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Profile modification in the underdense region of laser-plasmas with spatially
uniform temperature 7, is studied. A muitiple scale method is used to describe
self-consistently the plasma flow and the wave field, in (i) the gsecale of the field
wavelength, and (ii) the overall expansion scale. For 7, cc {* ordinary differential
equations with definite boundary conditions are obtained. For & = 0 and weak
fields, we explicitly solve the equations and relate the field in the critical layer to
the incident field,

1. Introduction

In the last fow years, considerable attention has been given, both in experi-
mental (Kim, Stenzel & Wong 1974; Donaldson & Spalding 1976; Attwood ef al.
1978} and in theoretical or numerical (Kidder 1972; Forslund e af. 1976; Mulser
& Van Kessel 1977; Max & McEee 1977) work, to the question of how radiation
pressure affects the expansion flow of laser-produced plasmas. For spatially
uniform electron temperature (77}, as in the case of high enough radiation flux
(Sanmartin & Barrero 19784, b), and negligible absorption, some definite results
are already available: a solution to the wave and plasma How equations, de-
seribing a transition from an oscillatory field to an evanescent onein a thin layer
around the critical density (n,), was given by Lee ef al. {1977) in terms of the firgt
maximum of the standing-wave electric field (£,,) in the underdense side of the
layer. In addition, the authors (1980) showed recently that (i) transitions other
than that studied by Lee ef al. (Mulser & van Kessel 1977; Max & McKee 1977)
are not possible, and (ii) the overdense flow, where there is no radiation, adjusts
itgelf for such a universal transition in a manner critically dependent on how 7},
changes with time; for 7} cc 1%, both the transition layer and the overdense flow
may be congidered entirely determined in terms of .

In this paper we use an asymptotic, multiple-scale method to analyze both the
fine structure (Faehl & Kruer 1977} and the overall behaviour of the underdense
flow. The analysis shows how to relate (self-consistently) £,, to the incident field
in vacuum (ad hoc WKB approximations, used in the liferature merely to deter-
mine £, are unjustified because the dielectric function is changing in the scale
of the field itseif). The general procedure used here, to solve simultanecusly the
equations for the wave field and the plasma motion, appears to have considerable
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interest; solutions known to the anthors for the interaction of an electromagnetic
wave and an inhomogeneous dielectric take the dielectric-constant profile as
given,

2. Basic equations

For no absorption and uniform 7, an expanding quasi-neutral plasma infer-
acting with incident light has three conservation equations, which in planar
geometry read
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where n, v and m are density, velocity and (ion) mass; we introduced ¢k = T, /m.
Equations (1} and (2) are the continuity and momentum equations for the ion—
electron fluid, neglecting ion pressure and electron inertia. Equation (3) is used
instead of the wave equation; (3) is obtained by dividing (2) by n and rearranging
the radiation pressure term by means of the wave equafion. In the expansion
flow the plasma energy equation just yields de,/dx = 0; c,(t) could be obtained
from an overall energy balance, but here is congidered to be a given, arbitrary
function. |

The electric field # has been written as Re {E exp [i(w/e)y sin 0 —iwi]}, where
0 is the angle of incidence in the {z, %) plane {s-polarization); & may be taken real
because the dielectric function, € = 1 —n/n,, is real. In & previous paper (San-
martin & Montafies 1980), (1}-(3) were derived for the case & = 0, but it is trivial
to show that the only modification for arbitrary & is the factor cos® @ in (2).

Now, let 7 be a characteristic time for the expansion, typically larger than the
wave period 27/w by a factor of the order of 10%; then, both a long (¢, 7) and a
short (¢/w) characteristic length are involved in (1)-(3). In addition, the equa-
tions contain two time scales, 7 and ¢/weq, (though they do not contain the very
fast oscillations of frequency w, present in the wave field and in the electron
motion) (Stamper 1975; Thomson, Max & Estabrook 1975); the fast scale,
efwey, arises from the fact that the entire short-length, standing-wave pattern
drifts with the slow motion of the transition layer (as for light incident on a
moving mirror). Thus, we use a multiple scale method (Nayfeh 1973) to carry out
an asymptotic expansion in the parameter ¢/we, 7, Defining
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where , is the position of some definite feature of the transition or critical iayer,
such ag the first maximum of the standing wave, we have
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We algo write n = n®+nl+...,v = ¥+ oL, E—Fv4 1. ... . For convenience
we leave the slow variables in dimensional form (£, «'), and do not use explicitly
the parameter ¢/we, 7.

3. Multiple scale analysis
3.1. Short (fast) scale structure
The lowest-order equations, from (1)}-(3), are
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In (8)-(16), constant means independent of £ but not of £, &1, and
g(F) = M2 ~n 372

Notice that I is the local Mach number in a frame moving with the x, plane. We
used subscripts s and 1 for the maxima and the nodes of & in the standing wave,
respectively; then &, = 0, 86 /£, = 0.
From (8)-(10) we have
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If BT exceeds unity throughout the underdense region (see discussion later), we
have M, > M, and therefore M oscillates between I, and I, with finite period
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Both vand & are algo periodic, with periods A£ and 2Af respectively. Clearly, then,
for given M,, M, and p,, system (8)—(10) yields the entire short scale structure.
Thus, to complete the solution, we just need to determine M, M, and v, as
functions of £, a1

&
3.2. Long (slow) scale structure
Now, the next-order equation from (1) is
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Integrating (12) from £, to &, where §; — £, = KAZ and K is an integer, we have
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where ( ) means average over a g—penod; in the preceding integration x' and #
are parameters. If K-so0, the asymptotic expansion will break down (either
nt/n® or v* /v will be unbounded}, unless the mean value in (13) vanishes; thus,
to avoid secularities, we set

K0+ 2wy = 0. (14)

Similar arguments on (2) and (3) yield
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Equations (14)-(16) describe the lowest-order sohution in the long, slow scale; we
suppressed superseripts for simplicity. The averages may be written in terms of
M, #, and v,, for given x,(f) and c,(¢), by using (7) (11)

4. Power-law temperature

While (14)-(16) may be used under broad conditions, here we shall limit our
analysis to the case where the ratio %2 ./ T, is congtant in time (Virmont, Pellat &
Mora 1978), and 7, cc #2; then (14)-(16} have a self-similar solution. Introducing

= / f cplt' )b, we get &, = 7, ¢p; 4, may be determined from an analysis of
the overdense flow, and is a function of ¢ and &,, = &(x,) which will be taken

as known (Sanmartin & Montaifies 1980). Then (14) —(16) become
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where we defined 4 = % —,. For any function F(M) (such as H and F-1) the
mean value is
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The boundary conditions for system (17)-(19) follow from the a,nalysié of the
critical (transition) Ia,yer (Lee ef al. 1977; Sanmartin & Montafies 1980): at
7} =0 ((E - x’c)
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and
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Subscript 2 refers to conditions on the evanescent side of the critical layer. Thus,
9, ML0), BT,(0) and v,{0) are known, and the system (17)-(18) may be solved, for
each pair of values & and &, Notice that (8)-{11)with M, = 1, together with (22),
recover the known critical-layer structure and jump conditions.

Concerning that system, the following points should be noticed now. First,
M= 1at ij = 0, and therefore i > 1 everywhere, because if I could get below
unity at some #, then both (M) and ¢(H -1y would present discontinuities there.
Secondly, if v, (and « fortiori v,) decreases to zero as 4 decreases, as expected, then
(10} and (11) lead to & = &, cos £, the behaviour of the field in vacuum. Thirdly,
{19) shows that g .,1) g{M,) = const. = }[&, {(vacuum)* as y,—0; since (17)
cannot be satisfied if 7, const. in that limit, both 47, and I, must grow indefi-
nitely as v, vanishes. Hence M, — B, must vanish in sueh a manner that

lim M, (M, — F1) = const. = }[&{vacuum)]. (23)
0
This equation, together with
2B, = B (vacuum) = (drn, T,)t & (vacuum), (24)
will yield the incident field £,. Finally, as M, — #,— 0, the oscillations in both M
and v vanish: M ~ M, ~ M, and v ~ v, ~ v,. Defining w = v/cp = ~ 5+,
(17) and (18) become ‘
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which are just those describing the flow in the absence of radiation (Sanmartin &
Montafies 1980),
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5. Constant temperature, weak field limit

For a = 0, (17)~(19) form a linear, homogeneous system for d3, /7, dH,/dif
and dv, /dij. The compatibility condition for the system ig a cubic equation for 7
in terms of M, M, and v, gthe root that vanishes with J7, — 1 should be introduced
in the system to yield two differensial equations relating 47, M, and v,.

5.1. Weak field : the ouler region

Particularly simple is the case o = 0, &, small. Then, the boundary conditions
are
H0) =1, M (0)=1+46,

S0

VI(O) =1 ""%éasc'

We expect I, — M, to be small everywhere. Expanding F(M) in powers of
8T — M, we find _ ~ o
F(M)y = F(M,)— 3TF (M) (M, — M)+ ... (25)

Expanding the solution to (17)-(19) in powers of M, — I, we get to lowest order

M, =0 =1—-%, v =Ceéf;
the boundary conditions require, to this order, ¢' = 1. This is simply the solution
in the absence of radiation (the well-known isothermal expansion). The next-
order corrections lead to
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where A, and Aj are small {unknown) constants that vanish with &,; in (26) the
upper (lower) sign corresponds to the 1 (s) subscript. Clearly, the boundary
conditions cannot be satisfied to order &,,: an inner, thin region adjoining the
origin § = 0 must exist, and the solution there should be matched to (26) and (27)
for the oufer region according to the method of inner and outer expansions
(Nayfeh 1973). The approximation that fails for § — 0 is (25); the failure is due to
the fact that, near 4 = 0, all three B, M, and v, are close to unity and the com-
putation of {(F(#)) becomes more complex.

5.2, Wealk field: the inner region
We now define inner variables

g = ??/é:c’ M= (ﬂ_ 1)/éasc= Mg = (Iﬁ:s— 1)/&5‘0’
= (ﬂl_ 1)/'5530: N = (Vl_ 1)/éasc'
To lowest order, (17)—(19) (with & = 0) become
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the boundary conditions being
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Equation (28) yields immediately N -+ gty = —%. Then the mean value (20) for a

function F(u) takes the form
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where

The compatibility condition for (29) and (30) is a quadratic equation for ¢ in
terms of s, and g;. The root that vanishes with s, must be introduced in (29),
yielding an equation of the form

s
Gty

= H{p )y pfp, =% =0.

H ig such that g~ p,->B /p,%, and {—-— g, as g, —00; we numerically find
B~ 0:103.

5.3, Weak field: determination of &,

Matching the inner and onter solutions allows us to determine A, in (26). We
write, for the inner layer,

(@, — )8 (M, —M)>B&E as F/E—~—0.
Tt Ay ~ &%, equation (26), for 1> |§| > &, yields
My~ -, T M~ A f2(— 7,
and the matehing requires
A,
2(—7)
Now, for § = — o0, (26) leads to

(=) ~ B&L, or A, =2B&L.

My~ —f, B~ — A/,
80 that, from (23), we finally obtain

1[& (vacuum)]2 = 2BEE, (31)
which in dimensional form reads

B, ~ 1-88[(dmn, TYFEE] (B2 < dam,T0).



6. Discussion

To take into account the radiation pressure in the underdense flow of a laser-
produced plasma, we used a multiple-scale method to derive equations describing
self-consistently the flow and the wave field in both the overall expansion and the
wavelength scales; the procedure given may have a broad validity for the propa-
gation of an electromagnetic wave in a fluid dielectric. Quasi-neutrality, neg-
ligible absorption and spatially uniform temperature were assumed. The known
structure of the critical layer provided the appropriate boundary conditions. For
time power-law temperatures, for which the overdense flow has been analyzed
elsewhere, a detailed study was made. For constant temperature and weak field
we obtained a maximum flux about 109, less than that resulting from an ad
hoc WKB approximation (Lee ef al. 1977).

We are trying now to extend our results to include spherical, p-polarization,
{resonant absorption), and complex dielectric funetion, effects. Important ques-
tions that should also be considered in fufure work are the stability of the present
solution (Valeo & Hstabrook 1975) and its modification in the presence of two
electron temperatures.,
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