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ABssTRACT. Time-domain diffuse reflectance spectroscopy (TRS), a medical sensing technique, was used to evaluate internal
kiwi fruit quality. The application of this pulsed laser spectroscopic technique was studied as a new, possible non-destructive,
method to detect optically different quality parameters: firmness, sugar content, and acidity. The main difference with other
spectroscopic techniques is that TRS estimates separately and at the same time absorbed light and scattering inside the
sample, at each wavelength, allowing simultaneous estimations of firmness and chemical contents. Standard tests (flesh
puncture, compression with ball, Brix, total acidity, skin color) have been used as references to build estimative models, using
a multivariate statistical approach. Classification functions of the fruits into three groups achieved a performance of 75%
correctly classified fruits for firmness, 60% for sugar content, and 97% for acidity. Results demonstrate good potential for
this technique to be used in the devel opment of new sensors for non-destructive quality assessment.
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mong other non-destructive sensing techniques,
optical methods of analysis have been studied for
many years considering their potential to measure
internal properties of foods (Gunasekaran et al.,
1985; Skoog et al., 1998; Abbott, 1999). Historically, near-
infrared (NIR) spectroscopy is known by its applicability for
the internal quantification of compounds. NIR techniques
have been widely used to non-destructively measure acidity
and soluble solid internal content: for example, Bellon-Mau-
rel et a. (1997) developed afast NIR sensor to measure sugar
in apples; Ventura et a. (1998) determined soluble solids in
apples with NIR; Slaughter (1995) applied infrared spectros-
copy to peaches, for the quantification of soluble solids, and
diverse specific sugars, Miyamoto et al. (1998) quantified
acid content of satsumas with infrared transmittance. Re-
search has been done in estimating firmness and soluble sol-
ids of apples with infrared spectroscopy (Choi et al., 1997;
Lammertyn et al., 1998), aswell as firmness, dry matter, and
soluble solids of kiwi fruits (McGlone and Kawano, 1998),
identifying specific wavelength ranges for each attribute.
Regarding the application of lasers as light sources, Tu
et al. (1995) usesaHe-Ne laser to light tomato and apple; the
dispersed light is recorded by an image acquisition system

Article was submitted for review in August 2000; approved for
publication by Food & Process Engineering Institute Division of ASAE in
November 2003.

The authors are Constantino Valero, Lecturer, Margarita
Ruiz-Altisent, Full Professor, Department Ingenieria Rural, E.T.S.I.
Agrénomos, Universidad Politécnica de Madrid, Spain; Cubeddu
Rinaldo, Full Professor, Antonio Pifferi, Associate Professor, Paola
Taroni, Associate Professor, Alessandro Torricelli, Associate Professor,
Gianluca Valentini, Associate Professor INFM -Dipartimento di Fisica,
Politecnico di Milano, Italy; David S. Johnson, Research Leader - Storage
Physiologist, and Colin J. Dover, Storage Physiologist, Horticultural
Research International, East Malling, UK. Corresponding author:
Constantino Valero, Dept. Ingenieria Rural, E.T.S.I. Agrénomos,
Universidad Politécnica de Madrid. Av Complutense s/u, 28040 Madrid,
Spain; phone: +34-913365862; fax: +34-913365845; e-mail:
cvalero@iru.etsiaupm.es.

and the number of pixels, after an image segmentation
process, was correlated with firmness (stiffness factor,
obtained by means of acoustic response). The same research
team studied the effect of apple turgidity on the reflection of
an incident laser beam, as an indicator of fruit ripeness. Two
red lasers were applied on the samples, and the reflection
image was acquired with a camera. Correlations were low
compared with color L.ab. standard measurements and
acoustic response (De Belie et a., 1999).

McGlone et al. (1997) aso applied an 864-nm laser
source on kiwis to search for relations between fruit optical
response and firmness. In this work, the laser beam was
focused on a rotating fruit piece, and the overall scattered
light was measured with a silicon detector, at the same time
another detector was used to track the reference signal.
Consistent correlations were found between the intensity of
the scattered light and the penetrometry firmness measure-
ment. The same author used a different laser technique to
estimate fruit firmness: delivering a puff of air on to the fruit
surface resulted in a local deformation (proportional to
sample firmness), which can be measured using a laser
displacement sensor (McGlone et a., 1999). Hung et al.,
1999) developed a similar air-puff device, with similar
results.

Duprat et al. (1995) created an artificial vision system
based on alaser light source, for non-destructive estimation
of firmness of Golden apples. Using a 670-nm diode, a
stereomicroscope, and a camera, it was found that the
illuminated area was broader in firmer fruits; thus, good
correlation was established between the processed image size
and Young modulus. Han and Lambert (1998) also used
image acquisition devices to grab pictures of laser-lighted
apples. After illuminating with 632-, 685-, and 769-nm
lasers, the image was processed and thresholded, and the
results were used to classify apples in four firmness
categories. The reference measurement for firmness was
Magness-Taylor penetrometry.
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All the previously mentioned works make use of the laser
properties (highly collimated beam, high power, monochro-
matic) applied to firmness estimation, taking advantage of
the spatial dispersion of the light when it crosses a tissue.
However, there was no direct quantification of the scattering
level: only the attenuation of the light, or just the recovered
light intensity is registered. Moreover, none of the studies
was intended to simultaneously measure firmness and
internal compounds, such as soluble content and acidity.

Time-domain diffuse reflectance spectroscopy (TRS) is
an optical technique developed for medical applications and
related areas (Cubeddu et al., 19944). It has potential asanew
technique for agricultural and food industry applications.
TRS is useful, for example, to quantify photosensitive dyes
injected toin vivo tissues, to locate tumors due to the
differential optical properties of their tissues (Cubeddu et d.,
1994b). TRS provides a complete optical characterization of
a diffusive sample as it estimates at the same time, and
independently, the light absorption inside the tissues and the
scattering across them. Light sources are pulsed lasers
emitting in a single wavelength or tunable. Light is pumped
into the sample at a very short pulse rate. The working
principle of the technique is the analysis of the attenuation
and broadening of the time-distribution of the re-emitted
light, and the correct interpretation with a proper theoretical
model. TRS, unlike the previously mentioned optical
techniques using laser, is capable of registering atime signal
of the reemitted light (fig. 1) by means of a photo-counting
sensor and atime-acquisition board. After applying the light
diffusion theory (Cubeddu et al., 1994a), a de-convolution
signal is obtained, and two coefficients are calculated:
absorption coefficient (uy) and transport scattering coeffi-
cient (L'g). Our hypothesis was that light absorption could be
correlated with soluble solid content or acidity (especially in
the NIR region), and the scattering coefficient could be useful
to estimate firmness, at the same time. The physical -chemi-
cal basis behind this hypothesisis that specific molecules will
absorb luminous energy (VIS, in the case of chlorophyll
pigments; molecular vibration in the case of NIR absorption)
affecting the absorption coefficient (i), while intracellular
and tissue microstructures (cell organelles, starch granules,
cell wall, intercellular spaces) will cause interna light
reflections, diffractions, and spatial dispersions to the
photons, affecting their light pathway and, thus, the transport
scattering coefficient (U'g).

TRS will provide simultaneous information on chemical
composition and rheology of the tissues, which is a main
advantage compared to other traditional spectroscopic
techniques (capable only to register the global attenuation
spectrum) and offers opportunities for applying this new
measurement method in the food industry.

The objective of this research was to study the applicabili-
ty of TRS to the non-destructive detection of internal
physical properties (firmness) and chemical composition
(soluble solids content and acidity) simultaneously, on kiwi
fruits.

MATERIALS AND METHODS

A total of 180 kiwi fruits were measured during two
sampling phases (July 97 and February 98) aong the
collaborative test periods between two of the partners of this
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EU research project, Universidad Politécnica Madrid (UPM)
and Politecnico di Milano (INFM). Samples with diverse
ripeness stages (‘ Hayward' variety) were acquired in Italian
local markets. In order to facilitate data management and
analysis, samples were initially grouped into “batches’
numbered as K1 to K9. Each batch was conformed to 20 fruits
of uniform ripeness (visua - tactile estimation, subjective),
and a minimum of two batches (one “ripe” and another
“unripe”) was measured per day.

On each sample, alaboratory TRS system was applied on
both sides of the samples to (non-destructively) measure
their optical response under sequentia illumination with two
tunable VIS and NIR lasers, in the wavelength range 610 to
1010 nm. Absorption and transport scattering coefficients for
each wavelength were calculated later, after signal process-
ing. Diffuse reflected spectra of the kiwis were acquired in
the time domain. De-convolution of the signal (fig. 1) was
applied to extract the internal optical parameters from the
data curve: absorption coefficient (i) and transport scatter-
ing coefficient (W'g). The system and methodology is
described in detail in Cubeddu et a. (2001). Repetition of this
procedure on the same acquisition point for each laser
wavelength leads to an absorption spectrum (fig. 2) and a
scattering spectrum of the sample. The absorption spectrum
offersasimilar pattern asif it was acquired with atraditional
spectroscopic technique. Notation for TRS variablesused in
this study was the following: ‘MAG600’ to ‘MA1000" denote
absorption coefficient, |1, a each wavelength (600 to 1000
nm), while ‘MS600" to ‘MS1000° stand for scattering
coefficient, W's, at each wavelength (see notation table at the
end of this section).

External color of the samples was measured using a
Minolta CM-508i spectrometer (Minolta Co., Ltd., Osaka,
Japan). Spectra in the VIS region (400 to 700 nm) were
registered on the skin, and used in the later analyses as an
indicator of the overall pigmentation of the samples external
color. Variables *C400' to ‘C700’ (reflection intendity at each
wavelength) were used in the analyses.

Destructive tests (mechanical and chemical) were then
used as reference measurements for firmness, acidity, and
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Figure 1. Data points (diamonds) acquired with TRS on an intact fruit,
lighting with a 970-nm laser. System function response (dashed line) and
curvefitted to data (solid line) using the diffusion theory are also shown.
Units are picoseconds for thetime axis, and arbitrary units (a.u.) for the
vertical axis, proportional to the number of photons counted by the detec-
tor (extracted from Cubbedu et al., 1999a).
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Figure 2. Absor ption spectrum of a high maturity (empty points) kiwi and
alow maturity one (solid points) (Cubbedu et al., 1999b).

soluble solid content. The mechanical tests for the determina-

tion of firmness were:
e Puncture of fruits with a needle: was carried out with a
texture analyzer machine (Stable Micro Systems Ltd.,
model TAXT2, Surrey, UK) with a cylindrical probe of
0.8-mm diameter and flat base. The probe was applied on
the skin at 20-mm/min speed rate; the test stopped at 8 mm
of depth. Deformation was immediately removed at the
same speed rate. One measurement was made per side of
each fruit and then was averaged. The following parame-
ters were registered maximum force (N, notation as
‘PF1’), which isrelated to skin resistance and ratio force/
deformation (N/mm, ‘PG’), an indicator of turgidity (i.e.
firmness of outer tissues).
¢ Quasi - static compression with a sphere was performed
with the texture analyzer by compressing each fruit on the
skin with a19.5-mm diameter steel ball. It was done at a
speed rate of 20 mm/min and stopped when 3 mm of de-
formation was reached. Two measurements were per-
formed on each fruit, one per side, and averaged.
Registered parameters were maximum force (N, ‘BF1’)
related to flesh firmness and ratio force/deformation (N/
mm, ‘BFD1’) related to Young's modulus.
Chemical tests were also conducted on the samples:
e Titration of total acid content. After extracting the juice
from each side of the fruit with a squeezer, a known vol-
ume was filtrated and titrated with a solution of 0,1N so-
dium hydroxide until pH = 8.2 was reached. An automatic
titrator was used (model TR85-T80, Schott-Gerate
GmbH, Hofheim, Germany). The milliequivalents of acid
concentration were calculated for each sample side and
averaged for each fruit.
 Refractometric index. Brix degrees (soluble solids con-
tent, SSC) of both fruit sides were measured on the juice
of the samples using a digital, temperature- compensated
refractometer (model PR-101, Atago Co. Ltd., Tokyo, Ja-
pan) and then averaged. Refractometric index was used as
an indicator of sugar content of the fruits.
¢ Principal Component Analysis (PCA): to find which
TRS coefficients, and at which wavelengths, were best
correlated with the diverse quality parameters.
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Notation of variablesused in the analysis.

Variables Meaning Variables Meaning

MAG600 TRS absorption coeffi- BFD1 Ratio max force/de-
..MA1000 cient, ua, at each wave- formation (slope) dur-
length ing compression with
(600 — 1000 nm) ball test, N/mm
MS600 TRStransport scattering  SUGAR  Soluble solid content,
..MS1000 coefficient, W's, at each °Brix
wavelength
(600 — 1000 nm)
C400 ACID Tota acidity of
... C700 VIS reflectance, % at in- squeezed juice, meg/l
dicated wavelength (400
to 700nm), skin color
PF1 Max force during punc- DAY  Day of measurement
ture with needle test, N
PG Gradient (Sope) of the  FRUITN Fruit number inside
curve during puncture batch
with needle test, N/mm
BF1 Max force during com-  BATCH Code of fruit batch
pression with ball test, N (K1to K9)

* Multiple Stepwise Linear Regression (MLR): to develop
continuous estimation models for firmness, acidity or
SSC.
e Clustering techniques and Discriminant Analysis (DA):
Cluster analysis was used to “naturally group” fruits ac-
cording to their internal quality, measured with the refer-
ence tests. Discriminant analysis was used to create
classification models with the TRS coefficients as the ex-
plicative variables. The basic idea underlying discrimi-
nant function analysis is to determine whether groups
differ with regard to the mean of avariable, and then to use
that variable to predict group membership (e.g., of new
cases). In our case, we provided to the software, in afirst
approach, all the available TRS variables, leaving for the
computations the decision on choosing the ones with high-
est significance. In the forward stepwise discriminant
function analysis, a model of discrimination was built
step-by-step. Specifically, at each step all variables are
reviewed and evaluated to determine which one will con-
tribute most to the discrimination between groups. That
variable was then included in the model, and the process
started again.

To create the classification models, the individual fruits
first was grouped into clusters according to the reference test
that was going to be estimated (i.e., firmness, or soluble solid
content, or acidity), and then the model function itself was
created using the TRS coefficients to classify the samples
into groups of high, medium and low firmness (or high,
medium, and low sugars or high, medium, and low acids).
This methodology was used for all the samples, building a set
of clustersfor each quality attribute independently (firmness,
sugars, and acids), using only one factor (reference variable
extracted from the destructive tests) in each cluster analysis.
Slope of the curve during puncture with needle test (‘ PG’
N/mm) was used to create firmness clusters, refractometric
index (°Brix) was used for sugar clusters, and total acidity
(meg/l) for acidity clusters. To build up these sets, the
k-means clustering method was used, which produces
exactly k different clusters of the greatest possible distinc-
tion. In this work k = 3 clusters were established for each
quality parameter, representing high, medium, and low
levels. This number of clusters was thought to be useful for
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fruit industry purposes, where a higher level of classes will
complicate fruit sorting and packaging.

Once the fruits were distributed into sets of quality
clusters, the next step was trying to estimate —to reproduce—
those clusters using the optical TRS information contained in
the ny and w's parameters (‘MA’ and ‘MS' variables); the
discriminant analysis technique was used for this objective.

Different modelswere built for each quality parameter. To
create the classification function models, a learning subset
consisting of 50% of the fruit of the database was used.
Models were then validated using the other half of the
database. Several cross validations were made also combin-
ing different subsets of the database. The scattering and
absorption variables in the VIS region were used to build the
models for firmness estimation, and the TRS variablesin the
NIR area were used as explanatory variables in all models.

REsULTS
INITIAL CORRELATION BETWEEN TRS
AND REFERENCE TESTS

With dl the destructive and non-destructive data together,
principal component analysis was performed to search for
links among optical TRS data and reference tests to find
which TRS variables were best correlated with firmness,
acidity, or soluble solids. From the PCA plot (fig. 3) it can be
seen that some initial correlation was observed between the
scattering coefficients at different wavelengths and the
firmness destructive variables. The closer to an axis a
variable is, the higher its correlations with other variables
next to the axis; the closer to the external circumference (the
“correlation circle”), the higher the correlation coefficient.
This finding was especially true in the case of the scattering
coefficient at 750 and 800 nm (‘M S750," ‘M S800') and some
textural variables, such as the gradient of the puncture test
through the skin (‘PG’), maximum force registered in
puncture test (‘PF1’) and maximum force in compression
with ball test ('BF1’). This observation is evidenced from the
grouping of these variables into Factor 1 (first principal
component, horizontal axis). This factor also has some
information about the accessory variables “day of measure-
ment” and “number of batch,” suggesting that the conforma-
tion of the batches on each measurement day was not
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Figure 3. Principal components analysisplot using all the acquired data
(n = 180 samples). Variables extracted from the destructive and non-de-
structive arerepresented in a space formed by Factor 1 and Factor 2 of
the PCA result. Variable codes are explained in the notation table.
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homogeneous. In the vertical axis, only the TRS absorption
coefficient at 675 nm (‘MAG675") and skin reflectance at the
same wavelength had stronger correlations, which are the
“green level” of the samples (chlorophyll absorption’s peak
rises at 680 nm), as an indicator of their ripening stage.
Acidity ("ACID’) and soluble solids content (‘ SUGAR’) are
not clearly correlated with any other variable in this
projection of the PCA results.

In a second approach, three batches were selected (K5,
K7, and K9) with the aim of feeding the analysis with extreme
conditions in order to set up relations more clearly. These
three batches had high, medium, and low firmness, but
medium, high, and low contents in acids and sugar,
respectively (fig. 4). In thisway, the results allow segregation
of the effect of firmness from the chemical composition, and
they will not be biased by crossed interactions. With the
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Figure 4. Quality ranges of kiwi batches accor ding to soluble solids con-
tent (a; °Brix), firmnesslevel (b; ratio force/deformation in compression
w/ball) and acidity (c; meg/l): groupsno 5, 7, and 9 (marked) were sdected
to build ML R models, from the whole database of nine batches.
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Table 1. Second PCA with three selected batches of kiwi.[a]

Kiwi
Principal Components Analysis
Batches 5, 7, and 9 only (n = 60)

Variables Factor 1 Factor 2
Color C400 -0.092 0.077
(VIS reft%) C500 -0.592 -0.562
C600 -0.565 *-0.698
C680 -0.564 *-0.658
firmness BF1 *-0.946 0.103
(compr w/ball and BFD1 *-0.947 0.105
puncture) PF1 *-0.914 -0.060
PG *-0.945 0.136
RS MAG675 -0.125 *0.658
Absorption and MA750 0.575 0.218
scattering MABS800 0.587 0.304
MS675 -0.562 *0.654
MS750 *-0.818 0.158
MS800 *-0.816 0.194
Acid -0.294 0.504
Sugar -0.486 0.394
Batch *0.953 -0.099
Side -0.085 -0.566
Fruit -0.027 0.019
Explained variance 8.096 3.089
Expl. var. % 42.6% 0.16%

[ Numbers (factor scores) are equivalent to correlation coefficients
between quality parameters and PCA factors. Correlations over 0.6
are highlighted (*).

measurements from these batches, a new PCA (table 1) was
performed, which produced clear correlation between firm-
ness (‘BF1, ‘BFD1, ‘PF1,’ ‘PG’) and scattering at 750 and
800 nm (‘MS750,” ‘MS800), as is demonstrated by their
corresponding factor scores (>0.85), which can be under-
stood as correlation coefficients between the respective
variables and the Factor grouping them. This result allowed
the creation of linear estimation models with greater
correlation levels. Some correlation was shown aso in the
PCA between the VIS externa reflectance around the
chlorophyll peak (vars. ‘C600, ‘C680') and the TRS
information at similar wavelengths (‘MAG75,” ‘MS675;" see
correlation coefficients at table 1, factor 2)

CONTINUOUS ESTIMATION MODELS

Different Multiple Stepwise Linear Regression (MLR)
models were created (table 2) to predict firmness (ratio
force/deformation with ball, ‘BFD1’) using the TRS vari-

ables. The regression models (table 2) were better when
combining scattering and absorption variables (R2 = 0.8) than
when including only scattering (R?= 0.6). Nevertheless,
models performance was lower than expected (especially for
chemical estimation, not shown), and a new approach,
building of non-continuous estimation modelsto classify the
samples into categories, was followed.

CLASSIFICATION M ODELS
Classification results are presented in classification

matrix tables for each one of the created models, indicating
in rows the composition of the clusters, the classification
scores for each one, aswell as the mean value of the estimated
quality attribute (firmness, °Brix, or acids). In columns, the
predicted “groups’ are shown, formed by the model trying to
match the true clusters. Results were as follows:

e 75% of the fruits were correctly classified into three firm-
ness classes using MS and MA of three VIS wavelengths
to estimate ratio force/deformation of puncture test (' PG,’
table 3); validation with part of the database not used to
build the model obtained 74% of well classified fruits
(wcf) (table 4). Figure 5 shows the true mean firmness val-
ues for each cluster.

e 97% of the fruits were correctly classified into three acid-
ity levels using pug and ug of 10 NIR wavelengths to esti-
mate meg/| (table 5); the validation achieved 77% of wcf
(table 6). Figure 6 shows the true mean acidity values for
each cluster.

¢ 60% of the fruits were correctly classified into three solu-
ble solids classes using ' and pg of eight NIR wave

KIWI: observed clusters for firmness clasification
Mean, Mean +/- Std. Dev and Max-Min

i ]
2 C
| &

1 2 3
CLUSTER

PG (N/mm)
w

Figure 5. Mean values and ranges of clusters (observed categories) used
to build the kiwi fruit classification model into threefirmnesslevels (‘' PG’
estimation).

Table 2. Multiplelinear regression modelsusing TRS absor ption and scattering coefficientsto estimate firmness (l€ft),

or using only scattering (right). Data used included

only selected batches of kiwi (K5, K7, and K 9), n = 60.

KIWI MLR model estimating firmness using Scattering + Absorption
Regression Summary for Dependent Variable: BFD1

Adjusted R2 = 0.81423321

F(5.54) = 52.721 p < 0.00000

Std. Error of estimate: 0.94378

KIWI MLR model estimating firmness using ONLY SCATTERING
Regression Summary for Dependent Variable: BFD1

Adjusted R2 = 0.60549812

F(2.57) = 46.278 p < 0.00000

Std. Error of estimate: 1.3753

B St. Err. of B t(54) p-level B St. Err. of B t(57) p-level

Intercept 12.118 4,338 2794 0.007 Intercept -13.691 3.377 -4.055 0.000
MS750 1.658 0.243 6.813 0.000 MS750 2.157 0.316 6.828 0.000
MA750 -96.457 29.605 -3.258 0.002 MS675 0.873 0.645 1.353 0.181
MAG675 -51.603 10.977 -4.701 0.000

MS675 2.877 0.665 4,327 0.000

MAB800 41.897 33.462 1.252 0.216
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Table 3. Classification matrix for firmness estimation (‘PG’ variable,
N/mm) using TRS coefficientsin the VISregion.[@

Table 5. Classification matrix for acidity estimation (ACID,’
meg/l) using TRS coefficientsin the NIR region.[al

Mean PG Mean Acid

Well for each Well for each
Kiwi Classified Groupl  Group2  Group3  Cluster Kiwi Classified Groupl  Group?2 Group 3 Cluster
Firmness (%)  p=0.52941 p = 0.24706 p = 0.22353 (N/mm) Acidity (%) p=0.45000 p=0.48750 p=0.06250 (meqyl)
Cluster 1 97.7 44 1 0 14 Cluster1 100 19 0 0 227.3
Cluster 2 14.2 9 3 9 31 Cluster 2 100 0 16 0 200.1
Cluster 3 89.4 2 0 17 4.4 Cluster 3 80.0 0 1 4 164.1
Total 75.3 55 4 26 n=0 Total 97.5 19 17 4 n=0

[ Rows: “observed” clusters. Columns: “estimated” group ascription.
Last column: mean actual firmness values for each cluster.

Table 4. Validation matrix for firmness estimation (‘PG’
variable, N/mm) using TRS coefficientsin the VISregion.[@

[ Rows: “observed” clusters. Columns: “estimated” group ascription.
Last column: mean actual acidity values for each cluster.

Table 6. Validation matrix for acidity estimation (‘ACID,” meg/l)
using TRS coefficientsin the NIR region.[@

Mean PG
Kiwi Well for each
Firmness  Classified Groupl  Group2  Group3  Cluster
Validation (%) p=0.52941 p =0.24706 p = 0.22353 (N/mm)
Cluster 1 93.7 45 1 2 14
Cluster 2 10.0 8 2 10 3.1
Cluster 3 94.1 1 0 16 4.4
Total 74.1 54 3 28 n=0

[ Rows: “observed” clusters. Columns: “estimated” group ascription.
Last column: mean actual firmness values for each cluster. Validation
was performed with the part of the database not used for learning
purposes.

lengths to estimate °Brix (table 7); validation scored 62%
of wcf (table 8). Figure 7 shows the true mean SSC values
for each cluster.

DiscussioN

The acquisition of non-homogeneous, market-sold sam-
ples was shown to be an efficient way of providing samples
to screen the TRS data for the estimation of kiwi fruit internal
quality because wide ranges of quality parameters can be
achieved easily. To calibrate the technique and the models,
in terms of validation, adjustment, repeatability, etc., more
controlled samples can be used to enhance the results.

PCA results demonstrate that TRS scattering coefficients
are strongly correlated with destructive firmness measure-
ments. No evidence of the relation between absorption
coefficients and chemical composition was observed in

KIWI: observed clusters for acidity clasification
Mean, Mean +/- Std. Dev and Max-Min

Mean ACID
Kiwi Well for each
Acidity Classified Groupl  Group2  Group 3 Cluster
Validation (%) p=0.47500 p = 0.40000 p = 0.12500  (meg/l)
Cluster 1 88.2 15 0 2 227.3
Cluster 2 0 0 0 0 200.1
Cluster 3 69.5 4 3 16 164.1
Total 715 19 3 18 n=40

280
260
240
220
200 @

180

160 o
140
120

ACID (meg/l)

1 2 3
CLUSTER

Figure 6. Mean values and ranges of clusters (observed categories) used

to build the kiwi fruit classification model into three acidity levels (' ACID’
estimation).
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[ Rows: “observed” clusters. Columns: “estimated” group ascription.
Last column: mean actual acidity values for each cluster. Validation
was performed with the part of the database not used for learning
purposes.

the PCA, but later SSC/acidity estimation models showed
substantial correlation. If an adequate data analysis is
performed, correlations seem to be good enough,a priori, to
build continuous estimation models with low errors of
estimation. In other cases the correlation is lower so the work
should be focused towards classification models (non-con-
tinuous estimation).

Linear estimation models showed lower performance than
expected, especially for SSC and acidity estimation. Firm-
ness estimation could be achieved using aMLR function with
R2=0.8.

Classification models sorting kiwis into three classes of
firmness, three classes of SSC, and three classes of acidity
level, showed good scores of well classified samples for the
case of acidity, and lower for firmness and SSC estimation.
This result could be due to the fact that the acidity range of
the samples was broader than SSC or firmness ranges.

KIWI: observed clusters for SSC clasification
Mean, Mean +/- Std. Dev and Max-Min

—

13,5 =

1 2 3
CLUSTER

15,5

14,5

12,5

SUGAR (°Brix)

11,5

10,5

9,5

Figure 7. Mean values and ranges of clusters (observed categories) used
to build the kiwi fruit classification model into three SSC levels (' SUGAR’
estimation).
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Table 7. Classification matrix for soluble solids estimation (' SUGAR,’
°Brix) using TRS coefficientsin the NIR region.[al

Mean SSC

Well for each
Kiwi Classified  Group 1 Group 2 Group 3 Cluster
SSC (%)  p=0.10000 p =0.36250 p = 053750 (°Brix)
Cluster 1 25.0 1 1 2 121
Cluster2 ~ 77.27 2 17 3 133
Cluster 3 42.8 1 7 6 144
Total 60.0 4 25 11 n=0

[ Rows: “observed” clusters. Columns; “estimated” group ascription.
Last column: mean actual SSC values for each cluster.

Table 8. Validation matrix for SSC estimation (' SUGAR,’ °Brix)
using TRS coefficientsin the NIR region.[@

Mean SSC
Kiwi Well for each
SSC Classified Groupl  Group2  Group 3 Cluster
Validation (%) p = 0.10000 p = 0.35000 p = 0.55000 (°Brix)
Cluster 1 25.0 1 1 2 12.1
Cluster 2 46.6 1 7 7 13.3
Cluster 3 80.9 1 3 17 14.4
Total 62.5 3 11 26 n=0

[ Rows: “observed” clusters. Columns; “estimated” group ascription.
Last column: mean actual SSC values for each cluster. Validation was
performed with the part of the database not used for learning purposes.

The estimation models included TRS variables from
different wavelengths. With the present system setup, the
acquisition of signal using severa wavelengths needs manual
tuning of lasers and minor adjustments. If afuture simplified
prototype is built for industrial application, this problem has
to be solved designing an automatic system to change the
wavelength. This will increase its price, and fabrication
complexity as well as the measurement process. With the
estimation models built to date, the possibility of using only
one wavelength is not worthwhile because the estimation
error will be too high.

It has been observed that estimation models for firmness
are dightly better when introducing scattering and absorption
coefficients, rather than only scattering, despite of the
hypothesis that scattering was the main source of information
related to firmness. This may be due to some complementary
effect of absorption and scattering. On the other hand,
models with both absorption and scattering variables, and a
large number of wavelengths, could lack robustness (be
unstable) in future validations. For future studies, the
development of models only with scattering is proposed.

CONCLUSION

With the data collected in the VIS and NIR range and the
analysis carried out, links between the TRS coefficients and
fruit quality properties were found and different estimation
models were created for the non destructive assessment of
firmness, sugar, and acids in kiwis. Classification models
provided percentages of correctly classified firmness, sugar
and acids of 75%, 60%, and 97%, respectively. This agrees
with the original hypothesis, in which the scattering coeffi-
cients should be related to texture properties, while the
absorption should be associated with chemical compounds.
So is shown by the certain correlation between scattering
values in thefar-visible region (750 and 800 nm) and several
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kiwifruit firmness variables, as well as the correlation
between absorption values of NIR wavelengths and °Brix and
acidity. Further research must be undertaken to acquire a
better knowledge of this new optical egquipment, optimize the
models, and develop the commercial potential of the
technique.
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