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Profile modification in the underdense región of Laser-plasmas with spatially 
uniform temperature Te, is stndied. A múltiple scale method is used to describe 
self-consistently the plasma flow and the wave field, in (i) the scale of the field 
wavelength, and (ii) the overall expansión scale. For 2J.cc ta ordinary differential 
equations with definite boundary conditions are obtained. For a = 0 and weak 
fields, we explicitly solve the equations and relate the field in the critical layer to 
the incident field. 

1. Introduction 

In the last few years, considerable attention has been given, both in experi
mental (Kim, Stenzel & Wong 1974; Donaldson & Spalding 1976; Attwoodeía-Z. 
1978) and in theoretical or numerical (Kidder 1972; Forslund et al. 1976; Mulser 
& Van Kessel 1977; Max & McKee 1977) work, to the question of how radiation 
pressure affects the expansión flow of laser-produced plasmas. For spatially 
nniform electrón temperature (7J,), as in the case of high enough radiation flux 
(Sanmartín & Barrero 1978a;, b), and negligible absorption, some definite results 
are already available: a soltttion to the wave and plasma flow equations, de-
scribing a transition from an oscilíatory field to an evanescent one in a thin layer 
around the critical density (nc), was given by Lee et al. (1977) in terms of the first 
máximum of the standing-wave electric field (Ésc) in the underdense side of the 
layer. I n addition, the authors (1980) showed recently that (i) transitions other 
than that studied by Lee et al (Mulser & van Kessel 1977; Max & McKee 1977) 
are not possible, and (ii) the overdense flow, where there is no radiation, adjusts 
itself for such a universal transition in a manner critically dependent on how Te 

changes with time; for Tece tx, both the transition layer and the overdense flow 
may be considered entirely determined in terms of Ésc. 

In this paper we use an asymptotic, multiple-scale method to analyze both the 
fine structure (Faehl & Krixer 1977) and the overall behaviour of the underdense 
ílow. The analysis shows how to relate (self-consistently) Ésc to the incident field 
in vacuum {ad hoc W K B approxímations, used in the literature merely to deter
mine Ésc, are unjustified because the dielectríc function is changing in the scale 
of the field itself). The general procedure used here, to solve simultaneously the 
equations for the wave field and the plasma motion, appears to ha ve considerable 
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interest; solutions known to the authors for the interaction of an electromagnetic 
wave and an inhomogeneous dielectric take the dielectric-constant profile as 
given. 

2. Basic equations 
For no absorption and uniform Te, an expanding quasi-neutral plasma ínter-

acting with ineident light has three conservation equations, which in planar 
geometry read 

8 , v 8 ' , a É2GOs20+(c/o))*(dÉ/dx)2' 
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where n, v and m are density, velocity and (ion) mass; we introduced c% = Tjm. 
Equations (1) and (2) are the continuity and momentum equations for the ion-
electron fluid, neglecting ion pressure and electrón inertia. Equation (3) is used 
instead of the wave equation; (3) is obtainedby dividing (2) by n and rearranging 
the radiation pressure term by means of the wave equation. In the expansión 
flow the plasma energy equation just yields 8cTj8x = 0; cT(t) could be obtained 
from an overall energy balance, but here is considered to be a given, arbítrary 
function. 

The electric fieldi? has been written as 'Re{Éexp[i(o)/c)ysmd~ i(ot]}, where 
#is theangleof incidenceinthe (x, y) plañe (s-polarization); É may be taken real 
because the dielectric function, e = 1 ~n/nc, is real. In a previous paper (San
martín & Montañés 1980), (l)-(3) were derived for the case (9 = 0, but it is trivial 
to show that the only modification for arbitrary 6 is the factor eos2 0 in (2). 

Now, let T be a characteristie time for the expansión, typically larger than the 
wave period 2TT/Ü) by a factor of the order of 106; then, both a long (CTT) and a 
short (c/(o) characteristie length are involved in (l)-(3). In addition, the equa
tions contain two time scales, r and c/o)cT (though they do not oontain the very 
fast oscillations of frequeney 0), present in the wave field and in the electrón 
motion) (Stamper 1975; Thomson, Max & Estabrook 1975); the fast scale, 
c/o)cT, arises from the fact tha t the entire short-length, standing-wave pattern 
drifts with the slow motion of the transition layer (as for light ineident on a 
moving mirror). Thus, we use a múltiple scale method (Nayfeh 1973) to carry out 
an asymptotie expansión in the parameter CJ<ÚGTT. Denning 

y (o eos 6 - 1 

g = — — [x-x0(ty}, t1 = t, x1 = x, 
where x0 is the position of some definite feature of the transition or critical layer, 
such as the first máximum of the standing wave, we have 

8 . <ú eos 6 8 8 8 o) eos 0 8 d 
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We also write n = n° + n1 + . . . , v = v° + v1,.., É = É° 4- É1 -f... . For convenience 
we leave the slow variables in dimensional form (í1, x1}, and do not nse explicitly 
the parameter c/(ocT r. 

3. Múltiple scale analysis 

3.1. Short (fast) scale structure 

The lowest-order equations, from (l)-(3), are 

- 4 - ^ + | ( » V ) = 0, (4) 
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Here ÍÉC and c r are functions of í1. Introducing 

x„ - v° v* ro° _ J » 
nc eos2 (9 ' (é7rmnG c% 

we get 
rf = const. = vsM3 = vxítx, (8) 

v{M^+í)+^+l{^y = oonst. = vs(M¡ + l) + ^ , (9) 

g(M)+- = const. = ff(JC) + ^ = ffí^x)- (10) 

In (8)-(10), constant means independent of £ but not of í1, a;1, and 

ff(j2") = M2~hiM2~l. 

Notice that M is the local Mach number in a frame moving wiih the xc plañe. We 
used subscripta s and 1 for the máxima and the nodes of $ in the standing wave, 
respectively; t l i e n ^ = 0, 8é/dg\B *= 0. 

From (8)-(10) we have 

If M exceeds unity throughout the underdense región (see discussion later), we 
have M1 > Ñs, and therefore Ñ oscillates between Ñs and Mx, with finite period 

Á£=2lf-idM. 



Both v and & are also periodic, with periods A£ and 2A£ respectively. Clearly, then, 
for given Ms, &t and vlt system (8)-(10) yields the entire short scale structure. 
Thus, to complete the solution, we just need to determine $ts, Mx and vx as 
functions of í1, x1. 

3.2. Long (slow) scale structure 

Now, the next-oxdex equation from (1) is 

0^° ^ , „ „, ^ [(«008(9. _ , , n . - ' 
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= 0. (12) 

Integrating (12) from £a to £6) where £6 — £a = Kk£, and _£"is an integer, we have 

ÍÍÍCOS(9 
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where ( > means average over a £-period; in the preceding integration re1 and t1 

are parameters. If K->co, the asymptotie expansión wili break down (either 
n^-fn0 or v1/v° wiíl be unbounded), tinless the mean valué in (13) vanishes; thus, 
to avoid secularities, we set 

Similar arguments on (2) and (3) yield 

8 / v ¿ (nv*) + c%(n) + 
(É*> + ({dÉ/¡%)*> 
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(14) 

(15) 

(16) 

Equations (14)-(16) describe the lowest-order solution in the long, slow scale; we 
suppressed superscripts for simplicity. The averages may be written in terms of 
Ms, M1 and vlt for given xe(t) and cT{t), by using (7)-(l l) . 

4. Power-law temperature 
While (14)-(16) may be used under broad conditions, here we shall limit otir 

analysis to the case where the ratio É%/Te is constant in time (Virmont, Pellat & 
Mora 1978), and Tecc ta; then (14)-(16) have a self-similar solution. Introducing 

7} = x I \ cT(t')dt', we get xc = % CT;T}C may be determined from an analysis of 

the overdense flow, and is a function of ce and Ssc = ^s(xc) which will be taken 
as known (Sanmartín & Montañés 1980). Then (14)-(16) become 

^<''-<^>+'3¡<^+^(V+H"0' 

(17) 

(18) 
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where we defined T] = y — ijc. For any function F(M) (such as Ñ and Ñ*1) the 
mean valué is 

/•#! ~ ~ ~ ~ ~ 
I F(M)dM/f(M,Ms,M1,v1) 

<F{Ñ)) = ^ | _ _ . (20) 

J M, 

The boundary conditions for system (17)-(19) follow from the analysis o£ trie 
critical (transition) layer (Lee et al. 1977; Sanmartín & Montañés 1980): at 
f¡ = 0 (x = xc) 

Ñs=í, g(Ñ1) = ^sc/2 (MÍ>1) (21) 
and 

Vi = v*$i¡$x> (22a) 
where 

V*=n^m* ffA) = f; (*,<!)• (226) 
Subscript 2 refers to conditions on the evanescent side of the critical layer. Thus, 
7}c, Jf8(0), iS^O) andv^O) aie known, and the systera (17)-(19)may be solved, for 
each pair of valúes oc and Ssc. l o t i c e that (8)-(ll) ivith Ms = 1, together with (22), 
recover the known critical-layer structure and jump conditions. 

Concerning tha t system, the following points should be noticed now. First, 
Ñ ¿s 1 at ?/ = 0, and therefore Ñ > i everywhere, because if & could get below 
unity at some y¡, then both (M) and {Ñ'v) wonld present discontinuities there. 
Secondly, if vs (and afortiori vt) decreases to zero as y¡ deoreases, as expected, then 
(10) and (11) lead to é" = <^.cos¿;, the behaviour of the field in vacuum. Thirdly, 
(19) shows tha t giÑj) — g{Ms)^eonsb. = |[<^s(vacuum)]2 as va->0; since (17) 
cannot be satisfied if i S ^ c o n s t . i n t h a t limit, both Ñs and Mt mttst grow indefi-
nitely as vt vanishes. Henee, Ñx — Ñs must vanish in such a manner that 

MmÑx{Ñx-Ñ^ = const. = ![<fs(vacuum)]2. (23) 

This equation, together with 

2W0 = J s(vacuttm) = (47mcre)*#e(vacuum), (24) 

willyield theincidentfleld^0 . Finally, asiG^—ÑB^-0, the oscillations in both M 
and v vanish: M a Ñx ~ Ñs jggiA v a vx ~ vs. Defining u = v/cT ~ ~M + v}c, 
(17) and (18) become 

d 1 du r. 9 ,^du au 
ñrq y-udj)' LW ' J dy 2+aw ' 

which are just those describing the íiow in the absence of radiation (Sanmartín & 
Montañés 1980). 



5. Constant temperature, weak field limit 
For a — 0, (17)-(19) form a linear, homogeneous system for dÑJdy, dMjdij 

and dvxjdr¡. The compatibility condition for the system is a cubic equation for T¡ 
in terms of Ms, &x and J^jjthe root that vanishes with M3 — 1 should be introduced 
in the system to yield two differential equations relating Ms, Mí and vv 

5.1. Weak JieM: the outer región 

Particularly simple is the case a = 0, Ssc small. Then, the boundary eonditions 
are 

We expect M-^—M^ to be small everywhere. Expanding F(M) in powers of 

(F(M)) = F(M1)-%F'(M1}(M1-MS) + .... (25) 

Expanding the solution to (17)-(19) in powers oiM1~ $tg> we get to lowest order 

the boundary eonditions require, to this order, 0 = 1 . This is simply the solution 
in the absence of radiation (the well-known isothermal expansión). The next-
order corrections lead to 

Ml!S=í~i¡+- Ax é __ + 2{l-y) 
4 ( l - e 9 ) t [ 2 1 - e f ~ ^ 2 - 2 T J J ' 

v1 = e?' + A 2 e5-
A1e

í¡ 
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y? 2 _ 

(26) 

(27) 

where Ax and A2 are small (unknown) constants that vanish with é>sc; in (26) the 
upper (lower) sign corresponds to the 1 (s) subscript. Clearly, the boundary 
eonditions cannot be satisfied to order Ssc\ an inner, thin región adjoining the 
origin T} = 0 must exist, and the solution there should be matched to (26) and (27) 
for the outer región according to the method of inner and outer expansions 
(Nayfeh 1973). The approximation tha t fails for íj ~> 0 is (25); the failure is due to 
the fact that , near i¡ — 0, all three Ms, &x and vx are cióse to unity and the com-
putation of (F(M)) becomes more complex. 

5.2. Weak field; the inner región 

We now define inner variables 

£ = ?/*«> fi = {M-i)/é„, ^ = ( 4 - 1 ) / ^ , 

To lowest order, (17)—(19) (with a = 0) become 

d 

di 
{N+fix)^0, (28) 



t f t § - 4 f t ( í + A ) § - 2 ^ > = 0 > (30) 

the boundary eonditions being 

Equation (28) yields immediately N-^fi^ ~ — \. Then the mean valué (20) for a 
function F{¡jb) takes the form 

4>' J P* 9 i J , 
where 

0(/*>/*s>/*i) =M(/* i - / t 2 ) ( / í - / í
s ) ( /* 2 +/ i / í s +/ í |+ / t+ / ( s ) ] - J . 

The compatibility condition for (29) and (30) is a quadratic equation for £ in 
terms of ¡ia and ¡iv The root that vanishes with ¡ia nrust be introduced in (29), 
yielding an equation of the form 

•¿- = H(/it,fis), /*,(/*! = i ) = 0. 

H is snch tha t /% —f.is->B/f¿J, and £-»•—/*!, as ¡ix-^co; we numerically find 
B ~ 0-103. 

5.3. Weakfietd: determination of Ssa 

Matching the inner and outer solutions allows us to determine Ax in (26). We 
write, for the inner layer, 

{&x-\f{Mx-Ñ:s)^Bil as fl/^-oo. 

If Ax ~ ¿ 4 , equation (26), for 1 > |4¡f[ > <ísc, yields 

# ! - 1-fl. J f fx-^ t ~ AJ/2C-7)*, 

and the matching requires 

( - # - ^ - ^ i ? 4 c , or A 1 = 2 « i 
2 ( - A / ) T 

Now, for 7j -> — co, (26) leads to 

so that , from (23), we finally obtain 

i[^s(vacuum)]2 = 2B£¡e, (31) 

which in dimensional form reads 

É„ ~ 1-88 [(4?™, 2y*]*4 (S¡¡ ^ 4im0 Te). 



6. Discussion 

To take into account the radiation pressure in the underdense flow of a laser-
produeed plasma, we used a multiple-scale method to derive equations describing 
self-consistently the flow and the wave field in both th© overall expansión and the 
wavelength scales; the procedure given may have a broad validity £or the propa-
gation of an electromagnetic wave in a fluid dielectric. Quasi-neutrality, neg-
ligible absorption and spatially tmiform temperature were assumed. The known 
structure of the critical layer provided the appropriate boundary conditions. For 
time power-law temperatures, for which the overdense flow has been analyzed 
elsewhere, a detailed study was made. For constant temperature and weak field 
we obtained a máximum flux about 10 % less than that resulting from an ad 
hoc WKB approximation (Lee et al. 1977). 

We are trying now to extend our results to include spherical, jj-polarization 
(resonant absorption), and complex dielectric function, effects. Important ques-
tions tha t should also be considered in future work are the stability of the present 
solution (Valeo & Estabrook 1975) and its modification in the presence of two 
electrón temperatures. 

This work was supported by the Junta de Energía Nuclear of Spain. 

R E F E R E N C E S 

ATTWOOD, D. T., S W E B M Y , D. W., AUERBACH, J . M. & L E E , P . H. Y. 1978 PJvys. Eev. 

Lett. 40, 184. 
DONAÍDSON, T. P . & SPALDINCÍ, I . J . 1976 Phys. Eev. Lett. 36, 467. 

FAEHX, PV. J . & KRUER, W. L. 1977 Phys. Flttdds, 20, 55. 

FOESLXTNI>, D. W., KINDEL, J . M., L E E , K. & LINDMAN, E . L. 1976 Phys. Eev. Lett. 36, 35. 

KZDDER, R. E. 1972 Lawrence Livermore Laboratory Eeport UCRL-74040. 
K I M , H. C , STENZEL, R. L. & WONG, A. Y. 1974 Phys. Eev. Lett. 33, 886. 

L E E , K., FORSLUND, D. W., KINDEL, J . M. & LINDMAN, E. L. 1977 Phys. Fluids, 20, 51. 

MAX, C. E. & M C K E E , C. F . 1977 Phys. Eev. Lett. 39, 1336. 
MTXLSBR, P . & VAN KESSEL, C. 1977 Phys. Eev. Lett. 38, 902. 

NAYJBTSH, A. H. 1973 Perturbation Methods, chs. 6 and 4. Wiley. 
SANMARTÍN, J . R. & BARBERO, A. 1978a Phys. Fluids, 21, 1957. 
SANMARTÍN, J . R. & BARRERO, A. 1978& Phys. Fluids, 21, 1967. 
SANMARTÍN, J . R. & MONTAÑÉS, J . L. 1980 Phys. Fluids {to be published). 
STAMPER, J. A. 1975 Phys. Fluids, 18, 735. 
THOMPSON, J. J-, MAX, C. E. & ESTABROOK:, K. 1975 Phys. Eev. Lett. 35, 663. 

VALEO, E. J . & ESTABROOK, K. G. 1975 Phys. Eev. Lett. 34, 1008. 

VIRMONT, J., PELLAT, R. & MORA, A. 1978 Phys. Fluids, 21, 567. 


