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The thermal wave produced in a uniform plasma, when energy is absorbed on a spherícal surface such 
that convection is negligible, is analyzed using an integraí method, which is very accurate. The curvature 
speeds up (slightly slows down) the inner (outer) wave front and does not affect the temperature 
máximum. 

Local deposition oí energy irt fluids with nonlinear 
heat conductión may give r i se to thermal waves and 
negligible convection.1 In part icular , when energy per 
unit á rea and time 4> = <t>0t/T i s deposited in a given 
plañe within a plasma, where the conductivity i s K 
=KT5/2, K^ const, a thermal wave develops if a 
= (9fe/4mj)(6

aTny<í>0K)2/3 i s small (T, n„, m, , and fe are 
electrón temperature and density, ion mass , . and Boltz-
mann's constant, respectiveíy)2 '3; if a i s too small , 
however, the conductivity will be l ess than classical .3 

In l á se r -p la sma applications, radiation absorption may 
be limited to a thin, spherical layer . For a mono-
tonically growing pulse of length T and máximum in-
tensity <P0, where 

* = tóí/T), g(D=Í, < 0 < Í < T ) , 

a spherical wave should develop for a broad class of 
pulse shapes and moderately small a. Converging 
thermal waves also appear in other problems and nave 
recently provoked interest , but have been studied very 
l i t t le . 4 ' 5 

For simplicity, considera uniform plasma and absorp
tion a t r = i 2 ; then, the electrón energy equation is 

3_ p_T_K_ 
2H° dt r 2 — {r'T^y^^t/j^r-R), (1) 

where 6 is Dirac ' s function. Introducing the dimension-
less variables3 

Í = Í / T , x = {r-R)/eR, f = T(2<p2
Q7/ZknJí)-2/9, 

€ = (2T/3ftn0)7 / B^ />o / 9fí"1 , 

Eq. (1) becomes 

1 d dT _ 
Hí (1 + ex)2 dx 

l + exrf5/2~yg(tMx). (2) 

The initial and boundary conditions a r e 

f = 0 a t í = 0 , f~f = ,p5/2 |f =0 . at*=*/, 

xf being either the inner (xin) or outer (#out) wave front; 
it may be shown that f~ (1 -x/xf)

2l% near xf (Ref. 1). 
In addition, the last term in (2) may be dropped if use 
is made of the condition 

fs/2J>I 
Bx = - * < ( * ) . (3) 

For short t imes, the curvature effects a re small . 
Expanding in powers of í and setting g = t1>

> we find to 
second order (quasi-planar approximation) 

c /=±t t 7 + B* ) / 8 í1 + f t l 4 + l í , r t / 9£a ) 

f = í (a+4í ) /3 Q1(s)±t1+Pez(s), s ^x/xf; (4b) 

the upper (low.er) sign should be used for x > 0 and 
xout(x<0 &ndxia)r We notice that the planar (lowest-
order) solution is symmetr ic , while the second-order 
correct ion is antisyrametric. An excellent approxima
tion to ^ and Qx (weíl known íorp = l ) 3 ' 6 i s 

t1 = (4/$)['lMl+p)Y/9, G t = [7/8(1 +p)]2/%l-s)2/s; (5) 

both 9 2 [which behaves roughly as s ( l - s)2/s\ and £3 a r e 
negative. Thus, to lowest order, curvature effects 
speed up xir¡ and slow down xow do not affect f{x = 0), 
and make the inner wave more steplike [the t e rm 
2 ^ r " 1 r 5 / 2 3 T / 9 r in (1) is positive for x<0j. 

We now determine x-w, xoul) and f(x - 0) for a rb i t ra ry 
t imes. Multiplying Eq. (2) by (1-i-ex)" and integrating 
between £¡n and xou(, we get 

d F / " - *ou l 

> {l + t&YTdx 
dt J<i, i 

for q=l and q = 2, we ar r ive a t 

/*xout „ f t
 A 

(l + ex)Tdx= g{t')dt', 
•*-,.. - Jo 

L 
xou\ 

(X + €x)xf dx ~ 0 . 

(6) 

(7) 

(8) 

We then t ry an asymmetr ic profile 

T(Í,Z) = flt{t)ll-x/xoai§)Yl*} 0<x<xwí 

f(t,x)-fa(Í)[l~x/x.m(Í)\2/5, x.n<x<0, 

which behaves properly near either wave front, and 
goes over to the planar profile (5) when f - 0 ( % - * 0 ) . 
The three unknown functions of t may be obtained by 
using Eqs. (7), (8), and (3). Deümngo^x^/i-xJ, 
we ar r ive at an implicit equation for CT(£ , e) 

V l - f f + a 2 

9 /7 
(l+a)5ho2/7/1_lt1 (l~o)2 

7x2 TírF 24 I-0-+0-2 

O) 

(4a) 

and then obtain xou(, x- , and Ta parametrical ly 

(10) 
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FIG. 1. Dimensionless wave-front positions versus time for a 
l inear pulse 0 = 4 > 0 Í / T , from the integral method ( ) (up to 
the t ime of a r r iva í of the inner front at the center) , and from 
an exact numerical computation (x ) , for a 3»5 valué of Üie d i 
mensionless parameter e; also shown a r e the planar ( — * ) 
and quasi-planar ( ) approximations. 

F o r a c e r t a i n e , c a l i i t e* , the i n n e r f ron t a r r i v e s a t 
the o r i g i n (x]a = - £ " l ) when the p u l s e e n d s (i = 1). F r o m 

E q s . (9) and (10), w e geto(exin ~~ 1 ) ^ 0 . 5 5 7 , and 

as í increases, G decreases, going from zero at a = 1 
to 0.878 a to ^0.557. Fore>e*, the inner íront reaches 
the origin at a time f0< 1, given by 

[g{h)Y2h[ gdt=^r) i gdt-
For e<e*, the solution (9) and (10) breaks down when 
the pulse ends, at a valué a1>0.557: 

G(o1) = 0.878(eA*)9/7. 

In laser-fusion applications {íor future high-energy 
pulses requiring no compression), one should consider 

a plasma sphere of radius R in a vacuum, instead of a 
uniform plasma, as initial conditions; it seems that 
for such a problem a valué of e not far from e* should 
be selected. 

A discussion of the results, and their accuracy, is 
simpler for power law pulses, g-ip. For fa we get 

fa = [7/8(1 +p)]*ft>tl2+4>)/9F(o), 

which differs from the planar (and quasi-planar) result 
in the factor F, an algebraic function lying between 1 
at o = 0 and 1.027 at o ~ 0.557. For comparison we car-
ried out a numerical computation7 for p- l(e*— 1.55) 
and e ̂  3.5, yielding fa{t) slightly (less than 1%) above 
the planar valúes. We conclude that the integral method 
predicts ta{t) very accurately, and that the curvature 
does not affect fa. For the fronts we get 

,= -ox,. - * ( ¡ 8(í+P) 

. 7/9 
\ ?(7+ 5¡>S/9 | 

r (i^-); 

they are shown in Fig. 1 for p = 1 and e = 3.5, together 
with the planar and quasi-planar results. Also shown 
are numerical valúes for the same conditions. Clearly, 
(i) the integral method predicts the front positions ac
curately, and (ü) the curvature speeds up xin and 
slightly slows down xmt. We verified, in the exact, 
numerical solution, that the curvature steepens (flat-
tens) the inner (outer) wave profile, although neither 
oñe is far from the (approximate) planar profile, 
(l-*/V5 . 

We noüce that the integral method does not work in 
cylindrical geometry, for which only the q=± moment 
of the energy equation takes a simple form. 
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