there are several online catalogues of software design patterns, such as the

47

CHAPTER 2. STATE OF THE ART

Design Pattern Library 39, the Portland Pattern Repository40, the Design Patterns
Study Group of New York City41, and the Architecture & Design Patterns42.

2.2.2.2 Software re-engineering patterns

A kind of software patterns are the re-engineering software patterns [PS98, LDP].
They describe how to change a legacy system into a new, refactored system that fits
current conditions and requirements. Their main goal is to offer a solution for re-
engineering problems. They are also on a specific level of abstraction and describe
a process of re-engineering without proposing a complete methodology; they can
sometimes suggest which type of tool to use [LDP].

The structure of a re-engineering pattern consists of some essential elements,
which are described next.

• Pattern name. The name should be short, clear, and descriptive.

• Intent. It includes the description of the re-engineering process, the results
and why it is desirable.

• Applicability. It describes when a particular pattern is applicable and when it
is not. It also comprises symptoms, reengineering goals and related patterns.

• Motivation. It includes the descriptions of the legacy system and its structure
as well as the refactored system and the relation between them. This is done
through the use of a concrete example.

• Structure. It describes the structure before and after re-engineering.

• Process. It includes the description of how to perform the re-engineering
and possible variants.

2.2.3 Ontology Patterns

The idea of applying patterns to modelling ontologies was proposed by Clark et
al. [CTP00]. They introduce “knowledge patterns” as a technique for helping
construct axiom-rich, formal ontologies, based first on identifying and explicitly
representing recurring patterns of knowledge in the ontology, and then on mapping
those patterns onto domain-specific concepts in the ontology.

Since then, the ontology community has adopted the pattern idea. Relevant
works on patterns are

• Semantic Web Best Practices and Deployment Working Group43, which aims
to provide hands-on support for developers of Semantic Web applications.

39http://hillside.net/patterns
40http://c2.com/ppr/index.html
41http://industriallogic.com/patterns/
42http://www.cetus-links.org/oo_patterns.html
43http://www.w3.org/2001/sw/BestPractices/OEP/

48

http://hillside.net/patterns
http://c2.com/ppr/index.html
http://industriallogic.com/patterns/
http://www.cetus-links.org/oo_patterns.html
http://www.w3.org/2001/sw/BestPractices/OEP/

2.2. PATTERNS FOR RE-ENGINEERING

• The Ontology Design Patterns Public Catalog44, which focuses on the bio-
logical knowledge domain.

• The Ontology Design Patterns (ODP) Portal45, a Semantic Web portal dedi-
cated to ontology design patterns.

• Linked Data Patterns46, a catalogue of Linked Data [Biz09] patterns.

According to [GP08] Ontology Design Patterns are modelling solutions to
solve a recurrent ontology design problem. Gangemi et al. distinguish different
types of Ontology Design Patterns by grouping them into six families (see first
level in Figure 2.5). Each family addresses different kind of problems and can be
represented with different levels of formality. Next we briefly describe each family
of patterns.

Figure 2.5: Ontology Design Pattern categorization [GP08]

• Content ODPs propose, on the one hand, patterns for solving design prob-
lems for the domain classes and, on the other hand, properties that populate
an ontology, thus addressing content problems.

• Structural OPs include Logical OPs and Architectural OPs. Logical OPs
are compositions of logical constructs that solve the problem of expressivity,
while Architectural OPs are defined in terms of composition of Logical OPs
used to affect the overall shape of the ontology.

• Lexico-Syntactic ODPs can be defined as linguistic structures or schemas
that consist of certain types of words following a specific order, and that
permit generalizing and extracting some conclusions about the meaning they
express.

• Reasoning ODPs are applications of Logical OPs oriented to obtain certain
reasoning results and based on the behaviour implemented in a reasoning
engine.

44http://www.gong.manchester.ac.uk/odp/html/index.html
45http://ontologydesignpatterns.org
46http://patterns.dataincubator.org/book/

49

http://www.gong.manchester.ac.uk/odp/html/index.html
http://ontologydesignpatterns.org
http://patterns.dataincubator.org/book/

CHAPTER 2. STATE OF THE ART

• Presentation ODPs deal with the usability and readability of ontologies from
a user perspective. They are meant to be used as good practices that support
the reuse of patterns by facilitating their evaluation and selection.

• Correspondence ODPs are templates to represent alignments between mod-
els. They include Schema Re-engineering ODPs, Re-engineering ODPs and
Alignment ODPs. Re-engineering ODPs are transformation rules applied to
create a new ontology starting from elements of a source model; Refactoring
ODPs provide designers with rules for transforming an existing OWL-DL
“source” ontology into a new OWL-DL “target” ontology.

2.3 Summary and Discussion

This chapter has presented an exhaustive analysis of the state of the art of the
various topics dealt within this thesis, and discussed their limitations.

In this section we provide an overall summary of the open research problems
identified and we have focused on such problems to provide methods and tools for
reusing and re-engineering non-ontological resources with the aim of speeding up
the ontology development.

The first step is to identify the resources that the methods and tools proposed are
going to deal with. For this purpose we introduce the notions of non-ontological
resources and ontology (see sections 1.1 and 1.1.2). Then, we put forward our
categorization of non-ontological resources according to the three different features
presented in Figure 5.1: (1) the type of non-ontological resource, which refers to
the type of inner organization of the information; (2) the data model, that is, the
design data model used to represent the knowledge encoded by the resource; and
(3) the resource implementation.

The second step is the selection of the most appropriate non-ontological re-
sources for ontology development. The analysis of the State of the Art reveals that
there are not detailed guidelines on how to find the most suitable non-ontological
resources for the development of ontologies. Most of the research studies assume
that there are already suitable resources to use in the conversion. In conclusion, we
can state that there is a clear need for some sort of methods, techniques and tools
that help in the selection of the resources and that keep the provenance information
of these resources.

The third step is the transformation of the resources selected into ontologies.
In this step we can state that there is a clear need for some sort of re-engineering
methods that (1) cope with the overall set of NORs (i.e., classification schemes,
thesauri, and lexica) in an uniform way, independently of how it has been imple-
mented; (2) include the three transformation approches (TBox, ABox and Popula-
tion); (3) make explicit the hidden semantics in the relations of the NOR terms, by
means of external resources in an semi-automatic way; and (4) provide finely de-
tailed guidelines for the transformation, including information on who is in charge

50

2.3. SUMMARY AND DISCUSSION

of performing a particular task/activity and when such a task/activity has to be
carried out.

Additionally, we have reviewed the state of the art on software re-engineering,
software re-engineering patterns, and ontology patterns. All along this thesis we
intend to demonstrate that the application of re-engineering patterns for transform-
ing non-ontological resources into ontologies has several advantages. The most
representative are

• Improvement of the efficiency of the re-engineering process.

• Ease of the transformation process for both ontology engineers and domain
experts.

• Improvement of the reusability of non-ontological resources.

Finally, a very important matter that we would like to emphasize is the lack
of an integrated method (and technological support) that addresses all the previous
issues.

51

CHAPTER 2. STATE OF THE ART

52

Chapter 3

OBJECTIVES AND
CONTRIBUTIONS

The goal of this thesis is to investigate methods and tools for reusing and re-
engineering non-ontological resources when building ontologies, as opposed to
custom-building new ontologies from scratch. With the thesis we have contributed
to the NeOn Methodology Framework since it lies on this new paradigm. It presents
a re-engineering model as well as a method and a technology for reusing and re-
engineering non-ontological resources when building ontologies by means of re-
engineering patterns. Figure 3.1 depicts a general overview of our contributions
and the relationships between them. Next, we present the main contributions.

i) The definition of methodological guidelines for reusing non-ontological re-
sources when building ontologies. These methodological guidelines provide
support (1) for selecting the most appropriate non-ontological resources for
ontology development; and (2) for describing and providing the provenance
information of the ontology generated.

ii) The definition of methodological guidelines for re-engineering non-ontological
resources into ontologies. The methodological guidelines (1) cope with the
classification schemes, thesauri, and lexica, in an uniform way, independently
of how those resources have been implemented; (2) are based on re-engineering
patterns; (3) include the three transformation approches (TBox, ABox and
Population); (4) make explicit the hidden semantics in the relations of the NOR
terms by means of external resources in a semi-automatic way; and (5) provide
support for the transformation, including information about who is in charge
of performing a particular activity and when such an activity has to be carried
out.

iii) The development of a library of patterns for re-engineering non-ontological re-
sources into ontologies. These patterns cover classification schemes, thesauri,
and lexica.

53

CHAPTER 3. OBJECTIVES AND CONTRIBUTIONS

iv) The development of a software library, NOR2O, that implements the transfor-
mations suggested by the re-engineering patterns.

Ontology Development – NeOn Methodology

Method for reusing and re-engineering
non-ontological resources

Guidelines for reusing
non-ontological resources

Guidelines for re-engineering
non-ontological resources

Library of
patterns for re-engineering
non-ontological resources

NOR2O,
software
library

Figure 3.1: Thesis main contributions

3.1 Objectives

The general objective of the thesis is to provide domain independent, and resource
independent methods and tools for speeding up the ontology development process
and is achieved by reusing and re-engineering as much as possible available non-
ontological resources. To fulfil this overall goal, we have decomposed it into the
following methodological and technological objectives:

Methodological Objectives

O1. The definition of methodological aspects related to the reuse of non-ontolo-
gical resources for building ontologies. We propose a method that describes
a set of activities and serves as a guide for selecting the most suitable non-
ontological resources to develop ontologies.

O2. The definition of methodological aspects related to the re-engineering of
non-ontological resources for building ontologies. We propose a method
that guides users through the transformation of a non-ontological resource
into an ontology.

54

3.2. CONTRIBUTIONS TO THE STATE OF THE ART

Technological Objectives

O3. The creation of a library of patterns for re-engineering non-ontological
resources into ontologies. These patterns transform classification schemes,
thesauri, and lexica. The re-engineering patterns follow the best practices
of ontology engineering and use Logical and Content Ontology Design Pat-
terns for generating OWL Lite ontologies or RDF instances. Moreover, the
patterns rely on external resources for discovering the relationships among
the non-ontological resource terms.

O4. The development of a software library, NOR2O, that implements the sug-
gestions given by the re-engineering patterns. The patterns have an as-
sociated software library, that performs the suggested transformations auto-
matically.

3.2 Contributions to the State of the Art

We have tried to provide solutions to some of the open research and technological
problems (see Chapter 2) identified in the scope of this thesis.

I. Regarding the methodological guidelines for carrying out the non-ontological
resource reuse process, this thesis presents new advances in the state of the art
in the following aspects:

C1. A definition of non-ontological resources. There is a wealth of non-
ontological resources that embodies knowledge about some particular do-
mains and that represents some degree of consensus for a user community.
These resources present the form of free texts, textual corpora, web pages,
standards, catalogues, web directories, classification schemes, thesauri,
lexica and folksonomies, among others. The definition of non-ontological
resource is provided in section 5.1.

C2. A categorization of non-ontological resources according to three differ-
ent features: type of non-ontological resource, data model and implemen-
tation. The categorization is described in section 5.1. It should be noted
that an accepted and agreed upon typology of non-ontological resources
does not exist yet. This contribution is the result of the thorough analysis
of the structures that NORs usually have.

C3. A metadata vocabulary for non-ontological resources, NoRMV. This
vocabulary allows (1) describing the available non-ontological resources,
and (2) including the provenance information in the ontology generated.
The vocabulary is described in Section 5.2.

C4. A method for reusing non-ontological resources when building ontolo-
gies. The description of the method is included in Section 5.3.

55

CHAPTER 3. OBJECTIVES AND CONTRIBUTIONS

II. Regarding the methodological guidelines for carrying out the non-ontological
resource re-engineering process, the new advances in the state of the art are

C5. A re-engineering model for non-ontological resources. This model is
based on the software re-engineering model presented in [Byr92] and de-
picted in Chapter 6.

C6. A method for re-engineering non-ontological resources when building
ontologies with re-engineering patterns. This method is described in
Chapter 6.

III. Problems in ontology engineering can be solved by applying common so-
lutions (as experienced in software engineering); on the other hand, Ontol-
ogy Design Patterns (ODPs) can support reusability on the design side. Our
third objective belongs to the Ontology Design Patterns field. We propose
a library of re-engineering patterns (PR-NOR), which is included in the
ontologydesignpatterns.org portal1. In this thesis we provide

C7. A set of patterns for re-engineering classification schemes into ontolo-
gies. These patterns take advantage of the classification scheme underly-
ing data models. The data models identified for classification schemes are
described in Chapter 7.

C8. A set of patterns for re-engineering thesauri into ontologies. These
patterns take advantage of the thesaurus underlying data models. The data
models identified for thesauri are described in Chapter 8.

C9. A set of patterns for re-engineering lexica into ontologies. These pat-
terns take advantage of the lexicon underlying data model. The data mod-
els identified for lexica are described in Chapter 9.

IV. Finally, our fourth objective is to provide technological support to the pat-
terns for re-engineering non-ontological resources. We present the following
advance in the state of the art:

C10. A software library, NOR2O, that implements the transformation sug-
gested by the patterns. In this way, the software library covers the trans-
formations of classification schemes, thesauri and lexica. These resources
can be implemented in databases, XML files, flat files or spreadsheets. The
description of this software library is included in Section 10.1.

The contributions are presented in the document as follows: first, Chapter 5
presents the contributions: (C1) a definition of non-ontological resource; (C2) a
categorization of non-ontological resources; (C3) a metadata vocabulary for de-
scribing non-ontological resources; and (C4) a method for reusing non-ontological

1http://ontologydesignpatterns.org/wiki/Submissions:ReengineeringODPs

56

ontologydesignpatterns.org
http://ontologydesignpatterns.org/wiki/Submissions:ReengineeringODPs

3.3. ASSUMPTIONS

resources for building ontologies. Then, Chapter 6 presents (C5) our model for re-
engineering non-ontological resources and (C6) a method for re-engineering non-
ontological resources when building ontologies. Then, Chapters 7, 8, and 9 present
the patterns for re-engineering classification schemes, thesauri, and lexica respec-
tively (C7, C8, and C9). These contributions are the result of establishing which
semantic additions (enrichments) have to be made after an initial transformation.
Finally, Chapter 10 describes the technological support we provide for the model
and method proposed, including the implementation of a software library, NOR2O,
that carries out the transformation process suggested by the patterns (C10).

3.3 Assumptions

The work described in this thesis is based on a set of assumptions described next.

A1. Some claims valid in software engineering and software re-engineering are
also valid in ontology engineering.

A2. The Ontology Specification Activity was carried out previously, i.e. we started
from a correctly created Ontology Requirements Specification Document (OR-
SD).

A3. The non-ontological resources to be reused and transformed are freely avail-
able and with no restriction of use.

A4. The non-ontological resources to be transformed are well designed and im-
plemented.

A5. The quality of the ontologies generated can be measured as the similarity
value of the ontologies generated against a gold standard ontology. This gold
standard is created by human domain experts.

3.4 Hypotheses

Once the assumptions have been identified, the hypotheses of our work are de-
scribed. These hypotheses cover the main features of the solutions proposed.

H1. The reuse and re-engineering of non-ontological resources, which have reached
some degree of consensus in the community, will allow the development of
ontologies in an easier and faster way.

H2. It is possible to define a unified method for transforming non-ontological re-
sources into ontologies independently (1) of the type, data model or imple-
mentation of the resource, and (2) of the target ontology to be generated,
i.e., ontology schema (TBox), ontology (TBox+ABox), or ontology instances
(ABox).

57

CHAPTER 3. OBJECTIVES AND CONTRIBUTIONS

H3. The method for re-engineering non-ontological resources is extensible and
adaptable to other types of resources. It can be applied to any kind of non-
ontological resource independently of its type, data model or implementation.

H4. It is possible to create re-engineering patterns that allow generating ontologies
from available non-ontological resources, namely, classification schemes, the-
sauri, and lexica, in an uniform way, independently (1) of how they have been
implemented; (2) of the target ontology to be generated, i.e., ontology schema
(TBox), ontology (TBox+ABox), or ontology instances (ABox); (3) of the
domain of the resources, that is, the patterns can be used to build ontologies
in different domains.

H5. The re-engineering patterns proposed can be implemented in a software li-
brary that facilitates the work of ontology engineers when developing ontolo-
gies.

3.5 Restrictions

Finally, there is a set of restrictions that defines the limits of our contribution and
establishes future research objectives. These restrictions are the following:

R1. The categorization of non-ontological resources covers semi-structured re-
sources, but it does not cover unstructured resources, e.g., free text.

R2. NoRMV covers the description of the non-ontological resources according to
the proposed categorization, but this thesis only includes the identified types,
data models and implementations.

R3. The method for reusing non-ontological resources considers only semi-structured
resources, but does not cover unstructured resources, e.g., free text.

R4. The method for re-engineering non-ontological resources covers the trans-
formation of the whole resource, but does not cover the transformation of
excerpts of the resource.

R5. The method for re-engineering non-ontological resources covers the trans-
formation of one resource per time, but does not consider the integration of
several resources simultaneously or one after the other.

R6. The patterns for re-engineering non-ontological resources do not generate on-
tologies with disjoint knowledge.

R7. The software library supports the following non-ontological resource imple-
mentations: database, XML, spreadsheets and flat files.

R8. The software library generates ontologies implemented in OWL Lite, and on-
tology instances in RDF.

58

3.5. RESTRICTIONS

R9. The discovery of the semantics of relations among the non-ontological re-
source terms occurs only in the English language.

R10. The whole set of techniques, with the exception of the discovery of relations,
is independent of the language.

R11. The evaluation of our work is restricted to the use of the results in real cases
providing specific feedback.

Table 3.1 summarizes the mapping between the objectives identified in Section
3.1 and the specific contributions. The table also summarizes for each contribution,
the associated assumptions (c.f. Section 3.3), hypotheses (c.f. Section 3.4) and
restrictions (c.f. Section 3.5) of the thesis.

59

CHAPTER 3. OBJECTIVES AND CONTRIBUTIONS

Table
3.1:M

apping
betw

een
objectives

and
contributions

w
ith

associated
assum

ptions,hypotheses
and

restrictions

O
bjective

C
ontribution

([A
ssum

ptions],[H
ypotheses],[R

estrictions])
O

1.M
ethodologicalaspects

related
to

C
1.D

efinition
ofnon-ontologicalresources.

([A
3,A

4],[],[R
1])

the
reuse

ofnon-ontologicalresources
for

building
ontologies.

C
2.

A
three

level
categorization

of
non-

ontologicalresources.
([A

3,A
4],[],[R

1])

C
3.N

oR
M

V,a
m

etadata
vocabulary

fornon-
ontologicalresources.

([A
3],[H

1],[R
1,R

2])

C
4.

M
ethod

for
reusing

non-ontologicalre-
sources

w
hen

building
ontologies.

([A
2,A

3,A
4],[H

1],[R
3,R

11])

O
2.M

ethodologicalaspects
related

to
C

5.R
e-engineering

m
odelfornon-ontologi-

([A
3,A

4],[H
3,H

4],[])
the

re-engineering
ofnon-ontologicalre-

calresources.
sources

forbuilding
ontologies.

C
6.M

ethod
forre-engineering

non-ontolo-
([A

1,A
3,A

4],[H
1,H

2,H
3],[R

4,R
5,R

11])
gicalresources

w
hen

building
ontologies.

O
3.

Set
of

patterns
for

re-engineering
non-ontologicalresourcesinto

ontologies.
C

7.Setofpatterns
forre-engineering

classi-
fication

schem
es

into
ontologies.

([A
1,A

3,A
4],[H

4],[R
6,R

9,R
10,R

11])

C
8.

Set
of

patterns
for

re-engineering
the-

sauriinto
ontologies.

([A
1,A

3,A
4],[H

4],[R
6,R

9,R
10,R

11])

C
9.

Setof
patterns

for
re-engineering

lexica
into

ontologies.
([A

1,A
3,A

4],[H
4],[R

6,R
9,R

10,R
11])

O
4.

Softw
are

library
thatim

plem
ents

the
suggestions

m
ade

by
the

re-engineering
patterns.

C
10.

A
softw

are
library,

N
O

R
2 O

,
that

im
-

plem
entsthe

transform
ationsm

ade
by

the
re-

engineering
patterns.

([A
2,A

4],[H
5],[R

7,R
9,R

11])

60

Chapter 4

RESEARCH METHODOLOGY

This chapter presents the research methodology we have used when designing the
method for reusing and re-engineering non-ontological resources into ontologies,
as well as the main requirements that guide its development.

Since the work presented in this thesis is a subset of the NeOn Methodology
[SF10], we follow the same research methodology (see Chapter 4 [SF10]) used for
the creation of such methodology, which we have tried to specialize in our method.

4.1 General Framework for Describing the Method

For designing the method we have followed the “divide and conquer” strategy, that
is, the general problem to be solved is decomposed into different subproblems.
Then to solve each subproblem different strategies and alternatives are provided.
Finally, to obtain the solution to the general problem, i.e., speeding up the ontology
development process by reusing and re-engineering as much as possible available
non-ontological resources, the solutions to the different subproblems are combined.

The subproblems identified are (1) the selection of the most appropriate non-
ontological resources for building ontologies; (2) the transformation of the non-
ontological resources selected into ontologies; (3) the techniques used for such
transformation; and (4) the technological support for the method.

We introduce prescriptive methodological guidelines for reusing non-ontological
resources when building ontologies, as described in Chapter 5, as a solution to
subproblem (1). We provide methodological guidelines for re-engineering non-
ontological resources into ontologies, as described in Chapter 6, as a solution to
subproblem (2). We present a set of Patterns for Re-engineering Non-Ontological
Resources in Chapters 7, 8, and 9, as solution to subproblem (3). We also present a
software library that implements the transformation process suggested by the pat-
terns, and a pattern library as solution to subproblem (4). The pattern library is
available at the ODP portal1,

1http://ontologydesignpatterns.org

61

http://ontologydesignpatterns.org

CHAPTER 4. RESEARCH METHODOLOGY

In order to obtain the methodological guidelines for reusing non-ontological
resources, we were grounded in the following approaches, as presented graphically
in Figure 4.1.

• Existing categorization of resources. In this case, we analysed from [MS01,
SAd+07, GPS98, Hod00] different ad-hoc categorization of resources.

• Previous practices and experiences. Here, we used our previous experi-
ences in the development of ontologies within several European and National
funded projects, such as the REIMDOC Project2 (FIT340100-2004-022),
and the Knowledge Web Project3 (FP6-507482). We made a retrospective
analysis of the processes and activities performed within these projects to
get a preliminary set of informal steps, which were refined, improved and
completed to provide full methodological guidelines for each process, activ-
ity, and task.

• Available ad-hoc methods. In this case, we used the ad-hoc methods [MPBS06,
BA05, BHM+05] that provide guidelines for reusing existing resources when
building ontologies.

Figure 4.1: Inputs considered when developing the method for reusing non-
ontological resources

To obtain the methodological guidelines for re-engineering non-ontological
resources, we were grounded in the following approaches, as presented graphically
in Figure 4.2.

• Available ad-hoc methods. In this case, we used the ad-hoc methods, de-
scribed in Section 2.1, that provide guidelines for re-engineering resources.
Some of the most representative are Hepp et al. [HdB07], van Assem et al.
[vAGS06], Gangemi et al. [GNV03, GGMO03], van Assem et al. [vAMMS06],
and Soergel et al. [SLL+04]. We performed an analysis of the guidelines
they propose to extract and improve a preliminary set of guidelines.

2http://reimdoc.atosorigin.es/
3http://knowledgeweb.semanticweb.org/

62

http://reimdoc.atosorigin.es/
http://knowledgeweb.semanticweb.org/

4.1. GENERAL FRAMEWORK FOR DESCRIBING THE METHOD

• Previous practices and experiences. Here, we used our previous experi-
ences in the development of ontologies within several European and Na-
tional funded projects, such as, the REIMDOC Project4 (FIT340100-2004-
022), the Knowledge Web Project5 (FP6-507482), and the NeOn Project6

(FP6-027595). We made a retrospective analysis of the processes or activi-
ties performed within such projects to get a preliminary set of informal steps,
which were refined, improved and completed to provide full methodological
guidelines for each process, activity, and task.

• Available Software Re-engineering practices. In this case, we based our
work on the re-engineering model proposed by Byrne [Byr92].

Figure 4.2: Inputs considered when developing the method that allows re-
engineering non-ontological resources

To obtain the set of patterns required for re-engineering non-ontological
resources, we were grounded in the following best practices and patterns, as pre-
sented graphically in Figure 4.3.

• Previous practices and experiences. Here we used the practices we describe
in Section 2.1. Additionally, within the SEEMP project7 (FP6-027347) we
built some ad-hoc wrappers for transforming existing non-ontological re-
sources into ontologies. Then, we transformed ten non-ontological resources
and identified some common data structures for storing and organizing the
resources. These common data structures, also known as data models [Car02],
are abstract models that describe how data is represented and accessed. For
every data model we can define a process with a well-defined sequence of
activities to extract the NORs terms and then map them to the conceptual
model of an ontology. Each process can be expressed as a pattern for re-
engineering NORs.

4http://reimdoc.atosorigin.es/
5http://knowledgeweb.semanticweb.org/
6http://www.neon-project.org
7http://seemp.org

63

http://reimdoc.atosorigin.es/
http://knowledgeweb.semanticweb.org/
http://www.neon-project.org
http://seemp.org

CHAPTER 4. RESEARCH METHODOLOGY

• Previous practices in the Ontology Engineering community. As we men-
tioned in Section 2.2.3, the ontology community is adopting the use of de-
sign patterns for modelling ontologies. We extend the current patterns in the
Ontology Engineering field with patterns for re-engineering non-ontological
resources into ontologies. These re-engineering patterns make use of the
logical and content patterns, from the ODP portal, for generating the ontolo-
gies; therefore, the re-engineering patterns follow the best practices of the
community.

• Available Software Re-engineering patterns. In the software engineering
community, it is well known that the reuse of resources helps to reduce costs
and to disseminate good practices. This also holds for ontology engineering,
where the reuse of existing knowledge can be done either by directly reusing
resources as they are, or after performing a reengineering process. The un-
derlying principle is that reuse allows saving time and money, and promotes
the application of good practices. Therefore, for consolidating our patterns
we have applied the concept of software re-engineering pattern.

Figure 4.3: Inputs considered to obtain the patterns for re-engineering non-
ontological resources

4.2 Description of the Processes

As mentioned before, our method consists of a set of methodological guidelines for
the processes, activities and tasks involved in Scenario 2 of the NeOn Methodology
[SF10, GPSF09]. For each process included in this method we provide a filling
card [SF10, GPSF09] describing

• Definition, which is based on the NeOn Glossary of Activities [SF10, SFGP08].

• Goal, which explains the main objective intended to achieve by the process
or the activity.

• Input, which includes the resources needed to carry out the process or the
activity.

64

4.3. REQUIREMENTS FOR THE PROPOSED METHOD

• Output, which includes the results obtained after carrying out the process or
the activity.

• Who, which identifies the people or teams involved in the process or the
activity.

• When, which explains in which moment the process or the activity should
be carried out.

• How, which includes details for carrying out the process or the activity in a
prescriptive manner. A graphical workflow on how the process or the activity
should be carried out is also included, with the inputs, outputs and actors
involved.

4.3 Requirements for the Proposed Method

The method presented in this thesis must fulfil a set of requirements that can be
grouped into two main types: generic and specific requirements. The generic re-
quirements are those that any method must fulfil, while the specific requirements
of a given method are determined by factors such as the domain where the method
is applied as well as cases, situations or problems it deals with. The following sec-
tions present the requirements we have considered for the design of our method.
The requirements are based on those presented by Paradela [PG01]. It is worth
mentioning that the requirements identified by Paradela are specific to methodolo-
gies, and that Suarez Figueroa has already demonstrated those requirements for
the NeOn Methodology [SF10]. In this thesis we refine the requirements for our
particular method.

4.3.1 Generic Requirements

• Generality. A method should be general enough and not be driven to solve
ad-hoc cases or problems. Thus our method tackles the development of on-
tologies by reusing and re-engineering non-ontological resources.

• Completeness. A method must consider all the cases presented and propose
solutions to all of them. In this sense, the method here proposed consid-
ers classification schemes, thesauri and lexica; and presents methodological
guidelines and patterns for these non-ontological resources.

• Effectiveness. A method should solve adequately the cases proposed, inde-
pendently of the person using such a method. Therefore, it should be more
prescriptive than descriptive. Thus our goal is to describe the method in
a simple way, and any person (a software developer or an ontology practi-
tioner) should be able to understand and follow it without any special effort.

65

CHAPTER 4. RESEARCH METHODOLOGY

• Efficiency. A method must be efficient, that is, be able to achieve its objec-
tive. This means that the method should allow the construction of ontologies
with fewer resources (time, money, etc.) and better quality. We will describe
and carry out the necessary experiments using the method for validating this
requirement.

• Consistency. A method must produce the same set of results for the same
problem, independently of who employs it. Thus, our method identifies
which the outputs of the different processes, activities and tasks should be,
or who the different users involved in the development of ontologies are.
We will validate that the same set of outputs is obtained after applying the
method in several cases.

• Finiteness. The number of the elements that compose a method and the
number of activities must be finite, i.e., consuming a reasonable period of
time. Our method consists of a finite set of processes, activities and tasks.
The number of elements used to describe them is also finite.

• Discernment. A method must be composed of a small set of structural, func-
tional and representational components. Thus, the method here proposed
includes

– A categorization of non-ontological resources (structural component).
– Processes, activities, tasks, inputs, outputs and restrictions (funcional

components).
– A set of patterns for re-engineering non-ontological resources into on-

tologies (representational components).

• Environment. Methods can be classified into scientific and technological.
In scientific methods ideas are validated, whereas in technological meth-
ods artefacts are built. In our case, since the main result after applying the
method is a technical product, i.e., an ontology, our method can be consid-
ered as a technological one.

• Transparency. A method must be like a white box, so that we can know
in every moment the active processes or activities being performed, who
is performing them, etc. The method here presented explicitly defines the
actors, inputs, and outputs of each process, as well as activities and tasks.

4.3.2 Specific Requirements

• The method should allow performing the transformation approaches identi-
fied in Section 2.1.1.3, namely, TBox, ABox and population.

• The method should cover any kind of non-ontological resource. Thus, we
can apply the method to other types of resources not contemplated in this
thesis.

66

4.3. REQUIREMENTS FOR THE PROPOSED METHOD

• The method should be automatable, because the size of the non-ontological
resources can be huge. It should have technological support that permits
the automatization of the activities and tasks involved, thus saving time and
effort when dealing with very large non-ontological resources.

67

CHAPTER 4. RESEARCH METHODOLOGY

68

Chapter 5

REUSING
NON-ONTOLOGICAL
RESOURCES

As stated in the introduction of this thesis, our goal is to speed up the ontol-
ogy development process by reusing available non-ontological resources that have
been agreed upon by a particular community. In this sense, we have to iden-
tify first which non-ontological resources we are going to work with. However,
as we discussed in Section 1.1.2 an accepted and agreed upon typology of non-
ontological resources does not exist yet. Therefore, in this section we start by
describing our categorization of non-ontological resources. Then, we present our
Non-ontological Resource Metadata Vocabulary (NoRMV) for depicting the avail-
able non-ontological resources. This vocabulary will be included later on in the
ontology generated as provenance information. Finally, we set forth the method-
ological guidelines devised for reusing non-ontological resources.

5.1 Non-ontological Resources

Non-ontological Resources1 (NORs) are knowledge resources whose semantics
has not yet been formalized by an ontology. There is a considerable number of
NORs that embody knowledge about some particular domains and that represent
some degree of consensus. These resources are present in the form of textual cor-
pora, classification scheme, thesaurus, lexicon, etc. NORs have related semantics
that allows interpreting the knowledge they contain. Regardless of whether the
semantics is explicit or not, the main problem is that the semantics of NORs is
not always formalized, and this lack of formalization prevents them from being
used as ontologies. Using non-ontological resources that have been agreed on for
building ontologies can have several benefits, e.g. interoperability in terms of the

1Along this thesis we use either NOR or Non-ontological resource without distinction.

69

CHAPTER 5. REUSING NON-ONTOLOGICAL RESOURCES

vocabulary used, information browse/search, decrease of the knowledge acquisi-
tion bottleneck, and reuse, among others.

As already stated in Section 1.1.1, an accepted and agreed upon typology of
NORs does not exist. Therefore, one of the contributions of this thesis is the cate-
gorization of NORs, according to the following three features presented in Figures
5.1: (1) type of NOR, which refers to the type of inner organization of the informa-
tion; (2) data model, that is, the design data model used to represent the knowledge
encoded by the resource; and (3) resource implementation.

Figure 5.1: Non-ontological resource categorization

According to the type of NORs we classify them into

• Glossaries: A glossary is an alphabetical list of terms or words found in or
related to a specific topic or text. It may or may not include explanations,
and its vocabulary may be monolingual, bilingual or multilingual [WB97].
An example of glossary is the FAO Fisheries Glossary2.

• Lexicons: In a restricted sense, a computational lexicon is considered as a
list of words or lexemes hierarchically organized and normally accompanied
by meaning and linguistic behaviour information [Hir04]. A fine example is
WordNet3, the best known computational lexicon of English.

• Classification schemes: A classification scheme is the descriptive informa-
tion of an arrangement or division of objects into groups according to the
characteristics that the objects have in common [ISO04]. A good example is

2http://www.fao.org/fi/glossary/default.asp
3http://wordnet.princeton.edu/

70

http://www.fao.org/fi/glossary/default.asp
http://wordnet.princeton.edu/

5.1. NON-ONTOLOGICAL RESOURCES

the Fishery International Standard Statistical Classification of Aquatic Ani-
mals and Plants (ISSCAAP)4.

• Thesauri: Thesauri are controlled vocabularies of terms in a particular do-
main with hierarchical, associative, and equivalence relations between terms.
Thesauri are mainly used for indexing and retrieving articles in large databases
[ISO86]. An example of thesaurus is the AGROVOC5 thesaurus.

• Folksonomies: Folksonomies are Web 2.0 systems that users employ to up-
load and annotate their content effortlessly and without requiring any expert
knowledge6. This simplicity has made folksonomies widely successful, and
this success, in its turn, has resulted in a massive amount of user-generated
and user-annotated web content. The main advantage of folksonomies is the
implicit knowledge they contain. When users tag resources with one or more
tags, they assign these resources the meaning of the tag. Furthermore, the co-
occurrence of tags implies a semantic correlation among them. An example
of how folksonomies are used can be seen in the del.icio.us7 website.

The knowledge encoded by the resource can be represented in different ways,
known as data models. A data model [Car02] is an abstract model that describes
how data is represented and accessed. There are three types: (1) the conceptual
data model, which presents the primary entities and relationships of concern to a
specific domain; (2) the logical data model, which depicts the logical entity types,
the data attributes describing those entities, and the relationships between entities;
and (3) the physical data model, which is related to a specific implementation of
the resource. In this thesis we will use the term data model when referring to the
logical data model. With regard to the data model, there are different ways of
representing the knowledge encoded by the resource.

Next we present several data models for classification schemes, shown in Fig-
ure 5.2. These data models will be described in detail in Chapter 7.

• Path Enumeration [Bra05]: A path enumeration model (see Figure 5.2-b)) is
a recursive structure for hierarchy representations and is defined as a model
that stores, for each node, the path (as a string) from the root to the node.
This string is the concatenation of the node code in the path from the root to
the node.

• Adjacency List [Bra05]: An adjacency list model is a recursive structure for
hierarchy representations comprising a list of nodes with a linking column
to their parent nodes. Figure 5.2-c) shows this model.

4http://www.fao.org/figis/servlet/RefServlet
5http://www.fao.org/agrovoc/
6http://www.vanderwal.net/folksonomy.html
7http://del.icio.us/

71

http://www.fao.org/figis/servlet/RefServlet
http://www.fao.org/agrovoc/
http://www.vanderwal.net/folksonomy.html
http://del.icio.us/

CHAPTER 5. REUSING NON-ONTOLOGICAL RESOURCES

• Snowflake [MZ06]: An snowflake model is a normalized structure for hierar-
chy representations. For each hierarchy level a table is created. In this model
each hierarchy node has a column linked to its parent node. Figure 5.2-d)
shows this model.

• Flattened [MZ06]: A flattened model is a denormalized structure for hierar-
chy representations. The hierarchy is represented by a table where each hi-
erarchy level is stored in a different column. Figure 5.2-e) shows this model.

Next we present two data models for thesauri. These data models are de-
scribed in detail in Chapter 8.

• Record-based model [Soe95]: A record-based model is a denormalized struc-
ture that for every term it uses a record with information about the term, such
as synonyms, broader, narrower and related terms. This model looks like the
flattened model for classification scheme.

• Relation-based model [Soe95]: A relation-based model leads to a more el-
egant and efficient structure. Information is stored in individual pieces that
can be arranged in different ways. Relationship types are not defined as
fields in a record, they are simply data values in a relationship record, thus
new relationship types can be introduced with ease. There are three entities:
(1) a term entity, which contains the overall set of terms; (2) a term-term re-
lationship entity, in which each record contains two different term codes and
the relationship between them; and (3) a relationship source entity, which
contains the overall resource relationships.

Next we present a data model for lexica. These data models are described in
detail in Chapter 9.

• Record-based model [Soe95]: This model can also be used for lexicons,
because the use of a record for every lexical resource and information about
that lexical resource is possible.

• Relation-based model [Soe95]: It can also be used for lexicons, because the
storage of information about the lexicon in individual pieces is possible.

According to the implementation we classify NORs into

• Databases : A database is a structured collection of records or data stored in
a computer system.

• Spreadsheets : An electronic spreadsheet consists of a matrix of cells where
a user can enter formulas and values.

• XML file : eXtensible Markup Language is a simple, open, and flexible for-
mat used to exchange a wide variety of data on and off the Web. XML is
a tree structure of nodes and nested nodes of information where the user
defines the names of the nodes.

72

5.1. NON-ONTOLOGICAL RESOURCES

• Flat file : A flat file is a file usually read or written sequentially. In general,
a flat file is a file containing records with no structured inter-relationships.

In summary, Figure 5.1 shows how a given type of NOR can be modelled fol-
lowing one or more data models, each of which implemented in different ways
at the implementation layer. Figure 5.1 shows, as an example, a classification
scheme modelled following a path enumeration model. In this case, the classifica-
tion scheme is implemented in a database and in an XML file.

To exemplify the non-ontological categorization presented with a real life clas-
sification scheme, we use an excerpt from the FAO water area classification pre-
sented in Figure 5.2-a). This classification schema is modelled following a path
enumeration model (Figure 5.2-b)), an adjacency list model (Figure 5.2-c)), a
snow-flake model (Figure 5.2-d)), and a flattened model (Figure 5.2-e)). Fig-
ure 5.2-f) presents an XML implementation of the adjacency list model and Fig-
ure 5.2-g) presents a spreadsheet implementation of the path enumeration model
of the same classification scheme.

It is worth mentioning that this first categorization of NORs is neither exhaus-
tive nor complete. Currently, we are enriching it by adding examples taken from
RosettaNet8 and Electronic Data Interchange, EDI9.

Moreover, we can map available non-ontological resources to our categoriza-
tion. Next we present a brief list of them.
• The United Nations Standard Products and Services Code, UNSPSC10, is a clas-

sification scheme, modelled with the path enumeration data model and stored in
a relational database.
• WordNet11, a lexical database for English, is a lexicon, modelled with the relation-

based data model and stored in several implementations; a particular implemen-
tation of it is a relational database.
• UMLS12is a very large, multi-purpose, multilingual thesaurus that contains in-

formation about biomedical and health related concepts. It is modelled with the
record-based model and stored in a flat file.
• MeSh13, the Medical Subject Headings, is a classification scheme, modelled

with the path enumeration data model.
• The Art and Architecture Thesaurus14 is modelled with the record-based data

model and implemented in XML.
• The ISCO-08 International Standard Classification of Occupations15 is a classifi-

cation scheme modelled with the path enumeration data model and implemented
in a database and spreadsheet.
8http://www.rosettanet.org/
9http://www.edibasics.co.uk/

10http://www.unspsc.org/
11http://wordnet.princeton.edu/
12http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
13http://www.nlm.nih.gov/mesh/
14http://www.getty.edu/research/tools/vocabularies/aat/index.html
15http://www.ilo.org/public/english/bureau/stat/isco/index.htm

73

http://www.rosettanet.org/
http://www.edibasics.co.uk/
http://www.unspsc.org/
http://wordnet.princeton.edu/
http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
http://www.nlm.nih.gov/mesh/
http://www.getty.edu/research/tools/vocabularies/aat/index.html
http://www.ilo.org/public/english/bureau/stat/isco/index.htm

CHAPTER 5. REUSING NON-ONTOLOGICAL RESOURCES

a) Excerpt of the Water Area classification scheme.

b) Path Enumeration data model c) Adjacency List data model

d) Snowflake data model e) Flattened data model

f) XML implementation for the g) Spreadsheet implementation for the

Adjacency List data model. Path Enumeration data model.

Figure 5.2: Example of classification scheme

74

5.2. NON-ONTOLOGICAL RESOURCE METADATA VOCABULARY

• The European Training Thesaurus, ETT16, is modelled with the record-based
datamodel and implemented in XML.

• The Classification of Fields of Education and Training, FOET17, is a classifi-
cation scheme modelled with path enumeration data model and implemented in
XML and spreadsheet.

• The Aquatic Sciences and Fisheries Abstracts thesaurus, ASFA18, is modelled
with the record-based data model and implemented in XML.

• The AGROVOC thesaurus19 is modelled with the relation-based data model and
implemented in a database.

• The Fisheries Global Information System, FIGIS20, is modelled with the adja-
cency list data model and implemented in a database.

• The Classification of Italian Education Titles published by the National Institute
of Statistics, ISTAT21, is a classification scheme modelled with the flattened data
model and implemented in a spreadsheet.

5.2 Non-ontological Resource Metadata Vocabulary

As stated before there is a large amount of NORs that embody knowledge on some
particular domains and that represent some degree of consensus. Currently, most of
these NORs are in its pure form without any additional information, e.g., domain
of interest or authorship information, like the one provided by Dublin Core22 for
text documents, or OMV23 for ontologies24. This burden makes it difficult for
academia and industry to identify, find and reuse NORs effectively and efficiently.
As a consequence, the reuse of NORs for building ontologies is nowadays a hard
task, if not impossible.

We argue that metadata, when meaning machine processable information for
the Web, helps to improve NORs accessibility and reusability. Besides, it can
provide other useful resource information to support maintenance. Thus, we claim
here that metadata not only helps when applied (or, attached) to documents or
ontologies, but also when applied to NORs themselves. There is a great demand
in the field for a NOR metadata standard, a standard that would permit, amongst
other things, the access and reuse of NORs.

In this thesis we propose a metadata standard reflecting the most relevant prop-
erties of NORs for supporting their reuse, which is the so called Non-Ontological

16http://libserver.cedefop.europa.eu/ett/en/
17http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=

DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
18http://www.fao.org/fishery/asfa/8/en
19http://aims.fao.org/website/AGROVOC-Thesaurus/sub
20http://www.fao.org/figis/servlet/RefServlet
21http://en.istat.it/
22http://dublincore.org/
23http://omv2.sourceforge.net/
24http://dublincore.org/

75

http://libserver.cedefop.europa.eu/ett/en/
http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GEN_DESC_VIEW_NOHDR&StrNom=EDU_TRAINI&StrLanguageCode=EN
http://www.fao.org/fishery/asfa/8/en
http://aims.fao.org/website/AGROVOC-Thesaurus/sub
http://www.fao.org/figis/servlet/RefServlet
http://en.istat.it/
http://dublincore.org/
http://omv2.sourceforge.net/
http://dublincore.org/

CHAPTER 5. REUSING NON-ONTOLOGICAL RESOURCES

Resource Metadata Vocabulary (NoRMV). This vocabulary allows (1) describing
the non-ontological resources available, and (2) including in the ontology gener-
ated the provenance information by extending the Ontology Metadata Vocabulary
(OMV) [HPS05].

5.2.1 NoRMV Core Metadata Entities

The main classes and properties of the NoRMV are illustrated in Figure 5.325

omv:Ontology

URL
name
acronym
description
creationDate
version

normv:NOR

normv:Domain

normv:Implementation

hasDomain

builtByReusing

normv:ClassificationScheme normv:Thesaurus normv:Lexicon

hasImplementation

normv:Party

firstName
lastName
email

normv:Person
name
acronym

normv:Organisation

hasCreator

normv:PathEnumeration normv:AdjacencyList

normv:Snowflakenormv:Flattened

normv:RecordBased normv:RelationBased

hasDatamodel

hasDatamodel

hasDatamodelhasDatamodel hasDatamodel

hasDatamodelhasDatamodel

normv:XML

normv:Spreadsheet

normv:Database

normv:FlatFile

Figure 5.3: NoRMV: A metadata vocabulary for non-ontological resources

Besides the main NOR class, the metadata model contains elements describ-
ing various aspects related to the creation, management and usage of a NOR. We
briefly discuss these in the following section. The NOR class includes as datatype
properties, the URL, name, acronym, description, creation date and version of the
non-ontological resource. As already described in section 5.1, we classify NOR into
Classification Scheme, Thesaurus, and Lexicon, among others. Re-
garding the datamodel, a ClassificationScheme may have a Flattened,
a PathEnumeration, an AdjacencyList, or a Snowflake data model. On
the other hand, a Thesaurus may have RecordBased or RelationBased
data model. And the same occurs to a Lexicon, that is, it may have Record-
Based or RelationBased data model. Regarding the Implementation,
it may be classified into XML, Spreadsheet, Database, and FlatFile. In
addition, a NOR has a Domain, and a creator, Person(s) or Organization(s).

25Please note that not all classes and properties are included. The ontology is available for down-
loading at http://mccarthy.dia.fi.upm.es/normv

76

http://mccarthy.dia.fi.upm.es/normv

5.3. METHOD FOR REUSING NON-ONTOLOGICAL RESOURCES

We group these two classes (Person and Organization) under the generic
class Party by a subClassOf relation. Finally, in order to include the prove-
nance information in the ontology generated, we relate the Ontology class, taken
from OMV, to the NOR class by means of the builtByReusing relation.

Next, as an illustrative example we present an excerpt of the NoRMV metadata
from the Water Area classification scheme (see Figure 5.2), modelled with the Path
Enumeration data model, and implemented in a database.
<n o r m v : C l a s s i f i c a t i o n S c h e m e r d f : a b o u t =” # WaterAreas ”>

<normv:name>Water Areas C l a s s i f i c a t i o n Scheme< / normv:name>
<normv:URL>h t t p : / /www. f a o . o rg / f i g i s / s e r v l e t / R e f S e r v l e t< / normv:URL>
<normv:acronym>FAO WAC< / normv:acronym>
<normv:hasDatamode l r d f : r e s o u r c e =”&normv ; P a t h E n u m e r a t i o n ” />
<n o r m v : h a s I m p l e m e n t a t i o n r d f : r e s o u r c e =”&normv ; D a t a b a s e ” />
<n o r m v : h a s C r e a t o r r d f : r e s o u r c e =” #FAO” />

< / n o r m v : C l a s s i f i c a t i o n S c h e m e>
<n o r m v : O r g a n i s a t i o n r d f : a b o u t =” #FAO”>

<normv:name>
Food and A g r i c u l t u r e O r g a n i z a t i o n o f t h e Un i t ed N a t i o n s

< / normv:name>
<normv:acronym>FAO< / acronym>

< / n o r m v : O r g a n i s a t i o n>

5.3 Method for Reusing Non-ontological Resources

Once we have defined and categorized the non-ontological resources to be dealt
with, we present the methodological guidelines for reusing them. The goal of
the Non-Ontological Resource Reuse process is to choose the most suitable non-
ontological resource for building ontologies. Domain experts, software develop-
ers and ontology practitioners carry out this process by taking as input the on-
tology requirements specification document (ORSD)26 to find the most suitable
non-ontological resources for the development of ontologies. The output of the
process is a set of non-ontological resources that, to some extent, covers the ex-
pected domain. Figure 5.4 shows the filling card used in the process of reusing
non-ontological resources, which includes the definition, goal, input, output, per-
former of the process and period of execution.

This process includes the activities and tasks presented in Figure 5.5 and is
explained next.

5.3.1 Activity 1. Search Non-ontological Resources

The goal of the activity is to search non-ontological resources from highly reli-
able Web sites, domain-related sites and resources within organizations. Domain
experts, software developers and ontology practitioners carry out this activity tak-
ing as input the ORSD. They use the terms that have the highest frequency in the
ORSD to search for the candidate non-ontological resources that cover the desired

26This document is the outcome of the Ontology Specification Activity [SFGPVT09]

77

CHAPTER 5. REUSING NON-ONTOLOGICAL RESOURCES

Figure 5.4: Non-ontological resource reuse filling card

terminology. The activity output is a set of candidate non-ontological resources
that might present any of the identified typologies described in Section 5.1.

5.3.2 Activity 2. Assess the Set of Candidate Non-ontological Re-
sources.

The goal of the activity is to assess the set of candidate non-ontological resources.
Domain experts, software developers and ontology practitioners carry out this ac-
tivity, taking as input the set of candidate non-ontological resources. We propose
to consider the following measurable criteria: (1) coverage, (2) precision plus two
subjective criteria (3) quality27 and (4) consensus. These criteria are inspired on
the work proposed in [GCCL06].

5.3.2.1 Task 2.1 Extract lexical entries

The goal of this task is to extract the lexical entries of the non-ontological re-
sources. The task is carried out by software developers and ontology practitioners
by taking as input the non-ontological resources for extracting their lexical entries
with terminology extraction tools.

27A deep analysis of the quality of the resource is out of the scope of this thesis

78

5.3. METHOD FOR REUSING NON-ONTOLOGICAL RESOURCES

Figure 5.5: Activities for the non-ontological resource reuse process

5.3.2.2 Task 2.2 Calculate precision

The goal of this task is to calculate the precision of the candidate non-ontological
resources. Precision is a measure widely used in information retrieval [BYRN99]
and is defined as the proportion of retrieved material that is actually relevant. This
task is carried out by software developers and ontology practitioners by taking as
input the lexical entries extracted for the non-ontological resources and the termi-
nology gathered in the ORSD. To adapt this precision measure into our context we
need to define

• NORLexicalEntries as the set of lexical entries extracted from the non-ontological
resource.

• ORSDTerminology as the set of identified terms included in the ORSD.

Now we can define the precision, in our context, as the proportion of the lexi-
cal entries of the non-ontological resource that are included in the identified terms

79

CHAPTER 5. REUSING NON-ONTOLOGICAL RESOURCES

of the ORSD over the lexical entries of the non-ontological resource. This is ex-
pressed as follows:

Precision =
|{NORLexicalEntries} ∩ {ORSDTerminology}|

|{NORLexicalEntries}|

5.3.2.3 Task 2.3 Calculate coverage

The goal of this task is to calculate the coverage of the non-ontological resources.
Coverage is based on the recall measure used in information retrieval [BYRN99].
Recall is defined as the proportion of relevant material actually retrieved in answer
to a search request. This task is carried out by software developers and ontology
practitioners by taking as input both the lexical entries extracted from the non-
ontological resources and the terminology gathered in the ORSD. To adapt this
measure into our context, we use the aforementioned definitions of NORLexica-
lEntries and ORSDTerminology. In this context, coverage is the proportion of the
identified terms of the ORSD that are included in the lexical entries of the non-
ontological resource over the identified terms of the ORSD. This is expressed as
follows:

Coverage =
|{NORLexicalEntries} ∩ {ORSDTerminology}|

|{ORSDTerminology}|

5.3.2.4 Task 2.4 Evaluate the consensus

The goal of this task is to evaluate the consensus of the non-ontological resources.
Consensus is a subjective and not quantifiable criterion. This task is carried out by
domain experts, taking as input the non-ontological resources for stating whether
the non-ontological resources contain terminology agreed upon by the community
or not. We propose a preliminary starting point for this evaluation. Domain experts
have to check whether the resource is coming from

• A standardization body or any entity whose primary activity is to develop,
coordinate, promulgate, revise, amend, reissue, or otherwise maintain stan-
dards. For example: the International Organization for Standardization (ISO),
the American National Standards Institue (ANSI), the World Wide Web Con-
sortium (W3C).

80

5.3. METHOD FOR REUSING NON-ONTOLOGICAL RESOURCES

• Large organizations across national governments, such as the Food and Agri-
culture Organization of the United Nations (FAO), the World Health Orga-
nization (WHO), the United Nations Educational, the Scientific and Cultural
Organization (UNESCO), the International Olympic Commitee (IOC).

• A large enough user community to make it profitable for developers to use it
as a means of general interoperability.

If the resource is coming from any of the aforementioned parties, then domain
experts may state that the resource has reached some degree of consensus.

5.3.2.5 Task 2.5 Evaluate the quality

The goal of this task is to evaluate the quality of the resource. We do not intend to
provide a deep analysis of the quality of the resource but to offer some preliminary
considerations about it. In this thesis, we propose to check the following quality
attributes:

• Good documentation of the resource.

• Lack of anomalies of the non-ontological resource, such redundancies or
inconsistencies.

• Reliability of the non-ontological resource. This means analysing whether
we can trust in the resource or not.

5.3.2.6 Task 2.6 Build the assessment table

The goal of this task is to create an assessment table of the non-ontological re-
sources. Software developers and ontology practitioners carry out this task, taking
as input the non-ontological resources with their respective values for precision,
coverage, consensus and quality criteria, for the construction of the assessment ta-
ble. This table is shown in Table 11.3. The first column shows the non-ontological
resources found. The precision column shows the precision value calculated for
each non-ontological resource. Then, the coverage column shows the coverage
value calculated for each non-ontological resource. Next, the consensus column
depicts the domain experts’ judgment about whether the non-ontological resource
has been agreed on by the community or not (Yes/No). Finally, the quality col-
umn illustrates the domain experts, software developers and ontology practition-
ers’ judgment about whether the resource has an acceptable level of quality or not
(Yes/No).

5.3.3 Activity 3. Select the Most Appropriate Non-ontological Re-
sources

The goal of this activity is to select the most appropriate non-ontological resources
to be transformed into an ontology. This activity is carried out by domain experts,

81

CHAPTER 5. REUSING NON-ONTOLOGICAL RESOURCES

Table 5.1: Assessment table for the NORs

NOR Precision Coverage Consensus Quality
NOR 1 NOR 1 Preci-

sion value
NOR 1 Coverage
value

(Yes/No) (Yes/No)

NOR 2 NOR 2 Preci-
sion value

NOR 2 Coverage
value

(Yes/No) (Yes/No)

NOR 3 NOR 3 Preci-
sion value

NOR 3 Coverage
value

(Yes/No) (Yes/No)

software developers and ontology practitioners, taking as input the non-ontological
resource assessment table. The selection is performed manually and we recom-
mend looking for resources with

• Consensus. This criterion is taken into account in the first place because, if
the resource to be reused contains terminology agreed upon by the commu-
nity, the effort and time spent in finding out the right labels for the ontology
terms will decrease considerably.

• Quality. This criterion is taken into account in the second place because, if
the resource to be reused has an acceptable level of quality, then the resultant
ontology should also have it.

• High value of coverage. This criterion is taken into account in the third place
because our third concern is to consider most of the ORSD terms identified.

• High value of precision. This criterion is taken into account in the fourth
place because our fourth concern is the proportion of non-ontological lexical
entries over the identified terms of the ORSD.

The activity output is a ranked list of non-ontological resources that, to some extent,
covers the expected domain. These resources will be ready for the re-engineering
process.

5.4 Summary

This chapter presents our solution to those aspects related to the reuse of non-
ontological resources for building ontologies. It addresses some of the limitations
identified in the state of art in this area.

First, it provides a formal definition of non-ontological resources and a cat-
egorization of them according to three dimensions: type of resource, data model,
and implementation. Second, it introduces the Non-ontological Resource Metadata
Vocabulary (NoRMV). NoRMV allows describing the non-ontological resources
available, which can be used later on for generating provenance information in the
ontology. Finally, it presents a method for reusing non-ontological resources for

82

5.4. SUMMARY

building ontologies. This method provides detailed guidelines for selecting the
most suitable non-ontological resources for ontology development.

The solutions presented in this chapter cover contributions C1, C2, C3 and C4,
which address objective O1 (see Chapter 3).

83

CHAPTER 5. REUSING NON-ONTOLOGICAL RESOURCES

84

Chapter 6

PATTERN BASED
RE-ENGINEERING METHOD

This chapter presents the method for re-engineering non-ontological resources into
ontologies, which is based on a model for re-engineering non-ontological resources.
First, it provides a description of this re-engineering model for NORs, and then it
introduces the notion of patterns for re-engineering NORs. Next, it presents a dis-
cussion about the hidden semantics in the relations of the NORs and the formal
definitions of the ontologies generated. Finally, it depicts the prescriptive method-
ological guidelines for re-engineering NORs into ontologies.

6.1 Re-engineering Model for Non-ontological Resources

This section describes our model for re-engineering non-ontological resources.
The model is based on the software re-engineering model presented in Section
2.2.1. It is worth mentioning that we consider non-ontological resources as soft-
ware resources because a software system consists of one or more programs, data
files, databases, and job control scripts.

The model for non-ontological resource re-engineering is depicted in Figure
6.1. The figure also shows the following activities: NOR reverse engineering,
NOR transformation, and ontology forward engineering. Next, we describe the
activities defined in the Glossary of Activities in Ontology Engineering [SFGP08]:

• NOR reverse engineering is defined as the activity of analysing a non-ontolo-
gical resource to identify its underlying components and creating a represen-
tation of the resource at higher levels of abstraction.

• NOR transformation is defined as the activity of generating an ontological
model at different levels of abstraction from the NOR.

• Ontology forward engineering refers to the activity of outputting a new im-
plementation of the ontology on the basis of the new conceptual model.

85

CHAPTER 6. PATTERN BASED RE-ENGINEERING METHOD

Figure 6.1: Re-engineering model for non-ontological resources

As mentioned before, we consider non-ontological resources as software re-
sources and, therefore, we use the software abstraction levels shown in Figure 6.1
to depict the reverse engineering of the non-ontological resource. Understanding
how a non-ontological resource is created is useful for also understanding how
non-ontological resource can be reverse engineered. The idea of levels of abstrac-
tion that underlies the development process also underlies the reverse engineering
process. This idea is used to model software development as a sequence of phases,
in which each phase corresponds to a particular level of abstraction.

In the left triangle of Figure 6.1 we can distinguish the four different abstraction
levels that define each activity in software development:

1. The conceptual abstraction level, which describes in general terms, the sys-
tem functional characteristics;

2. The requirements level, which is the specification of the problem being solved;

3. The design level, which is the specification of the solution;

4. The implementation level, which refers to the coding, testing and delivery of
the operational system.

As the level of abstraction decreases, the system description becomes more
detailed and thus the amount of information increases. Moreover, the higher the
abstraction level, the less information about a system to comprehend.

In the right triangle of Figure 6.1 we can distinguish the four different abstrac-
tion levels that define each activity in ontology engineering:

1. The specification level, which describes the collection of requirements that
the ontology should fulfil;

2. The conceptualization level, which information from the acquisition process
is organized into meaningful conceptual models;

86

6.2. REQUIREMENTS FOR THE TRANSFORMATION

3. The formalization level, which represents the transformation of the concep-
tual model into a formal or semi-computable model according to a knowl-
edge representation paradigm;

4. The implementation level, which refers to the generation of computable mod-
els according to the syntax of a formal representation language.

Finally, the model in Figure 6.1 suggests the path from the available non-
ontolo-gical resource to the target ontology. This transformation is guided by a set
of Patterns for Re-engineering Non-Ontological Resources (PR-NOR), and goes
from the non-ontological resource requirements/design level to the conceptualiza-
tion level of the ontology.

6.2 Requirements for the Transformation

In this section we describe the requirements identified for the transformation. The
requirements are listed according to the three transformation approaches identified
in Section 2.1.1 (see Figure 2.2).

• TBox transformation [CHPG09], which transforms the resource content into
an ontology schema. This transformation approach tries to enforce a formal
semantics to the re-engineered resources, even at the cost of changing their
structure. The requirements for this transformation are

– Full conversion, the resultant ontology has all the information that is
present in the original resource. In other words, all queries that are
possible on the original source should also be possible on the ontology
generated.

– Conversion on the semantic level, which implies that the schema trans-
lation interprets the semantics of the data. In other words, the conver-
sion should not avoid possible interpretations, e.g., relations among the
NOR entities.

• ABox transformation [CHPG09], which transforms the resource schema into
an ontology schema, and the resource content into ontology instances. This
transformation approach leaves the informal semantics of the re-engineered
resources mostly untouched. The requirements for this transformation are

– Full conversion, the same requirement for the TBox transformation.
Again, this implies that all queries that are possible on the original
source should also be possible on the ontological version.

– Structure preserving translation, which is the opposite of the second re-
quirement of the TBox transformation. The translation should reflect as
much as possible the original structure of the resource; in other words,
the conversion should avoid possible interpretations.

• Population, which transforms the resource content into instances of an on-
tology. The requirements of the transformation are

87

CHAPTER 6. PATTERN BASED RE-ENGINEERING METHOD

– Full conversion, the same requirement for the TBox and ABox trans-
formation.

– The ontology instances generated should reflect the target ontology
structure as closely as possible. In this case, the class structure of the
ontology already exists and is extended with instance data. In other
words, the ontology instances must conform to the already existing on-
tology schema.

6.3 Patterns for Re-engineering Non-ontological Resources

In this section we introduce the sixteen patterns, developed in this thesis, that per-
form the transformations of NORs into ontologies. Patterns for re-engineering
NORs (PR-NOR) define a procedure that transforms the NOR terms into ontology
representational primitives.

Next, we present the template proposed that describes the patterns for re-
engineering non-ontological resources (PR-NOR). We have modified the tabular
template used in [VTAGS+08] for describing the PR-NORs. The meaning of each
field is shown in Table 6.1.

According to the NOR categorization presented in section 5.1, in this thesis we
propose patterns for re-engineering classification schemes, thesauri, and lexicons
(see Table 6.2). Since the data model can be different even for the same type of
NOR. For every data model we can define a process with a well-defined sequence
of activities in order to extract the NORs terms and then to map these terms to
a conceptual model of an ontology. This process is expressed as an algorithm.
Moreover, it is worth mentioning that we refer to ontology schema as TBox, and
just ontology as TBox and ABox. These patterns are included in the ODP Portal1.

The re-engineering patterns take advantage of the use of the Ontology Design
Patterns2 for creating the ontology code. So, most of the code generated follows
the best practices already identified by the community (Process section Table 6.1).

Although we have identified five types of NORs, here we just list patterns for
re-engineering classification schemes, thesauri, and lexica (see Table 6.2).

The identifier of a PR-NOR follows a naming convention. Next, we illustrate
the naming convention for identifying the patterns. We have the pattern identifier

PR-NOR-&&%%-##

where

• PR-NOR is the prefix

• && represents the type of resource: CL for classification scheme, TS for
thesaurus, and LX for lexicon.

1http://ontologydesignpatterns.org
2Ontology Design Patterns are included in the ODP portal. The ODP portal is a Semantic Web portal dedi-

cated to ontology design best practices for the Semantic Web, emphasizing particulary ontology design patterns
(OPs)

88

http://ontologydesignpatterns.org

6.3. PATTERNS FOR RE-ENGINEERING NON-ONTOLOGICAL
RESOURCES

• %% represents the transformation approach: TX for TBox, AX for ABox.

• ## represents a non-negative integer for numerating the patterns. It starts
with 1 for TBox transformation and 10 for ABox transformation.

Table 6.1: Template of pattern for re-engineering non-ontological resource

Slot Value

General Information

Name Name of the pattern

Identifier
An acronym composed of component type + abbreviated name of the

component + number

Component Type Pattern for Re-engineering Non-Ontological Resource (PR-NOR)

Use Case

General
Description in natural language of the re-engineering problem addressed by

the pattern for re-engineering non-ontological resources.

Example Description in natural language of an example of the re-engineering problem.

Pattern for Re-engineering Non-Ontological Resource

INPUT: Resource to be Re-engineered

General Description in natural language of the non-ontological resource.

Example Description in natural language of an example of the non-ontological resource.
Graphical Representation

General Graphical representation of the non-ontological resource.

Example Graphical representation of the example of non-ontological resource.

OUTPUT: Designed Ontology

General Description in natural language of the ontology created after applying the
pattern for re-engineering the non-ontological resource.
Graphical Representation

(UML) General
Solution Ontology

Graphical representation, using the UML profile [BH06], of the ontology
created for the non-ontological resource being re-engineered.

(UML) Example
Solution Ontology

A graphical representation example, which uses the UML profile [BH06], of
the ontology created for the non-ontological resource being used.

PROCESS: How to Re-engineer

General Algorithm for the re-engineering process.

Example Application of the algorithm to the non-ontological resource example.

Time Complexity The time complexity of the algorithm.

Additional Notes Additional notes of the algorithm.

Formal Transformation

General
Formal description of the transformation made with the formal definitions of

the resources.

Relationships (Optional)

Relations to other
modelling

components

Description of any relation to other PR-NOR patterns or other ontology design
patterns.

89

CHAPTER 6. PATTERN BASED RE-ENGINEERING METHOD

Table 6.2: Set of patterns for re-engineering NORs

N Identifier Type of NOR NOR Data
Model

Target

1 PR-NOR-CLTX-01 Classification
Scheme

Path Enumeration Ontology Schema
(TBox)

2 PR-NOR-CLTX-02 Classification
Scheme

Adjacency List Ontology Schema
(TBox)

3 PR-NOR-CLTX-03 Classification
Scheme

Snowflake Ontology Schema
(TBox)

4 PR-NOR-CLTX-04 Classification
Scheme

Flattened Ontology Schema
(TBox)

5 PR-NOR-CLAX-10 Classification
Scheme

Path Enumeration Ontology
(TBox+ABox)

6 PR-NOR-CLAX-11 Classification
Scheme

Adjacency List Ontology
(TBox+ABox)

7 PR-NOR-CLAX-12 Classification
Scheme

Snowflake Ontology
(TBox+ABox)

8 PR-NOR-CLAX-13 Classification
Scheme

Flattened Ontology
(TBox+ABox)

9 PR-NOR-TSTX-01 Thesaurus Record-based Ontology Schema
(TBox)

10 PR-NOR-TSTX-02 Thesaurus Relation-based Ontology Schema
(TBox)

11 PR-NOR-TSAX-10 Thesaurus Record-based Ontology
(TBox+ABox)

12 PR-NOR-TSAX-11 Thesaurus Relation-based Ontology
(TBox+ABox)

13 PR-NOR-LXTX-01 Lexicon Record-based Ontology Schema
(TBox)

14 PR-NOR-LXTX-02 Lexicon Relation-based Ontology Schema
(TBox)

15 PR-NOR-LXAX-10 Lexicon Record-based Ontology
(TBox+ABox)

16 PR-NOR-LXAX-11 Lexicon Relation-based Ontology
(TBox+ABox)

6.4 Semantics of the Relations among the NOR Terms

The TBox transformation approach converts the resource content into an ontology
schema. TBox transformation tries to impose a formal semantics on the resource
by making explicit the semantics hidden in the relations of the NOR terms. To this
end, each NOR term is mapped to a class, and then, the semantics of the relations

90

6.4. SEMANTICS OF THE RELATIONS AMONG THE NOR TERMS

among those entities must be discovered and then made explicit. Thus, patterns
that follow the TBox transformation approach must discover first the semantics of
the relations among the NOR terms. To perform this task, we rely on WordNet,
which organizes the lexical information into meanings (senses) and synsets. What
makes WordNet remarkable is the existence of various relations explicitly declared
between the word forms (e.g. lexical relations, such as synonymy and antonymy)
and the synsets (meaning to meaning or semantic relations e.g. hyponymy/hyper-
nymy relation, meronymy relation). In this thesis, we want to prove that we can
rely on an external resource for making explicit the relations. For this purpose, first
we rely on WordNet, and, then as a future line of this work, we may rely on other
information resources, such as DBpedia3.

Algorithm 1 describes how to make explicit the semantics of the relations in
the NOR terms. The abbreviation of the algorithm name is getRelation.

Algorithm 1 Discovering the semantics of the relations - getRelation

1: Take two related terms from the NOR, ti and tj
2: defaultRelation← userDefinedRelation
3: if contains(ti,tj) then
4: relation← ti.subClassOf.tj
5: else if contains(tj,ti) then
6: relation← tj.subClassOf.ti
7: else
8: wordnetRelation←WordNet(ti, tj)
9: if wordnetRelation == hyponym then

10: relation← ti.subClassOf.tj
11: else if wordnetRelation == hypernym then
12: relation← tj.subClassOf.ti
13: else if wordnetRelation == meronym then
14: relation← ti.partOf.tj
15: else if wordnetRelation == holonym then
16: relation← tj.partOf.ti
17: else
18: relation← defaultRelation
19: end if
20: end if
21: return relation

The main parts of algorithm 1 are explained next

• (Line 1) Take two related terms from the NOR.
• (Line 2) For the userDefinedRelation one recommendation is to use the sub-

ClassOf relation by default. However, we recommend considering the type
of non-ontological resource and the source relation. For instance, if the input

3http://www.dbpedia.org/

91

http://www.dbpedia.org/

CHAPTER 6. PATTERN BASED RE-ENGINEERING METHOD

terms come from a classification scheme from the classification scheme item
relation, we recommend using the subClassOf relation by default. If the
input terms come from a thesaurus (1) from the BT/NT relation, we recom-
mend using the subClassOf relation by default, and (2) from the RT relation,
we recommend using the relatedTerm relation by default.

• (Lines 3-6) Check if it is possible to get the subClassOf relation by identify-
ing attribute adjetives4 within the two terms.

• (Line 7) If it is not possible to get the subClassOf relation.

– (Line 8) Search in WordNet for a relation between those two terms.
∗ (Line 9-10) the hyponym in the relation is interpreted as subClas-

sOf
∗ (Line 11-12) the hypernym in the relation is interpreted as super-

Class
∗ (Line 13-14) the member meronym in the relation is interpreted as

Part
∗ (Line 15-16) the member holonym in the relation is interpreted as

Whole

• (Line 18) if WordNet gives an empty result, relate the two terms by means
of the default relation, which was set by the user (Line 1).

It is worth mentioning that the algorithm takes advantage of the use of the
PartOf content pattern5 for asserting the partOf relation.

Regarding the time complexity of the algorithm, this is constant, i.e. O(1)+K,
where K represents the time complexity of accessing the WordNet method.

6.5 Formal Definition of the Ontologies Generated

In this section we provide a formal definition of the ontologies generated which are
dealt with by the patterns. This formal definition is used in the Formal Transfor-
mation section of the patterns (see Table 6.1).

Based on the definition provided in [ES07], we can define a lightweight ontol-
ogy O as the following tuple:

O = 〈OS,KB〉

Where OS represents the ontology schema, and KB represents the knowledge
base.

An ontology schema OS is defined through the following tuple:

OS = 〈C,A,R, S〉
4Attributive adjectives are part of the noun phrase headed by the noun they modify; for example, happy is an

attributive adjective in “happy people”. In English, attributive adjectives usually precede their nouns in simple
phrases but often follow their nouns when the adjective is modified or qualified by a phrase acting as an adverb.

5http://ontologydesignpatterns.org/wiki/Submissions:PartOf

92

http://ontologydesignpatterns.org/wiki/Submissions:PartOf

6.6. METHOD FOR RE-ENGINEERING NON-ONTOLOGICAL
RESOURCES

where:

• C = {c1, ..., cn}, a finite set of classes.

• A = {a1, ..., an}, a finite set of attributes, where every ai ⊆ C x Literal.

• R = {r1, ..., rn}, a finite set of binary relations, where every ri ⊆ C x C.

• S : C → C, a subClassOf relation.

A knowledge base is a structure:

KB = 〈C,A,R, I, tC , tA, tR〉

consisting of:

• three sets C, A, and R as defined before.

• a set I = {i1, ..., in} whose elements are called instance identifiers

• a function tC : C → I called class instantiation

• a function tA : A→ I called attribute instantiation

• a function tR : R→ I2 called relation instantiation

6.6 Method for Re-engineering Non-ontological Resources

In this section we depict the prescriptive methodological guidelines for re-engineer-
ing NORs. The goal of the Method for Re-engineering Non-Ontological Resources
is to transform a non-ontological resource into an ontology. The output of the pro-
cess is an ontology. Figure 6.2 shows the filling card of the non-ontological re-
source re-engineering process, which includes the definition, goal, input, output,
performer of the process and time execution.

The NOR re-engineering process consists of the three activities depicted in
Figure 6.3.

6.6.1 Activity 1. Non-ontological Resource Reverse Engineering.

The goal of this activity is to analyse a non-ontological resource, to identify its
underlying terms, and to create representations of the resource at the different levels
of abstraction (design, requirements and conceptual).

6.6.1.1 Task 1.1 Data gathering.

The goal of this task is to search and compile all the available data and documen-
tation about the non-ontological resource, including purpose, components, data
model and implementation details.

93

CHAPTER 6. PATTERN BASED RE-ENGINEERING METHOD

Figure 6.2: Non-ontological resource re-engineering filling card

6.6.1.2 Task 1.2 Conceptual abstraction.

The goal of this task is to identify the schema of the non-ontological resource
including the conceptual components and their relationships. If the conceptual
schema is not available in the documentation, the schema should be reconstructed
manually or with a data modelling tool.

6.6.1.3 Task 1.3 Information exploration.

The goal of this task is to find out how the conceptual schema of the non-ontological
resource and its content are represented in the data model. If the non-ontological
resource data model is not available in the documentation, the data model should
be reconstructed manually or with a data modelling tool.

6.6.2 Activity 2. Non-ontological Resource Transformation.

This activity has as a goal to generate a conceptual model from the non-ontological
resource. We propose the use of Patterns for Re-engineering Non-Ontological Re-
sources (PR-NOR) to guide the transformation process.

94

6.6. METHOD FOR RE-ENGINEERING NON-ONTOLOGICAL
RESOURCES

Figure 6.3: Re-engineering process for non-ontological resources

6.6.2.1 Task 2.1 Search for a suitable pattern for re-engineering non-ontolo-
gical resource.

The goal of this task is to find out if there is any applicable re-engineering pattern
that transforms the non-ontological resource into a conceptual model. The search
is performed in the ODP Portal6, which includes the PR-NOR library, and with the
following criteria: (1) non-ontological resource type, (2) internal data model of the
resource, and (3) the transformation approach.

6.6.2.2 Task 2.2.a Use re-engineering patterns to guide the transformation.

The goal of this task is to apply the re-engineering pattern obtained in task 2.1
to transform the non-ontological resource into a conceptual model. If a suitable

6http://ontologydesignpatterns.org

95

http://ontologydesignpatterns.org

CHAPTER 6. PATTERN BASED RE-ENGINEERING METHOD

pattern for re-engineering non-ontological resource is found, then the conceptual
model is created from the non-ontological resource following the procedure es-
tablished in the pattern for re-engineering. Alternatively, the software library, de-
scribed in Chapter 10, can be used for generating the ontology automatically.

6.6.2.3 Task 2.2.b Perform an ad-hoc transformation.

The goal of this task is to set up an ad-hoc procedure that transforms the non-
ontological resource into a conceptual model when a suitable pattern for re-engineering
cannot be found. This ad-hoc procedure may be generalized to create a new pattern
for re-engineering non-ontological resource.

6.6.2.4 Task 2.3 Manual refinement.

The goal of this task is to check whether any inconsistency appears after the trans-
formation. Software developers and ontology practitioners, with the help of do-
main experts, can fix manually any inconsistencies appearing after the transforma-
tion.

6.6.3 Activity 3. Ontology Forward Engineering

The goal of this activity is to generate the ontology. We use the ontology levels
of abstraction to depict this activity because they are directly related to the ontol-
ogy development process. The conceptual model obtained in task 2.2.a or 2.2.b
is transformed into a formalized model, according to a knowledge representation
paradigm such as description logics and first order logic. Then, the formalized
model is implemented in an ontology language.

6.7 Summary

This chapter has presented our solution for the aspects related to the re-engineering
of non-ontological resources for building ontologies. It also addresses some of the
limitations identified in the state of art in this area.

First, it presents our Re-engineering Model for Non-ontological resources,
which is based on the software re-engineering model presented in Section 2.2.1.
Then, it describes the requirements for the transformation process. Next, it briefly
describes the Patterns for Re-engineering Non-ontological resources into Ontolo-
gies (PR-NOR). Then, it shows how the patterns make explicit the hidden seman-
tics in the relations of the non-ontological resource. After that, it introduces the
formal definitions of the ontologies generated. Finally, it presents our method
for re-engineering non-ontological resources for building ontologies. This method
provides detailed guidelines for transforming a non-ontological resource into an
ontology.

96

6.7. SUMMARY

The solutions presented in this chapter cover contributions C5 and C6, which
address objective O2 (see Chapter 3).

97

CHAPTER 6. PATTERN BASED RE-ENGINEERING METHOD

98

Chapter 7

PATTERNS FOR
RE-ENGINEERING
CLASSIFICATION SCHEMES

Classification schemes [KBH+97] play an important role when retrieving infor-
mation in a network environment, especially because they provide browsing struc-
tures for subject-based information gateways on the Web. The advantages of using
classification schemes include improved subject browsing facilities and interoper-
ability with other services. Classification schemes are probably the most valuable
input for creating, at a reasonable cost, ontologies in many domains. They contain,
readily available, a wealth of category definitions plus a hierarchy and reflect some
degree of community consensus [HdB07].

In this chapter we present a definition of classification schemes, the data mod-
els for representing classification schemes and our main contribution: the set of
patterns for re-engineering classification schemes into ontologies.

7.1 Classification Scheme

A classification scheme [ISO04] is the descriptive information of an arrangement
or division of objects into groups based on the characteristics the objects have in
common. A good example is the Fishery International Standard Statistical Classi-
fication of Aquatic Animals and Plants (ISSCAAP)1 from FAO2.

7.1.1 Components of a Classification Scheme

The ISO/IEC 11179-2 [ISO04] provides a conceptual model for managing classi-
fication schemes and identifies the classification scheme components, presented in
Figure 7.1.

1http://www.fao.org/figis/servlet/RefServlet
2http://www.fao.org

99

http://www.fao.org/figis/servlet/RefServlet
http://www.fao.org

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

• A classification scheme, which represents the classification scheme itself. It
has the cs name element, that is, the name of the classification scheme.

• A classification scheme item, which represents the individual item within a
classification scheme. It has the following elements:

– csi name, which is the name of the classification scheme item.
– One or more csi attributes

• A classification scheme item relationship. It is the relationship among items
within a classification scheme. Such relation serves to assist in navigating
through a large number of classification scheme items. This relationship
bears the csir name element, which is the name of the classification scheme
item relationship.

Figure 7.1: Main components of the UML representation of the classification
scheme [ISO04]

7.1.2 Classification Scheme Formal Definition

We formally define a classification scheme as the following tuple:

C = 〈CS,CC〉

Where CS represents the schema of the classification scheme, and CC represents
the content of the classification scheme.

The schema of the classification scheme, CS, is defined as:

CS = 〈CG,CA,CR〉

where:

• CG = {c1}, a set of one category.

100

7.1. CLASSIFICATION SCHEME

• CA = {a1, ..., an}, a finite set of attributes, where every ai ⊆ CG x Literal.

• CR = {r1}, a set of one binary relation, where r1 ⊆ CG x CG.

The content of the classification scheme, CC, is defined as

CC = 〈CG,CA,CR,CI, CtC , CtA, CtR〉

which consists of

• The three CG, CA and CR sets, as were defined before.

• A CI = {csi1, ..., csin} set, whose elements are called classification scheme
item identifiers

• A CtG : CG→ CI function, called classification scheme item instantiation

• A CtA : CA→ CI function, called classification scheme attribute instanti-
ation

• A CtR : CR→ CI2 function, called classification scheme relation instanti-
ation

7.1.3 Classification Scheme Data Models

As we mentioned in Section 5.1 there are different ways of representing the knowl-
edge encoded by a particular resource. In this section we review the existing data
models for classification schemes already presented in Section 5.1. In order to ex-
emplify the data models for classification schemes, we use an excerpt from the FAO
classification scheme of water areas3 shown in Figure 5.2-a). These data models
are the following:

• A path enumeration data model [Bra05] is a recursive structure for hierarchy
representations, defined as a model, which stores for each node the path (as
a string) from the root to the node, see Figure 5.2-b).

• An adjacency list [Bra05] data model is a recursive structure for hierarchy
representations comprising a list of nodes with a linking column to their
parent nodes. In this case, every classification scheme item has the parent
code, see Figure 5.2-c).

• A snowflake data model [MZ06] is a normalized structure for hierarchy rep-
resentations. In this case, the classification scheme items are grouped by lev-
els or entities. There are as many groups as levels the classification scheme
has. In this model every classification scheme item has the parent code (i.e.,
parent key value), just like the adjacency list data model has; see Figure
5.2-d).

3http://www.fao.org/figis/servlet/RefServlet

101

http://www.fao.org/figis/servlet/RefServlet

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

• A flattened data model [MZ06] is a denormalized structure for hierarchy rep-
resentations. In this case, each hierarchy level is represented on a different
column. There are as many columns as levels the classification scheme has.
The hierarchy is represented with one single entity where each hierarchy
level is stored in a different column, see Figure 5.2-e).

7.1.4 Classification Scheme Implementations

These data models can be implemented as databases, XML files, flat files, spread-
sheets, etc. Figure 5.2-f) presents an XML implementation of the adjacency list
model of the water area classification, and Figure 5.2-g) presents a spreadsheet
implementation of the path enumeration model of the same classification scheme.

Figure 7.2 shows a classification scheme modelled following a path enumera-
tion model. In this case, the classification scheme is implemented in a database and
in an XML file. Figure 7.2 depicts the resource in our three level categorization of
NORs.

Figure 7.2: Classification scheme categorization

102

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

7.2 Patterns for Re-engineering Classification Schemes into
Ontologies

This section presents re-engineering patterns (PR-NOR) for re-engineering classifi-
cation schemes into ontologies. The patterns follow the naming convention defined
in Section 6.3. The patterns are

• Patterns for the TBox transformation

– PR-NOR-CLTX-01. The pattern for re-engineering a classification scheme
following the path enumeration data model into an ontology schema.

– PR-NOR-CLTX-02. The pattern for re-engineering a classification scheme
following the adjacency list data model into an ontology schema.

– PR-NOR-CLTX-03. The pattern for re-engineering a classification scheme
following the snowflake data model into an ontology schema.

– PR-NOR-CLTX-04. The pattern for re-engineering a classification scheme
following the flattened data model, into an ontology schema.

• Patterns for the ABox transformation

– PR-NOR-CLAX-10. The pattern for re-engineering a classification
scheme following the path enumeration data model into an ontology.

– PR-NOR-CLAX-11. The pattern for re-engineering a classification
scheme following the adjacency list data model into an ontology.

– PR-NOR-CLAX-12. The pattern for re-engineering a classification
scheme following the snowflake data model into an ontology.

– PR-NOR-CLAX-13. The pattern for re-engineering a classification
scheme following the flattened data model into an ontology.

7.2.1 Patterns for the TBox Transformation

These patterns transform the resource content into an ontology schema. The TBox
transformation approach tries to impose a formal semantics to the re-engineered
resources, even at the cost of changing their structure [SAd+07]. For making ex-
plicit the semantics of the relations among the NOR terms, the patterns rely on an
external resource, WordNet, as we described in Section 6.4.

The time complexity of the algorithms described in the section PROCESS: How
to Re-engineering is polynomial O(n2).

7.2.1.1 Pattern for re-engineering a classification scheme following the path
enumeration data model into an ontology schema

The pattern for re-engineering non-ontological resource, shown in Table 7.1, pro-
vides a guide to transform a classification scheme into an ontology schema. The
classification scheme is modelled with a path enumeration data model.

103

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.1: Pattern for re-engineering a classification scheme following the path
enumeration data model into an ontology schema.

Slot Value

General Information

Name

Pattern for Re-engineering a Classification Scheme following the Path
Enumeration data model into an Ontology Schema.

Identifier PR-NOR-CLTX-01

Type of Component Pattern for Re-engineering Non-ontological Resource (PR-NOR)

Use Case

General
Re-engineering a classification scheme following the path enumeration model,
to design an ontology schema.

Example

Suppose that someone wants to build an ontology based on the International
Standard Classification of Occupations (for European Union purposes) ISCO-
88 (COM). This classification scheme follows the path enumeration data model.

Pattern for Re-engineering Non-ontological Resource

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a classification scheme that follows the path
enumeration model.
A classification scheme is a rooted tree of terms, in which each term groups
entities by some particular degree of similarity. The semantics of the
hierarchical relation between parents and children terms may vary depending
on the context.
The path enumeration data model [Bra05], for classification schemes, takes
advantage of the fact that there is one and only one path from the root to every
item in the classification. The path enumeration model stores that path as a
string by concatenating either the edges or the keys of the classification
scheme items in the path.

Example

The International Standard Classification of Occupations (for European Union
purposes), 1988 version: ISCO-88 (COM) published by Eurostat is modelled
with the path enumeration data model. This classification scheme is available
at http://ec.europa.eu/eurostat/ramon/

Graphical Representation

General

Example

Continued on next page

104

http://ec.europa.eu/eurostat/ramon/

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.1: Pattern for re-engineering a classification scheme following the path
enumeration data model into an ontology schema (continued).

Slot Value

OUTPUT: Designed Ontology

General

The ontology generated will be based on the taxonomy architectural pattern
(AP-TX-01) [SFBG+07]. Each term in the classification scheme is mapped to
a class, and the semantics of the relationship between children and parent
terms are made explicit by means of an external resource.

Graphical Representation

(UML) General
Solution Ontology

(UML) Example
Solution Ontology

Continued on next page

105

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.1: Pattern for re-engineering a classification scheme following the path
enumeration data model into an ontology schema (continued).

Slot Value

PROCESS: How to Re-engineer

General

Require: Identification of the parent/child by using the path enumeration
model

1: noParentTerms← classification scheme terms without parent
2: if noParentTerms.length > 1 then
3: entityName ← name of the entity that contains the classification

scheme terms
4: rootClass← createClass(entityName)
5: for ri ∈ noParentTerms do
6: Ri← createClass(ri)
7: relation← ExternalResource.getRelation(rootClass,Ri)
8: relate(relation,rootClass,Ri)
9: end for

10: end if
11: repeat
12: for cei ∈ noParentTerms do
13: if not alreadyCreatedClassFor(cei) then
14: Ci← createClass(cei)
15: end if
16: children← childrenOf(cei)
17: for cej ∈ children do
18: if not alreadyCreatedClassFor(cej) then
19: Cj← createClass(cej)
20: end if
21: relation← ExternalResource.getRelation(cei,cej)
22: relate(relation,cei,cej)
23: end for
24: add(allChildren,children)
25: end for
26: noParentTerms← allChildren
27: removeAllTerms(allchildren)
28: until isEmpty(noParentTerms)

Continued on next page

106

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.1: Pattern for re-engineering a classification scheme following the path
enumeration data model into an ontology schema (continued).

Slot Value

Example

Require: Identification of the parent/child by using the path enumeration
model
1: noParentTerms ← [Legislators, senior officials and man-
agers;Professionals]
2: // noParentTerms.length=2 > 1
3: entityName← Occupation
4: rootClass← createClass(entityName)
6: R1← createClass(Legislators, senior officials and managers)
7: relation1← ExternalResource.getRelation(rootClass,R1)
8: relate(relation1,rootClass,R1)
6: R2← createClass(Professionals)
7: relation2← ExternalResource.getRelation(rootClass,R2)
8: relate(relation2,rootClass,R2)
13: // Legislators, senior officials and managers class, R1, already created
16: children← childrenOf(Legislators, senior officials and managers)
16: children ← [Legislators and senior officials;Corporate managers] //
using the path enumeration model
19: C1← createClass(Legislators and senior officials)
21: rel1← ExternalResource.getRelation(R1,C1)
22: relate(rel1,R1,C1)
19: C2← createClass(Corporate managers)
21: rel2← ExternalResource.getRelation(R1,C2)
22: relate(rel2,R1,C2)
24: allChildren← [Legislators and senior officials;Corporate managers]
13: // Professionals, R2, already created
16: children← ∅← childrenOf(Professionals)
26: noParentTerms← [Legislators and senior officials;Corporate man-
agers]
27: removeAllTerms(allChildren)
13: // Legislators and senior officials, C1, already created
16: children← ∅← childrenOf(Legislators and senior officials)
13: // Corporate managers, C2, already created
16: children← ∅← childrenOf(Corporate managers)
24: allChildren← ∅
26: noParentTerms← allChildren← ∅

Time Complexity O(n2)

Additional Notes

• noParentTerms, children, allChildren are lists that do not allow du-
plicates.
• createClass is a function that creates a class from a given term.
• getRelation is the algorithm 1 defined in section 6.4.
• relate is a function that relates two given classes by a given relation.
• alreadyCreatedClassFor checks if there is an already class created for a

given term.
• childrenOf is a function that returns the children of a given term.
• removeAllTerms is a function that removes all the elements of a given list.
• isEmpty checks if a list has elements or not.
• add is a function that adds the elements of a list into another list.

Formal Transformation

General

Classification Scheme: C = 〈CS,CC〉
Ontology: O = 〈OS,KB〉
Transformation: CC −→ OS :

CtG −→ C
CtR −→ R ∪ S

Continued on next page

107

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.1: Pattern for re-engineering a classification scheme following the path
enumeration data model into an ontology schema (continued).

Slot Value

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: AP-TX-01 [SFBG+07]

7.2.1.2 Pattern for re-engineering a classification scheme following the adja-
cency list data model into an ontology schema

The pattern for re-engineering non-ontological resource, shown in Table 7.2, pro-
vides a guide to transform a classification scheme into an ontology schema. The
classification scheme is modelled with an adjacency list data model.

Table 7.2: Pattern for re-engineering a classification scheme following the adja-
cency list data model into an ontology schema

Slot Value

General Information

Name

Pattern for Re-engineering a Classification Scheme following the Adjacency
List data model into an ontology Schema

Identifier PR-NOR-CLTX-02

Type of Component Pattern for Re-engineering Non-ontological Resource (PR-NOR)

Use Case

General
Re-engineering a classification scheme following the adjacency list model, to
design an ontology schema.

Example

Suppose that someone wants to build an ontology based on the water areas clas-
sification published by FAO. This classification scheme follows the adjacency
list data model.

Pattern for Re-engineering Non-ontological Resource

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a classification scheme that follows the
adjacency list model.
A classification scheme is a rooted tree of terms, in which each term groups
entities by some particular degree of similarity. The semantics of the
hierarchical relation between parent and children terms may vary depending
on the context.
The adjacency list data model [Bra05] for hierarchical classifications proposes
to create an entity which holds a list of items with a linking column associated
to their parent items.

Example

The FAO classification for water areas groups them according to some
different criteria, such as environment, statistics, and jurisdiction, among
others.
This classification scheme is available at
http://www.fao.org/figis/servlet/RefServlet

Continued on next page

108

http://www.fao.org/figis/servlet/RefServlet

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.2: Pattern for re-engineering a classification scheme following the adja-
cency list data model into an ontology schema (continued).

Slot Value
Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the taxonomy architectural pattern
(AP-TX-01) [SFBG+07]. Each term in the classification scheme is mapped to
a class, and the semantics of the relationship between children and parent
terms are made explicit by using an external resource.

Graphical Representation

(UML) General
Solution Ontology

(UML) Example
Solution Ontology

Continued on next page

109

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.2: Pattern for re-engineering a classification scheme following the adja-
cency list data model into an ontology schema (continued).

Slot Value

PROCESS: How to Re-engineer

General

Require: Identification of the parent/child by using the adjacency list model
1: noParentTerms← classification scheme terms without parent
2: if noParentTerms.length > 1 then
3: entityName ← name of the entity that contains the classification

scheme terms
4: rootClass← createClass(entityName)
5: for ri ∈ noParentTerms do
6: Ri← createClass(ri)
7: relation← ExternalResource.getRelation(rootClass,Ri)
8: relate(relation,rootClass,Ri)
9: end for

10: end if
11: repeat
12: for cei ∈ noParentTerms do
13: if not alreadyCreatedClassFor(cei) then
14: Ci← createClass(cei)
15: end if
16: children← childrenOf(cei)
17: for cej ∈ children do
18: if not alreadyCreatedClassFor(cej) then
19: Cj← createClass(cej)
20: end if
21: relation← ExternalResource.getRelation(cei,cej)
22: relate(relation,cei,cej)
23: end for
24: add(allChildren,children)
25: end for
26: noParentTerms← allChildren
27: removeAllTerms(allchildren)
28: until isEmpty(noParentTerms)

Continued on next page

110

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.2: Pattern for re-engineering a classification scheme following the adja-
cency list data model into an ontology schema (continued).

Slot Value

Example

Require: Identification of the parent/child by using the adjacency list model
1: noParentTerms← [Water area]
2: // noParentTerms.length=1 > 1
14: C1← createClass(Water area)
16: children← childrenOf(Water area) // using the adjacency list model
16: children← [Environmental area; Jurisdiction area; Fishing statistical
area]
19: C2← createClass(Environmental area)
21: rel1← ExternalResource.getRelation(C1,C2)
19: C3← createClass(Jurisdiction area)
21: rel2← ExternalResource.getRelation(C1,C3)
19: C4← createClass(Fishing statistical area)
21: rel3← ExternalResource.getRelation(C1,C4)
26: noParentTerms ← [Environmental area; Jurisdiction area; Fishing
statistical area]
16: children← childrenOf(Environmental area) // using the adjacency list
model
16: children← [Inland/Marine;Ocean;North/South/Equatorial]
19: C5← createClass(Inland/Marine)
21: rel4← ExternalResource.getRelation(C2,C5)
19: C6← createClass(Ocean)
21: rel5← ExternalResource.getRelation(C2,C6)
19: C7← createClass(North/South/Equatorial)
21: rel6← ExternalResource.getRelation(C2,C7)
16: children← ∅← childrenOf(Jurisdiction area)
16: children← childrenOf(Fishing statistical area) // using the adjacency
list model
16: children← [FAO Statistical area;Areal grid system]
19: C8← createClass(FAO Statistical area)
21: rel7← ExternalResource.getRelation(C4,C8)
19: C9← createClass(Areal grid system)
21: rel8← ExternalResource.getRelation(C4,C9)
26: noParentTerms ← [Inland/Marine;Ocean;North/South/Equ.;FAO
Statistical;Areal grid system]
16: children← ∅← childrenOf(Inland/Marine)
16: children← ∅← childrenOf(Ocean)
16: children← ∅← childrenOf(North/South/Equatorial)
16: children← ∅← childrenOf(FAO Statistical area)
16: children← ∅← childrenOf(Areal grid system)
26: noParentTerms← ∅

Time Complexity O(n2)

Additional Notes

• noParentTerms, children, allChildren are lists that do not allow du-
plicates.
• createClass is a function that creates a class from a given term.
• getRelation is the algorithm 1 defined in section 6.4.
• relate is a function that relates two given classes by a given relation.
• alreadyCreatedClassFor checks if there is an already class created for a

given term.
• childrenOf is a function that returns the children of a given term.
• removeAllTerms is a function that removes all the elements of a given list.
• isEmpty checks if a list has elements or not.
• add is a function that adds the elements of a list into another list.

Continued on next page

111

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.2: Pattern for re-engineering a classification scheme following the adja-
cency list data model into an ontology schema (continued).

Slot Value

Formal Transformation

General

Classification Scheme: C = 〈CS,CC〉
Ontology: O = 〈OS,KB〉
Transformation: CC −→ OS :

CtG −→ C
CtR −→ R ∪ S

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: AP-TX-01 [SFBG+07]

7.2.1.3 Pattern for re-engineering a classification scheme following the snowflake
data model into an ontology schema

The pattern for re-engineering non-ontological resource, shown in Table 7.3, pro-
vides a guide to transform a classification scheme into an ontology schema. The
classification scheme is modelled with a snowflake data model.

Table 7.3: Pattern for re-engineering a classification scheme following the
snowflake data model into an ontology schema.

Slot Value

General Information

Name

Pattern for Re-engineering a Classification Scheme following the Snowflake
data model into an ontology Schema

Identifier PR-NOR-CLTX-03

Type of Component Pattern for Re-engineering Non-ontological Resource (PR-NOR)

Use Case

General
Re-engineering a classification scheme following the snowflake model, to de-
sign an ontology schema.

Example
Suppose that someone wants to build an ontology based on an occupation hier-
archical classification following the snowflake data model.

Pattern for Re-engineering Non-ontological Resource

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a classification scheme that follows the
snowflake model.
A classification scheme is a rooted tree of terms, in which each term groups
entities by some particular degree of similarity. The semantics of the
hierarchical relation between parent and children terms may vary depending
on the context.
The snowflake data model [MZ06] is a normalized structure for hierarchy
representations. In this case, the classification scheme items are grouped by
levels or entities. There are as many groups as levels the classification scheme
has.

Continued on next page

112

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.3: Pattern for re-engineering a classification scheme following the
snowflake data model into an ontology schema (continued).

Slot Value

Example

Snowflake models are widely used on data warehouses to build hierarchical
classifications on structures known as dimensions. Some examples of
dimension are Time, Product Category, Geography, Occupations, etc.
In this pattern the example is an occupation hierarchical classification hold on
four different tables, one for each level (PROFESSIONI 0, PROFESSIONI 1,
PROFESSIONI 2, PROFESSIONI 3).

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the taxonomy architectural pattern
(AP-TX-01) [SFBG+07]. Each term in the classification scheme is mapped to
a class, and the semantics of the relationship between children and parent
terms are made explicit by using an external resource.

Graphical Representation

(UML) General
Solution Ontology

Continued on next page

113

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.3: Pattern for re-engineering a classification scheme following the
snowflake data model into an ontology schema (continued).

Slot Value

(UML) Example
Solution Ontology

PROCESS: How to Re-engineer

General

Require: Identification of the parent/child by using the snowflake model
1: noParentTerms← classification scheme terms without parent
2: if noParentTerms.length > 1 then
3: entityName ← name of the entity that contains the classification

scheme terms
4: rootClass← createClass(entityName)
5: for ri ∈ noParentTerms do
6: Ri← createClass(ri)
7: relation← ExternalResource.getRelation(rootClass,Ri)
8: relate(relation,rootClass,Ri)
9: end for

10: end if
11: repeat
12: for cei ∈ noParentTerms do
13: if not alreadyCreatedClassFor(cei) then
14: Ci← createClass(cei)
15: end if
16: children← childrenOf(cei)
17: for cej ∈ children do
18: if not alreadyCreatedClassFor(cej) then
19: Cj← createClass(cej)
20: end if
21: relation← ExternalResource.getRelation(cei,cej)
22: relate(relation,cei,cej)
23: end for
24: add(allChildren,children)
25: end for
26: noParentTerms← allChildren
27: removeAllTerms(allchildren)
28: until isEmpty(noParentTerms)

Continued on next page

114

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.3: Pattern for re-engineering a classification scheme following the
snowflake data model into an ontology schema (continued).

Slot Value

Example

Require: Identification of the parent/child by using the snowflake model
1: noParentTerms← [Professioni specialistiche e tecniche;Professioni
operative della gestione dimpresa]
2: // noParentTerms.length=2 > 1
3: entityName← Professione
4: rootClass← createClass(entityName)
6: R1← createClass(Professioni specialistiche e tecniche)
7: relation1← ExternalResource.getRelation(rootClass,R1)
6: R2← createClass(Professioni operative della gestione dimpresa)
7: relation2← ExternalResource.getRelation(rootClass,R2)
16: children← childrenOf(Professioni specialistiche e tecniche) // using
the snowflake model
16: children← [Specialist e tecnici delle scienze informatiche]
19: C1← createClass(Specialist e tecnici delle scienze informatiche)
21: rel1← ExternalResource.getRelation(R1,C1)
16: children← childrenOf(Professioni operative della gestione dimpresa)
// using the snowflake model
16: children← [Specialist e tecnici delle gestione dimpresa]
19: C2← createClass(Specialist e tecnici delle gestione dimpresa)
21: rel2← ExternalResource.getRelation(R2,C2)
26: noParentTerms ← [Specialist e tecnici delle scienze infor-
matiche;Specialist e tecnici delle gestione dimpresa]
16: children← childrenOf(Specialist e tecnici delle scienze informatiche)
// using the snowflake model
16: children← [Tecnici delle scienze informatiche]
19: C3← createClass(Tecnici delle scienze informatiche)
21: rel3← ExternalResource.getRelation(C1,C3)
16: children← childrenOf(Specialist e tecnici delle gestione dimpresa) //
using the snowflake model
16: children← [Tecnici delle gestione dimpresa]
19: C4← createClass(Tecnici delle gestione dimpresa)
21: rel4← ExternalResource.getRelation(C2,C4)
26: noParentTerms← [Tecnici delle scienze informatiche;Tecnici delle
gestione dimpresa]
16: children← ∅← childrenOf(Tecnici delle scienze informatiche) // us-
ing the snowflake model
16: children← ∅← childrenOf(Tecnici delle gestione dimpresa)
26: noParentTerms← ∅

Time Complexity O(n2)

Additional Notes

• noParentTerms, children, allChildren are lists that do not allow du-
plicates.
• createClass is a function that creates a class from a given term.
• getRelation is the algorithm 1 defined in section 6.4.
• relate is a function that relates two given classes by a given relation.
• alreadyCreatedClassFor checks if there is an already class created for a

given term.
• childrenOf is a function that returns the children of a given term.
• removeAllTerms is a function that removes all the elements of a given list.
• isEmpty checks if a list has elements or not.
• add is a function that adds the elements of a list into another list.

Continued on next page

115

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.3: Pattern for re-engineering a classification scheme following the
snowflake data model into an ontology schema (continued).

Slot Value

Formal Transformation

General

Classification Scheme: C = 〈CS,CC〉
Ontology: O = 〈OS,KB〉
Transformation: CC −→ OS :

CtG −→ C
CtR −→ R ∪ S

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: AP-TX-01 [SFBG+07]

7.2.1.4 Pattern for re-engineering a classification scheme following the flat-
tened data model into an ontology schema

The pattern for re-engineering non-ontological resource, shown in Table 7.4, pro-
vides a guide to transform a classification scheme into an ontology schema. The
classification scheme is modelled with a flattened data model.

Table 7.4: Pattern for re-engineering a classification scheme following the flattened
data model into an ontology schema.

Slot Value

General Information

Name

Pattern for Re-engineering a Classification Scheme following the Flattened
data model into an ontology Schema

Identifier PR-NOR-CLTX-04

Type of Component Pattern for Re-engineering Non-ontological Resource (PR-NOR)

Use Case

General
Re-engineering a classification scheme following the flattened model, to design
an ontology schema.

Example
Suppose that someone wants to build an ontology based on a classification pub-
lished as one table with a column for each classification level.

Continued on next page

116

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.4: Pattern for re-engineering a classification scheme following the flattened
data model into an ontology schema (continued).

Slot Value

Pattern for Re-engineering Non-ontological Resource

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a classification scheme that follows the
flattened data model.
A classification scheme is a rooted tree of terms in which each terms groups
entities by some particular degree of similarity. The semantics of the
hierarchical relation between parents and children terms may vary depending
of the context.
The flattened data model [MZ06] is a denormalized structure for hierarchy
representations. In this case, each hierarchy level is represented on a different
column. There are as many columns as levels the classification scheme has.
Therefore each row has the complete path from the root to a leaf node.

Example

The Classification of Italian Education Titles published by the National
Institute of Statistics (ISTAT) is represented following a flattened model. The
first level of the classification (level code) is related to the education title level,
which comprises values as elementary, media, university, master, etc. The
second level of the classification is the type of school or institute that offers the
education title. The last level is the education title itself; it has a specific
specialization code and also a code that is the concatenation of the previous
code levels.

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the taxonomy architectural pattern
(AP-TX-01) [SFBG+07]. Each term in the classification scheme is mapped to
a class, and the semantics of the relationship between children and parent
terms are made explicit by using an external resource.

Continued on next page

117

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.4: Pattern for re-engineering a classification scheme following the flattened
data model into an ontology schema (continued).

Slot Value
Graphical Representation

(UML) General
Solution Ontology

(UML) Example
Solution Ontology

Continued on next page

118

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.4: Pattern for re-engineering a classification scheme following the flattened
data model into an ontology schema (continued).

Slot Value

PROCESS: How to Re-engineer

General

Require: Identification of the parent/child by using the flattened model
1: noParentTerms← classification scheme terms without parent
2: if noParentTerms.length > 1 then
3: entityName ← name of the entity that contains the classification

scheme terms
4: rootClass← createClass(entityName)
5: for ri ∈ noParentTerms do
6: Ri← createClass(ri)
7: relation← ExternalResource.getRelation(rootClass,Ri)
8: relate(relation,rootClass,Ri)
9: end for

10: end if
11: repeat
12: for cei ∈ noParentTerms do
13: if not alreadyCreatedClassFor(cei) then
14: Ci← createClass(cei)
15: end if
16: children← childrenOf(cei)
17: for cej ∈ children do
18: if not alreadyCreatedClassFor(cej) then
19: Cj← createClass(cej)
20: end if
21: relation← ExternalResource.getRelation(cei,cej)
22: relate(relation,cei,cej)
23: end for
24: add(allChildren,children)
25: end for
26: noParentTerms← allChildren
27: removeAllTerms(allchildren)
28: until isEmpty(noParentTerms)

Continued on next page

119

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.4: Pattern for re-engineering a classification scheme following the flattened
data model into an ontology schema (continued).

Slot Value

Example

Require: Identification of the parent/child by using the flattened model
1: noParentTerms← [HigherEducation;Higher SecondaryEducation]
2: // noParentTerms.length=2 > 1
3: entityName← Education Title
4: rootClass← createClass(entityName)
6: R1← createClass(Higher Education)
7: relation1← ExternalResource.getRelation(rootClass,R1)
6: R2← createClass(Higher Secondary Education)
7: relation2← ExternalResource.getRelation(rootClass,R2)
16: children← childrenOf(Higher Education)
16: children← [Agricultural Professional Institute]
19: C1← createClass(Agricultural Professional Institute)
21: rel1← ExternalResource.getRelation(R1,C1)
16: children← childrenOf(Higher Secondary Education)
16: children← [Commercial Professional Institute]
19: C2← createClass(Commercial Professional Institute)
21: rel2← ExternalResource.getRelation(R2,C2)
26: noParentTerms ← [Agricultural Professional Institute;Commercial
Professional Institute]
16: children← childrenOf(Agricultural Professional Institute)
16: children← [Fruit Expert;Olive Expert]
19: C3← createClass(Fruit Expert)
21: rel3← ExternalResource.getRelation(C1,C3)
19: C4← createClass(Olive Expert)
21: rel4← ExternalResource.getRelation(C1,C4)
16: children← childrenOf(Commercial Professional Institute)
16: children← [Accounting Analyst;Commercial Operator]
19: C5← createClass(Accounting Analyst)
21: rel5← ExternalResource.getRelation(C2,C5)
19: C6← createClass(Commercial Operator)
21: rel6← ExternalResource.getRelation(C2,C6)
26: noParentTerms ← [Fruit Expert;Olive Expert;Accounting Ana-
lyst;Commercial Operator]
16: children← ∅← childrenOf(Fruit Expert)
16: children← ∅← childrenOf(Olive Expert)
16: children← ∅← childrenOf(Accounting Analyst)
16: children← ∅← childrenOf(Commercial Operator)
26: noParentTerms← ∅

Time Complexity O(n2)

Additional Notes

• noParentTerms, children, allChildren are lists that do not allow du-
plicates.
• createClass is a function that creates a class from a given term.
• getRelation is the algorithm 1 defined in section 6.4.
• relate is a function that relates two given classes by a given relation.
• alreadyCreatedClassFor checks if there is an already class created for a

given term.
• childrenOf is a function that returns the children of a given term.
• removeAllTerms is a function that removes all the elements of a given list.
• isEmpty checks if a list has elements or not.
• add is a function that adds the elements of a list into another list.

Continued on next page

120

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.4: Pattern for re-engineering a classification scheme following the flattened
data model into an ontology schema (continued).

Slot Value

Formal Transformation

General

Classification Scheme: C = 〈CS,CC〉
Ontology: O = 〈OS,KB〉
Transformation: CC −→ OS :

CtG −→ C
CtR −→ R ∪ S

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: AP-TX-01 [SFBG+07]

7.2.2 Patterns for the ABox Transformation

These patterns transform the resource schema into an ontology schema, and the
resource content, into ontology instances. The ABox transformation approach
leaves the informal semantics of the re-engineered resources mostly untouched
[SAd+07].

The patterns presented here deal with classification schemes. As described in
Section 7.1, the schema of a classification scheme has the following components:
(1) a classification scheme entity, which will be transformed into a class, and (2) a
classification scheme item relationship, which will be transformed into a subClas-
sOf relation.

The time complexity of the algorithms described in the Section PROCESS:
How to Re-engineering is linear O(n).

7.2.2.1 Pattern for re-engineering a classification scheme following the path
enumeration data model into an ontology

The pattern for re-engineering non-ontological resource, shown in Table 7.5, pro-
vides a guide to transform a classification scheme following the path enumeration
data model into an ontology. The pattern transforms the resource schema into an
ontology schema, and the resource content, into ontology instances.

Table 7.5: Pattern for re-engineering a classification scheme following the path
enumeration data model into an ontology.

Slot Value

General Information

Name

Pattern for Re-engineering a Classification Scheme following the Path
Enumeration Data model into an Ontology Schema.

Identifier PR-NOR-CLAX-10

Continued on next page

121

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.5: Pattern for re-engineering a classification scheme following the path
enumeration data model into an ontology (continued).

Slot Value

Type of Component Pattern for Re-engineering Non-ontological Resource (PR-NOR)

Use Case

General
Re-engineering a classification scheme following the path enumeration model,
to design an ontology schema.

Example

Suppose that someone wants to build an ontology based on the International
Standard Classification of Occupations (for European Union purposes) ISCO-
88 (COM). This classification scheme follows the path enumeration data model.

Pattern for Re-engineering Non-ontological Resource

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a classification scheme that follows the path
enumeration model.
A classification scheme is a rooted tree of terms, in which each term groups
entities by some particular degree of similarity. The semantics of the
hierarchical relation between parent and children concepts may vary
depending on the context.
The path enumeration data model [Bra05], for classification schemes, takes
advantage of that there is one and only one path from the root to every term in
the classification. The path enumeration model stores that path as string by
concatenating either the edges or the keys of the classification scheme terms in
the path.

Example

The International Standard Classification of Occupations (for European Union
purposes), 1988 version: ISCO-88 (COM) published by Eurostat is modeled
with the path enumeration data model. This classification scheme is available
at http://ec.europa.eu/eurostat/ramon/

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the taxonomy architectural pattern
(AP-TX-01) [SFBG+07]. The classification scheme entity will be transformed
into a class. The classification scheme item relationship will be transformed
either to a subClassOf relation. Finally, the content of the classification
scheme will be transformed into ontology instances.

Continued on next page

122

http://ec.europa.eu/eurostat/ramon/

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.5: Pattern for re-engineering a classification scheme following the path
enumeration data model into an ontology (continued).

Slot Value
Graphical Representation

(UML) General
Solution Ontology

(UML) Example
Solution Ontology

PROCESS: How to Re-engineer

General

1: entityName← name of the entity that contains the c.s. terms
2: mainClass← createClass(entityName)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: csTerms← classification scheme terms
6: for csi ∈ csTerms do
7: Ii← createInstance(csi)
8: setInstanceOfClass(Ii,mainClass)
9: end for

Example

2: mainClass← createClass(Occupation)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: csTerms ← [Legislators, senior officials and managers;Legislators and
senior officials;Corporate managers;Professionals]
7: I1← createInstance(Legislators, senior officials and managers)
8: setInstanceOfClass(I1,mainClass)
7: I2← createInstance(Legislators and senior officials)
8: setInstanceOfClass(I2,mainClass)
7: I3← createInstance(Corporate managers)
8: setInstanceOfClass(I3,mainClass)
7: I4← createInstance(Professionals)
8: setInstanceOfClass(I4,mainClass)

Time Complexity O(n)

Additional Notes

• csTerms is a list that does not allow duplicates.
• createClass is a function that creates a class from a given term.
• relate is a function that relates two given classes by a given relation.
• createInstance is a function that creates an instance from a given term.
• setInstanceOfClass is a function that sets up a given instance of a given

class.

Continued on next page

123

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.5: Pattern for re-engineering a classification scheme following the path
enumeration data model into an ontology (continued).

Slot Value

Formal Transformation

General

Classification Scheme: CS = 〈CS,CC〉
Ontology: O = 〈OS,KB〉
Transformation: CS −→ OS :

CG −→ C
CA −→ A
CR −→ R ∪ S

CC −→ KB :
CI −→ I
CtG −→ tC
CtA −→ tA
CtR −→ tR

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: TX-AP-01 [SFBG+07]

7.2.2.2 Pattern for re-engineering a classification scheme following the adja-
cency list data model into an ontology

The pattern for re-engineering non-ontological resource, shown in Table 7.6, pro-
vides a guide to transform a classification scheme following the adjacency list data
model into an ontology. The pattern transforms the resource schema into an ontol-
ogy schema, and the resource content, into ontology instances.

Table 7.6: Pattern for re-engineering a classification scheme following the adja-
cency list data model into an ontology.

Slot Value

General Information

Name

Pattern for Re-engineering a Classification Scheme following the Adjacency
List Data model into an Ontology

Identifier PR-NOR-CLAX-11

Type of Component Pattern for Re-engineering Non-ontological Resource (PR-NOR)

Use Case

General
Re-engineering a classification scheme following the adjacency list model, to
design an ontology.

Example

Suppose that someone wants to build an ontology based on the water areas clas-
sification published by FAO. This classification scheme follows the adjacency
list data model.

Continued on next page

124

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.6: Pattern for re-engineering a classification scheme following the adja-
cency list data model into an ontology (continued).

Slot Value

Pattern for Re-engineering Non-ontological Resource

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a classification scheme that follows the
adjacency list model.
A classification scheme is a rooted tree of concepts, in which each concept
groups entities by some particular degree of similarity.
The semantics of the hierarchical relation between parent and children
concepts may vary depending on the context.
The adjacency list data model [Bra05] for hierarchical classifications proposes
to create an entity which holds a list of items with a linking column associated
to their parent items.

Example

The FAO classification for water areas groups them according to some
different criteria, such as environment, statistics, and jurisdiction, among
others.
This classification scheme is available at
http://www.fao.org/figis/servlet/RefServlet

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the taxonomy architectural pattern
(AP-TX-01) [SFBG+07]. The classification scheme item will be transformed
into a class. The classification scheme item relationship will be transformed
into a subClassOf relation. Finally, the content of the classification scheme
will be transformed into ontology instances.

Continued on next page

125

http://www.fao.org/figis/servlet/RefServlet

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.6: Pattern for re-engineering a classification scheme following the adja-
cency list data model into an ontology (continued).

Slot Value
Graphical Representation

(UML) General
Solution Ontology

(UML) Example
Solution Ontology

PROCESS: How to Re-engineer

General

1: entityName← name of the entity that contains the c.s. terms
2: mainClass← createClass(entityName)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: csTerms← classification scheme terms
6: for csi ∈ csTerms do
7: Ii← createInstance(csi)
8: setInstanceOfClass(Ii,mainClass)
9: end for

Continued on next page

126

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.6: Pattern for re-engineering a classification scheme following the adja-
cency list data model into an ontology (continued).

Slot Value

Example

2: mainClass← createClass(WaterArea)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: csTerms ← [Environmental area;Jurisdiction area;Fishing Statis-
tical area;Inland/marine;Ocean;North/South/Equatorial;FAO statistical
area;Areal grid system]
7: I1← createInstance(Environmental area)
8: setInstanceOfClass(I1,mainClass)
7: I2← createInstance(Jurisdiction area)
8: setInstanceOfClass(I2,mainClass)
7: I3← createInstance(Fishing Statistical area)
8: setInstanceOfClass(I3,mainClass)
7: I4← createInstance(Inland/marine)
8: setInstanceOfClass(I4,mainClass)
7: I5← createInstance(Ocean)
8: setInstanceOfClass(I5,mainClass)
7: I6← createInstance(North/South/Equatorial)
8: setInstanceOfClass(I6,mainClass)
7: I7← createInstance(FAO statistical area)
8: setInstanceOfClass(I7,mainClass)
7: I8← createInstance(Areal grid system)
8: setInstanceOfClass(I8,mainClass)

Time Complexity O(n)

Additional Notes

• csTerms is a list that does not allow duplicates.
• createClass is a function that creates a class from a given term.
• relate is a function that relates two given classes by a given relation.
• createInstance is a function that creates an instance from a given term.
• setInstanceOfClass is a function that sets up a given instance of a given

class.

Formal Transformation

General

Classification Scheme: CS = 〈CS,CC〉
Ontology: O = 〈OS,KB〉
Transformation: CS −→ OS :

CG −→ C
CA −→ A
CR −→ R ∪ S

CC −→ KB :
CI −→ I
CtG −→ tC
CtA −→ tA
CtR −→ tR

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: TX-AP-01 [SFBG+07]

7.2.2.3 Pattern for re-engineering a classification scheme following the snowflake
data model into an ontology

The pattern for re-engineering non-ontological resource, shown in Table 7.7, pro-
vides a guide to transform a classification scheme into an ontology. The classifica-

127

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

tion scheme is modeled with a snowflake data model. The pattern transforms the
resource schema into an ontology schema, and the resource content, into ontology
instances.

Table 7.7: Pattern for re-engineering a classification scheme following the
snowflake data model into an ontology.

Slot Value

General Information

Name

Pattern for Re-engineering a Classification Scheme following the Snowflake
Data model into an Ontology

Identifier PR-NOR-CLAX-12

Type of Component Pattern for Re-engineering Non-ontological Resource (PR-NOR)

Use Case

General
Re-engineering a classification scheme following the snowflake model, to de-
sign an ontology schema.

Example
Suppose that someone wants to build an ontology based on an occupation hier-
archical classification following the snowflake data model.

Pattern for Re-engineering Non-ontological Resource

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a classification scheme that follows the
snowflake model.
A classification scheme is a rooted tree of terms, in which each term groups
entities by some particular degree of similarity. The semantics of the
hierarchical relation between parent and children concepts may vary
depending on the context.
The snowflake data model [MZ06] is a normalized structure for hierarchy
representations. In this case, the classification scheme terms are grouped by
levels or entities. There are as many groups as levels the classification scheme
has.

Example

Snowflake models are widely used on data warehouses to build hierarchical
classifications on structures known as dimensions. Some examples of
dimension are Time, Product Category, Geography, Occupations, etc.
In this pattern the example is an occupation hierarchical classification hold on
four different tables, one for each level (PROFESSIONI 0, PROFESSIONI 1,
PROFESSIONI 2, PROFESSIONI 3).

Continued on next page

128

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.7: Pattern for re-engineering a classification scheme following the
snowflake data model into an ontology (continued).

Slot Value
Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the taxonomy architectural pattern
(AP-TX-01) [SFBG+07]. The classification scheme entity will be transformed
into a class. The classification scheme item relationship will be transformed
into a subClassOf relation. Finally, the content of the classification scheme
will be transformed into ontology instances.

Graphical Representation

(UML) General
Solution Ontology

Continued on next page

129

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.7: Pattern for re-engineering a classification scheme following the
snowflake data model into an ontology (continued).

Slot Value

(UML) Example
Solution Ontology

PROCESS: How to Re-engineer

General

1: entityName← name of the entity that contains the c.s. terms
2: mainClass← createClass(entityName)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: csTerms← classification scheme terms
6: for csi ∈ csTerms do
7: Ii← createInstance(csi)
8: setInstanceOfClass(Ii,mainClass)
9: end for

Example

2: mainClass← createClass(Professione)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: csTerms ← [Professioni specialistiche e tecniche;Professioni op-
erative della gestione dimpresa;Specialist e tecnici delle scienze infor-
matiche;Specialist e tecnici delle gestione dimpresa;Tecnici delle scienze in-
formatiche;Tecnici delle gestione dimpresa]
7: I1← createInstance(Professioni specialistiche e tecniche)
8: setInstanceOfClass(I1,mainClass)
7: I2← createInstance(Professioni operative della gestione dimpresa)
8: setInstanceOfClass(I2,mainClass)
7: I3← createInstance(Specialist e tecnici delle scienze informatiche)
8: setInstanceOfClass(I3,mainClass)
7: I4← createInstance(Specialist e tecnici delle gestione dimpresa)
8: setInstanceOfClass(I4,mainClass)
7: I5← createInstance(Tecnici delle scienze informatiche)
8: setInstanceOfClass(I5,mainClass)
7: I6← createInstance(Tecnici delle gestione dimpresa)
8: setInstanceOfClass(I6,mainClass)

Time Complexity O(n)

Additional Notes

• csTerms is a list that does not allow duplicates.
• createClass is a function that creates a class from a given term.
• relate is a function that relates two given classes by a given relation.
• createInstance is a function that creates an instance from a given term.
• setInstanceOfClass is a function that sets up a given instance of a given

class.

Continued on next page

130

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.7: Pattern for re-engineering a classification scheme following the
snowflake data model into an ontology (continued).

Slot Value

Formal Transformation

General

Classification Scheme: CS = 〈CS,CC〉
Ontology: O = 〈OS,KB〉
Transformation: CS −→ OS :

CG −→ C
CA −→ A
CR −→ R ∪ S

CC −→ KB :
CI −→ I
CtG −→ tC
CtA −→ tA
CtR −→ tR

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: TX-AP-01 [SFBG+07]

7.2.2.4 Pattern for re-engineering a classification scheme following the flat-
tened data model into an ontology

The pattern for re-engineering non-ontological resource, shown in Table 7.8, pro-
vides a guide to transform a classification scheme following the flattened data
model into an ontology. The pattern transforms the resource schema into an ontol-
ogy schema, and the resource content, into ontology instances.

Table 7.8: Pattern for re-engineering a classification scheme following the flattened
data model into an ontology.

Slot Value

General Information

Name

Pattern for Re-engineering a Classification Scheme following the Flattened
Data model into an Ontology

Identifier PR-NOR-CLAX-13

Type of Component Pattern for Re-engineering Non-ontological Resource (PR-NOR)

Use Case

General
Re-engineering a classification scheme following the flattened model, to design
an ontology

Example
Suppose that someone wants to build an ontology based on a classification pub-
lished as one table with a column for each classification level.

Continued on next page

131

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.8: Pattern for re-engineering a classification scheme following the flattened
data model into an ontology (continued).

Slot Value

Pattern for Re-engineering Non-ontological Resource

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a classification scheme that follows the
flattened data model.
A classification scheme is a rooted tree of concepts, in which each concept
groups entities by some particular degree of similarity. The semantics of the
hierarchical relation between parent and children concepts may vary
depending on the context.
The flattened data model [MZ06] is a denormalized structure for hierarchy
representations. In this case, each hierarchy level is represented on a different
column. There are as many columns as levels the classification scheme has.
Therefore each row has the complete path from the root to a leaf node.

Example

The Classification of Italian Education Titles published by the National
Institute of Statistics (ISTAT) is represented following a flattened model. The
first level of the classification (level code) is related to the education title level
which comprises values as elementary, media, university, master, etc. The
second level of the classification is the type of school or institute which offers
the education title. The last level is the education title itself; it has a specific
specialization code and also a code which is the concatenation of the previous
code levels.

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the taxonomy architectural pattern
(AP-TX-01) [SFBG+07]. The classification scheme entity will be transformed
into a class. The classification scheme item relationship will be transformed
into a subClassOf relation. Finally, the content of the classification scheme
will be transformed into ontology instances.

Graphical Representation

(UML) General
Solution Ontology

Continued on next page

132

7.2. PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
INTO ONTOLOGIES

Table 7.8: Pattern for re-engineering a classification scheme following the flattened
data model into an ontology (continued).

Slot Value

(UML) Example
Solution Ontology

PROCESS: How to Re-engineer

General

1: entityName← name of the entity that contains the c.s. terms
2: mainClass← createClass(entityName)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: csTerms← classification scheme terms
6: for csi ∈ csTerms do
7: Ii← createInstance(csi)
8: setInstanceOfClass(Ii,mainClass)
9: end for

Example

2: mainClass← createClass(Education Title)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: csTerms ← [Higher Education; Higher Secondary Education; Agri-
cultural Professional Institute;Commercial Professional Institute;Fruit Ex-
pert;Olive Expert;Accounting Analyst;Commercial Operator]
7: I1← createInstance(Higher Education)
8: setInstanceOfClass(I1,mainClass)
7: I2← createInstance(Higher Secondary Education)
8: setInstanceOfClass(I2,mainClass)
7: I3← createInstance(Agricultural Professional Institute)
8: setInstanceOfClass(I3,mainClass)
7: I4← createInstance(Commercial Professional Institute)
8: setInstanceOfClass(I4,mainClass)
7: I5← createInstance(Fruit Expert)
8: setInstanceOfClass(I5,mainClass)
7: I6← createInstance(Olive Expert)
8: setInstanceOfClass(I6,mainClass)
7: I7← createInstance(Accounting Analyst)
8: setInstanceOfClass(I7,mainClass)
7: I8← createInstance(Commercial Operator)
8: setInstanceOfClass(I8,mainClass)

Time Complexity O(n)

Additional Notes

• csTerms is a list that does not allow duplicates.
• createClass is a function that creates a class from a given term.
• relate is a function that relates two given classes by a given relation.
• createInstance is a function that creates an instance from a given term.
• setInstanceOfClass is a function that sets up a given instance of a given

class.

Continued on next page

133

CHAPTER 7. PATTERNS FOR RE-ENGINEERING CLASSIFICATION
SCHEMES

Table 7.8: Pattern for re-engineering a classification scheme following the flattened
data model into an ontology (continued).

Slot Value

Formal Transformation

General

Classification Scheme: CS = 〈CS,CC〉
Ontology: O = 〈OS,KB〉
Transformation: CS −→ OS :

CG −→ C
CA −→ A
CR −→ R ∪ S

CC −→ KB :
CI −→ I
CtG −→ tC
CtA −→ tA
CtR −→ tR

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: TX-AP-01 [SFBG+07]

7.3 Summary

This chapter has presented the solution we provide for those aspects related to
the re-engineering of classification schemes for building ontologies. Our solution
addresses some of the limitations identified in the state of art of this area.

First, we review the definition of a classification scheme, including its com-
ponents. Then, we provide a formal definition for the classification schemes and
the identified data models and implementations for them. Finally, we present the
patterns for re-engineering classification schemes into ontologies, including those
for the TBox and ABox transformation approaches. The time complexity of the
TBox transformation algorithm is polynomial O(n2), whereas that of the ABox
transformation algorithm is linear O(n). This set of patterns are used within the
method presented in Chapter 6.

The solutions presented in this chapter cover contribution C7, which partially
addresses objective O3 (see Chapter 3). Such a contribution is evaluated in Sec-
tions 11.1.1 and 11.2.1.

134

Chapter 8

PATTERNS FOR
RE-ENGINEERING THESAURI

A thesaurus represents the knowledge of a domain with a collection of terms and
a limited set of relations between them. Thesauri are the most valuable input for
creating, at reasonable cost, ontologies in many domains. They contain, readily
available, a wealth of category definitions plus a hierarchy, and they reflect some
degree of community consensus [HdB07]. This chapter presents a definition of the-
sauri, the existing standards for thesauri, the data models for representing thesauri,
and our main contribution, namely, the set of patterns for re-engineering thesauri
into ontologies.

8.1 Thesaurus

In the field of thesaurus development there are several standards. These standards
provide some guidelines about how the thesaurus should be structured. Figure 8.1,
taken from [Lab07], depicts the thesaurus standards evolution. The ISO 2788:1986
standard is the seed of the rest of the standards. The ISO 5964:1985 extends
the scope of the ISO 2788:1986 adding a multilingual context. The ANSI/NISO
Z39.19-2003 adds management guidelines to the principles of monolingual the-
sauri. The ANSI/NISO Z39.19-2003 was superseded by ANSI/NISO Z39.19-
2005. The BS 8723-1:2005 and BS 8723-2:2005 are the British version of the
ISO 2788.

Next we briefly describe the most important thesaurus standards.

• ISO 2788:1986, which is the standard that sets the guidelines for the estab-
lishment and development of monolingual thesauri [ISO86]. This standard
covers some aspects of the selection of indexing terms, the procedures for
the control of the vocabulary, and specifically, the way of establishing re-
lationships among these terms (particularly those relations that are used, a
priori, in the thesauri), as well as the inclusion and suppression of terms, the

135

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

Figure 8.1: Thesaurus standards evolution [Lab07]

methods of compilation, the form and the content of the thesauri, the use of
automatic data processing, etc. The indications established in this standard
ensure the uniformity of each of the indexing areas or entities. The tech-
niques described by the standard are based on general principles that can be
applicable to any kind of subject.

• ISO 5964:1985, which sets the guidelines for the establishment and develop-
ment of multilingual thesauri [ISO85]. These guidelines should be used in
conjunction with ISO 2788 and regarded as an extension of the scope of the
monolingual guidelines. The majority of procedures and recommendations
contained in ISO 2788, namely, the forms of terms and the basic thesauri
relationships as well as management operations such evaluation and main-
tenance, are equally valid for a multilingual thesaurus. Distinction is made
between preferred terms and non-preferred terms.

• ANSI/NISO Z39.19-2005, which establishes the guidelines for the construc-
tion, format, and management of monolingual controlled vocabularies [ANS05].
This standard is related to ISO 2788. It presents guidelines and conventions
for the contents, display, construction, testing, maintenance, and manage-
ment of monolingual controlled vocabularies. It focuses on controlled vo-
cabularies that are used for the representation of content objects in knowl-
edge organization systems, including lists, synonym rings, taxonomies, and
thesauri.

• BS 8723-1:2005 and BS 8723-2:2005 [BS 05a, BS 05b]. The British Stan-
dard BS 8723-1 defines the terminology used throughout the rest of the BS

136

8.1. THESAURUS

8723 series. It provides an excellent glossary for terminology relating to the
use of thesauri for indexing and retrieval. The British Standard BS 8723-2
provides guidelines for the construction and maintenance of thesauri that are
intended as retrieval tools. Guidance is also given for designers of software
supporting the creation and maintenance process.

8.1.1 Components of a Thesaurus

A thesaurus is a collection of terms, and terms are the only type of entity consid-
ered in a thesaurus. Terms may be related to other terms traditionally using rela-
tionships, such as Broader Term (BT), Narrower Term (NT), Related Term (RT),
Use For (UF), and Use (U/USE) [Soe95]. The ISO 2788:1986 [ISO86] standard
proposes a thesaurus structure and identifies the thesaurus components, presented
in Figure 8.2.

Figure 8.2: UML representation of the thesaurus components [ISO86]

• A PreferredTerm, also known as descriptor, is used consistently to repre-
sent concepts when indexing documents. It has the following elements: (1)
LexicalValue, and (2) identifier.

• A Term, which is not assigned to documents when indexing but provided as
user’s entry point. It has the following elements: (1) LexicalValue, and (2)
identifier.

• A ScopeNote, which is a note following a term explaining its coverage, spe-
cialized usage, or rules for assigning it. The ScopeNote has a lexicalValue
element.

137

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

• A HierarchicalRelationship, which is a relationship between or among terms
in the thesaurus that depicts broader (generic) to narrower (specific) or whole-
part relationships.

• A AssociativeRelationship, which is a relationship between or among terms
in the thesaurus that leads from one term to other terms that are related to or
associated with it.

• A Equivalence, which is a relationship between or among terms in the the-
saurus that leads to one or more terms that are to be used instead of the term
from which the cross-reference is made.

8.1.2 Thesaurus Formal Definition

We formally define a thesaurus as the following tuple:

T = 〈TS, TC〉

Where TS represents the schema of the thesaurus, and TC represents the content
of the thesaurus.

The schema of the thesaurus is defined as:

TS = 〈TT, TA, TB, TN, TR〉

where:

• TT = {ttpt, ttnpt}, a set of two categories, ttpt preferred term, and ttnpt,
non-preferred term.

• TA = {a1, ..., an}, a finite set of attributes, where every ai ⊆ TT x Literal.

• TB = {tsb1, ..., tsbn}, a finite set of broader term relations.

• TN = {tsn1, ..., tsnn}, a finite set of narrower term relations.

• TR = {tsr1, ..., tsrn}, a finite set of related term relations.

The content of the thesaurus is defined as:

TC = 〈TT, TA, TB, TN, TR, TI, T tT , T tA, T tB, T tN , T tR〉

which consists of:

• The five TT , TA, TB, TN , and TR sets, as were defined before.

• A TI = {ti1, ..., tin} set whose elements are called thesaurus term identi-
fiers

• A TtT : TT → TI function called thesaurus term instantiation

• A TtA : TA→ TI function called thesaurus attribute instantiation

138

8.1. THESAURUS

• A TtB : TB → TI2 function called thesaurus broader term relation instan-
tiation

• A TtN : TN → TI2 function called thesaurus narrower term relation in-
stantiation

• A TtR : TR→ TI2 function called thesaurus related term relation instanti-
ation

8.1.3 Thesaurus Data Models

As mentioned in Section 5.1 there are different ways of representing the knowledge
encoded by a particular resource. This section presents the data models we found
for thesauri. Soergel [Soe95] identifies two ways of representing the knowledge
encoded by the thesauri: (1) the record-based model, and (2) the relation-based
model. In order to exemplify the data models for thesauri, we use an excerpt from
the FAO Thesaurus, AGROVOC1 shown in Figure 8.3. This Figure shows the
terms: Oryza and Rice. Next, we describe the data models for thesauri.

Figure 8.3: Excerpt of the AGROVOC thesaurus

8.1.3.1 Record-based Model

The record-based model, which is a denormalized structure, uses a record for ev-
ery term with information about the term, such as synonyms, broader, narrower

1http://www.fao.org/agrovoc/

139

http://www.fao.org/agrovoc/

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

and related terms. In this model, the information is stored in large packages, and to
access or change any piece of information we must get into the appropriate pack-
age. This model looks like the flattened model presented in Section 7.1.3. Figure
8.4 shows a thesaurus modelled with the record-based model.

Figure 8.4: AGROVOC thesaurus modelled with the record-based model

8.1.3.2 Relation-based Model

The relation-based model leads to a more elegant and efficient structure. Informa-
tion is stored in individual pieces that can be arranged in different ways. Relation-
ship types are not defined as fields in a record, but they are simply data values in
a relationship record; thus new relationship types can be introduced with ease. As
Figure 8.5 shows, there are three entities: (1) a term entity, which contains the over-
all set of terms, (2) a term-term relationship entity, in which each record contains
two different term codes and the relationship between them, and (3) a relationship
source entity, which contains the overall thesaurus relationships.

Figure 8.5: AGROVOC thesaurus modelled with the relation-based model

8.1.4 Thesaurus Implementations

These data models can be implemented as any of the identified types on Section
5.1, i.e., databases, XML files, flat files, and spreadsheets. A direct implementa-
tion would be implemented as tables in a relational database or in a spreadsheet.
Figure 8.6 presents a spreadsheet implementation of the record-based model of a
thesaurus, and Figure 8.7 presents an XML implementation of the record-based

140

8.1. THESAURUS

Figure 8.6: AGROVOC thesaurus, spreadsheet implementation for the record-
based model

model of a thesaurus. Both figures show the same excerpt of the AGROVOC the-
saurus though represented in different implementations.

Figure 8.7: AGROVOC thesaurus, XML implementation for the record-based
model

Figure 8.8 shows how a given type of thesauri can be modelled following one
or more data models, each of which could be implemented in different ways at
the implementation layer. As an example, Figure 8.8 shows a thesaurus modelled
following a record-based model. In this case, the thesaurus is implemented in a
database and in an XML file.

141

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

Figure 8.8: Thesauri categorization

8.2 Patterns for Re-engineering Thesauri into Ontologies

In this section we present re-engineering patterns (PR-NOR) for re-engineering
thesauri into ontologies. The patterns follow the naming convention defined in
Section 6.3. The patterns are

• Patterns for the TBox transformation

– PR-NOR-TSTX-01. The pattern for re-engineering a thesaurus follow-
ing the record-based data model into an ontology schema.

– PR-NOR-TSTX-02. The pattern for re-engineering a thesaurus follow-
ing the relation-based data model into an ontology schema.

• Patterns for the ABox transformation

– PR-NOR-TSAX-10. The pattern for re-engineering a thesaurus follow-
ing the record-based data model into an ontology.

– PR-NOR-TSAX-11. The pattern for re-engineering a thesaurus follow-
ing the relation-based data model into an ontology.

142

8.2. PATTERNS FOR RE-ENGINEERING THESAURI INTO ONTOLOGIES

8.2.1 Patterns for the TBox Transformation

These patterns transform the resource content into an ontology schema. The TBox
transformation approach tries to enforce a formal semantics to the re-engineered
resources, even at the cost of changing their structure [SAd+07]. For making ex-
plicit the semantics of the BT, NT and RT relations among thesaurus terms, the
patterns rely on an external resource, WordNet, as we described in Section 6.4.
For the UF/USE relations we use the logical pattern, SOE, proposed by Corcho
et al. [CR09] and suggested as best practice in the context of this antipattern: the
tendency to declare two classes equivalent when in fact their labels simply express
synonym.

The time complexity of the algorithms described in the Section PROCESS:
How to Re-engineering is polynomial O(n2).

8.2.1.1 Pattern for re-engineering a thesaurus following the record-based
data model into an ontology schema

The pattern for re-engineering thesaurus, shown in Table 8.1, provides a guide to
transform a thesaurus into an ontology schema. The thesaurus is modelled with a
record-based data model.

Table 8.1: Pattern for re-engineering a thesaurus following the record-based data
model into an ontology schema.

Slot Value

General Information

Name

Pattern for Re-engineering a Thesaurus following the Record-based data
model into an Ontology Schema.

Identifier PR-NOR-TSTX-01

Type of Component Pattern for Re-engineering Non-ontological Resources (PR-NOR)

Use Case

General
Re-engineering a thesaurus following the record-based model to design an on-
tology schema.

Example
Suppose that someone wants to build an ontology schema based on the Euro-
pean Training Thesaurus (ETT) following the record-based model.

Pattern for Re-engineering Non-ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a thesaurus that follows the record-based
model.
A thesaurus represents the knowledge of a domain with a collection of terms
and a limited set of relations between them.
The record-based data model [Soe95] is a denormalized structure, uses a
record for every term with the information about the term, such as synonyms,
broader, narrower and related terms.

Continued on next page

143

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

Table 8.1: Pattern for re-engineering a thesaurus following the record-based data
model into an ontology schema (continued).

Slot Value

Example

The European Training Thesaurus (ETT) constitutes the controlled vocabulary
of reference in the field of vocational education and training (VET) in Europe.
This thesaurus is available at
http://libserver.cedefop.europa.eu/ett/en/.

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the lightweight ontology
architectural pattern (AP-LW-01)[SFBG+07]. Each thesaurus term is mapped
to a class. For making explicit the semantics of the BT, NT and RT relations
among thesaurus terms the pattern relies on an external resource.

Graphical Representation

(UML) General
Solution Ontology

(UML) Example
Solution Ontology

Continued on next page

144

http://libserver.cedefop.europa.eu/ett/en/

8.2. PATTERNS FOR RE-ENGINEERING THESAURI INTO ONTOLOGIES

Table 8.1: Pattern for re-engineering a thesaurus following the record-based data
model into an ontology schema (continued).

Slot Value

PROCESS: How to Re-engineer

General

Require: Identification of the BT/NT/RT/UF relations by using the record-
based model

1: noBTerms← terms without a broader term
2: repeat
3: for ti ∈ noBTerms do
4: if not alreadyCreatedClassFor(ti) then
5: Ci← createClass(ti)
6: end if
7: NTerms← narrowerTermOf(ti)
8: for tj ∈ NTerms do
9: if alreadyCreatedClassFor(tj) then

10: remove(NTerms,tj)
11: else
12: Cj← createClass(tj)
13: end if
14: relation← ExternalResource.getRelation(Ci,Cj)
15: relate(relation,Ci,Cj)
16: end for
17: RTerms← relatedTermOf(ti)
18: for tr ∈ RTerms do
19: if alreadyCreatedClassFor(tr) then
20: remove(RTerms,tr)
21: else
22: Cr← createClass(tr)
23: end if
24: relation← ExternalResource.getRelation(Ci,Cr)
25: relate(relation,Ci,Cr)
26: end for
27: UFTerms← usedForTermOf(ti)
28: for tq ∈ UFTerms do
29: SOE(ti,tq)
30: end for
31: add(restOfTerms,NTerms)
32: add(restOfTerms,RTerms)
33: end for
34: noBTerms← restOfTerms
35: removeAllTerms(restOfTerms)
36: until isEmpty(noBTerms)

Continued on next page

145

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

Table 8.1: Pattern for re-engineering a thesaurus following the record-based data
model into an ontology schema (continued).

Slot Value

Example

Require: Identification of the BT/NT/RT/UF relations by using the record-
based model
1: noBTerms← [learning; personal development]
5: C1← createClass(learning)
7: NTerms← narrowerTermOf(learning)
7: NTerms← [competence] // using the record-based model
12: C11← createClass(competence)
14: rel1← ExternalResource.getRelation(C1,C11)
15: relate(rel1,C1,C11)
17: RTerms← ∅← relatedTermOf(learning)
27: UFTerms← ∅← usedForTermOf(learning)
31: restOfTerms← [competence]
5: C2← createClass(personal development)
7: NTerms← narrowerTermOf(personal development)
7: NTerms← [performance] // using the record-based model
12: C21← createClass(performance)
14: rel2← ExternalResource.getRelation(C2,C21)
15: relate(rel2,C2,C21)
17: RTerms← ∅← relatedTermOf(personal development)
27: UFTerms← ∅← usedForTermOf(personal development)
31: restOfTerms← [competence;performance]
34: noBTerms← restOfTerms← [competence;performance]
35: removeAllTerms(restOfTerms)
4: // competence class, C11, already created
7: NTerms← ∅← narrowerTermOf(competence)
17: RTerms← relatedTermOf(competence)
17: RTerms← [performance] // using the record-based model
20: remove(RTerms,performance) // performance class, C21, already cre-
ated
24: rel3← ExternalResource.getRelation(C11,C21)
25: relate(rel3,C11,C21)
27: UFTerms← ∅← usedForTermOf(competence)
31: restOfTerms← ∅
4: // performance class, C21, already created
7: NTerms← ∅← narrowerTermOf(performance)
17: RTerms← ∅← relatedTermOf(performance)
27: UFTerms← usedForTermOf(performance)
27: UFTerms← [achievement] // using the record-based model
29: SOE(performance,achievement)
31: restOfTerms← ∅
34: noBTerms← ∅← restOfTerms
35: removeAllTerms(restOfTerms)

Time Complexity O(n2)

Continued on next page

146

8.2. PATTERNS FOR RE-ENGINEERING THESAURI INTO ONTOLOGIES

Table 8.1: Pattern for re-engineering a thesaurus following the record-based data
model into an ontology schema (continued).

Slot Value

Additional Notes

• noBTerms,NTerms,RTerms, UFTerms, restOfTerms are lists
that do not allow duplicates.
• createClass is a function that creates a class from a given term.
• getRelation is the algorithm 1 defined in section 6.4.
• relate is a function that relates two given classes by a given relation.
• alreadyCreatedClassFor checks if there is an already class created for a

given term.
• narrowerTermOf is a function that returns the narrower terms of a given

term.
• relatedTermOf is a function that returns the related terms of a given term.
• usedForTermOf is a function that returns the equivalent terms of a given

term.
• remove is a function that removes a given term from a given list.
• removeAllTerms is a function that removes all the elements of a given list.
• isEmpty checks if a list has elements or not.
• add is a function that adds the elements of a list into another list.
• SOE is a pattern proposed by Corcho et al. [CR09] suggested as best prac-

tice in the context of this antipattern: the tendency to declare two classes
equivalent when in fact their labels simply express synonym.

Formal Transformation

General

Thesaurus: T = 〈TS, TC〉
Ontology: O = 〈OS,KB〉
Transformation: TC −→ OS :

TtT −→ C
TtN −→ R ∪ S
TtB −→ R ∪ S
TtR −→ R ∪ S

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: AP-LW-01 [SFBG+07]

8.2.1.2 Pattern for re-engineering a thesaurus following the relation-based
data model into an ontology schema

The pattern for re-engineering thesaurus, shown in Table 8.2, provides a guide to
transform a thesaurus into an ontology schema. The thesaurus is modelled with a
relation-based data model.

Table 8.2: Pattern for re-engineering a thesaurus following the relation-based
model, into an ontology schema.

Slot Value

General Information

Name

Pattern for Re-engineering a thesaurus following the Relation-based Model,
into an Ontology Schema

Identifier PR-NOR-TSTX-02

Continued on next page

147

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

Table 8.2: Pattern for re-engineering a thesaurus following the relation-based
model, into an ontology schema (continued).

Slot Value

Type of Component Pattern for Re-engineering Non-ontological Resources (PR-NOR)

Use Case

General
Re-engineering a thesaurus following the relation-based model to design an
ontology schema.

Example

Suppose that someone wants to build an ontology schema based on earlier
version of the AGROVOC Thesaurus, which is a thesaurus and it follows the
relation-based model.

Pattern for Re-engineering Non-ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a thesaurus that follows the relation-based
model.
A thesaurus represents the knowledge of a domain with a collection of terms
and a limited set of relations between them.
The relation-based data model [Soe95] is a normalized structure, in which
relationship types are not defined as fields in a record, but they are simply data
values in a relationship record, thus new relationship types can be introduced
with ease.

Example

The AGROVOC Thesaurus is an structured and controlled vocabulary
designed to cover the terminology of all subject fields in agriculture, forestry,
fisheries, food and related domains.
This thesaurus is available at http://www.fao.org/agrovoc/.

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the lightweight ontology
architectural pattern (AP-LW-01)[SFBG+07]. Each thesaurus term is mapped
to a class. For the disambiguation of the semantics of the BT, NT and RT
relations among thesaurus terms the pattern relies on an external resource.

Continued on next page

148

http://www.fao.org/agrovoc/

8.2. PATTERNS FOR RE-ENGINEERING THESAURI INTO ONTOLOGIES

Table 8.2: Pattern for re-engineering a thesaurus following the relation-based
model, into an ontology schema (continued).

Slot Value
Graphical Representation

(UML) General
Solution Ontology

(UML) Example
Solution Ontology

Continued on next page

149

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

Table 8.2: Pattern for re-engineering a thesaurus following the relation-based
model, into an ontology schema (continued).

Slot Value

PROCESS: How to Re-engineer

General

Require: Identification of the BT/NT/RT/UF relations by using the relation-
based model

1: noBTerms← terms without a broader term
2: repeat
3: for ti ∈ noBTerms do
4: if not alreadyCreatedClassFor(ti) then
5: Ci← createClass(ti)
6: end if
7: NTerms← narrowerTermOf(ti)
8: for tj ∈ NTerms do
9: if alreadyCreatedClassFor(tj) then

10: remove(NTerms,tj)
11: else
12: Cj← createClass(tj)
13: end if
14: relation← ExternalResource.getRelation(Ci,Cj)
15: relate(relation,Ci,Cj)
16: end for
17: RTerms← relatedTermOf(ti)
18: for tr ∈ RTerms do
19: if alreadyCreatedClassFor(tr) then
20: remove(RTerms,tr)
21: else
22: Cr← createClass(tr)
23: end if
24: relation← ExternalResource.getRelation(Ci,Cr)
25: relate(relation,Ci,Cr)
26: end for
27: UFTerms← usedForTermOf(ti)
28: for tq ∈ UFTerms do
29: SOE(ti,tq)
30: end for
31: add(restOfTerms,NTerms)
32: add(restOfTerms,RTerms)
33: end for
34: noBTerms← restOfTerms
35: removeAllTerms(restOfTerms)
36: until isEmpty(noBTerms)

Continued on next page

150

8.2. PATTERNS FOR RE-ENGINEERING THESAURI INTO ONTOLOGIES

Table 8.2: Pattern for re-engineering a thesaurus following the relation-based
model, into an ontology schema (continued).

Slot Value

Example

Require: Identification of the BT/NT/RT/UF relations by using the relation-
based model
1: noBTerms← [Poaceae; Cereals]
5: C1← createClass(Poaceae)
7: NTerms← narrowerTermOf(Poaceae)
7: NTerms← [Oryza] // using the relation-based model
12: C11← createClass(Oryza)
14: rel1← ExternalResource.getRelation(C1,C11)
15: relate(rel1,C1,C11)
17: RTerms← ∅← relatedTermOf(Poaceae)
27: UFTerms← ∅← usedForTermOf(Poaceae)
31: restOfTerms← [Oryza]
5: C2← createClass(Cereals)
7: NTerms← narrowerTermOf(Cereals)
7: NTerms← [Rice] // using the relation-based model
12: C21← createClass(Rice)
14: rel2← ExternalResource.getRelation(C2,C21)
15: relate(rel2,C2,C21)
17: RTerms← ∅← relatedTermOf(Cereals)
27: UFTerms← ∅← usedForTermOf(Cereals)
31: restOfTerms← [Oryza;Rice]
34: noBTerms← restOfTerms← [Oryza;Rice]
35: removeAllTerms(restOfTerms)
4: // Oryza class, C11, already created
7: NTerms← ∅← narrowerTermOf(Oryza)
17: RTerms← relatedTermOf(Oryza)
17: RTerms← [Rice] // using the relation-based model
20: remove(RTerms,Rice) // Rice class, C21, already created
24: rel3← ExternalResource.getRelation(C11,C21)
25: relate(rel3,C11,C21)
27: UFTerms← ∅← usedForTermOf(Oryza)
31: restOfTerms← ∅
4: // Rice, C21, already created
7: NTerms← ∅← narrowerTermOf(Rice)
17: RTerms← ∅← relatedTermOf(Rice)
27: UFTerms← usedForTermOf(Rice)
27: UFTerms← [Paddy] // using the relation-based model
29: SOE(Rice,Paddy)
31: restOfTerms← ∅
34: noBTerms← ∅← restOfTerms
35: removeAllTerms(restOfTerms)

Time Complexity O(n2)

Continued on next page

151

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

Table 8.2: Pattern for re-engineering a thesaurus following the relation-based
model, into an ontology schema (continued).

Slot Value

Additional Notes

• noBTerms,NTerms,RTerms, UFTerms, restOfTerms are lists
that do not allow duplicates.
• createClass is a function that creates a class from a given term.
• getRelation is the algorithm 1 defined in section 6.4.
• relate is a function that relates two given classes by a given relation.
• alreadyCreatedClassFor checks if there is an already class created for a

given term.
• narrowerTermOf is a function that returns the narrower terms of a given

term.
• relatedTermOf is a function that returns the related terms of a given term.
• usedForTermOf is a function that returns the equivalent terms of a given

term.
• remove is a function that removes a given term from a given list.
• removeAllTerms is a function that removes all the elements of a given list.
• isEmpty checks if a list has elements or not.
• add is a function that adds the elements of a list into another list.
• SOE is a pattern proposed by Corcho et al. [CR09] suggested as best prac-

tice in the context of this antipattern: the tendency to declare two classes
equivalent when in fact their labels simply express synonym.

Formal Transformation

General

Thesaurus: T = 〈TS, TC〉
Ontology: O = 〈OS,KB〉
Transformation: TC −→ OS :

TtT −→ C
TtN −→ R ∪ S
TtB −→ R ∪ S
TtR −→ R ∪ S

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: AP-LW-01 [SFBG+07]

8.2.2 Patterns for the ABox Transformation

These patterns transform the resource schema into an ontology schema, and the
resource content, into ontology instances. The ABox transformation approach
leaves the informal semantics of the re-engineered resources mostly untouched
[SAd+07].

As we mentioned in Section 8.1.1 the schema of a thesaurus has the following
main components: (1) PreferredTerm, which will be transformed into a class, (2)
Hierarchical Relationship, which will be transformed into a subClassOf relation,
(3) Associative Relationship, which will be transformed into an ad-hoc relation, (4)
Equivalent terms, the terms from the USE relationships, which will be transformed
into labels, by using the logical pattern SOE, proposed by Corcho et al. [CR09].
Finally, the content of the thesaurus will be transformed into ontology instances.

The time complexity of the algorithms described in the Section PROCESS:
How to Re-engineering is linear O(n).

152

8.2. PATTERNS FOR RE-ENGINEERING THESAURI INTO ONTOLOGIES

8.2.2.1 Pattern for re-engineering a thesaurus following the record-based
data model into an ontology.

The pattern for re-engineering thesaurus, shown in Table 8.3, provides a guide to
transform a thesaurus following the record-based data model into an ontology. The
pattern transforms the resource schema into an ontology schema, and the resource
content, into ontology instances.

Table 8.3: Pattern for re-engineering a thesaurus following the record-based data
model into an ontology.

Slot Value

General Information

Name

Pattern for Re-engineering a thesaurus following the Record-based Data
Model into an Ontology.

Identifier PR-NOR-TSAX-10

Type of Component Pattern for Re-engineering Non-ontological Resources (PR-NOR)

Use Case

General
Re-engineering a thesaurus following the record-based model to design an on-
tology.

Example
Suppose that someone wants to build an ontology based on the European Train-
ing Thesaurus (ETT), which is a thesaurus that follows the record-based model.

Pattern for Re-engineering Non-ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a thesaurus that follows the record-based
model.
A thesaurus represents the knowledge of a domain with a collection of terms
and a limited set of relations between them.
The record-based data model [Soe95] is a denormalized structure, uses a
record for every term with the information about the term, such as synonyms,
broader, narrower and related terms.

Example

The European Training Thesaurus (ETT) constitutes the controlled vocabulary
of reference in the field of vocational education and training (VET) in Europe.
This thesaurus is available at
http://libserver.cedefop.europa.eu/ett/en/.

Graphical Representation

General

Continued on next page

153

http://libserver.cedefop.europa.eu/ett/en/

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

Table 8.3: Pattern for re-engineering a thesaurus following the record-based data
model into an ontology (continued).

Slot Value

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the lightweight ontology
architectural pattern (AP-LW-01)[SFBG+07]. The thesaurus Term, schema
component, will be transformed to a class, the hierarchical relationship will be
transformed either to a subClassOf relation, the associative relationship will
be transformed to an ad-hoc relation, and equivalent terms, the ones from the
USE relationships, will be transformed to labels, by using the logical pattern
proposed by Corcho et al. [CR09]. Finally, the content of the thesaurus will be
transformed into ontology instances.

Graphical Representation

(UML) General
Solution Ontology

(UML) Example
Solution Ontology

Continued on next page

154

8.2. PATTERNS FOR RE-ENGINEERING THESAURI INTO ONTOLOGIES

Table 8.3: Pattern for re-engineering a thesaurus following the record-based data
model into an ontology (continued).

Slot Value

PROCESS: How to Re-engineer

General

1: entityName← name of the entity that contains the thesaurus terms
2: mainClass← createClass(entityName)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: relation1← relatedClass
6: relate(relation1,mainClass,mainClass)
7: TTerms← thesaurus terms
8: for ti ∈ TTerms do
9: if not alreadyCreatedInstanceFor(ti) then

10: Ii← createInstance(ti)
11: setInstanceOfClass(Ii,mainClass)
12: end if
13: UFTerms← usedForTermOf(ti)
14: for tq ∈ UFTerms do
15: SOE(ti,tq)
16: end for
17: end for

Example

1: entityName← name of the entity that contains the thesaurus terms
1: entityName← Vocational education
2: mainClass← createClass(entityName)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: relation2← relatedClass
6: relate(relation2,mainClass,mainClass)
7: TTerms← thesaurus terms
7: TTerms ← [competence;learning;performance; personal develop-
ment]
10: I1← createInstance(competence)
11: setInstanceOfClass(I1,mainClass)
13: UFTerms← ∅← usedForTermOf(competence)
10: I2← createInstance(learning)
11: setInstanceOfClass(I2,mainClass)
13: UFTerms← ∅← usedForTermOf(learning)
10: I3← createInstance(performance)
11: setInstanceOfClass(I3,mainClass)
13: UFTerms← usedForTermOf(performance)
13: UFTerms← [achievement] // using the record-based model
15: SOE(performance,achievement)
10: I4← createInstance(personal development)
11: setInstanceOfClass(I4,mainClass)
13: UFTerms← ∅← usedForTermOf(personal development)

Time Complexity O(n)

Continued on next page

155

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

Table 8.3: Pattern for re-engineering a thesaurus following the record-based data
model into an ontology (continued).

Slot Value

Additional Notes

• TTerms, UFTerms are lists that do not allow duplicates.
• createClass is a function that creates a class from a given term.
• relate is a function that relates two given classes by a given relation.
• alreadyCreatedClassFor checks if there is an already class created for a

given term.
• createInstance is a function that creates an instance from a given term.
• setInstanceOfClass is a function that sets up a given instance of a given

class.
• usedForTermOf is a function that returns the equivalent terms of a given

term.
• SOE is a pattern proposed by Corcho et al. [CR09] suggested as best prac-

tice in the context of this antipattern: the tendency to declare two classes
equivalent when in fact their labels simply express synonym.

Formal Transformation

General

Thesaurus: T = 〈TS, TC〉
Ontology: O = 〈OS,KB〉
Transformation: TS −→ OS :

TT −→ C
TA −→ A
TB −→ R ∪ S
TN −→ R ∪ S
TR −→ R ∪ S

TC −→ KB :
TI −→ I
T tA −→ tA
TtN −→ tR
TtB −→ tR
TtR −→ tR

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: AP-LW-01 [SFBG+07]

8.2.2.2 Pattern for re-engineering a thesaurus following the relation-based
data model into an ontology.

The pattern for re-engineering thesaurus, shown in Table 8.4, provides a guide to
transform a thesaurus following the record-based data model into an ontology. The
pattern transforms the resource schema into an ontology schema, and the resource
content, into ontology instances.

156

8.2. PATTERNS FOR RE-ENGINEERING THESAURI INTO ONTOLOGIES

Table 8.4: Pattern for re-engineering a thesaurus following the relation-based
model into an ontology.

Slot Value

General Information

Name

Pattern for Re-engineering a thesaurus following the Relation-based Model
into an Ontology

Identifier PR-NOR-TSAX-11

Type of Component Pattern for Re-engineering Non-ontological Resources (PR-NOR)

Use Case

General
Re-engineering a thesaurus following the relation-based model to design an
ontology

Example

Suppose that someone wants to build an ontology based on earlier version of the
AGROVOC Thesaurus, which is a thesaurus and it follows the relation-based
model.

Pattern for Re-engineering Non-ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a thesaurus that follows the relation-based
model.
A thesaurus represents the knowledge of a domain with a collection of terms
and a limited set of relations between them.
The relation-based data model [Soe95] is a normalized structure, in which
relationship types are not defined as fields in a record, but they are simply data
values in a relationship record, thus new relationship types can be introduced
with ease.

Example

The AGROVOC Thesaurus is an structured and controlled vocabulary
designed to cover the terminology of all subject fields in agriculture, forestry,
fisheries, food and related domains.
This thesaurus is available at http://www.fao.org/agrovoc/.

Graphical Representation

General

Example

Continued on next page

157

http://www.fao.org/agrovoc/

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

Table 8.4: Pattern for re-engineering a thesaurus following the relation-based
model into an ontology (continued).

Slot Value

OUTPUT: Designed Ontology

General

The ontology generated will be based on the lightweight ontology
architectural pattern (AP-LW-01)[SFBG+07]. The thesaurus Term, schema
component, will be transformed to a class, the hierarchical relationship will be
transformed either to a subClassOf relation, the associative relationship will
be transformed to an ad-hoc relation, and equivalent terms, the ones from the
USE relationships, will be transformed to labels, by using the logical pattern
proposed by Corcho et al. [CR09]. Finally, the content of the thesaurus will be
transformed into ontology instances.

Graphical Representation

(UML) General
Solution Ontology

(UML) Example
Solution Ontology

PROCESS: How to Re-engineer

General

1: entityName← name of the entity that contains the thesaurus terms
2: mainClass← createClass(entityName)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: relation1← relatedClass
6: relate(relation1,mainClass,mainClass)
7: TTerms← thesaurus terms
8: for ti ∈ TTerms do
9: if not alreadyCreatedInstanceFor(ti) then

10: Ii← createInstance(ti)
11: setInstanceOfClass(Ii,mainClass)
12: end if
13: UFTerms← usedForTermOf(ti)
14: for tq ∈ UFTerms do
15: SOE(ti,tq)
16: end for
17: end for

Continued on next page

158

8.2. PATTERNS FOR RE-ENGINEERING THESAURI INTO ONTOLOGIES

Table 8.4: Pattern for re-engineering a thesaurus following the relation-based
model into an ontology (continued).

Slot Value

Example

1: entityName← name of the entity that contains the thesaurus terms
1: entityName← AgrovocTerm
2: mainClass← createClass(entityName)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: relation2← relatedClass
6: relate(relation2,mainClass,mainClass)
7: TTerms← thesaurus terms
7: TTerms← [Poaceae;Cereals;Rice;Oryza]
10: I1← createInstance(Poaceae)
11: setInstanceOfClass(I1,mainClass)
13: UFTerms← ∅← usedForTermOf(Poaceae)
10: I2← createInstance(Cereals)
11: setInstanceOfClass(I2,mainClass)
13: UFTerms← ∅← usedForTermOf(Cereals)
10: I3← createInstance(Rice)
11: setInstanceOfClass(I3,mainClass)
13: UFTerms← usedForTermOf(Rice)
13: UFTerms← [Paddy] // using the record-based model
15: SOE(Rice,Paddy)
10: I4← createInstance(Oryza)
11: setInstanceOfClass(I4,mainClass)
13: UFTerms← ∅← usedForTermOf(Oryza)

Time Complexity O(n)

Additional Notes

• TTerms, UFTerms are lists that do not allow duplicates.
• createClass is a function that creates a class from a given term.
• relate is a function that relates two given classes by a given relation.
• alreadyCreatedClassFor checks if there is an already class created for a

given term.
• createInstance is a function that creates an instance from a given term.
• setInstanceOfClass is a function that sets up a given instance of a given

class.
• usedForTermOf is a function that returns the equivalent terms of a given

term.
• SOE is a pattern proposed by Corcho et al. [CR09] suggested as best prac-

tice in the context of this antipattern: the tendency to declare two classes
equivalent when in fact their labels simply express synonym.

Continued on next page

159

CHAPTER 8. PATTERNS FOR RE-ENGINEERING THESAURI

Table 8.4: Pattern for re-engineering a thesaurus following the relation-based
model into an ontology (continued).

Slot Value

Formal Transformation

General

Thesaurus: T = 〈TS, TC〉
Ontology: O = 〈OS,KB〉
Transformation: TS −→ OS :

TT −→ C
TA −→ A
TB −→ R ∪ S
TN −→ R ∪ S
TR −→ R ∪ S

TC −→ KB :
TI −→ I
T tA −→ tA
TtN −→ tR
TtB −→ tR
TtR −→ tR

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: AP-LW-01 [SFBG+07]

8.3 Summary

This chapter has presented our solution for the aspects related to the re-engineering
of thesauri for building ontologies. Our solution addresses some of the limitations
identified in the state of art in this area.

First, we review the definition of a thesaurus, including its components. Then,
we provide a formal definition for the thesauri and the identified data models
as well as implementations for them. Finally, we present the patterns for re-
engineering thesauri into ontologies, including those for the TBox and ABox trans-
formation approaches. The time complexity of the TBox transformation algorithm
is polynomial O(n2), whereas that of the ABox transformation algorithm is linear
O(n). This set of patterns are used within the method presented in Chapter 6.

The solutions presented in this chapter cover contribution C8, which partially
addresses objective O3 (see Chapter 3). This contribution is evaluated in Sections
11.1.1 and 11.2.1.

160

Chapter 9

PATTERNS FOR
RE-ENGINEERING LEXICA

The term lexicon is found in many ways, in conventional printed dictionaries, CD-
ROM editions and Web-based versions. During the 1970s and 80s computational
linguistics began to develop computational lexicons for natural language process-
ing programs. Computational lexicons differ from dictionaries intended for human
use in that they must contain much more explicit and specific linguistic informa-
tion about phrases and words and must be encoded in strictly formal structures
operable by computer programs. In this chapter we present a definition of lexicon,
data models for representing lexicons and patterns for re-engineering lexicons into
ontologies, which are our contribution to this area.

9.1 Lexicon

According to [Hir04] a lexicon is a list of words in a language (a vocabulary) that
provides some knowledge of how to use each word. A lexicon may be general or
domain-specific; we might have, for example, a lexicon of several thousand com-
mon words of English or German, or a lexicon of the technical terms of dentistry
in some language. The words of interest are usually open-class or content words,
such as nouns, verbs, and adjectives, rather than closed-class or grammatical func-
tion words such as articles, pronouns, and prepositions whose behaviour is more
tightly bound to the grammar of the language. A lexicon may also include multi-
word expressions such as fixed phrases (by and large), phrasal verbs (tear apart),
and other common or popular expressions such as Merry Christmas! or Elvis has
left the building.

Hirst [Hir04] also points out that an ordinary dictionary is an example of a
lexicon. However, a dictionary is intended to be used by humans, and its style and
format are unsuitable for computational use. A dictionary in a machine-readable
format can serve as the basis for a computational lexicon, as in the ACQUILEX

161

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

project1, and it can also serve as the basis of a semantic hierarchy.
During the last decade the subject of lexicon standardization has been studied

and developed by several projects, for example, EDR2, EAGLES3, MULTEXT4,
PAROLE5, SIMPLE6 and ISLE7, among others.

Next, we briefly describe the most important and recent lexicon standards.

• ISO 16642. The ISO 16642:2003 [KSKR06] specifies a framework designed
to provide guidance on the basic principles for representing data recorded in
terminological data collections. This framework includes a meta-model and
methods for describing specific terminological markup languages (TMLs)
expressed in XML. The mechanisms for implementing constraints in a TML
are defined in ISO 16642:2003, but the specific constraints for individual
TMLs are not, except for the three TMLs defined in the annexes of ISO
16642:2003.

• Lexical Markup Framework. The Lexical Markup Framework (LMF;
ISO/-CD 24613) [FGC+06] is an abstract metamodel that provides a com-
mon, standardized framework for the construction of computational lexi-
cons. LMF ensures the encoding of linguistic information in a way that
enables reusability in different applications and for different tasks. LMF
provides a common, shared representation of lexical objects, including mor-
phological, syntactic and semantic aspects. LMF provides mechanisms that
allow the development and integration of a variety of electronic lexical re-
source types. It supports lexical resource models like the Genelex [ALFZ94],
the EAGLES International Standards for Language Engineering (ISLE) [CNZ96]
and Multilingual ISLE Lexical Entry (MILE) models [ILC03].

• WordNet-LMF. WordNet-LMF [SMV09] is a dialect of ISO Lexical Markup
Framework that instantiates LMF for representing wordnets. The goal of
WordNet-LMF is 1) to give a preliminary assessment of LMF, by large-scale
application to real lexical resources and 2) to endow WordNet with a for-
mat representation that will allow easier integration among resources sharing
the same structure (i.e., wordnets). LMF specifications are fully compatible
with the structural organization of lexical knowledge encoded in wordnet-
like lexical resources. Starting from the meta-model provided by LMF, the
additional package used in WordNet-LMF is the semantics extension pack-
age.

1http://www.cl.cam.ac.uk/research/nl/acquilex/
2http://www.wtec.org/loyola/kb/c5_s2.htm
3http://www.ilc.cnr.it/EAGLES/home.html
4http://aune.lpl.univ-aix.fr/projects/multext/
5http://www.elda.fr/catalogue/en/text/doc/parole.html
6http://www.ub.edu/gilcub/SIMPLE/simple.html
7http://www.ilc.cnr.it/EAGLES96/isle/ISLE_Home_Page.htm

162

http://www.cl.cam.ac.uk/research/nl/acquilex/
http://www.wtec.org/loyola/kb/c5_s2.htm
http://www.ilc.cnr.it/EAGLES/home.html
http://aune.lpl.univ-aix.fr/projects/multext/
http://www.elda.fr/catalogue/en/text/doc/parole.html
http://www.ub.edu/gilcub/SIMPLE/simple.html
http://www.ilc.cnr.it/EAGLES96/isle/ISLE_Home_Page.htm

9.1. LEXICON

9.1.1 Components of a Lexicon

Based on the WordNet-LMF standard we can identify the following components
of a lexicon, presented in Figure 9.1

Figure 9.1: UML representation of the lexicon main components [FGC+06]

• A Lexical Resource component, which represents the entire resource. The
Lexical Resource is a container for one or more lexicons.

• A Global Information component, which constitutes the administrative in-
formation and other general attributes. There is an aggregation relationship
between the Lexical Resource and the Global Information in that the latter
describes the administrative information and general attributes of the entire
resource.

• A Lexicon component, which contains all the lexical entries of a given lan-
guage within the entire resource. A Lexicon must contain at least one lexical
entry.

• A Lexical Entry component, which represents a lexeme in a given language.
The Lexical Entry is a container for managing the Form and Sense. There-
fore, the Lexical Entry manages the relationship between the forms and their

163

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

related senses. A Lexical Entry can contain one or many different forms, and
can have different sense ranging from zero to many.

• A Form Representation component, which constitutes one variant orthogra-
phy of a Form. When there is more than one variant orthography, the Form
Representation contains a Unicode string representing the Form as well as, if
needed, the unique attribute-value pairs that describe the specific language,
script, and orthography.

• A Representation component, which represents a Unicode string as well as,
if needed, the unique attribute-value pairs that describe the specific language,
script, and orthography.

• A Sense component, which represents one meaning of a lexical entry. It al-
lows for hierarchical senses in that a sense may be more specific than another
sense of the same lexical entry.

• A Synset component, which represents the set of shared meanings within the
same language. A Synset instance can link senses of different Lexical Entry
instances with the same part of speech.

• A Synset Relation component, which represents the oriented relationship be-
tween Synset instances.

• A Definition component, which represents a narrative description of a sense.
It is displayed to facilitate human users to understand the meaning of a Lexi-
cal Entry and is not meant to be processable by computer programs. A Sense
can have no definition or it can have many. Each Definition may be associ-
ated with zero to many Text Representation components in order to manage
the text definition in more than one language or script. The narrative descrip-
tion can be expressed in a language and/or script different than the language
of the Lexical Entry component.

• A Statement component, which constitutes a narrative description and refines
or complements Definition. A Definition can have no Statement instances or
it can have many.

• A Text Representation component, which represents a textual content of Def-
inition or Statement. When there is more than one variant orthography, the
Text Representation contains a Unicode string representing both the textual
content and the unique attribute-value pairs that describe the specific lan-
guage, script, and orthography.

164

9.1. LEXICON

9.1.2 Lexicon Formal Definition

We formally define a lexicon as the following tuple:

L = 〈LS,LC〉

Where LS represents the schema of the lexicon, and LC represents the content of
the lexicon.

The schema of the lexicon, LS, is defined as

LS = 〈LE,SY, SR〉

where:
• LE = {le1, ..., len}, a set of lexical entries.

• SY = {syi, ..., syn}, a set of synsets, where syi ⊆ LEm .

• SR = {sri, ..., srn}, a set of synset relations, where syi ⊆ SY x SY .

The content of the lexicon, LC, is defined as

LC = 〈LE,SY, SR,LI, SI, LtL, LtS , LtR〉

which consists of:
• The three LE, SY and SR sets, as defined before.

• A LI = {li1, ..., lin} set whose elements are called lexical entry identifiers.

• A SI = {syi1, ..., syin} set whose elements are called synset identifiers.

• A LtL : LE → LI function called lexical entry instantiation.

• A LtS : SY → SI function called synset instantiation.

• A LtR : SR→ SI2 function called synset relation instantiation.

9.1.3 Lexicon Data Models

As mentioned in Section 5.1 there are different ways of representing the knowledge
encoded by a particular resource. After analysing several data models for lexicons,
we have identified the same data models already identified for thesauri. In this
section we present these data models, which are independent of the standards de-
scribed in the previous section. In order to exemplify the data models for lexicons,
we use an excerpt of WordNet, shown in Figure 9.2.

9.1.3.1 Record-based model

The record-based model [Soe95], which is a denormalized structure, uses a record
for every element of the lexicon with information about the element, such as antonyms,
hypernyms, hyponym, etc. In this model, the information is stored in large pack-
ages, and to access or change any piece of information we must get into the appro-
priate package. Figure 9.3 depicts this data model.

165

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

Figure 9.2: Excerpt of WordNet lexicon

Figure 9.3: WordNet modelled with the record-based model

9.1.3.2 Relation-based model

The relation-based model [Soe95] leads to a more elegant and efficient structure.
Information is stored in individual pieces that can be arranged in different ways.
Relationship types are not defined as fields in a record, but they are simply data
values in a relationship record; thus new relationship types can be introduced with
ease. In this case, Figure 9.4 shows there are three entities: (1) an element entity,

Figure 9.4: WordNet modelled with the relation-based model

166

9.1. LEXICON

which contains the overall set of lexicon elements, (2) an element-element rela-
tionship entity, in which each record contains two different element codes and the
relationship between them, and (3) a relationship source entity, which contains the
overall lexicon relationships.

9.1.4 Lexicon Implementations

Finally these data models can be implemented as any of the identified types in Sec-
tion 5.1, namely, databases, XML files, flat files, and spreadsheets. A direct imple-
mentation would be as tables in a relational database or in a spreadsheet. Figure
9.5 presents a database implementation of the relation-based model of WordNet,
specifically the linktype table.

Figure 9.5: Excerpt of a WordNet database implementation

Figure 9.6 shows how a given lexicon can be modelled following one or more
data models, each of which could be implemented in different ways at the imple-
mentation layer. Figure 9.6 shows an example of a lexicon modelled following a
record-based model. The lexicon is implemented in a database and in an XML file.

167

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

Figure 9.6: Lexicon categorization

9.2 Patterns for Re-engineering Lexica into Ontologies

In this section we present re-engineering patterns (PR-NOR) for re-engineering
lexica into ontologies. The patterns are

• Patterns for the TBox transformation

– PR-NOR-LXTX-01. The pattern for re-engineering a lexicon follow-
ing the record-based data model into an ontology schema.

– PR-NOR-LXTX-02. The pattern for re-engineering a lexicon follow-
ing the relation-based data model into an ontology schema.

• Patterns for the ABox transformation

– PR-NOR-LXAX-10. The pattern for re-engineering a lexicon follow-
ing the record-based data model into an ontology.

– PR-NOR-LXAX-11. The pattern for re-engineering a lexicon follow-
ing the relation-based data model into an ontology.

9.2.1 Patterns for the TBox Transformation

These patterns transform the resource content into an ontology schema. The TBox
transformation approach tries to impose a formal semantics on the re-engineered

168

9.2. PATTERNS FOR RE-ENGINEERING LEXICA INTO ONTOLOGIES

resources, even at the cost of changing their structure [SAd+07]. The patterns rely
on an external resource, WordNet, for making explicit the semantics of the relations
among lexicon terms, as described in section 6.4. For the relations of synonyms
we use the logical pattern proposed by Corcho et al. [CR09] and suggested as
best practice in the context of this antipattern: The tendency to declare two classes
equivalent when in fact their labels simply express synonym.

The time complexity of the algorithms described in the SectionPROCESS: How
to Re-engineering is polynomial O(n2).

9.2.1.1 Pattern for re-engineering a lexicon following the record-based data
model into an ontology schema

The pattern for re-engineering lexicon, shown in Table 9.1, provides a guide to
transform a lexicon into an ontology schema. The lexicon is modelled with the
record-based data model.

Table 9.1: Pattern for re-engineering a lexicon following the record-based data
model into an ontology schema.

Slot Value

General Information

Name

Pattern for re-engineering a lexicon following the record-based data model
into an ontology schema.

Identifier PR-NOR-LXTX-01

Type of Component Pattern for Re-engineering Non-ontological Resources (PR-NOR)

Use Case

General
Re-engineering a lexicon following the record-based data model into an ontol-
ogy schema.

Example

Suppose that someone wants to build an ontology based on the BioLexicon.
The BioLexicon, and one of its variants is modelled with the record-based data
model.

Pattern for Re-engineering Non-ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a lexicon that follows the record-based data
model.
A lexicon is a list of words in a language along with some knowledge of how
to use each word. A lexicon may be general or domain-specific; we might
have, for example, a lexicon of several thousand common words of English or
German, or a lexicon of the technical terms of dentistry in some language.
The record-based model [Soe95] is a denormalized structure, uses a record for
every element of the lexicon with the information about the element, such as
antonyms, hypernyms, hyponym, etc.

Continued on next page

169

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

Table 9.1: Pattern for re-engineering a lexicon following the record-based data
model into an ontology schema (continued).

Slot Value

Example

The BioLexicon is a large-scale terminological resource which has been
developed to address the needs emerging in text mining efforts in the
biomedical domain. This lexicon is available at http://www.ebi.ac.
uk/Rebholz-srv/BioLexicon/biolexicon.html

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the lightweight ontology
architectural pattern (AP-LW-01) [SFBG+07]. Each BioLexicon synset is
mapped to a class. The hyponymy/hypernym relations are mapped to
subClassOf/superClassOf relations. The member meronym/holonym relations
are mapped to partOf/hasPart. For synonyms we use the logical pattern
proposed by Corcho et al. [CR09] suggested as best practice in the context of
this antipattern: the tendency to declare two classes equivalent when in fact
their labels simply express synonymy. For making explicit the semantics of
rest of relations, the pattern relies on an external resource.

Graphical Representation

(UML) General
Solution Ontology

Continued on next page

170

http://www.ebi.ac.uk/Rebholz-srv/BioLexicon/biolexicon.html
http://www.ebi.ac.uk/Rebholz-srv/BioLexicon/biolexicon.html

9.2. PATTERNS FOR RE-ENGINEERING LEXICA INTO ONTOLOGIES

Table 9.1: Pattern for re-engineering a lexicon following the record-based data
model into an ontology schema (continued).

Slot Value

(UML) Example
Solution Ontology

PROCESS: How to Re-engineer

General

Require: Identification of the relations by using the record-based model
1: Synsets← all the synsets of the lexicon
2: for si ∈ Synsets do
3: if not alreadyCreatedClassFor(si) then Ci← createClass(si) endif
4: Hyponyms← hyponymOf(si)
5: for sj ∈ Hyponyms do
6: if not alreadyCreatedClassFor(sj) then Cj← createClass(sj) endif
7: relate(subClassOf,Ci,Cj)
8: end for
9: Hypernyms← hypernymOf(si)

10: for sk ∈ Hypernyms do
11: if not alreadyCreatedClassFor(sk) then Ck← createClass(sk) endif
12: relate(subClassOf,Ck,Ci)
13: end for
14: Meronyms← meronymOf(si)
15: for sl ∈Meronyms do
16: if not alreadyCreatedClassFor(sl) then Cl← createClass(sl) endif
17: relate(partOf,Ci,Cl)
18: end for
19: Holonyms← holonymOf(si)
20: for sm ∈ Holonyms do
21: if not alreadyCreatedClassFor(sm) then Cm← createClass(sm) enif
22: relate(partOf,Cm,Ci)
23: end for
24: Synonyms← synonymOf(si)
25: for sn ∈ Synonyms do
26: CorchoEtAlPattern(si,tn) // Corcho et al. [CR09]. Logical Pattern
27: end for
28: RelatedSynsets← relatedSynsetOf(si)
29: for so ∈ RelatedSynsets do
30: if not alreadyCreatedClassFor(so) then Co← createClass(so) endif
31: relation← ExternalResource.getRelation(Ci,Co)
32: relate(relation,Ci,Co)
33: end for
34: end for

Continued on next page

171

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

Table 9.1: Pattern for re-engineering a lexicon following the record-based data
model into an ontology schema (continued).

Slot Value

Example

Require: Identification of the relations by using the record-based model
1: Synsets← [cell;cell part;animal cell]
3: C1← createClass(cell)
4: Hyponyms← hyponymOf(cell)
4: Hyponyms← [animal cell] // using the record-based model
6: C2← createClass(animal cell)
7: relate(subClassOf,C2,C1)
9: Hypernyms← ∅←hypernymOf(cell)
14: Meronyms← meronymOf(cell) // using the record-based model
14: Meronyms← [cell part]
16: C3← createClass(cell part)
17: relate(partOf,C3,C1)
19: Holonyms← ∅← holonymOf(cell)
24: Synonyms← synonymOf(cell) // using the record-based model
24: Synonyms← [CESP:C16C10.8]
26: CorchoEtAlPattern(cell,CESP:C16C10.8) // Corcho et al. [CR09].
28: RelatedSynsets← ∅← relatedSynsetOf(cell)

Time Complexity O(n2)

Additional Notes

• Synsets,Hyponyms,Hypernyms,Meronyms,Holonyms,
Synonyms are lists that do not allow duplicates.
• createClass is a function that creates a class from a given synset.
• getRelation is the algorithm 1 defined in section 6.4.
• relate is a function that relates two given classes by a given relation.
• alreadyCreatedClassFor checks if there is an already class created for a

given synset.
• hyponymOf is a function that returns the hyponyms of a given synset.
• hypernymOf is a function that returns the hypernyms of a given synset.
• meronymOf is a function that returns the meronyms of a given synset.
• holonymOf is a function that returns the holonyms of a given synset.
• synonymOf is a function that returns the synonyms of a given synset.
• relatedSynsetOf is a function that returns the synsets related to a given

synset.
• remove is a function that removes a given synset from a given list.
• removeAllTerms is a function that removes all the elements of a given list.
• isEmpty checks if a list has elements or not.
• add is a function that adds the elements of a list into another list.
• SOE is a pattern proposed by Corcho et al. [CR09] suggested as best prac-

tice in the context of this antipattern: the tendency to declare two classes
equivalent when in fact their labels simply express synonym.

Formal Transformation

General

Lexicon: L = 〈LS,LC〉
Ontology: O = 〈OS,KB〉
Transformation: LC −→ OS

LtS −→ C
LtR −→ R ∪ S

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: AP-LW-01 [SFBG+07]

172

9.2. PATTERNS FOR RE-ENGINEERING LEXICA INTO ONTOLOGIES

9.2.1.2 Pattern for re-engineering a lexicon following the relation-based data
model into an ontology schema

The pattern for re-engineering a lexicon, shown in Table 9.2, provides a guide to
transform a lexicon into an ontology schema. The lexicon is modelled with the
relation-based data model.

Table 9.2: Pattern for re-engineering a wordnet lexicon following the relation-
based data model into an ontology schema.

Slot Value

General Information

Name

Pattern for re-engineering a lexicon following the relation-based data model
into an ontology schema.

Identifier PR-NOR-LXTX-02

Type of Component Pattern for Re-engineering Non-ontological Resources (PR-NOR)

Use Case

General
Re-engineering a lexicon following the relation-based model into an ontology
schema.

Example
Suppose that someone wants to build an ontology based on the Princeton Word-
Net. The Princeton WordNet is modelled with the relation-based data model.

Pattern for Re-engineering Non-ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a lexicon that follows the relation-based
model.
A lexicon is a list of words in a language along with some knowledge of how
to use each word. A lexicon may be general or domain-specific; we might
have, for example, a lexicon of several thousand common words of English or
German, or a lexicon of the technical terms of dentistry in some language.
The relation-based data model [Soe95] is a normalized structure, in which
relationship types are not defined as fields in a record, but they are simply data
values in a relationship record, thus new relationship types can be introduced
with ease.

Example
The Princeton WordNet is the best known computational lexicon of English.
This lexicon is available at http://wordnet.princeton.edu/.

Continued on next page

173

http://wordnet.princeton.edu/

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

Table 9.2: Pattern for re-engineering a lexicon following the relation-based data
model into an ontology schema (continued).

Slot Value
Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the lightweight ontology
architectural pattern (AP-LW-01) [SFBG+07]. Each WordNet synset is
mapped to a class. The hyponymy/hypernym relations are mapped to
subClassOf/superClassOf relations. The member meronym/holonym relations
are mapped to partOf/hasPart. For synonyms we use the logical pattern
proposed by Corcho et al. [CR09] suggested as best practice in the context of
this antipattern: the tendency to declare two classes equivalent when in fact
their labels simply express synonymy.

Continued on next page

174

9.2. PATTERNS FOR RE-ENGINEERING LEXICA INTO ONTOLOGIES

Table 9.2: Pattern for re-engineering a lexicon following the relation-based data
model into an ontology schema (continued).

Slot Value
Graphical Representation

(UML) General
Solution Ontology

(UML) Example
Solution Ontology

Continued on next page

175

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

Table 9.2: Pattern for re-engineering a lexicon following the relation-based data
model into an ontology schema (continued).

Slot Value

PROCESS: How to Re-engineer

General

Require: Identification of the relations by using the relation-based model
1: Synsets← all the synsets of the lexicon
2: for si ∈ Synsets do
3: if not alreadyCreatedClassFor(si) then Ci← createClass(si) endif
4: Hyponyms← hyponymOf(si)
5: for sj ∈ Hyponyms do
6: if not alreadyCreatedClassFor(sj) then Cj← createClass(sj) endif
7: relate(subClassOf,Ci,Cj)
8: end for
9: Hypernyms← hypernymOf(si)

10: for sk ∈ Hypernyms do
11: if not alreadyCreatedClassFor(sk) then Ck← createClass(sk) endif
12: relate(subClassOf,Ck,Ci)
13: end for
14: Meronyms← meronymOf(si)
15: for sl ∈Meronyms do
16: if not alreadyCreatedClassFor(sl) then Cl← createClass(sl) endif
17: relate(partOf,Ci,Cl)
18: end for
19: Holonyms← holonymOf(si)
20: for sm ∈ Holonyms do
21: if not alreadyCreatedClassFor(sm) then Cm← createClass(sm) enif
22: relate(partOf,Cm,Ci)
23: end for
24: Synonyms← synonymOf(si)
25: for sn ∈ Synonyms do
26: CorchoEtAlPattern(si,tn) // Corcho et al. [CR09]. Logical Pattern
27: end for
28: RelatedSynsets← relatedSynsetOf(si)
29: for so ∈ RelatedSynsets do
30: if not alreadyCreatedClassFor(so) then Co← createClass(so) endif
31: relation← ExternalResource.getRelation(Ci,Co)
32: relate(relation,Ci,Co)
33: end for
34: end for

Example

Require: Identification of the relations by using the relation-based model
1: Synsets← [river;rapid;stream]
3: C1← createClass(river)
4: Hyponyms← ∅← hyponymOf(river)
9: Hypernyms← hypernymOf(river) // using the relation-based model
9: Hypernyms← [stream]
11: C2← createClass(stream)
12: relate(subClassOf,C1,C3)
14: Meronyms← meronymOf(river)
14: Meronyms← [rapid] // using the relation-based model
16: C3← createClass(rapid)
17: relate(partOf,C3,C1)
19: Holonyms← ∅← holonymOf(river)
24: Synonyms← ∅← synonymOf(river)
28: RelatedSynsets← ∅← relatedSynsetOf(river)

Time Complexity O(n2)

Continued on next page

176

9.2. PATTERNS FOR RE-ENGINEERING LEXICA INTO ONTOLOGIES

Table 9.2: Pattern for re-engineering a lexicon following the relation-based data
model into an ontology schema (continued).

Slot Value

Additional Notes

• Synsets,Hyponyms,Hypernyms,Meronyms,Holonyms,
Synonyms are lists that do not allow duplicates.
• createClass is a function that creates a class from a given synset.
• getRelation is the algorithm 1 defined in section 6.4.
• relate is a function that relates two given classes by a given relation.
• alreadyCreatedClassFor checks if there is an already class created for a

given synset.
• hyponymOf is a function that returns the hyponyms of a given synset.
• hypernymOf is a function that returns the hypernyms of a given synset.
• meronymOf is a function that returns the meronyms of a given synset.
• holonymOf is a function that returns the holonyms of a given synset.
• synonymOf is a function that returns the synonyms of a given synset.
• relatedSynsetOf is a function that returns the synsets related to a given

synset.
• remove is a function that removes a given synset from a given list.
• removeAllTerms is a function that removes all the elements of a given list.
• isEmpty checks if a list has elements or not.
• add is a function that adds the elements of a list into another list.
• SOE is a pattern proposed by Corcho et al. [CR09] suggested as best prac-

tice in the context of this antipattern: the tendency to declare two classes
equivalent when in fact their labels simply express synonym.

Formal Transformation

General

Lexicon: L = 〈LS,LC〉
Ontology: O = 〈OS,KB〉
Transformation: LC −→ OS

LtS −→ C
LtR −→ R ∪ S

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: AP-LW-01 [SFBG+07]

9.2.2 Patterns for the ABox Transformation

These patterns transform the resource schema into an ontology schema, and the
resource content, into ontology instances. The ABox transformation approach
leaves the informal semantics of the re-engineered resources mostly untouched
[SAd+07].

As mentioned in Section 9.1, the schema of a lexica has the following main
components: (1) a synset, which will be transformed to a class, (2) hyponymy/hy-
pernym relations, which are mapped to subClassOf/superClassOf relations, (3)
member meronym/holonym relations, which are mapped to partOf/hasPart, (4)
synonym relations, which are mapped to labels by using the logical pattern pro-
posed by Corcho et al. [CR09]; and the content of the lexicon, which will be
transformed into ontology instances.

The time complexity of the algorithms described in the Section PROCESS:
How to Re-engineering is linear O(n).

177

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

9.2.2.1 Pattern for re-engineering a lexicon following the record-based data
model into an ontology.

The pattern for re-engineering lexicon, shown in Table 9.3, provides a guide to
transform a lexicon into an ontology. The lexicon is modelled with the record-
based data model.

Table 9.3: Pattern for re-engineering a lexicon following the record-based data
model into an ontology.

Slot Value

General Information

Name

Pattern for re-engineering a lexicon following the record-based data model
into an ontology.

Identifier PR-NOR-LXAX-10

Type of Component Pattern for Re-engineering Non-ontological Resources (PR-NOR)

Use Case

General
Re-engineering a lexicon following the record-based data model into an ontol-
ogy.

Example

Suppose that someone wants to build an ontology based on the BioLexicon.
The BioLexicon, and one of its variants is modelled with the record-based data
model.

Pattern for Re-engineering Non-ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a lexicon that follows the record-based data
model.
A lexicon contains a list of words in a language along with some knowledge of
how to use each word. A lexicon may be general or domain-specific; we might
have, for example, a lexicon of several thousand common words of English or
German, or a lexicon of the technical terms of dentistry in some language.
The record-based model [Soe95] is a denormalized structure that uses a record
for every element of the lexicon with information about the element, such as
antonyms, hypernyms, hyponym, etc.

Example

The BioLexicon is a large-scale terminological resource that has been
developed to address the needs emerging in text mining efforts within the
biomedical domain. This lexicon is available at http://www.ebi.ac.
uk/Rebholz-srv/BioLexicon/biolexicon.html

Graphical Representation

General

Continued on next page

178

http://www.ebi.ac.uk/Rebholz-srv/BioLexicon/biolexicon.html
http://www.ebi.ac.uk/Rebholz-srv/BioLexicon/biolexicon.html

9.2. PATTERNS FOR RE-ENGINEERING LEXICA INTO ONTOLOGIES

Table 9.3: Pattern for re-engineering a lexicon following the record-based data
model into an ontology (continued).

Slot Value

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the lightweight ontology
architectural pattern (AP-LW-01) [SFBG+07]. The lexicon synset will be
transformed to a class. The hyponymy/hypernym relations are mapped to
subClassOf/superClassOf relations. The member meronym/holonym relations
are mapped to partOf/hasPart. For synonyms we use the logical pattern
proposed by Corcho et al. [CR09] and suggested as best practice in the context
of this antipattern: The tendency to declare two classes equivalent when in fact
their labels simply express synonymy. Finally, the content of the lexicon will
be transformed into ontology instances.

Graphical Representation

(UML) General
Solution Ontology

(UML) Example
Solution Ontology

Continued on next page

179

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

Table 9.3: Pattern for re-engineering a lexicon following the record-based data
model into an ontology (continued).

Slot Value

PROCESS: How to Re-engineer

General

Require: Identification of the relations by using the record-based model
1: entityName← name of the entity that contains the synsets
2: mainClass← createClass(entityName)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: relation1← partOf
6: relate(relation1,mainClass,mainClass)
7: LSynsets← lexicon synsets
8: for si ∈ LSynsets do
9: if not alreadyCreatedInstanceFor(si) then

10: Ii← createInstance(si)
11: setInstanceOfClass(Ii,mainClass)
12: end if
13: Synonyms← synonymsOf(si)
14: for sq ∈ Synonyms do
15: SOE(si,sq)
16: end for
17: end for

Example

Require: Identification of the relations by using the record-based model
1: entityName← name of the entity that contains the synsets
1: entityName← BioLexicon
2: mainClass← createClass(entityName)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: relation2← partOf
6: relate(relation2,mainClass,mainClass)
7: LSynsets← lexicon synsets
7: LSynsets← [animal cell;cell part;cell;CESP:C16C10.8]
10: I1← createInstance(animal cell)
11: setInstanceOfClass(I1,mainClass)
13: Synonyms← ∅← synonymsOf(animal cell)
10: I2← createInstance(cell part)
11: setInstanceOfClass(I2,mainClass)
13: Synonyms← ∅← usedForTermOf(cell part)
10: I3← createInstance(cell)
11: setInstanceOfClass(I3,mainClass)
13: Synonyms← synonymsOf(cell)
13: Synonyms← [CESP:C16C10.8] // using the record-based model
15: SOE(cell,CESP:C16C10.8)

Time Complexity O(n)

Continued on next page

180

9.2. PATTERNS FOR RE-ENGINEERING LEXICA INTO ONTOLOGIES

Table 9.3: Pattern for re-engineering a lexicon following the record-based data
model into an ontology (continued).

Slot Value

Additional Notes

• LSynsets, Synonyms are lists that do not allow duplicates.
• createClass is a function that creates a class from a given term.
• relate is a function that relates two given classes by a given relation.
• alreadyCreatedClassFor checks if there is a class already created for a given

term.
• createInstance is a function that creates an instance from a given term.
• setInstanceOfClass is a function that sets up a given instance of a given

class.
• synonymsOf is a function that returns the synonyms of a given synset.
• SOE is a pattern proposed by Corcho et al. [CR09] suggested as best prac-

tice in the context of the following antipattern: The tendency to declare two
classes equivalent when in fact their labels simply express synonym.

Formal Transformation

General

Lexicon: L = 〈LS,LC〉
Ontology: O = 〈OS,KB〉
Transformation: LS −→ OS :

SY −→ C
SR −→ R ∪ S

LC −→ KB :
SI −→ I
LtR −→ tR

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: AP-LW-01 [SFBG+07]

9.2.2.2 Pattern for re-engineering a lexicon following the relation-based data
model into an ontology.

The pattern for re-engineering lexicon, shown in Table 9.4, provides a guide to
transform a lexicon into an ontology. The lexicon is modelled with the relation-
based data model.

Table 9.4: Pattern for re-engineering a lexicon following the relation-based data
model into an ontology.

Slot Value

General Information

Name

Pattern for re-engineering a lexicon following the relation-based data model
into an ontology.

Identifier PR-NOR-LXAX-11

Type of Component Pattern for Re-engineering Non-ontological Resources (PR-NOR)

Continued on next page

181

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

Table 9.4: Pattern for re-engineering a lexicon following the relation-based data
model into an ontology (continued).

Slot Value

Use Case

General
Re-engineering a lexicon following the relation-based data model into an on-
tology.

Example

Suppose that someone wants to build an ontology based on the BioLexicon.
The BioLexicon, and one of its verions is modelled with the relation-based data
model.

Pattern for Re-engineering Non-ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a lexicon that follows the relation-based
model.
A lexicon contains a list of words in a language along with some knowledge of
how to use each word. A lexicon may be general or domain-specific; we might
have, for example, a lexicon of several thousand common words of English or
German, or a lexicon of the technical terms of dentistry in some language.
The relation-based data model [Soe95] is a normalized structure, in which
relationship types are not defined as fields in a record, but they are simply data
values in a relationship record, thus new relationship types can be introduced
with ease.

Example

The BioLexicon is a large-scale terminological resource which has been
developed to address the needs emerging in text mining efforts in the
biomedical domain. This lexicon is available at http://www.ebi.ac.
uk/Rebholz-srv/BioLexicon/biolexicon.html

Graphical Representation

General

Continued on next page

182

http://www.ebi.ac.uk/Rebholz-srv/BioLexicon/biolexicon.html
http://www.ebi.ac.uk/Rebholz-srv/BioLexicon/biolexicon.html

9.2. PATTERNS FOR RE-ENGINEERING LEXICA INTO ONTOLOGIES

Table 9.4: Pattern for re-engineering a lexicon following the relation-based data
model into an ontology (continued).

Slot Value

Example

OUTPUT: Designed Ontology

General

The ontology generated will be based on the lightweight ontology
architectural pattern (AP-LW-01) [SFBG+07]. The lexicon synset will be
transformed to a class. The hyponymy/hypernym relations are mapped to
subClassOf/superClassOf relations. The member meronym/holonym relations
are mapped to partOf/hasPart. For synonyms we use the logical pattern
proposed by Corcho et al. [CR09] suggested as best practice in the context of
this antipattern: the tendency to declare two classes equivalent when in fact
their labels simply express synonymy. Finally, the content of the lexicon will
be transformed into ontology instances.

Graphical Representation

(UML) General
Solution Ontology

(UML) Example
Solution Ontology

Continued on next page

183

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

Table 9.4: Pattern for re-engineering a lexicon following the relation-based data
model into an ontology (continued).

Slot Value

PROCESS: How to Re-engineer

General

Require: Identification of the relations by using the relation-based model
1: entityName← name of the entity that contains the synsets
2: mainClass← createClass(entityName)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: relation1← partOf
6: relate(relation1,mainClass,mainClass)
7: LSynsets← lexicon synsets
8: for si ∈ LSynsets do
9: if not alreadyCreatedInstanceFor(si) then

10: Ii← createInstance(si)
11: setInstanceOfClass(Ii,mainClass)
12: end if
13: Synonyms← synonymsOf(si)
14: for sq ∈ Synonyms do
15: SOE(si,sq)
16: end for
17: end for

Example

Require: Identification of the relations by using the relation-based model
1: entityName← name of the entity that contains the synsets
1: entityName← BioLexicon
2: mainClass← createClass(entityName)
3: relation← subClassOf
4: relate(relation,mainClass,mainClass)
5: relation2← partOf
6: relate(relation2,mainClass,mainClass)
7: LSynsets← lexicon synsets
7: LSynsets← [animal cell;cell part;cell;CESP:C16C10.8]
10: I1← createInstance(animal cell)
11: setInstanceOfClass(I1,mainClass)
13: Synonyms← ∅← synonymsOf(animal cell)
10: I2← createInstance(cell part)
11: setInstanceOfClass(I2,mainClass)
13: Synonyms← ∅← usedForTermOf(cell part)
10: I3← createInstance(cell)
11: setInstanceOfClass(I3,mainClass)
13: Synonyms← synonymsOf(cell)
13: Synonyms← [CESP:C16C10.8] // using the record-based model
15: SOE(cell,CESP:C16C10.8)

Time Complexity O(n)

Continued on next page

184

9.3. SUMMARY

Table 9.4: Pattern for re-engineering a lexicon following the relation-based data
model into an ontology (continued).

Slot Value

Additional Notes

• LSynsets, Synonyms are lists that do not allow duplicates.
• createClass is a function that creates a class from a given term.
• relate is a function that relates two given classes by a given relation.
• alreadyCreatedClassFor checks if there is an already class created for a

given term.
• createInstance is a function that creates an instance from a given term.
• setInstanceOfClass is a function that sets up a given instance of a given

class.
• synonymsOf is a function that returns the synonyms of a given synset.
• SOE is a pattern proposed by Corcho et al. [CR09] suggested as best prac-

tice in the context of this antipattern: the tendency to declare two classes
equivalent when in fact their labels simply express synonym.

Formal Transformation

General

Lexicon: L = 〈LS,LC〉
Ontology: O = 〈OS,KB〉
Transformation: LS −→ OS :

SY −→ C
SR −→ R ∪ S

LC −→ KB :
SI −→ I
LtR −→ tR

Relationships

Relations to other
modelling

components
Use the Architectural Pattern: AP-LW-01 [SFBG+07]

9.3 Summary

This chapter has presented our solution to those aspects related to the re-engineering
of lexica for building ontologies. This solution addresses some of the limitations
identified in the state of art in this area.

First, the chapter reviews the definition of a lexicon, including its components.
Then, it provides a formal definition for the lexicon, the identified data models,
and implementations for them. Finally, it presents the patterns for re-engineering
lexica into ontologies, including those for the TBox and ABox transformation ap-
proaches. The time complexity of the TBox transformation algorithm is polyno-
mial O(n2), whereas that of the ABox transformation algorithm is linear O(n).
This set of patterns are used within the method presented in Chapter 6.

The solutions here presented cover contribution C9, which partially addresses
objective O3 (see Chapter 3). This contribution is evaluated in Sections 11.1.1 and
11.2.1.

185

CHAPTER 9. PATTERNS FOR RE-ENGINEERING LEXICA

186

Chapter 10

TECHNOLOGICAL SUPPORT

Our technological support consists in the implementation of (i) NOR2O, a software
library that implements the transformation process suggested by the patterns, and
(ii) a PR-NOR pattern library that includes the set of patterns for re-engineering
non-ontological resources. Our pattern library is available at the ODP portal. In
this section we start by presenting the software library (section 10.1) followed by
the re-engineering patterns library (section 10.2).

10.1 NOR2O

This section presents NOR2O, a Java library that implements the transformation
process suggested by the Patterns for Re-engineering Non-ontological Resources
(PR-NOR), which are described in Chapters 7, 8 and 9. The library performs the
ETL process1 for transforming the non-ontological resource components into on-
tology terms. A high level conceptual architecture diagram of the modules involved
is shown in Figure 10.1.

Figure 10.1 depicts the modules of the PR-NOR software library: NOR Con-
nector, Transformer, Semantic Relation Disambiguator, Exter-
nal Resource Service, and OR Connector. In the following sections
these modules are described in detail. For illustrating the modules, the example of
the transformation of the ASFA thesaurus2 into an ontology schema3 is provided.

10.1.1 NOR Connector

The NOR Connector loads classification schemes, thesauri, and lexicons mod-
elled with their corresponding data models, and implemented in databases, XML,
flat files and spreadsheets.

1Extract, transform, and load (ETL) of legacy data sources, is a process that involves: (1) extract-
ing data from the outside resources, (2) transforming data to fit operational needs, and (3) loading
data into the end target resources [KC04].

2http://www4.fao.org/asfa/asfa.htm
3http://mccarthy.dia.fi.upm.es/ontologies/asfa.owl

187

http://www4.fao.org/asfa/asfa.htm
http://mccarthy.dia.fi.upm.es/ontologies/asfa.owl

CHAPTER 10. TECHNOLOGICAL SUPPORT

Figure 10.1: Modules of the NOR2O software library.

This module utilizes an XML configuration file for describing the NOR. Figure
10.2 shows the graphical representation of the NOR connector XSD file, including
the following main sections:
• The Schema section, which describes the schema entities of the resource and the

relationships among the entities.
• The DataModel section, which describes of the resource’s internal data model.
• The Implementation section, which defines the information needed to physically

access the resource.

Figure 10.2: Graphical representation of the NOR Connector XSD file.

188

10.1. NOR2O

An example of the XML configuration file is presented in Listing 10.1. The
Figure shows how the file describes a thesaurus. The thesaurus has two schema
entities, Term and NonPreferredTerm, is modelled following the record-based data
model and is implemented in XML.

Listing 10.1: NOR Connector configuration file example
<Nor t y p e =” C l a s s i f i c a t i o n Scheme ” name=” cepa94 ”>
<Schema>
<S c h e m a E n t i t i e s>

<SchemaEnt i t y name=” CSItem ”>
<A t t r i b u t e name=” C S I d e n t i f i e r ”

valueFrom=” cepa . CodeNumber ”
t y p e =” s t r i n g ” />

<A t t r i b u t e name=”CSName”
valueFrom=” cepa . D e s c r i p t i o n E n g l i s h ”
t y p e =” s t r i n g ” />

<R e l a t i o n name=” subType ”
u s i n g =” P a t h E n u m e r a t i o n ”
d e s t i n a t i o n =” CSItem ” />

<R e l a t i o n name=” superType ”
u s i n g =” P a t h E n u m e r a t i o n ”
d e s t i n a t i o n =” CSItem ” />

< / SchemaEn t i t y>
< / S c h e m a E n t i t i e s>

< / Schema>
<DataModel>
<P a t h E n u m e r a t i o n>

<P a t h E n t i t y>cepa< / P a t h E n t i t y>
<P a t h S e p a r a t o r> .< / P a t h S e p a r a t o r>
<P a t h F i e l d>CodeNumber< / P a t h F i e l d>

< / P a t h E n u m e r a t i o n>
< / DataModel>
<I m p l e m e n t a t i o n>
<D a t a b a s e>

<Dbms>MSACCESS< / Dbms>
<Name>cepa94< / Name>
<Username>< / Username>
<Password>< / Password>
<Host>< / Host>
<P o r t>< / P o r t>

< / D a t a b a s e>
< / I m p l e m e n t a t i o n>

< / Nor>

10.1.2 Transformer

This module performs the transformation suggested by the patterns by implement-
ing the sequence of activities included in the patterns. The module transforms
the NOR elements, loaded by the NOR Connector module, into internal model
representation elements. It also interacts with the Semantic Relation Dis-
ambiguator module for obtaining the suggested semantic relations of the NOR
elements.

The Transformer also utilizes an XML configuration file, called prnor.xml,
for describing the transformation between the NOR elements and the ontology

189

CHAPTER 10. TECHNOLOGICAL SUPPORT

elements. This XML configuration file has only one section, PRNOR, which in-
cludes the description of the transformation from the NOR schema components
(e.g., schema entities, attributes and relations) into the ontology elements (e.g.,
classes, objectproperties, dataproperties and individuals). Additionally, it indicates
the transformation approach, e.g., TBox, ABox or Population.

Figure 10.3 shows the graphical representation of the PRNOR XSD file. Two
examples of the XML configuration file are shown in Listings 10.2 and 10.3.

Figure 10.3: Graphical representation of the PRNOR XSD file.

Listing 10.2 indicates that the pattern follows the TBox transformation ap-
proach and that it transforms the elements of the CSItem schema component into
ontology classes. Also, by default, it transforms the subType schema relation into
a subClassOf relation and the superType schema relation into a superClassOf re-
lation, unless the Semantic Relation Disambiguator module suggests
another relation.

Listing 10.2: PRNOR Connector configuration file example - Classification
Scheme
<P r n o r i d e n t i f i e r =”PR−NOR−CLTX−01” t r a n s f o r m a t i o n A p p r o a c h =”TBox”
t o p L e v e l C l a s s =” P r o t e c t i o n A c t i v i t i e s ” e x t e r n a l R e s o u r c e =” WordNet ”>

<C l a s s from=” CSItem ” i d e n t i f i e r =” [CSName] . . [C S I d e n t i f i e r] ”>
<O b j e c t P r o p e r t y from=” subType ” t o =” s u b C l a s s O f ” />
<O b j e c t P r o p e r t y from=” superType ” t o =” s u p e r C l a s s O f ” />

< / C l a s s>
< / P r n o r>

Listing 10.3 indicates that the pattern follows the TBox transformation ap-
proach and that it transforms the elements of the Term schema component into
ontology classes. Also, by default, it transforms the NT schema relation into a
superClassOf relation, the RT schema relation into a relatedTerm relation, and

190

10.1. NOR2O

the BT schema relation into a subClassOf relation, unless the Semantic Re-
lation Disambiguator module suggests another relation. Finally, the UF
schema relation is transformed into a rdfs:label, and the module uses WordNet as
external resource for disambiguation.

Listing 10.3: PRNOR Connector configuration file example - Thesaurus
<P r n o r i d e n t i f i e r =”PR−NOR−TSTX−01” t r a n s f o r m a t i o n A p p r o a c h =”TBox”
e x t e r n a l R e s o u r c e =” WordNet ”>

<C l a s s from=”Term” i d e n t i f i e r =” [I d e n t i f i e r] ”>
<O b j e c t P r o p e r t y from=”NT” t o =” s u p e r C l a s s O f ” />
<O b j e c t P r o p e r t y from=”RT” t o =” r e l a t e d T e r m ” />
<O b j e c t P r o p e r t y from=”BT” t o =” s u b C l a s s O f ” />
<O b j e c t P r o p e r t y from=”UF” t o =” r d f s : l a b e l ” />

< / C l a s s>
< / P r n o r>

10.1.3 Semantic Relation Disambiguator

This module is in charge of obtaining the semantic relation between two NOR
elements. Basically, the module receives two NOR elements from the Trans-
former module and returns the semantic relation between them. First the module
verifies whether it can obtain the subClassOf relation by identifying attribute ad-
jetives4 within the two given elements of the resource. If this is not the case, then
the module connects the external resource through the External Resource
Service module to get the relation.

The TBox transformation approach converts the resource content into an on-
tology schema. To this end, each NOR term is mapped to a class, and then the
semantics of the relations among those entities is made explicit. Thus, patterns that
follow the TBox transformation approach must make explicit the semantics of the
relations among the NOR terms. To perform this task we rely on WordNet, which
organizes the lexical information into meanings (senses) and synsets.

Algorithm 1, presented in Section 6.4, describes how to make explicit the se-
mantics of the relations in the NOR terms.

It is worth mentioning that, when asserting the partOf relation the algorithm
takes advantage of the use of the PartOf content pattern5 to guarantee
that the OWL code generated follows common practices in Ontological Engineer-
ing.

10.1.4 External Resource Service

The External Resource Service is in charge of interacting with external
resources for obtaining the semantic relations between two NOR elements. At this

4Attributive adjectives are part of the noun phrase headed by the noun they modify; for example, happy is an
attributive adjective in “happy people”. In English, the attributive adjective usually precedes the noun in simple
phrases, but often follows the noun when the adjective is modified or qualified by a phrase acting as an adverb.

5http://ontologydesignpatterns.org/wiki/Submissions:PartOf

191

http://ontologydesignpatterns.org/wiki/Submissions:PartOf

CHAPTER 10. TECHNOLOGICAL SUPPORT

moment the module interacts with WordNet. We are now implementing the access
to DBpedia6 because of the reasons explained in Section 6.4.

10.1.5 OR Connector

The Ontological Resource (OR) Connector generates the ontology in
OWL Lite. To this end, this module relies on the OWL API7. It also utilizes an
XML configuration file for describing the ontology to be generated. Figure 10.4
shows the graphical representation of the OR connector XSD file. The XML con-
figuration file has only one section, OR, which includes the descriptions of the
name, the URI, the file, and the implementation language of the ontology. Addi-
tionally, and in the case we want to populate an available ontology, this section
indicates if the ontology already exists. Finally, this module includes the prove-
nance information of the non-ontological resource and uses the NoRMV metadata
vocabulary, described in Section 5.2.

Figure 10.4: Graphical representation of the OR XSD file.

An example of the XML configuration file is shown in Listing 10.4. The Figure
indicates that the ontology generated will be stored in the asfa.owl file, that its name
will be asfa ontology, and that it will be implemented in OWL.

Listing 10.4: OR Connector configuration file example
<Or name=” a s f a o n t o l o g y ”
onto logyURI =” h t t p : / / mcca r thy . d i a . f i . upm . es / o n t o l o g i e s / a s f a . owl ”
o n t o l o g y F i l e =” a s f a . owl ” i m p l e m e n t a t i o n =”OWL”
a l r e a d y E x i s t =” no ” s e p a r a t o r =” # ”>
< / Or>

Finally, to conclude the description of the software library, it is worth mention-
ing that the implementation of this library follows a modular approach; therefore,
it is possible to extend it and include other types of NORs, data models, and im-
plementations in a simple way, as well as to exploit other external resources for
making explicit the hidden semantics in the relations of the NOR terms.

6http://dbpedia.org/
7http://owlapi.sourceforge.net/

192

http://dbpedia.org/
http://owlapi.sourceforge.net/

10.2. PR-NOR LIBRARY AT THE ODP PORTAL

10.2 PR-NOR Library at the ODP Portal

Ontologydesignpatterns.org (hereafter ODP Portal) is a Semantic Web portal ded-
icated to ontology design best practices for the Semantic Web, with a particular
focus on ODPs. The ODP Portal software is based on Media Wiki8, Semantic Me-
dia Wiki (SMW)9, Semantic Forms (SF)10, and other extensions11. This portal is
maintained by the Semantic Technology Laboratory12 at the Consiglio Nazionale
delle Ricerche, in Rome, Italy. The ODP Portal is targeted at users interested in
best practices for ontology design and ontology engineering. ODPs encode on-
tology engineering best practices to design high-quality ontologies. Currently the
ODP portal supports the lifecycle of the following ODP types: Content ODPs,
Re-engineering ODPs, Alignment ODPs, Logical ODPs, Architectural ODPs, and
Lexico-syntatic ODPs.

The PR-NORs proposed in this thesis fit in the Re-engineering ODPs category
available in the ODP Portal. Figure 10.5 shows a screenshot of the list of Re-
engineering ODPs included in the ODP Portal. Also included in the portal are the
overall set of patterns described in Chapters 7, 8, and 9.

Figure 10.5: Re-engineering ODPs at the ODP Portal

8http://www.mediawiki.org
9http://www.semantic-mediawiki.org

10http://www.mediawiki.org/Extension:SemanticForm
11The full list of the extensions can be found at http://ontologydesignpatterns.org/

wiki/Special:Version
12http://stlab.istc.cnr.it/stlab/

193

http://www.mediawiki.org
http://www.semantic-mediawiki.org
http://www.mediawiki.org/Extension:SemanticForm
http://ontologydesignpatterns.org/wiki/Special:Version
http://ontologydesignpatterns.org/wiki/Special:Version
http://stlab.istc.cnr.it/stlab/

CHAPTER 10. TECHNOLOGICAL SUPPORT

Table 10.1: PR-NOR Library web accesses

Pattern Release Date Total
PR-NOR-CLTX-02 12-October-2009 1578
PR-NOR-TSTX-01 12-October-2009 1421
PR-NOR-CLTX-01 12-October-2009 1094

One of the goals of the PR-NOR Library is to become a community-accepted
re-engineering pattern library for transforming resources into ontologies. Table
10.1 shows the total number of access to the three most visited patterns during a
period of 12 months starting in October 2009.

The most visited patterns are (1) the pattern for re-engineering a classifica-
tion scheme following the adjacency list data model into an ontology schema
(PR-NOR-CLTX-02); (2) the pattern for re-engineering a thesaurus following the
recordbased data model into an ontology schema (PR-NOR-TSTX-01); and (3) the
pattern for re-engineering a classification scheme following the path enumeration
data model into an ontology schema (PR-NOR-CLTX-01).

10.3 Summary

This chapter has presented the solution we provide for the aspects related to the
technologial support for re-engineering non-ontological resources into ontologies.
It has also addressesed some of the limitations identified in the state of art in this
area.

Regarding the goals and contributions presented in Section 3.1 and Section 3.2
respectively, Section 10.1 presents the NOR2O (part of contribution C10, which
addresses objective O4) and section 10.2 presents the PR-NOR library included
in the ODP portal (part of contributions C7,C8, and C9, which address objective
O3).

194

Chapter 11

EVALUATION

This chapter presents the evaluation of the contributions of this thesis. The main
contributions are (1) a set of methodological guidelines for reusing non-ontological
resources when building ontologies, and (2) technological support for re-engineering,
i.e., the PR-NOR pattern library and NOR2O. Therefore, the evaluation covers both
the methodological and the technological aspects.

Regarding the methodological guidelines, we evaluate with the following cri-
teria: understandability, applicability, and usability of the guidelines.

As for the technological support, we evaluate with the following criterion:
quality of the software library and patterns. Thus, quality is assessed by calcu-
lating the similarity of the ontologies generated against gold standard ontologies,
as well as the applicability and usability of the technology.

Table 11.1 gathers the aforementioned criteria used for evaluating the contri-
butions through the set of experiments.

The evaluation is divided into two parts. First, Section 11.1 describes the eval-
uation of the methodological aspects related to the reuse and re-engineering of
non-ontological resources for building ontologies. Then, Section 11.2 presents the
evaluation of the technological support focused on the PR-NOR pattern library and
the NOR2O software library.

195

CHAPTER 11. EVALUATION

Table 11.1: Evaluation criteria

Contribution Criteria Section
Method for Reusing NORs • Understandability of the guide-

lines.
• Applicability of the guidelines.
• Usability of the guidelines.

Section 11.1

Method for Re-engineering
NORs

• Understandability of the guide-
lines.

• Applicability of the guidelines.
• Usability of the guidelines.

Section 11.1

PR-NOR pattern library • Quality of the patterns.
• Understandability of the patterns.
• Usability of the patterns.

Section 11.2

NOR2O software library • Quality of the software library.
• Usability of the software library.
• Applicability the NOR2O.

Section 11.2

11.1 Evaluation of the Methodological Guidelines

This section presents three experiments with the objective of evaluating the under-
standability, applicability and usability of the methodological contributions. The
first one was carried out with students attending a Master Course at the UPM. The
other two are based on real case scenarios within the SEEMP1 and mIO!2 projects.

11.1.1 Understandability, Applicability and Usability of the Method-
ological Aspects of Re-engineering within a Master Course

This example refers to the manual transformation of an excerpt from a thesaurus
following the guidelines and the proposed set of patterns. The purpose is to assess
the understandability, applicability and usability of the methodological guidelines
of the re-engineering process and of the set of patterns for carrying out the NOR
Re-engineering into an OWL ontology.

11.1.1.1 Settings

The evaluation was carried out with participants whose background included databa-
ses, software engineering, AI, and had some experience in ontology engineering.
The participants came from

1http://www.seemp.org/
2http://www.cenitmio.es/

196

http://www.seemp.org/
http://www.cenitmio.es/

11.1. EVALUATION OF THE METHODOLOGICAL GUIDELINES

• The “Ontologies and Semantic Web” course within the “Athens Programme”,
delivered at the Facultad de Informática (UPM). Fourteen international partici-
pants attended the course.

• The “Ontologies and Semantic Web” course within the “Information Technol-
ogy” Master, delivered at the Facultad de Informática (UPM). Twenty Spanish
participants attended the Master course.

The participants had to build manually a conceptual model from a particular
resource, analysing the methodological guidelines and the set of patterns. They
had 30 minutes for generating the conceptual model and had to work on an excerpt
of twenty terms of the ETT thesaurus3.

11.1.1.2 Execution

The experiment was executed in four phases:
1. The participants were provided with the proposed guidelines.

2. The participants were organized in groups of two.

3. The groups analysed the methodological guidelines and the set of patterns in
order to carry out the NOR re-engineering process. They generated manually
a conceptual model.

4. The participants filled in a questionnaire.

Next, we show the tasks performed within Phase 3 to generate the conceptual
model from the excerpt of the resource.

NOR Reverse Engineering. Within this activity the student groups gathered
documentation about the thesaurus from the ETT web site. From this documen-
tation they extracted the schema of the thesaurus. Since the data model was not
available in the documentation, they extracted it for the resource implementation
itself. The groups soon found out that they were dealing with a thesaurus modelled
following the record-based data model and implemented in XML.

NOR Transformation. Within this activity the groups searched the ODP portal
for a suitable PR-NOR, taking into account the following criteria: (1) the resource
type: thesaurus; (2) the resource data model: record-based model; and (3) the
selected transformation approach: the TBox transformation. Then thet chose as the
most appropriate pattern the PR-NOR-TSTX-01, selected by all the participants.
Finally, all the groups followed the procedure suggested by the pattern for creating
the conceptual model manually. Each thesaurus term was mapped to a class. For
making explicit the semantics of the BT, NT relations among thesaurus terms, the
participants checked whether they could get the subClassOf relation by identifying
attribute adjetives4. If they could not, they searched the WordNet web site. When

3http://mccarthy.dia.fi.upm.es/master/rd/homework/resources/ett.xml
4Attributive adjectives are part of the noun phrase headed by the noun they modify; for example, happy is an

attributive adjective in “happy people”. In English, attributive adjectives usually precede their nouns in simple
phrases, but often follow their nouns when the adjective is modified or qualified by a phrase acting as an adverb.

197

http://mccarthy.dia.fi.upm.es/master/rd/homework/resources/ett.xml

CHAPTER 11. EVALUATION

the query results were empty, they related the terms to the default relation (see
Algorithm 1 in Section 6.4). When they had to deal with a thesaurus, for the
BT/NT relation, we recommended using the subClassOf relation by default.

Ontology Forward Engineering. Since the goal was to create a conceptual
model, the participants did not have to perform this activity.

11.1.1.3 Collecting results

We proposed the following questionnaire to the participants for collecting some
empirical data.

Q1. Are the guidelines proposed well explained?

Q2. Do the guidelines need to be more detailed? If so, please elaborate on your
comments.

Q3. Do you think that more techniques and patterns should be provided?

Q4. How can we improve the guidelines proposed? And in which tasks?

Q5. Do you find these guidelines useful?

11.1.1.4 Findings and observations

Table 11.2 presents the 34 answers to the questionnaire. As a general conclusion
we can state that the participants did not seem to find any problems regarding the
use and understanding of each of the activities and tasks identified in the method-
ological guidelines.

Table 11.2: Answers to the proposed questionnaire

Questions Answers
Q1. Ninety-seven percent of the participants indicated that the guidelines were

well explained.

Q2. Eighty-eight percent of the participants considered that the guidelines need
no more details; however twelve percent explained that they would wel-
come the improvement in the explanations of i) how to search for a suitable
pattern (task 2.1 in the guidelines), and ii) how to perform the ontology
formalization (activity 3 in the guidelines).

Q3. One hundred percent of the participants thought that the techniques and
patterns to execute each activity of the guidelines were sufficient.

Q4. Eighty-five percent of the participants suggested including more examples
of how to use the proposed guidelines and what results were expected.

Q5. One hundred percent of the participants thought that the guidelines were
useful and also necessary.

From the comments received on this experiment, we can conclude that the
methodological guidelines seem to be useful and understandable.

198

11.1. EVALUATION OF THE METHODOLOGICAL GUIDELINES

11.1.2 Understandability, Applicability and Usability of the Method
for Reuse and Re-engineering within the SEEMP Project

In order to evaluate the understandability, applicability and usability of the method-
ological contributions related to the reuse and re-engineering of NORS in a com-
plex ontology engineering setting, we conducted an experiment in a real case sce-
nario within the SEEMP Project.

The main objective of this project was to develop an interoperable architecture
for public e-Employment services (PES). The resultant architecture consisted of
(1) a Reference Ontology, the core component of the system, that acts as a com-
mon “language” in the form of a set of controlled vocabularies that describes the
details of a job posting; (2) a set of Local Ontologies, each PES uses its own Local
Ontology, which describes the employment market in its own terms; (3) a set of
mappings between each Local Ontology and the Reference Ontology; and (4) a set
of mappings between the PES schema sources and the Local Ontologies.

In the following sections we describe the application of our methodological
guidelines for reusing and re-engineering non-ontological resources when building
an occupation ontology.

11.1.2.1 Reusing non-ontological resources

This section presents the application of the Method for Reusing Non-Ontologi-
cal Resources within the SEEMP project. It shows the process we followed for
selecting the non-ontological resources to be reused when building the occupation
domain ontology.

Activity 1. Search non-ontological resources
Following the suggestions of some domain experts, we searched for the occu-

pation classifications at (1) the Ramon Eurostat Portal5, (2) the ONET Web site6,
and (3) the companies the project partners. Thus, we found the following classifi-
cations:

• Standard Occupational Classification System (SOC).

• International Standard Classification of Occupations (ISCO-88).

• International Standard Classification of Occupations, for European Union
purposes, ISCO-88 (COM).

• Occupational Information Network (ONET).

• EURES7 proprietary occupation classification.

5http://ec.europa.eu/eurostat/ramon/
6http://online.onetcenter.org/
7http://www.eurodyn.com/

199

http://ec.europa.eu/eurostat/ramon/
http://online.onetcenter.org/
http://www.eurodyn.com/

CHAPTER 11. EVALUATION

Activity 2. Assess the set of candidate non-ontological resources
The goal of this activity was to assess the set of candidate non-ontological re-

sources. Experts of the occupation domain, software developers and ontology prac-
titioners carried out this activity taking as input the set of candidate non-ontological
resources.

Task 1. Extract lexical entries
Within this task we extracted the lexical entries of the aforementioned occupa-

tion classifications. We developed an ad-hoc extraction tool for performing auto-
matically the extraction task.

Task 2. Calculate precision
Since we were dealing with occupations related to the IT domain, it was im-

possible to cover all the IT domain occupations already identified in the Ontology
Requirements Specification Document. Thus, we used a constant K that represents
the complete set of IT domain occupations. Next, we present the precision for each
occupation classification.

Precision =
card{{NORLexicalEntries} ∩ {ORSDTerminology}}

card{NORLexicalEntries}

• SOCPrecision = 6∩K
26162 = 6

26162 = 0.0002

• ISCO − 88Precision = 9∩K
544 = 9

544 = 0.0165

• ISCO − 88COMPrecision = 9∩K
520 = 9

520 = 0.0173

• ONETPrecision = 21∩K
1167 = 21

1167 = 0.0179

• EURESPrecision = 89∩K
355 = 89

355 = 0.2507

Task 3. Calculate coverage
Again, since we were dealing with the occupations related to the IT domain, it

was impossible to cover all the IT domain occupations in the ORSD. Thus, we used
a constant K that represents the complete set of IT domain occupations. Next, we
present the coverage for each occupation classification.

Coverage =
card{{NORLexicalEntries} ∩ {ORSDTerminology}}

card{ORSDTerminology}

• SOCPrecision = 6∩K
K = 6

K

• ISCO − 88Precision = 9∩K
K = 9

K

• ISCO − 88COMPrecision = 9∩K
K = 9

K

• ONETPrecision = 21∩K
K = 21

K

• EURESPrecision = 89∩K
K = 89

K

200

11.1. EVALUATION OF THE METHODOLOGICAL GUIDELINES

Task 4. Evaluate the Consensus
It was important for the project that resources focused on the current European

reality, because the user partners involved in SEEMP are European, and the out-
coming prototype has to be validated in European scenarios. Thus, domain experts
confirmed whether the resources were built with the consensus of the European
community or not. They also explained that ISCO-88(COM) and EURES pro-
prietary occupation classification contains terminology that had already reached a
consensus.

Table 11.3 summarizes all the information of each non-ontological resource.

Table 11.3: Assessment table for SEEMP Occupation Standards

NOR Precision Coverage Consensus
SOC 0.0002 6 / K no
ISCO-88 0.0165 9 / K no
ISCO-88 COM 0.0173 9 / K yes
ONET 0.0179 21 / K no
EURES 0.2507 89 / K yes

Activity 3. Select the most appropriate non-ontological resources
Following Table 11.3 we selected a non-ontological resource, the EURES pro-

prietary occupation classification.
We followed the same process for selecting the non-ontological resources when

building the remaining ontologies. We provide a table (see Table 11.4) that summa-
rizes the selection of standards, codes, and classification accomplished for building
every domain ontology.

11.1.2.2 Re-engineering non-ontological resources

In this section we present the application of the Method for Re-engineering Non-
Ontological Resources within the SEEMP project. Once we select the non-ontological
resource, we have to transform it into an ontology. Next, we describe the process
of generating an Occupation Ontology from the EURES proprietary occupation
classification.

Activity 1. Non-ontological resource reverse engineering
In this activity we gathered documentation on the EURES occupation classifica-

tion from the European Dynamics SEEMP user partner. From this documentation
we extracted the schema of the classification scheme, which consists of two ta-
bles, CVO OCCGROUP and CVO OCCUGROUP NAME. Since the data model
was not available in the documentation, it was necessary to extract it for the re-
source implementation itself. The EURES occupation classification is modelled
following the snowflake data model and is implemented in a MS Access database.

201

CHAPTER 11. EVALUATION

Table 11.4: Standards, codes and classifications reused

Domain Candidate Standards/-
Classifications

Selected Stan-
dards /Classi-
fications

Justification

Economic Sector ISIC, NACE, NAICS NACE Best Coverage and European
scope

Education Fields ISCED 97, FOET FOET Best Coverage and European
Scope

Education Levels ISCED 97 ISCED 97 Worldwide scope, widely ac-
cepted

Currency Pacific Exchange, ISO
4217, WordAtlas

ISO 4217 Worldwide scope, widely ac-
cepted

Geographic ISO 3166, Regions of the
World

ISO 3166 Worldwide scope, widely ac-
cepted

Language ISO 639 ISO 639 Worldwide scope, widely ac-
cepted

Language Levels CEFR CEFR European scope, widely ac-
cepted

Driving License EU Driving License EU Driving
License

European legislation

Skills EURES EURES Coverage and European scope
Contract types LE FOREM proprietary

classification, ARL propri-
etary classification

Mix of both
classifications

Aceptable Coverage in
SEEMP scope

Work condition LE FOREM proprietary
classification

LE FOREM
proprietary
classification

Aceptable Coverage in
SEEMP scope

Activity 2. Non-ontological resource transformation
Within this activity we carried out the following tasks:

1. We identified the transformation approach, the TBox transformation, i.e.,
transforming the resource content into an ontology schema.

2. Then, we searched our local pattern repository for a suitable pattern to re-
engineer NORs, taking into account the transformation approach (TBox trans-
formation), the non-ontological resource type (classification scheme), and
the data model (snowflake data model) of the resource.

3. The most appropriate pattern found for this case was the PR-NOR-CLTX-03
pattern. This pattern takes as input a classification scheme modelled with a
snowflake data model and produces an ontology schema.

Activity 3. Ontology forward engineering
WSML8 is the ontology implementation language used in the SEEMP project.

Because of the number of occupations of the EURES classification, it was not

8http://www.wsmo.org/wsml/

202

11.1. EVALUATION OF THE METHODOLOGICAL GUIDELINES

practical to create the ontology manually. Therefore, we created an ad-hoc wrap-
per, implemented in Java, that reads the data from the resource implementation and
automatically creates the corresponding classes and relations of the new ontology
following the suggestions given by the pattern for re-engineering NORs and the
conceptual model.

We followed this process for all the resources identified, being the patterns used
those presented in Table 11.5.

Table 11.5: Resources transformed in the SEEMP project

Resource Type Data Model Implementation Pattern used
NACE Classification

Scheme
Path enumeration Database PR-NOR-CLTX-01

FOET Classification
Scheme

Path enumeration Database PR-NOR-CLTX-01

ISCED 97 Classification
Scheme

Adjacency list Database PR-NOR-CLTX-02

ISO 4217 Classification
Scheme

Snowflake XML PR-NOR-CLAX-12

ISO 3166 Classification
Scheme

Snowflake XML PR-NOR-CLAX-12

ISO 639 Classification
Scheme

Snowflake XML PR-NOR-CLAX-12

CEFR Classification
Scheme

Proprietary model Proprietary for-
mat

EU Driving
License

Classification
Scheme

Snowflake Proprietary for-
mat

EURES Skill Classification
Scheme

Path enumeration Database PR-NOR-CLTX-01

LE FOREM
Contracts

Proprietary
classification

Proprietary model Proprietary for-
mat

11.1.2.3 Analysis of the applicability of the method

The SEEMP Reference Ontology (SEEMP RO) was developed following the method
for reusing and re-engineering non-ontological resources. It is composed of thir-
teen modular ontologies: Competence, Compensation, Driving License, Economic
Activity, Education, Geography, Job Offer, Job Seeker, Labour Regulatory, Lan-
guage, Occupation, Skill, and Time. The main subontologies are the Job Offer and
Job Seeker, which are intended to represent the structure of a job posting and a
CV respectively. While these main two subontologies were built taking as a start-
ing point some HR-XML recommendations, the others derived from some avail-
able international standards (like NACE, ISCO-88 (COM), FOET, etc.), Employ-
ment Services classifications and international codes (like ISO 3166, ISO 6392,
etc.) that best fitted the European requirements. Figure 11.1 presents these thir-
teen modular ontologies (each ontology is represented by a triangle), ten of which
were obtained after re-engineering the standard/classification. The SEEMP Refer-

203

CHAPTER 11. EVALUATION

ence Ontology is available at http://oeg-upm.net/index.php/en/ontologies/
99-hrmontology.

Labour
Regulatory
Ontology

Skill
Ontology

Language
Ontology Occupation

Ontology

Geography
Ontology

Time
Ontology

Education
Ontology

Driving
License
Ontology

Compensation
Ontology

Economic
Activity

Ontology

Job Offer
Ontology

Job Seeker
Ontology

LE FOREM + BLL + EURES

EURES

ISO 6392 (Languages)

CEF (Languages Levels)

EURES

ISO 3166

EURES

DAML Time
Ontology

FOET (Education Fields)

ISCED97 (Education Levels)

NACE Rev. 1.1

European
Legislation

ISO 4217

Ad hoc wrapper

External Sources

has date of birthCompetence
Ontology

subClassOf

subClassOf

Figure 11.1: SEEMP Reference Ontology

In order to illustrate the dimension of the ontology and the ontological engi-
neers’ efforts required to build it, some statistical data are shown in Table 11.6.

Table 11.6: SEEMP Reference Ontology statistical data

Ontology Concepts Attributes Axioms Instances Efforts
(man.months)

SEEMP RO 1985 315 1037 1449 6

Our experience in SEEMP has served us to demonstrate that the approach of
building ontologies by reusing and re-engineering non-ontological resources al-
ready agreed upon allows building ontologies faster, with less resources, and with
an immediate consensus. This approach permits making explicit the knowledge
implicitly coded in organization models and standards. By building ontologies in
this fashion, we facilitate that ontologies become reference ontologies in their re-
spective domains.

With respect to the application of the Method for Reuse and Re-engineering,
this was especially useful for guiding the steps of the ontological engineers in-

204

http://oeg-upm.net/index.php/en/ontologies/99-hrmontology
http://oeg-upm.net/index.php/en/ontologies/99-hrmontology

11.1. EVALUATION OF THE METHODOLOGICAL GUIDELINES

volved since this method provides detailed and sufficient guidelines. In addition,
the existence of a well-defined and structured process for building the ontology net-
work in the e-employment domain eased the planning, coordination and commu-
nication with other non-Semantic Web members of the development team, which
in turn helped to convey reliability to the final result.

11.1.3 Understandability, Applicability and Usability of the Method
within the mIO! Project

The evaluation of the understandability, applicability and usability of the method-
ological contributions for reusing and re-engineering NORs, including the PR-
NOR library, were also validated in an experiment in a real case scenario within
the context of the mIO! Spanish project9.

The main objective of the mIO! project is to develop ubiquitous services in an
intelligent environment, adapted to every user and its context by means of mobile
interfaces. The project relies on ontologies for modelling the knowledge.

The following sections describe the application of our methodological guide-
lines for reusing and re-engineering non-ontological resources when building a
geographical ontology, which includes continents, countries, and regions.

11.1.3.1 Reusing non-ontological resources

This section describes the activities carried out for reusing non-ontological re-
sources.

Activity 1. Search non-ontological resources
Following some of the suggestions made by the domain experts, we searched

geographical location resources on highly reliable Websites. Next, we list the geo-
graphic location classifications:

• ISO 316610 Maintenance agency (ISO 3166/MA) ISO’s focal point for
country codes.

• Guide to regions of the World11

• Regions of the World12

Activity 2. Assess the set of candidate non-ontological resources
Once we had the set of candidate non-ontological resources, we needed to as-

sess them according to the following criteria: precision, coverage, consensus, and
quality of the resources.

9http://www.cenitmio.es/
10http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
11http://www.countriesandcities.com/regions/
12http://park.org/Regions/

205

http://www.cenitmio.es/
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://www.countriesandcities.com/regions/
http://park.org/Regions/

CHAPTER 11. EVALUATION

Task 2.1 Extract lexical entries
Within this task we extracted the lexical entries of the aforementioned geo-

graphic location classifications. For this purpose, we used TreeTagger13, a syn-
tactic annotator.

Task 2.2 Calculate precision
It was impossible to cover all the geographic locations in the ORSD. Thus, we

used a constant K that represents the complete set of geographical locations. Next,
we present the precision for each geographic location classification.

Precision =
card{{NORLexicalEntries} ∩ {ORSDTerminology}}

card{NORLexicalEntries}

• ISO3166 = 195∩K
200 = 195

200 = 0.975

• GuidetoregionsoftheWorld = 102∩K
193 = 102

193 = 0.528

• RegionsoftheWorld = 110∩K
154 = 110

154 = 0.714

Task 2.3 Calculate coverage
Again, it was impossible to cover all the geographic locations in the ORSD.

Thus, we used a constant K that represents the complete set of geographic loca-
tions. Next, we present the coverage for each geographic location classification.

Coverage =
card{{NORLexicalEntries} ∩ {ORSDTerminology}}

card{ORSDTerminology}

• ISO3166 = 195∩K
K = 195

K

• GuidetoregionsoftheWorld = 102∩K
K = 102

K

• RegionsoftheWorld = 110∩K
K = 110

K

Task 2.4 Evaluate the consensus
It was important for the project that resources focused on the current worldwide

reality, because the outcoming prototype will be validated by users. Thus, domain
experts evaluated whether the resource was built with the consensus of the world-
wide community or not. They confirmed that ISO 3166 has the full consensus of
the community, whereas the other resources have not.

Task 2.5 Evaluate the quality
In this case, domain experts evaluated whether the resource was built with an

acceptable level of quality. They confirmed that ISO 3166 has an acceptable level
of quality.

13http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

206

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

11.1. EVALUATION OF THE METHODOLOGICAL GUIDELINES

Task 2.6 Build the assessment table
Table 11.7 summarizes all the information related to each non-ontological re-

source.

Table 11.7: Assessment table for the mIO! geographical locations

NOR Precision Coverage Consensus Quality
ISO 3166 0.975 195 / K yes yes
Guide to regions of
the World

0.528 102 / K no no

Regions of the
World

0.714 110 / K no no

Activity 3. Select the most appropriate non-ontological resources
According to Table 11.7 we selected the following non-ontological resource:

ISO 3166.

11.1.3.2 Re-engineering non-ontological resources

This section presents the application of the Method for Re-engineering Non-Ontological
Resources within the mIO! project. Once we have the non-ontological resource se-
lected, the ISO 3166, we had to transform it into an ontology. Next, we describe
the process of generating a Geographical Location Ontology.

Activity 1. Non-ontological resource reverse engineering
In this activity we gathered documentation about ISO 3166 from its website.

From this documentation we extracted the schema of the classification scheme,
which consists of one entity ISO 31661 Entry. Since the data model was not avail-
able in the documentation, it was necessary to extract it for the resource imple-
mentation itself. ISO 3166 is modelled following the snowflake data model and
implemented in XML.

Activity 2. Non-ontological resource transformation
In this activity we carried out the following tasks:

1. We identified the transformation approach, the ABox transformation, i.e.,
the transformation of the resource schema into an ontology schema, and the
resource content into ontology instances.

2. Then we searched our local pattern repository for a suitable pattern to re-
engineer NORs, taking into account the transformation approach (ABox
transformation), the non-ontological resource type (classification scheme),
and the data model (snowflake data model) of the resource.

207

CHAPTER 11. EVALUATION

3. The most appropriate pattern for this case is the PR-NOR-CLAX-12 pattern.
This pattern takes as input a classification scheme modelled with a snowflake
data model.

4. Finally, we followed the procedure defined by the pattern selected for trans-
forming the resource components into ontology elements.

Activity 3. Ontology forward engineering
In this activity we formalized and implemented the ontology in OWL. The on-

tology is available at http://mccarthy.dia.fi.upm.es/ontologies/.

11.1.3.3 Analysis of the applicability of the method

The network of ontologies of the mIO! project was developed following the NeOn
Methodology [SF10]. This ontology is composed of eleven modular ontologies:
Provider, Service, Source, Geographical Location, Environment, Time, Device,
User, Network, Interface, and Role. Only the geographical location ontology was
built according to the method for reusing and re-engineering non-ontological re-
sources. The other ontologies were built by reusing available ontologies or mod-
ules.

Figure 11.2 presents the mIO! ontology network and includes the location sub-
ontology. The ontology network is available at http://oeg-upm.net/index.
php/en/ontologies/82-mio-ontologies

In order to illustrate the dimension of the ontology and the efforts required by
the ontological engineers to build it, we outline some data in Table 11.8.

Table 11.8: mIO! Ontology statistical data

Ontology Concepts Attributes Axioms Instances Efforts
(man.months)

mIO!
Ontology

432 276 154 120 3

Our experience in mIO! has served us to demonstrate that the approach of
building ontologies by reuse and re-engineering non-ontological resources already
agreed-upon allows building ontologies faster, with less resources, and with con-
sensus. With respect to the application of the Method for Reuse and Re-engineering,
this was especially useful for guiding the steps of the ontological engineers in-
volved since the method provides detailed and sufficient guidelines.

11.1.4 Summary

As a conclusion of this section we can state that the experiment (Section 11.1.1),
and the application of the methodological guidelines within the SEEMP and mIO!
projects (Sections 11.1.2 and 11.1.3) verify hypothesis H1, that is, the reuse of

208

http://mccarthy.dia.fi.upm.es/ontologies/
http://oeg-upm.net/index.php/en/ontologies/82-mio-ontologies
http://oeg-upm.net/index.php/en/ontologies/82-mio-ontologies

11.2. EVALUATION OF THE TECHNOLOGICAL SUPPORT

O.
Network

O.
User

O.
Environm

ent

O.
Time

O.
Device

O.
Provider

O.
Service

O.
LocationO.

Role

offers /
is offered by

executes /
is executed by

located at
consist of

consist of
has device

provide access

plays

-SOUPA
- e-response-buildings
- ISO 3166

O.
Interface associated to

Ontology

Module

ODP

Standard

Legend

- Delivery

- CODAMOS

M.
Envi-

ronment

M.
Network

O.
Source

defines

- FOAF

- CP-COM-01
- time-entry
- LP-SV-01

Figure 11.2: mIO! Ontology Network

non-ontologi-cal resources that have reached some degree of consensus in a com-
munity permits the development of ontologies in an easier and quicker fashion;
hypothesis H2, that is possible to define a unified method for transforming non-
ontological resources into ontologies independently (1) of the type, data model, or
implementation of the resource, and (2) of the target ontology to be generated, i.e.,
ontology schema (TBox), ontology (TBox+ABox), or ontology instances (ABox);
and hypothesis H4, that the set of patterns for re-engineering are independent of the
domain of the resources, that is, the patterns can be used to build ontologies in dif-
ferent domains. Furthermore, this method is really valuable for guiding engineers
that do not have any previous experience in building a huge ontology network,
especially if the network needs to be solidly grounded in NORs.

11.2 Evaluation of the Technological Support

This section presents three experiments. The first one was conducted with the
objective of evaluating the quality of the PR-NOR patterns and the NOR2O soft-
ware library by measuring the similarity of the ontologies generated against gold

209

CHAPTER 11. EVALUATION

standard ontologies. The second experiment was carried out for evaluating the us-
ability of the software library. Finally, the third experiment was presented in a real
case scenario within the GeoLinkedData Project14, in which the applicability and
usability of the software library is evaluated.

11.2.1 Quality Evaluation of the Patterns and NOR2O

The goal of this study is to evaluate the quality of the re-engineering patterns and
NOR2O software library by measuring the similarity of the ontologies generated
against gold standard ontologies. The ontology generated is compared against a
reference ontology (or gold standard) built manually by external ontology experts
not involved in the experiment.

11.2.1.1 Settings

For this experiment, two ontology engineering experts built five excerpts of ontolo-
gies in OWL from available NORs (two classification schemes, two thesauri and
one lexicon) of different domains. One expert built two ontologies and the other
built three ontologies. Then, the experts exchanged their ontologies in order to
evaluate them. Later, the experts refined the ontologies by following the comments
provided in the review. At the end of the process we had five “gold standard”
ontologies15. It is worth mentioning that the ontologies cover an excerpt of the
resources. Table 11.9 shows the resources utilized in this experiment:

Table 11.9: Resources utilized in the experiment

Name Type Data Model Implementation N. of
terms

N. of
terms
covered

ASFA thesaurus record-based XML 9882 188

ETT thesaurus record-based XML 2522 337

ACM classification

scheme

adjacency list XML 1606 223

FOET classification

scheme

path enumeration spreadsheet 127 112

BioLexicon lexicon relation-based database 53876 150

11.2.1.2 Execution

The experiment was executed in the three phases:

1. Each NOR was transformed automatically with the following patterns:
14http://geo.linkeddata.es/
15The ontologies are available at http://mccarthy.dia.fi.upm.es/ontologies

210

http://geo.linkeddata.es/
http://mccarthy.dia.fi.upm.es/ontologies

11.2. EVALUATION OF THE TECHNOLOGICAL SUPPORT

• ASFA, with the PR-NOR-TSTX-01 pattern.
• ETT, with the PR-NOR-TSTX-01 pattern.
• ACM, with the PR-NOR-CLTX-02 pattern.
• FOET, with the PR-NOR-CLTX-01 pattern.
• BioLexicon, with the PR-NOR-LXTX-02 pattern.

2. For disambiguating the relations between entities of a particular resource we
executed the disambiguation algorithm with WordNet.

3. In order to assess the quality of the ontologies generated, we compared the
“gold standard” ontologies with the excerpts of the five ontologies generated
automatically by means of similarity measures based on (1) the Cider Sys-
tem [Gra09], which considers the structure of the ontologies, that is, classes,
object properties and datatype properties; and (2) the StrucSubsDistAlign-
ment measure taken from the Ontology Alignment Evaluation Initiative16,
which contemplates the structure of the ontologies.

11.2.1.3 Collecting results

We built a table for comparing, by means of the similarity measures, each of the
“Gold Standard” ontologies with the ontologies generated. Table 11.10 presents
the similarity values of every ontology generated.

Table 11.10: Similarity values of every ontology generated with the Gold Standard
ontology.

Similarity values between ontologies generated with the gold standard
Cider StrucSubsDistAlignment

ASFA 0.754 0.631

ETT 0.713 0.745

ACM 0.620 0.870

FOET 0.621 0.753

BioLexicon 0.515 0.793

11.2.1.4 Finding and observations

We can state that the ontologies generated have an acceptable similarity degree
when compared to the gold standard ones.

Based on the results obtained, we can say that the main strength of the NOR2O
software library and patterns is that they generate ontologies with an acceptable
level of quality, meaning by quality the similarity of the ontologies to the gold
standard ones.

16http://oaei.ontologymatching.org/

211

http://oaei.ontologymatching.org/

CHAPTER 11. EVALUATION

11.2.2 Usability Evaluation of the Software Library

This reported study refers to the evaluation of the usability of the NOR2O software
library in the context of the development of ontologies.

11.2.2.1 Settings

We performed this user study with the same participants involved in the Master
Course (see Section 11.1.1). For the study we employed a classification scheme
and a thesaurus.

User study 1: Usability of NOR2O for building an ontology with a classifica-
tion scheme. The classification scheme of this experiment was the Classification
of Environmental Protection Activities (CEPA-9417), which has 72 terms and is
implemented in a database. For this study we extracted an excerpt of 15 terms18.

User study 2: Usability of NOR2O for building an ontology with a thesaurus.
The resource used was the ETT thesaurus, which has 2522 terms and is imple-
mented in an XML file. In this study we extracted an excerpt of 21 terms19.

Thus, we conducted two experiments following the Software Usability Mea-
surement Inventory (SUMI) method [KC93].

11.2.2.2 Execution

The investigators met with all the participants for 10 minutes and explained the
purpose of the evaluation session; then they presented the methodology of SUMI
evaluation. Then, the participants had 20 minutes to test the NOR2O software li-
brary, and 10 minutes to fill in the SUMI questionnaire on user-interaction satisfac-
tion. During these two phases the participants were not allowed to ask questions to
the investigators. The questionnaire was designed to measure the affect, efficiency,
learnability, helpfulness and control [DR93]. SUMI is also mentioned in the ISO
9241 standard as a recognized method for testing user satisfaction [(IS98].

11.2.2.3 Collecting results

The SUMI questionnaire includes 50 items with three responses each (“agree”,
“undecided”, “disagree”) and the user had to select one of the three responses for
each item.

11.2.2.4 Findings and observations

As a general conclusion we can say that the results of the evaluation were posi-
tive. The analysis of the results of the experiment conducted reveals some very
positive features of the NOR2O software library; it also points out some issues that

17Available at http://ec.europa.eu/eurostat/ramon/
18http://mccarthy.dia.fi.upm.es/master/it/homework/cepa.zip
19http://mccarthy.dia.fi.upm.es/master/it/homework/ett.zip

212

http://ec.europa.eu/eurostat/ramon/
http://mccarthy.dia.fi.upm.es/master/it/homework/cepa.zip
http://mccarthy.dia.fi.upm.es/master/it/homework/ett.zip

11.2. EVALUATION OF THE TECHNOLOGICAL SUPPORT

should be improved in future works. Figure 11.3 depicts the results of the SUMI
questionnaires.

Figure 11.3: The results of SUMI questionnaires for the NOR2O Software Library

Next, we describe the results obtained for each dimension of SUMI question-
naire:

Efficiency
This dimension obtained the higher value; therefore, we believe that the evalua-

tion of the efficiency of the NOR2O software library is satisfactory.

Affect
The affect dimension measures the user’s general emotional reaction to the soft-

ware and may be glossed as Likeability. The item regarding this dimension that
most contributed to 10.5% of disagreement in the user’s general reaction to the
software was: “I feel safer if I use only a few familiar commands or operations”.
This is one of the aspects of the NOR2O software library we should improve, if we
want all the funcionalities to be perceived with the same degree of positiveness by
the users.

Helpfulness
Fifty-five and one half percent of the users believe that the software is self-

explanatory (helpful). Moreover, we found that the item that more contributed to
32.5% of indecision was: “This software is awkward when I want to do some-
thing not standard”. This means that the majority of the users did not need to find
alternative options to perform the actions available in the software library.

Control
The global control was calculated as the average of the 10 SUMI questions for

213

CHAPTER 11. EVALUATION

this dimension. We consider that the evaluation of this dimension is satisfactory,
because we only obtained 9.5% of disagreement. In the same sense, 33.5% of
indecision corresponds to aspects that did not appear in the software, such as “The
software allows the user to be economic of keystrokes”, which is positive.

Learnability
This dimension obtained the lowest value; therefore, we should improve this

aspect of the NOR2O software library if we want to increase the speed and facility
with which the users learn how to use new features when necessary.

Considering the comments obtained in the experiment, we can state that its
main strength is that the majority of students found NOR2O useful and under-
standable.

11.2.3 Applicability and Usability of NOR2O within the GeoLinked-
Data Project

In order to evaluate the applicability and usability of the NOR2O software library,
we conducted an experiment in a real case scenario within the GeoLinkedData
Project20.

GeoLinkedData is an open initiative whose aim is to enrich the Web of Data
[Biz09] with Spanish geospatial data. This initiative started off by publishing di-
verse information sources belonging to the National Geographic Institute of Spain.
Such sources are made available as RDF (Resource Description Framework) knowl-
edge bases according to the Linked Data principles [Biz09]. Within this project we
have searched for open government information in two institutions (1) the Na-
tional Geographic Institute of Spain (IGN), and (2) the National Statistics Institute
of Spain (INE). The datasets selected from the INE are available as Excel spread-
sheets and these were the following: Population, Unemployment, Building Trade,
Dwelling, and Industry.

In the process of linked data generation from the INE datasets, we had to cre-
ate RDF instances of the Statistical Core Vocabulary (SCOVO) [HHR+09]. Thus,
basically we had to perform a Population from the INE datasets of the SCOVO
vocabulary. This vocabulary provides an expressive modelling framework for sta-
tistical information, and has been used in a variety of applications that requires
the representation of statistical information. The vocabulary is currently defined in
RDF(S).

In the following sections we describe how to apply NOR2O for generating RDF
instances of SCOVO vocabulary.

11.2.3.1 Performing a Population of RDF instances of SCOVO vocabulary

Once we had the INE datasets selected, we had to transform them into ontology
instances. Next, we describe the process of generating RDF instances of SCOVO

20http://geo.linkeddata.es/

214

http://geo.linkeddata.es/

11.2. EVALUATION OF THE TECHNOLOGICAL SUPPORT

vocabulary.

Activity 1. Non-ontological resource reverse engineering
In this activity we gathered documentation about the INE datasets. From this

documentation we realized that resources are a set of bi-dimensional tables in
which we have (1) the location in one dimension, (2) the time line in the other,
and (3) the set of values of a particular variable. Finally, we realized that INE
datasets are stored in Excel spreadsheets. Figure 11.4 shows an example of the
Industry Production Index.

Activity 2. Non-ontological resource transformation
In this activity we carried out the following tasks:

1. We identified the transformation approach, Population, i.e., transforming the
resource content into ontology instances.

2. Then, we searched our local pattern repository for a suitable pattern to re-
engineer NORs, taking into account the transformation approach (Popula-
tion) and the non-ontological resource type (bi-dimensional tables).

3. As we did not find any suitable pattern for the INE datasets; we had to per-
form an ad-hoc transformation. Thanks to the modular approach of NOR2O,
it was easy to extend the software library and include the new non-ontological
resource.

4. After the enhancement of the library, we performed the transformation of the
INE datasets automatically.

Activity 3. Ontology forward engineering
We relied on the NOR2O software library for generating the ontology instances

automatically.
Figure 11.4 illustrates the transformation process from the Excel spreadsheet

data to the RDF instances. On the left side we can see the spreadsheet and data
that represents the Industry Production Index of Spanish provinces over the years.
On the right side we have the nor.xml configuration file that describes the infor-
mation stored in the spreadsheets. The configuration file describes the information
from the spreadsheet: province, year, and the industry production index. Then, the
NOR2O software library, with all this information, generates the RDF instances.

Our experience in GeoLinkedData has served us to demonstrate that

• The method for re-engineering can be applied even though we did not find a
suitable pattern for the transformation.

• The re-engineering patterns are extensible to other types of resources, and
subsequently NOR2O can be extended as well.

• The NOR2O software library is easy to use in other projects.

215

CHAPTER 11. EVALUATION

Figure 11.4: Generation of RDF instances from the excel spreadsheet data.

11.2.4 Summary

As a conclusion we can state that the set of experiments carried out in this sec-
tion, verifies (1) hypothesis H5, the re-engineering patterns proposed can be im-
plemented in a software library that facilitates the work of ontology engineers when
developing ontologies; (2) hypothesis H3, the method for re-engineering non-
ontological resources is extensible and adaptable to other types of resources. The
method can be applied to any kind of non-ontological resource independently of its
type, data model or implementation; and (3) hypothesis H4, it is possible to create
patterns for re-engineering that allow generating ontologies from available non-
ontological resources; these re-engineering patterns are extensible to other types of
resources besides classification schemes, thesauri or lexica.

11.3 Evaluation Summary

This chapter has presented the evaluation of this thesis contributions through a set
of experiments. The evaluation of the method proposed, and its technological sup-
port, provides positive evidence of the set of hypotheses introduced in Section 3.4.
This positive evidence is presented in Sections 11.1.4 and 11.2.4. Moreover, based
on the comments and results obtained in the experiments, we have demonstrated
that the methodological guidelines and technological support proposed are really
valuable and useful for guiding engineers with no previous experience in building
a huge ontology network, especially, if the network needs to be solidly grounded

216

11.3. EVALUATION SUMMARY

in NORs.

217

CHAPTER 11. EVALUATION

218

Chapter 12

CONCLUSIONS AND FUTURE
WORK

This thesis is focused on the reuse and possible subsequent re-engineering of knowl-
edge resources, as opposed to the custom-building of new ontologies from scratch.
A deep analysis of the state of the art has revealed that there are some methods and
tools for transforming non-ontological resources into ontologies, but that they have
some limitations, namely,

• Most of the methods presented are based on ad-hoc transformations for the
resource type and the resource implementation.

• Only a few methods take advantage of the resource data model, an important
artefact for the re-engineering process [GGPSFVT08].

• No integrated framework, method or corresponding tool considers the re-
sources types, data models and implementations identified in a unified way.

• With regard to the transformation approach, most of the methods perform
a TBox transformation, some perform an ABox transformation and just a
few perform a population. However, no method includes the possibility to
perform the three transformations.

• Regarding the degree of automation, almost all the methods perform a semi-
automatic transformation of the resource.

• Regarding to the explicitation of the hidden semantics in the relations of the
resource components, we can state that the methods that perform a TBox
transformation make explicit the semantics of the relations of the resource
components. Most of the methods identify subClassOf relations, others
identify ad-hoc relations, and some identify partOf relations. However, only
a few methods make explicit the three types of relations.

219

CHAPTER 12. CONCLUSIONS AND FUTURE WORK

• With respect to how the methods make explicit the hidden semantics in the
relations of the resource terms, we can say that three methods rely on the
domain expert for making explicit the semantics, and two rely on an external
resource, e.g., DOLCE ontology. Moreover, there are two methods that rely
on external resources but not for making explicit the hidden semantics, but
for finding out a proper ontology for populating it.

• As for to the provision of the methodological guidelines, almost all the meth-
ods provide methodological guidelines for the transformation. However
these guidelines are not finely detailed; for instance, they do not provide
information about who is in charge of performing a particular activity/task,
nor when that activity/task has to be carried out.

• With regard to the techniques employed, most of the methods do not mention
them at all. Only a few methods specify techniques as transformation rules,
lexico-syntactic patterns, mapping rules and natural language techniques.

In this thesis we have provided a method and its technological support that
rely on re-engineering patterns in order to speed up the ontology development pro-
cess by reusing and re-engineering as much as possible available non-ontological
resources. To achieve this overall goal, we have decomposed it in the following
objectives: (1) the definition of methodological aspects related to the reuse of non-
ontolo-gical resources for building ontologies; (2) the definition of methodological
aspects related to the re-engineering of non-ontological resources for building on-
tologies; (3) the creation of a library of patterns for re-engineering non-ontological
resources into ontologies; and (4) the development of a software library that im-
plements the suggestions provided by the re-engineering patterns.

Having in mind these goals, in this chapter we present how the open research
problems identified in Chapter 2 are solved. Then, we discuss the verification of
our hypotheses, and finally we provide an outlook for the future lines of work.

12.1 Review of the Contributions

This section reviews the main contributions of this thesis and how we solved the
open research problems.

• Up to the writing of this thesis no definition of non-ontological resources
could be found. Moreover, an analysis of the literature has revealed that there
are different ways of categorizing NORs, though an accepted and agreed
upon typology of NORs does not exist yet. To address the previous limita-
tions, we have introduced the definition of non-ontological resource and pro-
posed a categorization of them according to three different features: type
of non-ontological resource, data model and implementation. This catego-
rization is neither exhaustive nor complete. Currently, we are enriching it by

220

12.1. REVIEW OF THE CONTRIBUTIONS

adding examples taken from RosettaNet1 and Electronic Data Interchange,
EDI2.

We have presented the categorization in Chapter 5. According to the type of
NOR we have classified them into classification schemes, thesauri, lexicons,
folksonomies and glossaries. The identified datamodels for classifications
schemes are path enumeration, adjacency list, snowflake, and flattened; for
thesauri and lexica we have record-based and relation-based.

• Nowadays, most of the NORs exist in pure form without any additional infor-
mation, e.g., a domain of interest or authorship information, such as that pro-
vided by Dublin Core for text documents or by OMV for ontologies. There-
fore, it is difficult for academia and industry to identify, find and reuse NORs
effectively and efficiently. As consequence, the reuse of NORs for building
ontologies is at present a very hard task if not impossible. Thus, in order
to address the previous limitations, we have introduced a metadata standard
reflecting the most relevant properties of NORs for supporting their reuse,
the so-called Non-ontological Resource Metadata Vocabulary (NoRMV).
This vocabulary allows (1) describing the non-ontological resources avail-
able, and (2) including the provenance information in the ontology generated
by extending the Ontology Metadata Vocabulary (OMV).

• Previous efforts towards the reuse and subsequent transformation of avail-
able resources for building ontologies had assumed that the non-ontological
resources were already selected for their transformation; therefore, they did
not provide methodological guidelines for the selection of the resource. To
overcome this limitation, we have presented a set of methodological guide-
lines on how to find the most suitable non-ontological resources for the
development of ontologies. The methodological guidelines include the def-
inition, goal, inputs, outputs, a set of the activities involved, performer of the
activities, and execution time of the activities.

• Some methods and tools for transforming non-ontological resources into
ontologies perform ad-hoc conversions. In order to cope with the catego-
rization of non-ontological resources proposed in this thesis, we provide a
re-engineering model for non-ontological resources. The model tries to
solve the lack of a model for re-engineering non-ontological resources into
ontologies. This model opens the foundations of the re-engineering process
of NORs for building ontologies. The model, presented in Chapter 6, is
based on the software re-engineering model introduced in Chapter 2. It de-
scribes the four software abstraction levels that define each activity in soft-
ware development: conceptual, requirements, design, and implementation
levels. Moreover, this re-engineering model introduces the four ontology

1http://www.rosettanet.org/
2http://www.edibasics.co.uk/

221

http://www.rosettanet.org/
http://www.edibasics.co.uk/

CHAPTER 12. CONCLUSIONS AND FUTURE WORK

abstraction levels that define the activities in ontology engineering: specifi-
cation, conceptualization, formalization, and implementation.

• The methods available for converting non-ontological resources into on-
tologies do not provide detailed guidelines for the transformation. Thus,
to address this limitation we have proposed a method for re-engineering
non-ontological resources by means of patterns. Our method tries to solve
the problem of not having detailed guidelines on how to transform non-
ontological resources into ontologies. The method, presented in Chapter 6,
relies on the use of patterns guiding the transformation, although, the soft-
ware library can also be used for generating the ontology automatically.

• The methods for the conversion of non-ontological resources into ontologies
do not provide the techniques employed nor do they reuse good practices for
the transformation. To overcome this limitation, we propose a set of pat-
terns. These patterns for transforming non-ontological resources into on-
tologies has several advantages: (1) they include expertise in how to guide a
re-engineering process, (2) they improve the efficiency of the re-engineering
process, and (3) they make the transformation process easier for ontology
engineers.

According to the NOR categorization presented in Chapter 5, in this thesis
we propose patterns for re-engineering classification schemes (Chapter 7),
thesauri (Chapter 8), and lexicons (Chapter 9). The set of patterns are in-
cluded in the the ODP Portal3 as a PR-NOR library. One of the goals of the
PR-NOR library is to become a community-accepted re-engineering pattern
library for transforming resources into ontologies. The PR-NOR library in-
cludes the three transformation approaches (TBox, ABox and Population).
Moreover, the patterns that perform the TBox transformation approach make
explicit the hidden semantics in the relations of the NOR terms, by means of
external resources, e.g., WordNet.

• The tools that transform non-ontological resources into ontologies do not
cover the three transformation approaches (TBox, ABox, and Population)
nor the non-ontological resource types identified, among other features. Within
this thesis we have developed a software library, NOR2O, that implements
the transformation suggested by the patterns. This software library tries to
solve the lack of technological support for an integrated method that takes
into account the different types of NORs and their internal data models and
implementations in an uniform way. The NOR2O software library, presented
in Chapter 10, is a Java library that performs an ETL process4 for transform-
ing the non-ontological resource terms into ontology elements. The imple-
mentation of NOR2O follows a modular approach; therefore, it is possible

3http://ontologydesignpatterns.org/
4Extract, transform, and load (ETL) of legacy data sources, is a process that involves: (1) extract-

ing data from the outside resources, (2) transforming it to fit operational needs, and (3) loading into
the end target resources [KC04].

222

http://ontologydesignpatterns.org/

12.1. REVIEW OF THE CONTRIBUTIONS

to extend it and include other types of NORs, data models, and implemen-
tations in a simple way, as well as to exploit other external resources for
making explicit the hidden semantics in the relations of the NOR terms.

To conclude we present the comparison of our method with the three most rep-
resentative methods in this area: Heep et al. [HdB07], Hyvönen et al. [HVTS08]
and Soergel et al. [SLL+04] (see Tables 12.1, 12.2, 12.3, and 12.4). The compar-
ison is made according to the following features: non-ontological resources, reuse
of NORs, transformation, and ontologies generated, which were analysed in the
chapter dealing with the state of the art.

Table 12.1: A comparative analysis of the three most representative methods and
the pattern-based method. NOR features

Features Heep et al. Hyvönen et al. Soerger et al. Villazón-
Terrazas

Non-ontological Resource
Type classification

scheme,

thesaurus

thesaurus thesaurus classification

scheme,

thesaurus,

lexicon

Data model is
used

No No Yes Yes

Implementation database not mentioned database database, XML,

spreadsheet,

flat file

With respect to the non-ontological resources (see Table 12.1), our method (1)
deals with classification schemes, thesauri and lexica; (2) considers the internal
data model; and (3) tackles NORs implemented in databases, XML files, spread-
sheets, and flat files.

Table 12.2: A comparative analysis of the three most representative methods and
the pattern-based method. Reuse features

Features Heep et al. Hyvönen et al. Soerger et al. Villazón-
Terrazas

Reuse
Detailed

guidelines
No No No Yes

Tool support No No No No

Provenance No No No Yes

Regarding the reuse of non-ontological resources (see Table 12.2), our method
(1) provides methodological guidelines for the selection of the resources to be

223

CHAPTER 12. CONCLUSIONS AND FUTURE WORK

transformed; and (2) keeps track of the provenance of the resource.

Table 12.3: A comparative analysis of the three most representative methods and
the pattern-based method. Transformation features

Features Heep et al. Hyvönen et al. Soerger et al. Villazón-
Terrazas

Transformation
Transformation

approach
TBox TBox TBox TBox, ABox,

Population

Transformation
aspects

syntactic,

semantic

syntactic,

semantic

syntactic,

semantic

syntactic,

semantic

Semantics of
the NOR
relations

subClassOf,

ad-hoc relation

subClassOf,

partOf

subClassOf,

ad-hoc relation

subClassOf,

partOf

Additional
resources/Do-

main
expert

No DOLCE Domain expert WordNet

Automatic /
Semiautomatic

/ Manual

Semiautomatic Semiautomatic Manual Semiautomatic

Technique Not mentioned Not mentioned Not mentioned Re-engineering

patterns

Tool support SKOS2GenTax ad-hoc tool Not mentioned NOR2O

With respect to the transformation of the resources (see Table 12.3), our method
(1) performs the three transformation approaches (TBox, ABox and population);
(2) considers the syntactic and semantic transformation aspects; (3) contemplates
the generation subClassOf and partOf relations; (4) relies on WordNet as external
resource for discovering the hidden semantics of the NOR terms; (5) depends on
re-engineering patterns for generating ontologies from the resources; and (6) is
supported by the NOR2O software library.

As for the ontologies generated (see Table 12.4), our method generates (1)
classes, attributes, relations, and instances; and (2) single ontologies implemented
in OWL Lite/RDF.

224

12.2. HYPOTHESES VERIFICATION

Table 12.4: A comparative analysis of the three most representative methods and
the pattern-based method. Ontology features

Features Heep et al. Hyvönen et al. Soerger et al. Villazón-
Terrazas

Ontology
Components classes,

relations

classes,

attributes,

relations

classes,

attributes,

relations

classes,

attributes,

relations,

instances

Language RDF(S)/OWL-

DLP

RDF(S) OWL-DL OWL Lite/RDF

Single /
Several

single single single single

12.2 Hypotheses Verification

We have verified the hypotheses of this thesis by different means:

• Within the evaluation of the methodological guidelines, an analysis of the
results of the experiments, described in Sections 11.1, 11.1.2, and 11.1.3
some very positive features. For example,

– The results of the understandability, applicability and usability of the
methodological guidelines indicate that the method is specially useful
for guiding the ontological engineers. Moreover, the method allows
building ontologies faster and with fewer resources (hypothesis H1).

– It is possible to define a unified method for transforming non-ontological
resources into ontologies independently (1) of the type, data model or
implementation of the resource, and (1) of the target ontology, TBox,
TBox+ABox, or ABox (hypothesis H2).

– The set of re-engineering patterns are independent of the domain of
the resources; in other words, the patterns can be used to develop on-
tologies in different domains, e.g., occupation, geographical location,
education and training (hypothesis H4).

• Within the evaluation of the technological support, the analysis of the results
of the experiments, described in Sections 11.2.1, 11.2.2, and 11.2.3 shows
also very positive features. For example,

– The method for re-engineering non-ontological resources is extensible
and adaptable to other types of resources, e.g., bidimensional tables
(hypothesis H3).

– Re-engineering patterns generate ontologies from available non-onto-
logical resources independently of (1) how they have been implemented

225

CHAPTER 12. CONCLUSIONS AND FUTURE WORK

(databases, XML); (2) the target ontology to be generated (TBox, TBox+ABox,
or ABox); (3) the domain of the resource (statistical, occupation, ed-
uaction, etc.); and (4) its being extended to other type of resources
(hypothesis H4).

– NOR2O, the software library that implements the suggestions given
by the patterns, facilitates the work of ontology engineers (hypothesis
H5).

12.3 Future Work

In this thesis we have tackled many open research problems within the context of
the reuse and re-engineering of non-ontological resources for building ontologies
but there are still open issues to resolve or extensions to implement in the near
future. We would like to mention some of the most important from our perspective:

• The improvement of the process of reusing non-ontological resources with
the creation of a registry of non-ontological resources that have reached some
consensus in a community. The NORs would be annotated by means of
NoRMV, described in Chapter 5, thus it would be easy to identify, find and
reuse NORs effectively and efficiently.

• Regarding the process of re-engineering non-ontological resources, impor-
tant features are

– The building of richer ontologies by extending the taxonomic structures
with disjoint knowledge.

– The inclusion in the re-engineering patterns of the support for trans-
forming excerpts of the resource, and not the whole resource.

– The inclusion of the support of more non-ontological resource types,
data models and implementations, as well as additional external re-
sources like DBpedia for making explicit the semantics on the relations
of the NOR terms.

– The generation of GoodRelations-compliant ontologies for product types
and product features. GoodRelations5 is a standardized vocabulary for
product, price and company data that (1) can be embedded into exist-
ing static and dynamic Web pages and (2) can be processed by other
computers.

• The consideration of multilingual non-ontological resources for building mul-
tilingual ontologies. This would require the identification of how the multi-
lingual information is represented in the non-ontological resources and the
definition of a linguistic model for expressing the multilingual information

5http://www.heppnetz.de/projects/goodrelations/

226

http://www.heppnetz.de/projects/goodrelations/

12.3. FUTURE WORK

of the ontologies. Moreover, this feature would also imply that the patterns
have to rely on additional knowledge resources, i.e., multilingual, monolin-
gual resources, and background-knowledge resources.

• The consideration of the integration of different knowledge resources. It
would be interesting to investigate on methodological guidelines for select-
ing, comparing and combining non-ontological resources, ontological re-
sources, and ontology design patterns with the aim of building ontology net-
works.

• The evolution of the non-ontological resources. It would be good to analyse
how to transform non-ontological resources that change along the time, and
to identify how the frequency of changes affects the ontologization of that
resource, and to propose incremental transformations.

• Linked Data has been recently suggested as one of the best alternatives for
creating shared information spaces [Biz09]. In the context of Linked Data
the RDF language is used to describe resources in the form of triples. One
extension of the work presented in this thesis is the generation of RDF data
following the Linked Data principles. The NOR2O software library can
be used for this purpose since the library already generates RDF instances.
Some of the features to consider are

– To include the generation of links from the RDF instances generated
into RDF resources of RDF datasets presented in the LOD cloud6,

– To follow best practices in the URI generation; for example, the Cool
URI for the Semantic Web7,

– To suggest available vocabularies to reuse, when modelling the ontol-
ogy, taking into account the domain of the resources and using semantic
web search engines, such as Sindice8.

The general goal of this thesis, i.e., the reuse and re-engineering of non-ontologi-
cal resources for speeding up the ontology development process, is a core require-
ment for supporting and promoting the new paradigm of the reuse-based approach
in ontology development. Thus, our results represent a step forward in the achieve-
ment of such a goal.

6http://richard.cyganiak.de/2007/10/lod/
7http://www.w3.org/TR/cooluris/
8http://sindice.com/

227

http://richard.cyganiak.de/2007/10/lod/
http://www.w3.org/TR/cooluris/
http://sindice.com/

CHAPTER 12. CONCLUSIONS AND FUTURE WORK

228

Bibliography

[ABM05] Y. An, A. Borgida, and J. Mylopoulos. Constructing Complex
Semantic Mappings Between XML Data and Ontologies. In In-
ternational Semantic Web Conference, pages 6–20, 2005.

[Ale79] C. Alexander. The Timeless Way of Building. Oxford University
Press, New York, 1979.

[ALFZ94] M. Antoni-Lay, G. Francopoulo, and L. Zaysser. A generic model
for reusable lexicons: The GENELEX project. Literary and Lin-
guistic Computing, 9(1):47–54, 1994.

[AM05] Y. An and J. Mylopoulos. Translating XML Web Data into On-
tologies. In OTM Workshops, pages 967–976, 2005.

[ANS05] ANSI/NISO. Documentation – Guidelines for the construction,
format, and management of monolingual controlled vocabular-
ies., 2005. Report ANSINISO Z3919.

[ASC07] R. Abbasi, S. Staab, and P. Cimiano. Organizing resources on
tagging systems using t-org. In In proceedings of Workshop on
Bridging the Gap between Semantic Web and Web 2.0 at ESWC
2007, June 2007.

[BA05] E. Biesalski and A. Abecker. Human resource management with
ontologies. In Springer Postproceedings: Workshop on IT Tools
for Knowledge Management Systems: Applicability, Usability,
and Benefits (KMTOOLS), pages 499–507. 2005.

[Bar07] J. Barrasa. Modelo para la definición automática de corre-
spondencias semánticas entre ontologı́as y modelos relacionales.
PhD thesis, Facultad de Informática, Universidad Politécnica de
Madrid, Madrid, Spain, March 2007.

[BCGP04] J. Barrasa, O. Corcho, and A. Gómez-Pérez. R2O, an Extensi-
ble and Semantically Based Database-to-Ontology Mapping Lan-
guage. In Second Workshop on Semantic Web and Databases
(SWDB2004), 2004.

229

BIBLIOGRAPHY

[Ber94] J. Berge. The EDIFACT Standards. Blackwell Publishers, Inc.,
Cambridge, MA, USA, 1994.

[BH06] S. Brockmans and P. Haase. A Metamodel and UML Profile for
Networked Ontologies. A Complete Reference. Technical report,
Universitt Karlsruhe,, 2006.

[BHM+05] C. Bizer, R. Heese, M. Mochol, R. Oldakowski, R. Tolksdorf,
and R. Eckstein. The impact of semantic web technologies on job
recruitment processes. In International Conference Wirtschaftsin-
formatik (WI 2005), Bamberg, Germany, 2005.

[Biz09] C. Bizer. The Emerging Web of Linked Data. IEEE Intelligent
Systems, 24(5):87–92, 2009.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: a system of pat-
terns, volume 1. John Wiley and Sons, 1996.

[Bor97] W. Borst. Construction of Engineering Ontologies, 1997.

[Bra05] D. Brandon. Recursive database structures. Journal of Computing
Sciences in Colleges, 2005.

[BS 05a] British Standards Institution, BSI. Documentation – Structured
vocabularies for information retrieval - Guide - Part 1: Defini-
tions, symbols and abbreviations., 2005. Report BS 8723-1.

[BS 05b] British Standards Institution, BSI. Documentation – Structured
vocabularies for information retrieval - Guide - Part 2: Thesauri.,
2005. Report BS 8723-2.

[Byr92] E. Byrne. A conceptual foundation for software re-engineering.
In International Conference on Software Maintenance and
Reengineering. IEEE Computer Society, 1992.

[BYRN99] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Re-
trieval. Addison Wesley, 1st edition, May 1999.

[Car02] B. Carkenord. Why Build a Logical Data Model.
http://www.embarcadero.com/resources/tech papers/data-
model.pdf, 2002.

[CCI90] E. J. Chikofsky and J. H. Cross II. Reverse engineering and design
recovery: A taxonomy. IEEE Softw., 7(1):13–17, 1990.

[CHPG09] C. Caracciolo, J. Heguiabehere, V. Presutti, and A. Gangemi. Ini-
tial Network of Fisheries Ontologies. Technical report, NeOn
project deliverable D7.2.3, 2009.

230

BIBLIOGRAPHY

[CNZ96] N. Calzolari, M. Naught, and J. Zam-
polli. EAGLES Editor’s Introduction.
http://www.ilc.cnr.it/EAGLES96/edintro/edintro.html, 1996.

[Cor05] O. Corcho, editor. A Layered Declarative Approach to Ontology
Translation with Knowledge Preservation. IOS Press, 2005.

[CR09] O. Corcho and C. Roussey. SynonymOrEquivalence (SOE) Pat-
tern. http://ontologydesignpatterns.org, 2009.

[CTP00] P. Clark, J. Thompson, and B. W. Porter. Knowledge Patterns. In
KR2000: Principles of Knowledge Representation and Reason-
ing, pages 591–600, 2000.

[CXH04] I. F. Cruz, H. Xiao, and F. Hsu. An ontology-based framework for
xml semantic integration. In IDEAS ’04: Proceedings of the In-
ternational Database Engineering and Applications Symposium,
pages 217–226, Washington, DC, USA, 2004. IEEE Computer
Society.

[DR93] J. Dumas and J. Redish. A practical guide to usability testing.
Exeter, UK Intellect, 1993.

[EPJ06] H. Edwards, R. Puckett, and A. Jolly. Analyzing communication
patterns in software engineering projects. In Software Engineer-
ing Research and Practice, pages 310–315, 2006.

[ES07] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag,
Heidelberg (DE), 2007.

[FB06] D. Foxvog and C. Bussler. Ontologizing EDI Semantics. In ER
(Workshops), pages 301–311, 2006.

[Fel98] C. Fellbaum, editor. WordNet - An Electronic Lexical Database.
MIT Press, 1998.

[FGC+06] G. Francopoulo, M. George, N. Calzolari, M. Monachini, N. Bel,
M. Pet, and C. Soria. Lexical markup framework (lmf). In Pro-
ceedings of the fifth international conference on Language Re-
sources and Evaluation, LREC 2006, Genoa, Italy, 2006.

[GC05] R. Garcı́a and O. Celma. Semantic Integration and Retrieval of
Multimedia Metadata. In Proceedings of the ISWC 2005 Work-
shop on Knowledge Markup and Semantic Annotation (Seman-
not’2005), 2005.

[GCCL06] A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann. Mod-
elling ontology evaluation and validation. In Proceedings of the

231

BIBLIOGRAPHY

3rd European Semantic Web Conference (ESWC2006), number
4011 in LNCS, Budva. Springer, 2006.

[GGMO03] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweeten-
ing WORDNET with DOLCE. AI Mag., 24(3):13–24, 2003.

[GGPSFVT08] A. Garcı́a, A. Gómez-Pérez, M. C. Suárez-Figueroa, and B. Vil-
lazón-Terrazas. A Pattern Based Approach for Re-engineering
Non-Ontological Resources into Ontologies. In Proceedings of
the 3rd Asian Semantic Web Conference (ASWC2008). Springer-
Verlag, 2008.

[GHJV95] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA, 1995.

[GNV03] A. Gangemi, R. Navigli, and P. Velardi. The OntoWordNet
Project: Extension and Axiomatization of Conceptual Relations
in WordNet. In CoopIS/DOA/ODBASE, 2003.

[GP08] A. Gangemi and V. Presutti. Handbook of Ontologies (2nd edi-
tion), chapter Ontology Design Patterns. Springer: Berlin, 2008.

[GPC08] J. M. Gómez-Pérez and O. Corcho. Problem-solving methods
for understanding process executions. Computing in Science and
Engg., 10(3):47–52, 2008.

[GPFLC03] A. Gómez-Pérez, M. Fernández-López, and O. Corcho. Ontologi-
cal Engineering. Advanced Information and Knowledge Process-
ing. Springer Verlag, 2003.

[GPMM04] A. Gómez-Pérez and D. Manzano-Macho. An overview of meth-
ods and tools for ontology learning from texts. Knowl. Eng. Rev.,
19(3):187–212, 2004.

[GPS98] A. Gangemi, D. Pisanelli, and G. Steve. Ontology integration:
Experiences with medical terminologies. Ontology in Information
Systems, pages 163–178, 1998.

[GPSF09] A. Gómez-Pérez and M. C. Suárez-Figueroa. Scenarios for
Building Ontology Networks within the NeOn Methodology. In
P. in Proceedings of the Fifth International Conference on Knowl-
edge Capture (K-CAP 2009), editor, Proceedings of the Fifth In-
ternational Conference on Knowledge Capture (K-CAP 2009),
2009.

[Gra09] J. Gracia. Integration and Disambiguation Techniques for Seman-
tic Heterogeneity Reduction on the Web. PhD thesis, University
of Zaragoza, October 2009.

232

BIBLIOGRAPHY

[Gru93a] T. R. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. In In Formal Ontology in Concep-
tual Analysis and Knowledge Representation, In Press. Substan-
tial Revision of Paper Presented at the International Workshop on
Formal Ontology. Kluwer Academic Publishers, 1993.

[Gru93b] T. R. Gruber. A translation approach to portable ontology speci-
fications. KNOWLEDGE ACQUISITION, 5:199–220, 1993.

[Hah03] V. Hahn. Turning informal thesauri into formal ontologies: a fea-
sibility study on biomedical knowledge re-use. Comparative and
Functional Genomics, 4:94–97(4), January/February 2003.

[HdB07] M. Hepp and J. de Brujin. GenTax: A generic Methodology for
Deriving OWL and RDF-S Ontologies from Hierarchical Clas-
sifications, Thesauri, and Inconsistent Taxonomies. In Proceed-
ings of the 4th European Semantic Web Conference (ESWC2007).
Springer-Verlag, 2007.

[Hep06] M. Hepp. Products and services ontologies: A methodology for
deriving owl ontologies from industrial categorization standards.
Int. J. Semantic Web Inf. Syst., 2(1):72–99, 2006.

[Hep07] M. Hepp. Possible Ontologies: How Reality Constrains the De-
velopment of Relevant Ontologies. IEEE Internet Computing,
11(1):90–96, 2007.

[HFP+06] L. Han, T. Finin, C. Parr, J. Sachs, and A. Joshi. RDF123: a
mechanism to transform spreadsheets to RDF. In Proceedings
of the Twenty-First National Conference on Artificial Intelligence
(AAAI-06), 2006.

[HHR+09] M. Hausenblas, W. Halb, Y. Raimond, L. Feigenbaum, and D. Ay-
ers. SCOVO: Using Statistics on the Web of Data. In L. Aroyo,
P. Traverso, F. Ciravegna, P. Cimiano, T. Heath, E. Hyvnen,
R. Mizoguchi, E. Oren, M. Sabou, and E. P. B. Simperl, edi-
tors, ESWC, volume 5554 of Lecture Notes in Computer Science,
pages 708–722. Springer, 2009.

[HHST06] S. Hakkarainen, L. Hella, D. Strasunskas, and S. Tuxen. A Se-
mantic Transformation Approach for ISO 15926. In Proceedings
of the OIS 2006 First International Workshop on Ontologizing In-
dustrial Standards, 2006.

[Hir04] G. Hirst. Ontology and the lexicon. In Handbook on Ontologies
in Information Systems, pages 209–230. Springer, 2004.

233

BIBLIOGRAPHY

[Hod00] G. Hodge. Systems of Knowledge Organization for
Digital Libraries: Beyond Traditional Authority Files.
http://www.clir.org/pubs/reports/pub91/contents.html, 2000.

[HPS05] J. Hartmann, R. Palma, and Y. Sure. Omv ontology metadata
vocabulary. In ISWC 2005 Workshop on Ontology Patterns for
the Semantic Web, 2005.

[HS03] U. Hahn and S. Schulz. Towards a broad-coverage biomedical
ontology based on description logics. pac symp biocomput. pages
577–588, 2003.

[HVTS08] E. Hyvönen, K. Viljanen, J. Tuominen, and K. Seppälä. Building
a national semantic web ontology and ontology service infrastruc-
ture -the finnonto approach. In ESWC, pages 95–109, 2008.

[ILC03] N. Ide, A. Lenci, and N. Calzolari. Rdf instantiation of isle/mile
lexical entries. In Proceedings of the ACL 2003 workshop on
Linguistic annotation, pages 30–37, Morristown, NJ, USA, 2003.
Association for Computational Linguistics.

[(IS98] I. S. O. (ISO). Ergonomic requirements for office work with
visual display terminals (vdts) part 11: Guidance on usability,
1998.

[ISO85] International Standard Organization (ISO). Documentation –
Guidelines for the establishment and development of multilingual
thesauri, 1985. Report ISO 5964.

[ISO86] International Standard Organization (ISO). Documentation –
Guidelines for the establishment and development of monolingual
thesaurus, 1986. Report ISO 2788.

[ISO04] International Standard Organization (ISO). Information technol-
ogy - Metadata registries - Part 1: Framework, 2004. Report
ISO/IEC FDIS 11179-1.

[JYJRBLRS09] A. Jimeno-Yepes, E. Jimnez-Ruiz, R. Berlanga-Llavori, and
D. Rebholz-Schuhmann. Reuse of terminological resources for
efficient ontological engineering in life sciences. BMC Bioinfor-
matics, 10 Suppl 10, 2009.

[KBH+97] T. Koch, A. Bummer, D. Hiom, M. Peereboom, A. Poulter, and
E. Worsfold. Specification for resource description methods Part
3. the role of classification schemes in Internet resource descrip-
tion and discovery. Technical report, DESIRE project deliverable
D3.2, 1997.

234

BIBLIOGRAPHY

[KC93] J. Kirakowski and M. Corbett. Sumi: The software usability mea-
surement inventory. British Journal of Educational Technology,
24(3):210–212, 1993.

[KC04] R. Kimball and J. Caserta. The Data Warehouse ETL Toolkit:
Practical Techniques for Extracting, Cleanin. John Wiley & Sons,
2004.

[KSKR06] M. Khayari, S. Schneider, I. Kramer, and L. Romary. Unifi-
cation of multi-lingual scientific terminological resources using
the iso 16642 standard. the termsciences initiative. CoRR, ab-
s/cs/0604027, 2006.

[Lab07] L. B. N. Laboratory. eXtended MetaData Registry (XMDR)
Project. http://www.xmdr.org/standards/cmaps/Thesaurus Stan-
dards Relationships.html, 2007.

[LDP] A. D. Lloyd, R. Dewar, and R. Pooley. Legacy information sys-
tems and business process change: a patterns perpective. Com-
mun. AIS, page 2.

[LS06] B. Lauser and M. Sini. From agrovoc to the agricultural ontology
service/concept server: an owl model for creating ontologies in
the agricultural domain. In DCMI ’06: Proceedings of the 2006
international conference on Dublin Core and Metadata Applica-
tions, pages 76–88. Dublin Core Metadata Initiative, 2006.

[LW09] A. Langegger and W. W. Xlwrap - querying and integrating arbi-
trary spreadsheets with sparql. In 8th International Semantic Web
Conference (ISWC2009), October 2009.

[MB05] A. Miles and D. Brickley. SKOS Core Vocabulary Specifica-
tion. Technical report, World Wide Web Consortium (W3C),
November 2005. http://www.w3.org/TR/2005/WD-swbp-skos-
core-spec-20051102/.

[MDA07] M. Z. Maala, A. Delteil, and A. Azough. A conversion process
from flickr tags to rdf descriptions. In SAW, 2007.

[Mil05] A. Miles. Quick Guide to Publishing a Thesaurus on the Seman-
tic Web. Technical report, World Wide Web Consortium (W3C),
May 2005. http://www.w3.org/TR/2005/WD-swbp-thesaurus-
pubguide-20050510/.

[MPBS06] M. Mochol and E. Paslaru Bontas Simperl. Practical Guide-
lines for Building Semantic eRecruitment Applications. In

235

BIBLIOGRAPHY

Proc. of the International Conference on Knowledge Manage-
ment (iKnow’06), Special Track: Advanced Semantic Technolo-
gies, 2006.

[MS01] A. Maedche and S. Staab. Ontology learning for the semantic
web. IEEE Intelligent Systems, 2001.

[MZ06] E. Malinowski and E. Zimnyi. Hierarchies in a multidimensional
model: From conceptual modeling to logical representation. Data
and Knowledge Engineering, 2006.

[NFF+91] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and
W. R. Swartout. Enabling technology for knowledge sharing. AI
Mag., 12(3):36–56, 1991.

[PG01] L. Paradela-Gonzlez. Una Metodologı́a para la Gestión del
Conocimiento. PhD thesis, Facultad de Informática, Universidad
Politécnica de Madrid, Madrid, Spain, March 2001.

[PS98] R. Pooley and P. Stevens. Software reengineering patterns. Tech-
nical report, 1998.

[PTS04] H. S. Pinto, C. Tempich, and S. Staab. Diligent: Towards a
fine-grained methodology for distributed, loosely-controlled and
evolving engineering of ontologies. In 16th European Conference
on Artificial Intelligence (ECAI 2004), pages 393–397, 2004.

[SAd+07] M. Sabou, S. Angeletou, M. dAquin, J. Barrasa, K. Dellschaft,
A. Gangemi, J. Lehman, H. Lewen, D. Maynard, D. Mladenic,
M. Nissim, W. Peters, V. Presutti, and B. Villazón. Selection
and integration of reusable components from formal or informal
specifications. Technical report, NeOn project deliverable D2.2.1,
2007.

[SBF98] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineer-
ing: Principles and methods, 1998.

[SF10] M. C. Suárez-Figueroa. NeOn Methodology for Building Ontol-
ogy Networks: Specification, Scheduling and Reuse. PhD the-
sis, Facultad de Informática, Universidad Politécnica de Madrid,
Madrid, Spain, 2010.

[SFBG+07] M. C. Suárez-Figueroa, S. Brockmans, A. Gangemi, A. Gómez-
Pérez, J. Lehmann, H. Lewen, V. Presutti, and M. Sabou. Neon
modelling components. Technical report, NeOn project deliver-
able D5.1.1, 2007.

236

BIBLIOGRAPHY

[SFGP08] M. C. Suárez-Figueroa and A. Gómez-Pérez. Towards a Glossary
of Activities in the Ontology Engineering Field. In Proceedings of
the 6th Language Resources and Evaluation Conference (LREC
2008), 2008.

[SFGPVT09] M. C. Suárez-Figueroa, A. Gómez-Pérez, and B. Villazón-
Terrazas. How to Write and Use the Ontology Requirements
Specification Document. In OTM Conferences (2), pages 966–
982, 2009.

[SLL+04] D. Soergel, B. Lauser, A. Liang, F. Fisseha, J. Keizer, and S. Katz.
Reengineering thesauri for new applications: The agrovoc exam-
ple. J. Digit. Inf., 4(4), 2004.

[SMV09] C. Soria, M. Monachini, and P. Vossen. Wordnet-lmf: fleshing out
a standardized format for wordnet interoperability. In IWIC ’09:
Proceeding of the 2009 international workshop on Intercultural
collaboration, pages 139–146, New York, NY, USA, 2009. ACM.

[Soe95] D. Soergel. Data models for an integrated thesaurus database. Co-
matibility and Integration of Order Systems, 24(3):47–57, 1995.

[SSSS01] S. Staab, H. Schnurr, R. Studer, and Y. Sure. Knowledge pro-
cesses and ontologies. In IEEE Intelligent Systems 16(1), pages
26–34, 2001.

[SSV02] L. Stojanovic, N. Stojanovic, and R. Volz. A Reverse Engineering
Approach for Migrating Data-intensive Web Sites to the Semantic
Web. In Proceedings of the Conference on Intelligent Information
Processing, 2002.

[Tic97] W. F. Tichy. A Catalogue of General-Purpose Software Design
Patterns. In TOOLS ’97: Proceedings of the Tools-23: Technol-
ogy of Object-Oriented Languages and Systems, page 330, Wash-
ington, DC, USA, 1997. IEEE Computer Society.

[vAGS06] M. van Assem, A. Gangemi, and G. Schreiber. Conversion of
WordNet to a standard RDF/OWL representation. In Proceedings
of the Fifth International Conference on Language Resources and
Evaluation (LREC’06), Genoa, Italy, May 2006.

[vAMMS06] M. van Assem, V. Malaisé, A. Miles, and G. Schreiber. A Method
to Convert Thesauri to SKOS. In The Semantic Web: Research
and Applications, pages 95–109. 2006.

[vAMSW04] M. van Assem, M. Menken, G. Schreiber, and J. Wielemaker.
A method for converting thesauri to RDF/OWL. In Proceed-

237

BIBLIOGRAPHY

ings of the Third International Semantic Web Conference (ISWC).
Springer, 2004.

[VTAGS+08] B. Villazón-Terrazas, S. Angeletou, A. Garcı́a-Silva, A. Gómez-
Pérez, D. Maynard, M. C. Suárez-Figueroa, and W. Peters.
NeOn Deliverable D2.2.2 Methods and Tools for Supporting Re-
engineering. Technical report, NeOn, 2008.

[WB97] S. Wright and G. Budin, editors. Handbook of terminology man-
agement, Basic aspects of terminology management. John Ben-
jamins Publishing Company, 1997.

[WSWS01] B. Wielinga, A. T. Schreiber, J. Wielemaker, and J. Sandberg.
From thesaurus to ontology. In K-CAP ’01: Proceedings of the
1st international conference on Knowledge capture, pages 194–
201, New York, NY, USA, 2001. ACM Press.

238

	INTRODUCTION
	Context
	Overview of Some Methodologies for Building Ontologies
	Non-ontological Resources
	NeOn Methodology for Building Ontology Networks
	Patterns in Ontology Engineering

	Thesis Structure
	Dissemination of Results

	STATE OF THE ART
	A Comparative Framework of Methods and Tools for Reusing and Re-engineering NORs into Ontologies
	Evaluation Framework
	Methods for Reusing and Re-engineering Non-ontological Resources
	Tools for Re-engineering Non-ontological Resources
	Results and Conclusions

	Patterns for Re-engineering
	Software Re-engineering
	Software Patterns
	Ontology Patterns

	Summary and Discussion

	OBJECTIVES AND CONTRIBUTIONS
	Objectives
	Contributions to the State of the Art
	Assumptions
	Hypotheses
	Restrictions

	RESEARCH METHODOLOGY
	General Framework for Describing the Method
	Description of the Processes
	Requirements for the Proposed Method
	Generic Requirements
	Specific Requirements

	REUSING NON-ONTOLOGICAL RESOURCES
	Non-ontological Resources
	Non-ontological Resource Metadata Vocabulary
	NoRMV Core Metadata Entities

	Method for Reusing Non-ontological Resources
	Activity 1. Search Non-ontological Resources
	Activity 2. Assess the Set of Candidate Non-ontological Resources.
	Activity 3. Select the Most Appropriate Non-ontological Resources

	Summary

	PATTERN BASED RE-ENGINEERING METHOD
	Re-engineering Model for Non-ontological Resources
	Requirements for the Transformation
	Patterns for Re-engineering Non-ontological Resources
	Semantics of the Relations among the NOR Terms
	Formal Definition of the Ontologies Generated
	Method for Re-engineering Non-ontological Resources
	Activity 1. Non-ontological Resource Reverse Engineering.
	Activity 2. Non-ontological Resource Transformation.
	Activity 3. Ontology Forward Engineering

	Summary

	PATTERNS FOR RE-ENGINEERING CLASSIFICATION SCHEMES
	Classification Scheme
	Components of a Classification Scheme
	Classification Scheme Formal Definition
	Classification Scheme Data Models
	Classification Scheme Implementations

	Patterns for Re-engineering Classification Schemes into Ontologies
	Patterns for the TBox Transformation
	Patterns for the ABox Transformation

	Summary

	PATTERNS FOR RE-ENGINEERING THESAURI
	Thesaurus
	Components of a Thesaurus
	Thesaurus Formal Definition
	Thesaurus Data Models
	Thesaurus Implementations

	Patterns for Re-engineering Thesauri into Ontologies
	Patterns for the TBox Transformation
	Patterns for the ABox Transformation

	Summary

	PATTERNS FOR RE-ENGINEERING LEXICA
	Lexicon
	Components of a Lexicon
	Lexicon Formal Definition
	Lexicon Data Models
	Lexicon Implementations

	Patterns for Re-engineering Lexica into Ontologies
	Patterns for the TBox Transformation
	Patterns for the ABox Transformation

	Summary

	TECHNOLOGICAL SUPPORT
	NOR2O
	NOR Connector
	Transformer
	Semantic Relation Disambiguator
	External Resource Service
	OR Connector

	PR-NOR Library at the ODP Portal
	Summary

	EVALUATION
	Evaluation of the Methodological Guidelines
	Understandability, Applicability and Usability of the Methodological Aspects of Re-engineering within a Master Course
	Understandability, Applicability and Usability of the Method for Reuse and Re-engineering within the SEEMP Project
	Understandability, Applicability and Usability of the Method within the mIO! Project
	Summary

	Evaluation of the Technological Support
	Quality Evaluation of the Patterns and NOR2O
	Usability Evaluation of the Software Library
	Applicability and Usability of NOR2O within the GeoLinkedData Project
	Summary

	Evaluation Summary

	CONCLUSIONS AND FUTURE WORK
	Review of the Contributions
	Hypotheses Verification
	Future Work

	BIBLIOGRAPHY

