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Abstract—The acceleration of a thin foil using a laser pulse is studied. It is shown that the acceleration
efficiency g is heavily dependent on the behaviour of the corona ejected by the foil: there is no universal
relation #a(AM /M), M and AM being initial foil mass and ablated mass, respectively. Known results on the
coronal flow are used to check the theory against experimental data available in the literature; effects due to
both a non-planar corona, and the time-dependence of the laser irradiance, are considered. The agreement
with experiments is substantially better than that for previous analyses. Acceleration of thin spherical shells is
also discussed.

B I INTRODUCTION

Ong orF the most important parameters in laser-fusion is the fraction 5 of absorbed
laser energy E, that goes into the target. In experiments on aceceleration of thin foils
{or thin spherical shells), most of the final energy within the remains of the target
may be kinetic energy. Then 5 is the hydrodynamic efficiency, ny = Mu?/2E,, where
M is the unablated mass and u its velocity, assumed uniform throughout it. Usually
(McCaLL, 1983; RipiN et al., 1980; DUDERSTADT and Moses, 1982) some simple rocket
model is used to calculate #z. The standard formula for #y is

_ (ln(l — AM/MY(1— AM/Mo) _ _ (g}_ag) "
"= AM /M, =NM, )

M and AM being initial and ablated mass. Some corrections to {1} have been discussed
in the past (FaBBRo, 1982; Max et al, 1983),

Here we reconsider the calculation of 4. We show that when known results on
the expanding plasma (in the corona outside the ablation surface) are taken into
account, ny differs substantially from previously published values. In the paper we
also discuss time-dependent and non-planar effects on the hydrodynamic efficiency.
On the whole, the agreement with experimental data is greatly improved.

In Section 2 we review the analysis of planar coronae. In Section 3 both steady
and unsieady planar-target acceleration are considered. Section 4 studies non-planar
effects on acceleration, making use of known results on spherical coronae. Section
5 collects conclusions from all previous sections to compare theory with experimental
data on %y available in the literature. Spherical shells are discussed in the Appendix.

2. THE ANALYSIS OF A PLANAR CORONA
Let laser-light be incident on a solid foil on the left, and the beam cross-section
be large enough to allow considering the probiem as one-dimensional (Fig. 1). Under
broad conditions the equations for the quasineutral plasma ablated from the target
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Fic. 1—Interaction between a laser-beam incident from the right and a solid foil, before
the perturbation reaches its back: 1y is the spot radius, p. and po are critical and unperturbed
solid densities, respectively; x. locates the ablation surface.

are conservation laws for mass, momentum, and energy, in the form
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and the ion entropy equation
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The mass density above is p = mn = mn/Z;, where nis electron density. The pressure
is P = nT, + nT/Z;; the specific internal energy and ion entropy are ey = 3T,/ 2m +
ITy/2mZ;, and s; = m; 1o (T2 /n) -+ const. The heat flux is g = min (K T72|d T./dxi,
T3 2, 12y 5 sign (—d T./dx), K T2/ being Spitzer’s conductivity (SPITZER, 1967} and
f a flux-saturation factor (DUDERSTADT and Mosgs, 1982); the ion-clectron energy
relaxation time t., oc #;K To/*//n is also given by Spitzer. The incident and reflected
irradiances /- and I+ change according to 81+/0x = +xl4(x > x,) where « is the
absorption coefficient due to inverse bremsstrablung (JounsToN and DawsoN, 1973);
also I+(x}) = (1L — ) -(x.]"), « being an anomalous absorption fraction (FORSLUND
et al., 1977, EsTABROOK and K RUER, 1978} and x, such that n(x.} = n. = critical density.
As x — + co, one has I — I{t) (the laser-pulse irradiance, characterized by a peak
value [, and a full-width at hali-maximum 1).

Two facts simplify the problem of solving analytically system (2)~(5) to yield n, v,
T., and T; as functions of x and ¢. Usually the density in the perturbed solid (a few
times po) is large compared with the characteristic density (pc} in the corona, which
is the region to the right of the (ablation) surface x = x,(f) where v =0, 8P/0x ~ 0.
For instance, po/p. = 50 for solid D-T and 1.06 um light; po/p. is much larger for
targets of high atomic number, for which Z; % 1. In analysing the corona we might
tentatively set po/p.— co. This would require that p— oo as x - x,{t), leading to
Te. T:— 0 there, because mass and momentum within the corona, and thus surface
mass ablation rate rii; and ablation pressure P,, must remain finite. The fact that makes
possible such behaviour (v, T, T; vanishing at a surface which is at finite distance
from a region where energy is deposited) is the nonlinear character of plasma heat
conduction. Nonlinear heat waves in the absence of motion have been studied
extensively (ZEL'DovVICH and Rarzer, 1967).

For a thick foil or a short pulse, the perturbed mass per unit surface in (the irradiated
part of) the foil is of order tvimpe (Fig. 1) i and vey are characteristic velocities
for corona and perturbed solid. Conservation of momentum yields

Uint X tUinlpﬂ ~ Doxg X tuex[pc ~ Paxt X AMS, (6)
where AM, is the surface ablated mass. Then
|%al ~ ine € Dexe > Xalt} == xa(0) = 0. %)

Equation (7) completes the uncoupling of corona and target; all is needed to analyse
the corona is that if starts at x = 0, and that is hot and rarefied when compared
with the target. . .

For the thin foils of interest here we have (v po > M, (surface mass in the targst),
so that (6) should read

Bing X Ms ~ Vext X AMs; (8)

thus condition (7) requires AM /M, to be small (Section 3).



In writing down dimensionless results from the analysis, it proves gonvenient to
introduce a characteristic speed «

U = (n/m>*R 3
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which substitutes the awkward factor K in the set of dimensional parameters available.
Quantities of interest, such as peak values of P./p.U?, m/p.U, are found to be functions
of five dimensionless numbers: o, Z, f(#i/mo)Y%, I, = Ly/pU3, and U = mlU/mec. [T,
characterizes the steepness of the pulse, U bremsstrahlung absorption; note that
ko n?/Rmecen(1 — nfn) > T¥2.] Fluid variables depend, in addition, on t/t and
x/U7. For specific power-law pulses, I, oc t (ANISIMOV, 1970; BARRERO and SANMARTIN,
1977), I ac £3/% (NicoLas, 1984), the flow may be self-similar and has been analysed
in detail in the past (SANMARTIN and BARRERO, 19784, b; BARRERO and SANMARTIN,
1980; Ramis and SANMARTIN, 1983; NicoLas, 1984).

3. PLANAR TARGET ACCELERATION
If M, is the mass per unit area remaining in the target at any given time, and u
its velocity, then (see Appendix A)
dM,/dt = — g (10)
Mdu/dt = —P,. (11)
The target experiences a leftward acceleration. To obtain 7y = Msuz/zji)lq(t’)dt’ we
solve (10) and (11) for t{AM,), t{AM,} using coronal results for m, and P, here I,
is absorbed intensity, and AM, = My, — M,

First neglect inverse bremsstrahlung (U —0) and consider the linear pulse
I, = al; = It/t. In the resulting self-similar motion one gets

Hits = Mgnlt/T)"3, Py = Pam(t/7)*.
One may then integrate (10} and (11) to obtain

2
Pam

i1 TAMS/ Mo} (12)

g =

where

11— A 14 2
fi{A) = WL (Zta LAY 4 n 1+21;44A”4) .

The function #:(A) is close to that appearing in (1)

A
A) = (n(t — A




the ratio 71/% is 096 for A—0, 1 at A~ 0.3 and 1.17 at A = 0.9.

Note that P2(1)/2m,(i)I{t) = const = PZ /2t The ratio P2/2m,l, depends on
Zs, f(fm,)"?, and I, though not on a. For I, small the corona separates into a
quasisteady, thin {(deflagration) layer where absorption and conduction occur, and
a large region of isentropic expansion. For classical conduction, i.e. f(/R/m.)*/? large,
one gets P2/ d, = 16/25 = 0.64 independently of Z; (though both P, and ri do
depend on Z;) (SANMARTIN and Barrero, 1978a). For Z; » 1, flux-saturation does
not modify this resuit: P2/2mJ, ~ 0.64 for > 0.03 (Ramis and SANMARTIN, 1983).

Results for f,m» 1 and Z; arbitrary, and Z;> 1 and I, arbitrary, with classical
conduction, are known (SANMARTIN and BARRERO, 1978b; BARRERO and SANMARTIN,
1980). For I,,, and Z; large we have P2/2ri1 ], ~ 0.265. Flux-saturation yields a similar
result if £~ 0.6, and P2Z/2m.l, ~ 0.09 if f ~ (.03,

When both conduction and inverse bremsstrahlung are considered the flow can
not be self-similar. However for small [,,, conduction only counts in the deflagration
layer, which is quasisteady; to make the outside flow self-similar with bremsstrahfung
absorption included [ = 0(1)], we take I = I(t/1)>? (NtcoLas, 1984). Then one has

s = Fsm(t/1)?, Py = Pawt/t,

and integration of (10} and (11) yields

2

N = X 72(AM /M o) (13)

2msm ant

where P2 /2itsudam = P2(t)/2mt) (1), and

51 A (IPAMNE In (14 AN AR 2
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and Iy = Aql,, A7 being total absorption; 72 is always very close to 71 :72/f1 ~ 0.98
for A= 0, and 1.03 at A = 0.9. For Z; and f{t/m.)'/? large, ([, small), and T = 0(1)
we have P2/2m,l, = 0.314 independently of «; for U — 0 we again have P2/2m,l, =
0.64. Note that inverse bremsstrahlung is negligible for I, large.

In the past, authors always considered I, = const, assuming P, and m, constant
too. Then equations (10) and (11) give

p? AM,
=% X7 . 14
M= e "(Mse) (14)

Either a cold-rocket model (P2/ 21,1, = 1), or a coronal model consisting of a steady
deflagration layer and a self-similar expansion, was used. However, a steady deflagra-
tion will only exist if (a) [{t) <1, ie. t» [a*?Kpn; and if (b) Ul) <, ie.
t < (mqc/m) w72 K fn.. In the above we used U(t) = (ni/m* 2 K)13. Condition (2) marks
the time required to set up the deflagration; CODdltIOH {b) means that bremsstrahlung
absorptlon outside the layer will prevail in the long run because the self-similar expan-
sion is growing all the time. These conditions are rarely satisfied simultaneously. If
they are satisfied, nonetheless, the expansion will be definitely isentropic, and not



isothermal (SANMARTIN et al,, 1983); this point has produced some confusion in the
past.

The result 77 >~ #; (= #;) shows that the shape of the pulse has a negligible effect
on the dependence of 1y on AM/ Mo (specially so if AM /M < 0.5). Thus we can
use equation (14) for 4 for a real pulse (which only in its rising-half can be reasonably
approximated by a lincar pulse). The factor PZ/2ml, in equation (14} is to be taken
from the above results for the different regimes [depending on the values of I,
f(ijmy"?, and U, mainly]. Table 1 resumes those results.

TaBLE 1—VALUES OF P,f/2MsL, IN EQUATION (14} FOR DIFFERENT REGIMES OF A PLANAR CORONA

R . Irrl J’?_‘lU ht 12 z Pg
egime pU? Hiet: 4 Hie ' Bl ,
H Small Steall Large/any Any/flarge (.64

i1 Small ~1 Large Large 0.31
I Large Small Large Large 0.27
v Large Small ~1.8 Large 0.09

The uncoupled analysis of the corona was partly based on the approximation
x,(t) ~ 0, and this required AM /My to be small. For this range we may set
i = AM /M. The analysis should be actually valid up to about AM/M, =~ 0.2 or
0.3, because (i) the ablated mass is growing during the entire pulse, AM; being its
final value, and (ii) x,{t) and u(t) are found from time-integrations,

If [ is small, results may be extended to values AM/My = 0{1). Use of new
variables ¥’ = x — X4, ¥ = 0 — %4, may always take back the problem to the x, =0
case, but equations (3) and (4) must then include an inertial force per unit volume,
— pX,, which in general destroys the self-similar character of the flow. This however
is unimportant for [, < because the relation between i, or P, and I, is then
obtained from an analysis of the deflagration layer, which is steady or quasisteady.
Inertial forces have been often considered in the past in the analysis of deflatrations
(FELBER, 1977; FABBRO, 1982). In fact, under deflagration conditions the inertial force
may be ignored altogether because - pXs~ pP./M~{AMMJ)P.f(characteristic
length of corona), which is small compared with the sharp-pressure gradient within
the deflagration layer {(unless My/Myo < 1), '

4. TARGET ACCELERATION FOR A NON-PLANAR CORONA

The assumption of planar geometry for the corona (Section 2) is valid if tve, <€y
where r is the focal spot radius, This condition applies when the pulse is short or
the beam is wide. When To.,/rr is of order unity the coronal flow depends clearly
on Z;, fiifm2, o, I, and U, and on Uz/r;. For long pulses or narrow beams
(Tex > Fy) the flow approaches the conditions of spherical geometry. To take this
into account we use known results about spherical coronae. In the past the divergence
in the flow was dealt with by introducing some mean divergence angle into the cold-
rocket model (R1PIN et al., 1980},

A discussion similar to that in Section 2 shows that in spherical geometry there
exists an ablation surface at some radius r,(f), and that in analysing the corona one
may set v=Te =T, =0, n— 0, at r = 7, and ¥, =~ 0. If, in addition, W /W, ~ 1>



FafVexs, the corona may be studied by using a quasisteady approximation (AFANAS'EV
et al., 1977, GITOMER et al.,, 1977, Max et al, 1980; SANZ et al., 1981); 1 is then an
ignorable parameter. One may introduce a characteristic speed that does not involve

nae Y4 2Z; 106 um\'12/ 2r, Z;In AN\
V={—= ~ 1, 1 78 : :
(n‘imK) 40 x 10 (Ai) ( A ) (1mm 1005:5) 13

note that ¥V = U{r,/Ut)'*. Quantities such as P./p.V 2, m/dnr2p.V are then functions
of Zi, fim/m}2, o, V = mV/imee, and W = Wifr2p V2,

To use those results in equation (14} giving the efficiency #x for our foil problem,
we introduce an equivalent spherical target with equal values for ablation pressure,
and mass ablation rate and absorbed power per unit area of ablation surface,

P# = P, W*/Am? = ri,, W*/Anr? =1, (16)

quantitics marked * corresponding to the spherical problem. If a value for r, is needed
we equate the one-sided spherical ablation rate m*/2 to the foil rate nrisy, so that
¥y = 27 Y24, (The one-sided spherical absorbed power W*/2 is then equal to the power
in the foil problem, nril,.)

For W* small a deflagration regime exists in spherical geometry (SANZ ef al., 1981;
NicoLas and SANMARTIN, 1985). We have

i = 0.647(AM /M), V0, (17a)
= 0347(AM /M), ¥V = 0(1), (17b)

independently of r,.

For W * large within the range 10% < W < 105, Z, large and f not too low, results
for P*(W3), m*(W#*) are particularly simple. For /> 0.05 roughly, one has mi*/4nr? =
B Y8 p V(P¥/p. V25 independently of ¥ and o §; ~ 11.3. Also P¥/p.V? = pW*23
where ¢ is a weak function of W# and ¥, and nearly independent of o and f(m/m.)'/
for f = .08 roughly. For Z; = 0(1} changes are weak {SANZ et al., 1981; Sanz and
SANMARTIN, 1983; NicOLAS and SANMARTIN, 1985). Experiments with spherical targets
suggest that appropriate f~values to use in that geometry are sensibly larger than 0.03
(GoLDSACK et al., 1982), For the above conditions we get from {14) with AM /Mo < 0.3,

a

Yisl, M 2Uafp V) Mao

949715 AM,
- W;:Z,@ MSO’

P2 AM,  (4n)"° Y59V AM,

i =
(W= 2% x dn(Ur/r)** ). (18)

Note that guocr/®ocrl/S, is weakly dependent on r,. We then find (NicoLas and
SANMARTIN, 1985)



: o~ a2 ~ (.30 { 0)
f ~ ~ ). Vs
AMS/MSQ 211'131,;

for W = 10%
0.20 (V = 0(1))
0.06 (¥~ 0)
= for W#* = 10%,
0.05 (¥ = 0(1)) ' (19)

The acceleration of thin spherical shells is studied in Appendix B.

5. DISCUSSION OF RESULTS

The analysis of Sections 2 and 3 showed that the efficiency 4y is heavily dependent
on the behaviour of the corona, which is parametrized by several dimensionless
numbers; mainly f(#/me)/?, I, = Ljp.U?, and U = #ilU/mec, where fis a heat-flux
limit factor, I, peak intensity, and U a speed defined by equation (9). This is in
agreement with available data, (Fig. 2) from a variety of experiments with thin foils
{(McCary, 1983): it is clear that the data cannot be represented by an universal relation
nu(AM/Mo). Note also that equation (1), drawn in the figure for comparison, over-
estimates the efficiency substantially.

Figure 2 shows, in addition, theoretical curves taken from equation (14), using
PZ2/2ml, as given in Table 1 for limit values of the dimensionless parameters (regimes
I-1V). For the regimes III and IV the range of validity of the theory is roughly
AM/M o < 0.3 {Section 3); curves have been drawn accordingly. The overall agreement
with the data is good. A more detailed comparison would require additional informa-
tion on each particular experiment.
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Fic. 2~~Hydrodynamic efficiency nu vs ablated mass AM (Mp = initial foil mass), from both
experiments (data poinds) and theory: the dotted line represents equation (1), lines I-IV
represent equation (14) with values from Table 1.



Table I corresponds to a planar corona, or equivalently Uz/r, small; 7 is the pulse
full-width at half-maximum, and r, the spot radius. In the opposite limit, studied in
Section 4 in a spherical approximation, a speed V = U{r,/222U1)!/4 replaces U in
dimensionless relations, Results for low intensities, given in equation (17), are similar
to those in Table 1 (regimes T and IF), Results for high intensities, given in equations
(18) and (19), decrease continuously with increasing intensity; they are practically
independent of f for the not too low f-values suggested by experiments (GOLDSACK
et al., 1982). _

When AM is not directly measured in an experiment (EIDMANN et al., 1984), it must
be calculated if 2 comparison with theory is to be made. This requires determining
the mass ablation rate throughout the pulse. Results on mass ablation rate and ablation
pressure will be discussed elsewhere.

The assumption P2/2si1,l, = 1, underlying equation (1), is often used, independently
of efficlency considerations, to calculate P, fromt measurements of #1, and I, Table
1 shows that in this way the ablation pressure may be overestimated by a factor as
high as 3.
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APPENDIX A

Integrating equation {2} between x,, somewhere to the left of the foil where p and P vanish, and x,(1),
we get

d d P4 d 9 o=
dt pdx — Xepa = —x — xaxpv— Pabia

or |
J. pdx = — palva — %a) = —Hig (A1)

Xy

dM; d
Tdt ciz

which is equation (10}
Integrating equation (3} similarly, we get
du

M a = = Pa - pn{ua - xﬂ)(vu - u)’ (A?.)

where u = j"ﬂ prdx/M.. Since P, ~ pv2,, His ~ peboxs 804 Vo~ i ~ Uine € Doy, We may drop the last term
in (A.2) to recover equation (1),

Finally integrating (4) with g = 0, /; = 0, neglecting € against 14 (thin-foil or long-pulse approximation)
we get

di— 1 — .
M, EEU — Patre — pala — J'fd)(ivg - "”2) {A.3)

where ;E_ f pv? dx/M,. Neglecting the last term in (A.3), as in (A.2), we recover {A.3) from (A.2) if
z .
Ba o, ¥

APPENDIX B
For completeness we consider the acceleration of thin spherical shells (Max et al., 1983; MAYER et al,,



1983}. The equations equivalent to (10) and (11) are

dAM/fdt = i, B
Mdu/dt = — 42 Py, . (B2}

where M is the mass of the shell at time #, and u its outward velocity. For a spherical corona,
> 0.08, and 10% < W, = W, /r2p.V? < 10°, we have Py/p.V? = ¢W 2, iifduripV = P VO(P,/p. V3 =
B ”‘ggbs"ﬁW”g (Section 4). Let rao = ra{t = 0) and consider a pulse of constant power aad duratmn T
(Section 3). As the shell collapses, P. and i change through their dependence on r,; We have

13/18 )
(}: 0) 1= rig = dmrgypcVofiy YOTEW I, (B.3)
o
o \H3
(T) Po = Poo = pVEWH, (B.4)
&0

From equations {B.1) to (B.4) we obtain

8 AP 10\ 0
das 1o Ta

Neglecting the weak dependence on rofr.o we get

4nrauPao M
U~ —————in-— Mg=M({ =10}, (B.5)}
g Mo

Using (B.1), (B.3), (B.5), and u =~ dr./dt we obtain
M M 2 ' 31/18
[N PRSI PO AY PR LS , (B.6)
My Mg 2 Fao

32 18 3 18 peran 3 Hra,

2 " 3 dnreoPaoMe 31 poAR BT

where
{B.7)

One can show that velocities in the corona are of order ¥y W2{’. Hence, the corona will be quasi-steady
as long as u € Vo W, According to (B.3B.5), we have u = (f;$) /6 Vo W° In (M/M) so that the above
inequality is equivalent to AM{MO 1 —M/Ms<1,asin the pldnar case. Equation (B.6) shows that this
condition is satisfied for the entire implosion (0 < ra < rae) if y2/2 is small. This is fortunately the usual
case in experiments: for instance, if AR = rao/20, p/pa = 1.3 x 1072 and my/Z; ~ Iy (Al shell, 1.06 ym
light, fully ionised corona), r.o = 200 pm, and W, = 1012 W, we have y%/2 = 0.03 (Wao = 2.9 x 10°, ¢ =~ 0.1},
(For y2/2 large, the shell would be ablated with almost no collapse.) Then equation {B.6) takes the form

{(AM/yMo)* = 1 —(rafrao)*1/1%. _ S (B.8)

Using (B.8) in (B.1) we get

M AM dy’
= _nlmﬂ (PMO) Is) = J‘r — S’me' {B.9)

[+]

Equations (B.8) and (B.9) determine the values of r, and AM at the end of the pulse, as long as (B.9) gives
AM fyMo < 1; for longer pulses, equation (B.9) with AM/yM, = 1 gives the time for total collapse (v = 0).
Equations (B.5} and (B.9) lead to

Mt (Amr2oPa)® AM AM M '
= _ o)’ 0 (B.10)
W 2Wate Mo HAMfyM )




where we set J{AM/Mo) =~ AM/M; (<0.2 or 0.3). When compared with

2mr2, P2 AM
a1 :w‘m_io "“2 ;j(f.w) {B.11)
g W/, \ Mo

{Max et al., 1983) three differences appear: {i) The full expression f{AM /M) was retained in (B.11). Since
a quasisteady corona was also assumed to get {B.11), it should not be valid above AM/M, = 0.3, say,
and thus § ~ AM/M,. Secondly, Max et al. (1983) wrote © = AM /1y, instead of (B.%), missing the factor
(AM v M o)/ H{AMyM ). For 0 < s < | we have ! > s/I > 0.70; hence {B. 11} may overestimate the efficiency
by as high as 425/,

Finally, approximate results for the corona for small f{Max et al., 198(} Sanz and SANMARTIN, 1983)
were used in (B.11). For the not too low [ supgested previously (SANZ. and SANMART’!N 1983) we have
(B.3} and (B.4), and cquation {B.10) becomes

2P AM (AMyMo)
ng” Mo I(AM/}:MO)’

Ha =

which is just (18} x (AM/pM o)/ IAM/yMo). Using now {B.7) we finally get
' 12 2

o= (228220 ) A

31 poAR TAM/7Mo)

For p/po = 1.3 % 1073, reo/AR = 20, ¢ = 0.1, the expression within the bracket is 0.02; the function s*/1(s)
has a maximum 0,76 at s 22 0.94, Thus gg(m ax1mum) 0.015.
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