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We review model equations for parametric surface waves (Faraday waves) 
in the limit of small viscous dissipation. The equations account for two 
effects of viscosity, namely damping of the waves and slowly varying 
streaming and large scale flows (mean flow). Equations for the mean 
flow can be derived by a múltiple scale analysis and are coupled to an 
order parameter equation describing the evolution of the surface waves. 
In addition, the equations incorpórate a phenomenological damping term 
due to viscous dissipation. The nonlinear terms, which are undetermined 
by the derivation of the equation for the surface waves, are chosen so 
that the primary bifurcation is to a set of standing waves in the form of 
stripes. Results for the secondary instabilities of the primary waves are 
presented, including a weak amplification of both Eckhaus and Trans-
verse Amplitude Modulation instabilities due to the mean flow, and a 
new longitudinal oscillatory instability which is absent without mean 
flow. Generation of mean flow due to dislocation defects in regular pat
terns is studied by numerical simulations. 

1. I n t r o d u c t i o n 

Parametrically driven surface waves, also known as Faraday waves, are cre-

ated when a layer of an incompressible fluid is vibrated periodically in the 

direction normal to the free surface at rest [1]- [4]. Standing surface waves 

emerge above the primary instability of the planar surface forming a sta-

t ionary pat tern with a symmetry tha t depends on the fluid parameters and 

the frequency of the forcing [5]- [8]. While a description of the fluid with 

conservative equations suffices to explain the excitation of surface waves, 

consideration of viscosity is necessary to address further characteristics of 

the waves. A first question concerns the eífect of damping on the saturation 

of amplitudes and on the selection of pat terns . Milner [9] has shown how 



nonlinear terms from an expansión of the energy dissipation due to viscos-
ity in the bulk of the layer medíate nonlinear wave interaction and lead to 
nonlinear terms in the amplitude equation and therefore to the saturation 
of amplitudes. Furthermore, the specific form of the coefficients of the non-
linear terms is dominated by triad resonant interactions which govern the 
selection of patterns [10]- [12]. 

A further important effect related to viscosity is the existence of slowly 
varying flows or mean flows. To date, most theories of parametric surface 
waves near onset have neglected such flows despite the observation [13] that 
their effect is of the same order as the standard cubic nonlinear and conser-
vative terms which are usually retained. Thus weakly nonlinear corrections 
to surface waves and mean flows must be considered simultaneously [14]-
[18]. A consistent derivation of mean flow equations for Faraday waves re-
quires explicit consideration of special limits, in particular for the physical 
dimensions of the container. While the relevant coupled amplitude-mean 
flow equations have been already derived for horizontally one-dimensional 
waves [13], the extensión to two-dimensional waves is not straightforward; 
a first step in this direction has been made by Vega et al. [19]. Two sepárate 
contributions to mean flow were found: An inviscid contribution originating 
from the slowly varying motion of the free surface, similar to the one appear-
ing in classical Davey-Stewartson models [20], and a viscous one resulting 
from a slowly varying shear stress produced by time-averaged Reynolds 
stress in the the oscillatory boundary layer attached to the free surface or 
the lower píate. The latter describes diffusive or convective vorticity trans-
port from the boundary layer into the bulk [21]. 

In this article we review the work on mean flow equations derived by 
a rigorous múltiple scale analysis in the limit of weak viscous dissipation 
coupled to a phenomenological equation. We address the consequences of 
the mean flows in a laterally unbounded geometry, namely changes in the 
response of the base pattern of standing waves to perturbations (secondary 
instabilities) and the generation of mean flows by isolated defects. To sim-
plify the analysis the cubic nonlinear terms of the phenomenological model 
were chosen such as to lead to a stripe pattern above onset instead of a 
square pattern which was experimentally observed in the limit of weak vis
cous dissipation. While it is easy to modify the functional form of the cubic 
term to produce square patterns, it is natural to first clarify the effect of 
mean flows on stripe patterns. It is found that the mean flow couples to per
turbations of the stripe pattern in different strength depending on the type 
of perturbation. In general, the incorporation of mean flow is destabilizing 



with the strongest coupling occurring for longitudinal perturbations. More-
over, the mean flow generates a qualitatively new oscillatory longitudinal 
perturbation which for small nonlinear damping in the phenomenological 
equation renders all stripe patterns unstable resulting in time-dependent 
patterns at onset. By tuning the nonlinear damping to larger valúes one 
can genérate a range of stable stripe patterns. In this latter situation we 
consider the effect of mean flows for irregularities in the pattern. Here the 
simplest case of a pair of dislocations in a pattern of perfect stripes is cho-
sen. Using numerical simulations it is found that the flow generated by a 
dislocation is a large scale flow consisting of two vórtices. In the parameter 
range considered the mean flow increases the velocity of the dislocation. 

The article is organized as follows: In Section 2 we present the nondi
mensional equations. Section 3 justifies the phenomenological equation for 
a complex order parameter tp that describes the evolution of the surface 
waves. The derivation of this equation is based on the assumption of an 
irrotational flow in the layer. In Section 4 we sketch the derivation of the 
mean flow equations and describe the coupling of mean flow and ip. We 
then present results of the calculation of secondary instabilities in Section 
5. Section 6 contains first results on the numerical simulation of the coupled 
equations to calcúlate mean flow effects on patterns with dislocations. 

2. Basic Equat ions 

Let a fluid layer of unperturbed depth d* be supported by a horizontal píate 
that is vibrating vertically with an amplitude a* and a frequency 2a;*, where 
the superscript * denotes dimensional quantities. To obtain nondimensional 
equations we introduce the characteristic time l/cu* and length 1/k*, where 
the wavenumber k* is related to u* by the inviscid dispersión relation 

to*2 = g*k* +a*k*3/p*, (1) 

in terms of the gravitational acceleration g*, the surface tensión a* and the 
density p*, which are all assumed constant. Moreover, we assume that the 
wavelength fc*_1 is small compared with the depth of the container. The 
resulting dimensionless incompressibility and Navier-Stokes equations in a 
reference frame attached to the vibrating container are 

V-u + dzw = 0, (2) 

dtu - w{Vw - dzu) - u-1 V • w± = ~Vp + j(V2u + d*zu)/2, (3) 

dtw + u- (Vw - dzu) = -dzp + j(V2w + dzzw)/2, (4) 



in — d < z < h(x, y, t), with the 2 = 0 plañe at the unperturbed free surface. 
The boundary conditions result from no slip at the supporting píate, 

u = 0, w = 0 at z = —d, (5) 

and kinematic compatibility and equilibrium of tangential and normal 
stresses at the free surface, 

dth + u • Vh = w, (6) 

dzu + Vw = (Vu + V u T ) • Vh - [2dzw - (dzu + Vw) • Vh]Vh, (7) 

p - {\u\2 + w2)/2 - [4asin2t + 1 - T]h + TV • [V/i/(l + IV/i|2)1/2] (8) 

= 7[azw - (dzu + Vw) • Vh + (Vh • (Vu + VuT)/2) • V/i]/(l + \Vh\2) 

at z = h. Here u = (u, v, 0) and w; are the horizontal and vertical velocity 
components, V = (dx,dy,0) denotes the horizontal gradient, the super-
script _L over a horizontal vector denotes the result of rotating the vector 90° 
counterclockwise, namely u1- = (—i/, u, 0), and the superscript T over a ten
sor denotes its transpose; p (=pressure+(\u\2 +w2)/2 + [l—T + 4asin(2t)}z) 
is a conveniently modified pressure, and h is the (vertical) free surface de-
flection. For simplicity we do not consider lateral walls, but impose periodic 
boundary conditions in the two horizontal directions. 

In the nondimensional system the following parameters remain: the di-
mensionless viscosity 7 = 2u*k*2/UJ* (with u*= kinematic viscosity), the 
gravity-capillary contribution T — cr*A;*3/(p*w*2), the forcing amplitude 
a = a*k*, the container depth d — d*k* and the aspect ratios L\ and L2. 
According to Eq. (1), 0 < F < 1 where the extreme cases T = 0 and 1 cor-
respond to the purely gravitational and purely capillary limits respectively. 

3. Derivation of Model Equat ions 

Following similar considerations in other systems such as the Rayleigh-
Bénard convection [22] a phenomenological model equation was derived 
that can efficiently be used in analytical and numerical work to describe 
the evolution of the surface waves. Here we will outline the derivation of 
the phenomenological model first introduced in Zhang and Viñals [23] (see 
Zakharov [24] and Crawford et al. [25] for the original use of the method). 
They assume an inviscid, incompressible, and irrotational fluid that is para-
metrically driven and add linear viscous damping in a phenomenological 
way. The governing equation are given by a Laplace equation for the ve
locity potential <p and boundary conditions on </? and the surface deflection 



h(x,t) at the free surface which correspond to the kinematic compatibility 
(Eq. (2)) and Bernoulli's equation at the free surface. 

It is well known that this problem admits a Hamiltonian formulation 
with Hamiltonian H where the canonically conjúgate variables are given by 
h(x,t) and the velocity potential on the surface (ps(x,t) = f(x,z — h(x)). 
Phenomenological damping can be introduced by considering a dissipation 
function Q(h(x,t),ips(x,t)). The resulting canonical equations of motion 
are, 

*"<*•'> = w¿ry (9) 

dtip
s(x,t) = --—— +Q(h(x,t),<ps(x,t)), (10) 

dn{x,t) 

where the functional Q determines the rate of viscous dissipation in Eqs. 
(9)-(10) so that 

ir " fr = /&»,í),^(x,í))at/i(x,í)- (ii) 
If the fluid is of low viscosity and depth is lar ge compared to wavelength, 

one can assume that energy dissipation is dominated by the potential flow 
in the bulk [26]. The functional Q can then be determined by equating 
the rate of dissipation in Eq. (11) to the rate of energy dissipation due to 
potential flow, 

ídxQ(h{x,t),<ps(x,t))dth(x,t) = -]- ídx í ' <¿zV2(V<¿>)2 (12) 

This equation has been used to determine Q order by order in an expansión 
in the surface wave steepness [9,27]. To the order relevant here, one finds, 

Q(k,t) = -2jk2ifs(k,t) + nonlinear terms, (13) 

where Q(k, i) is the Fourier transform of Q. 
The next step in the derivation is the introduction of a complex order 

parameter field [24], 

6(klt) = ^ ( k , 0 + y ^ - ( k , t ) . (U) 

where h(k,t) and ips(k,t) are the two dimensional Fourier transforms of 
h(x,t) and <ps(x,t) respectively, and w(fe) is the inviscid dispersión relation 



in the dimensionless system. In terms of this new variable, the Hamiltonian 
system (9,10) can be written as, 

*i(k'í) = - i ísS^+ i^< 3 ( k ' t)- (15) 

Equation (15) can then be expanded in a power series of b where one retains 
only terms linear in 6, as nonlinear terms will be added phenomenologically. 

Near onset only amplitudes with wavenumber cióse to the critical 
wavenumber are excited, with frequency cióse to the resonant frequency 
cj = 1. This facilitates a conventional múltiple scale expansión near onset, 
chosen such that the rotational invariance of the original governing equa-
tions is preserved. Expanding 

6(k, t) = eB(k, Ti, T2)e-U + 0{e2) (16) 

with Ti = et and Ti — e2t slow time scales corresponding to the time scale 
of translation of a wave packet and of change in the modulation of the wave 
packet, respectively, one can use the solvability conditions at orders 0(e2) 
and 0(e3) to obtain an equation for the evolution of B on the slow time 
scales. One finally defines a complex order parameter field ip(x,t) as the 
inverse Fourier transform of B(k), and finds, 

dt,\) = -7V> + \fi> + 3i (1 + V2) V/4 + (i - TcOlVlV, (17) 

where / is a parameter proportional to the amplitude a of the vibrations. 
Three simplifications are necessary to obtain this equation. First, the non-
linear functional does not have a closed form representation in real space. 
As has been done in other systems (cf. Rayleigh-Bénard convection [22]), 
one introduces phenomenological functional forms for this term thereby 
choosing the symmetry of the bifurcating pattern at onset artificially. In 
addition, in the case of Faraday waves the issue of the origin of nonlinear 
damping and saturation of the waves is sidestepped [12,28]. In the sim-
plest possible case, the coefficient of the nonlinear term is approximated 
by an imaginary constant which has already been rescaled to i in Eq. (17). 
Second, it is also known that linear damping is not sufficient to produce 
wave saturation in this system [9]. Therefore a phenomenological nonlinear 
damping coefficient aj is used, where a is a constant assumed to be of 
order 1. 

The positive sign of the imaginary part of the nonlinear coefficient 
(i — ja) in Eq. (17) is chosen to represent capillary waves [29]. In the 
opposite limit of gravity waves, the imaginary part of this coefficient has to 



be negative. We finally note that as a third simplification a further linear 
term i (l + V 2 ) ijj has been eliminated in Eq. (17) as this term together 
with i (l + V ) t/j leads to two different wavenumbers becoming critical at 
threshold, which is an unwanted feature. 

4. Mean Flow Equations 

We now want to discuss the mean flow equations that have been derived by 
Vega et al. [19] using a multi-scale analysis in both (horizontal) space and 
time. The approximation requires that (i) the aspect ratio of the container 
be large, (ii) the surface waves are weakly damped and (iii) exhibit a small 
wavelength compared to the container's depth and (iv) a small steepness, 
which in turn require that L » 1, d ^> 1, 7 <C 1, |V/i| < 1 , o « l , 
where L < min{Li,Z/2} is a slow horizontal scale in which spatial mod-
ulations occur. Furthermore, it is assumed that d is logarithmically large 
compared to the remaining small parameters (namely 7, a and L~x) and d 
is treated as a O(l) parameter. The limit is therefore chosen for simplicity 
such that 

72 < e ~ d < L _ 1 ~ 7 ~ a ~ e 2 , (18) 

where £ is a measure of the surface wave amplitude. 
Here we want to sketch the important steps of the method used by 

Vega et al., and begin with a decomposition of the flow variables and the 
free surface deflection into oscillatory and time-averaged parts. They are 
associated with the surface waves and the mean flow (denoted hereinafter 
with the superscripts o and m), respectively, as 

(u,w,p,h) = s(u0,w0
Jp

0
1h

0)+e2(urn,wm,pm,hm)1 (19) 

where e serves as the small parameter. The oscillatory flow variables asso
ciated with the surface waves are required to be such that 

(u°)ts = 0, (w°)ts = (p°)ts = (h°)ts = 0, (20) 

with (-)ís standing for the time average in the basic oscillating period 

/

Í + 27T 

i>dt. (21) 

The variables associated with the mean flow are required to depend weakly 
on time. 

An intermedíate step in this analysis is a set of equations for the mean 
flow and the oscillatory part, with the latter, for the current purposes, ulti-
mately replaced by the phenomenological model equation obtained above. 



The intermediate equations for the surface waves are derived by a decom-
position using e, finding at first order an irrotational oscillatory flow in the 
bulk: 

u° = Vip + 0(s2), 
9 (22) 

w° = dzip + 0(e2), p=-dt<p. 

As already mentioned in the introduction the mean flow will be forced 
in two basic ways. First we must take into account the oscillatory bound-
ary layer attached to the free surface, which provides a slowly varying shear 
stress at the edge of this layer, that must be imposed as a boundary con-
dition for the mean flow in the bulk. This forcing mechanism was first 
uncovered by Longuet-Higgins [21], who obtained an explicit expression for 
the forcing shear stress produced by general boundary layers in 2-D. The 
counterpart of this expression in 3-D has been only obtained recently by 
Nicolás and Vega [30]. The general formulae for the shear stress yields 

dzu
m + Vwm =2(V (V • {h°Vip)) (23) 

+ (Vh° • V)Vy> + (VV)V/ i ° ) t s
 a t z = 0, (24) 

where only the leading order contribution as 7 —> 0 and e —> 0 is retained. 
The boundary layer attached to the free surface has no effect on the other 
two boundary conditions at the unperturbed free surface, which are ob
tained from Eqs. (8) and (2,6,22) to be 

P
m - (1 - r > m + r v 2 r = (h°d2

zip + (| v<¿f + \dM2)/i)ts (25) 

and dth
m + V • ( / um dz) = - V • ({h°V(p)ts) at z = 0, (26) 

J-d 

where we are only taking into account the leading order terms. We are ne-
glecting the effect of a second oscillatory boundary layer attached to the 
lower píate because its effect is quite small (the oscillatory flow is weak 
near the lower píate as e~d is small, Eq. (18)). These boundary conditions 
show that mean flow is forced by surface waves in two ways. The terms 
on the right hand sides of Eqs. (25) and (26) provide an inviscid forcing 
mechanism that drives an inviscid mean flow, like that appearing in the 
Davey-Stewartson model [20]. The right hand side of Eq. (24) instead pro
duces a forcing shear stress that generates a viscous mean flow, which is 
absent in the usual inviscid and nearly inviscid theories of Faraday waves. 
Note that this forcing stress is generically non zero and independent of vis-
cosity at leading order, a fact that is well known but somewhat surprising 



because this effect is due to the oscillatory boundary layer, and is absent 
in the strictly inviscid case [16]. 

The mean flow can be decomposed into its inviscid and viscous parts, as 
has been done in a number of studies [13,17,18]. Alternatively, a decompo-
sition of the mean flow variables into a short wave component (oscillatory 
in the horizontal direction) and a long wave component (slowly varying in 
the horizontal direction) is a convenient choice. Their evolution has been 
derived by Vega et al. and is given bya 

0 = V • Umo, (27) 

16 

/P4 2 

dtU
mo = - e2VQmo + j(V2Umo - t2—Umo)/2 + 01j{Nvi3)ho (28) 

dtU
ms = - VQms - 7 ^ — Ums + /? i7(Nm s) / l s , (29) 

4 Q m s = / 3 l 7 r ( l - r ) / i m s , (30) 

dth
ms = - - i - V • Ums - V • (i{i/>V$)hs + ce), (31) 

Pl7T 

where Nvls = i(Vip • V) Vt/; + i(V2,0)Vip + ce . denotes the viscous forcing 
terms and (-)hs and (•)ho project it onto its horizontal average in the short 
spatial scales and its short wave component. For a rigorous definition of 
these projections confer [19], where further details of the derivation can 
be found. Here we want to mention the following simplifications that are 
crucial to the method: 

• Convective terms in the mean flow equations have been neglected 
thereby linearizing the mean flow equations. Since for standing waves 
the associated mean flow is unforced it identically vanishes at large 
times. Thus this approximation is exact for the linear stability analy-
sis described below. Furthermore, one expeets that the neglected con
vective terms do not play a significant qualitative role in subsequent 
bifurcated branches, at least near threshold. 

• A single mode approximation for the z dependence of the mean flow 
variables as g(z) is introduced. This function is arbitrary and can be 
selected to yield the best approximation to the vertical velocity profiles. 
A reasonable choice is 

g(z) = y/2/dsm[Tr(z + d) / {2d)\. (32) 

a T h e coefficient e2 in (28) disappears when time is scaled according to the slow time of 
the mean flow. This has not been done here for convenience. 



This function also determines the parameter /3i in Eqs. (28-31) in terms 
of the depth d of the layer: 

0! = g{0) = y/2/d- (33) 

Finally we replace the complicated equations for the evolution of the 
oscillatory flow with the model equation (17) given above. To account for 
the effects of the mean flow on the surface waves we add a convective term 
-u' V ^ to the right hand side, where u is given by the two parts of the 
mean flow: 

a t i / ; = - 7 ^ + i / ^ + 3i( l + V 2 ) V / 4 4 - ( i - 7 a ) | ^ | 2 ^ - / ? i ( í 7 m o + f / m 5 ) .VV. 
(34) 

The coefficient (3\ originates from a similar coefficient in the corresponding 
term in the equation for the surface waves as derived in Vega et al.. Note 
that there is no dependence on hmo and hms included, because this is 
beyond the scope of this phenomenological model. 

5. Bifurcations of Periodic Solutions 

We review in this section results on the instabilities of regular solutions of 
the model equations defined by the coupled Eqs. (27-31) and (34). The pri-
mary stability from the plañe surface to standing waves is a linear stability 
problem in terms of perturbations in the form of spatially periodic patterns. 
As can be demonstrated from the form of the forcing terms in Eqs. (28-31) 
regular stripe patterns do not result in a mean flow, so that the primary 
instability is completely determined by Eq. (17). As has been described 
by Zhang and Viñals [23] the trivial solution ip — 0 becomes linearly un-
stable against a spatially periodic perturbation of tp oí wave number q for 
¡i > i¿c(q) = \ / l + [3(1 — g2)/47]2 — 1, the neutral stability curve; \i is the 
control parameter defined as \i = ( / — 7V7. The critical mode with q — 1 
becomes therefore unstable at ¡1 = 0. 

For small ¡i > 0 stationary and spatially periodic solutions exist that can 
be approximated by a single Fourier mode t^q(x) = aq eos (qx)exp(i@q) 
with 

a« = iTJ^y ' (35) 

where the ± sign stands for sign(l — q2+4aj2/3), and Qq satisfies sin 2Qq = 
(1 + 3 a a 2 / 4 ) 7 / / , eos 20 q = \{q2 - 1 - a 2 ) / / . Note that the bifurcation at 
threshold is subcritical if q2 > 1 + 3a72 /4 ~ 1 (recall that 7 is small) and 



supercritical otherwise (a subcritical bifurcation for q > 1 as 7 —> 0 has 
also been foiind in a direct numerical simulation by Chen and Wu [31].) As 
mentioned above, this solution for the order parameter leads to vanishing 
driving terms in the mean flow Eqs. (28)-(31); henee all mean flow variables 
remain zero for the basic, periodic solution. 

The criterion for linear instability yields a range of non-trivial Solu
tions for every [i > 0. These solutions are possibly unstable and their lin
ear stability (secondary stability) can be calculated by introducing small 
perturbations. Vega et al. [19] have studied the secondary stability using 
perturbations of general form. In order to address the stability of the pri-
mary stationary solution (35) against general longitudinal perturbations, 
they introduced 

ip = Ao[exp (iqx) + exp (—\qx) + a++ exp (i(q + k)x) + a+~ exp (i(q — k)x) 

+a~+ exp (i(/c — q)x) + a~~ exp (—i(q + k)x)] (36) 

(where AQ = \aq exp (iOg)), together with the corresponding perturbations 
of the mean flow variables 

U™s = u+ exp {ikx) + ce, hms = c+ exp (iib;) + ce, (37) 

and 

Qma = d+ exp (ikx) + ce. (38) 

where Umo — 0 as seen from the incompressibility condition (27) which 
requires that U™° = 0. A system of six first order differential equations 
for the perturbation amplitudes a±=b, t¿+, and c+ is derived by inserting 
the ansatz into Eqs. (29-31,34). The linearization around the basic periodic 
solution is therefore given by a matrix A(q, k, e,...) and the basic solution 
becomes unstable if the real part of an eigenvalue of A becomes positive. 
Two relevant branches of eigenvalues appear in the vicinity of k — 0. One is 
associated with the broken translational symmetry of the basic state ipq(x), 
generating a mode which becomes marginal at k — 0. The other branch is 
of hydrodynamic nature and corresponds to weakly damped uniform flows 
away from the quiescent state, with a damping rate of 7/3j17r2/32 (Eq. (29)). 
The coupling of the two modes generates a steady long wavelength insta
bility (modified Eckhaus) and a finite wavenumber oscillatory instability 
described below. 

The stability of periodic solutions against transverse amplitude and 
phase perturbations can be studied similarly. We first note that given that 
dyipq = 0 in the basic state with zero mean flow, terms involving the y 



components of the mean flow will be of second order in the amplitudes of 
the perturbation and henee only the components U™° and U™s need to 
be perturbed. Here, in contrast to the case of a longitudinal perturbation, 
both short and long wavelength components of the mean flow need to be 
included. However, the equations for U™° and U™s decouple at linear order 
and can be analyzed separately. 

Considering the short wavelength component of the mean flow velocity 
í/™°, and introducing the following perturbation for the order parameter, 

tp — Ao [exp (iqx) + exp (-iqx) + a++ exp (i(qx + ky)) 

+aH exp (i(qx — ky)) + a *" exp (i(—qx -f- ky)) (39) 

+a exp (-i(qx + ky))} , (40) 

U™° = v++ exp (i(2qx + ky)) + v+" exp (i(2qx - ky)) + c e , (41) 

and 

Qmo = p++ e x p ^2qx + ky))+ p+~ exp (i(2qx - ky)) + c e , (42) 

one can derive a linear system of equations for the perturbation amplitudes 
a+±, a~±, and v+±. Suitable combinations of these modulations lead to 
the generalizations of the well-known transverse perturbations for Faraday 
patterns. A transverse amplitude modulation (TAM) is defined by the linear 
combinations b\ = a+++a+~+a v+a~~ and v\ — I m ( v + + + v + _ ) , whereas 
a transverse phase modulation (zig-zag) is given by 62 = a + + —a"1 —a~+ + 
a and V2 = Im(v+ + — v+~). 

A similar ansatz has been used for the long wavelength component of the 
mean flow with perturbations of the form U™s = u+ exp (iky) + c c , hms = 
c+ exp (iky) + c e , and Qms = d+ exp (iky) + c e . The order parameter is 
again given by Eq. (40). 

From the eigenvalue equation of each of the resulting systems Vega et 
al. have demonstrated that modifications to the eigenvalues due to the 
mean flow are small compared to the case of longitudinal perturbations. 
Only through the coupling of TAM perturbations with the short wavelength 
component of the mean flow, the mean flow has a significant modification of 
the eigenvalues been found. However, its effect on the location of stability 
curves has been found to be small compared to the longitudinal case. 

The numerically obtained results can be summarized in a q-fi diagram 
containing the different stability curves that together define the región of 
existence of stable periodic solutions. Figure 1 shows the various stability 
boundaries for the special cases of (3\ = 0 (no mean flow) and ¡3\ = 0.5. 



The other parameter valúes are 7 = 0.1, a = 0.5, and V = 0.8. Except 
for a, these valúes correspond approximately to those for the low-viscosity 
experiments described by Kudrolli and Gollub [5]. For instance, typical 
experimental valúes of ¡3\ = y/ir/d (where d is the dimensionless height of 
the layer) are between 0.5 and 1.2. Figure 1 includes the neutral stability 
curve of the basic periodic solution and, since the primary bifurcation is 
subcritical for q > 1, we have also included the saddle node curve where 
the periodic solution bifurcates. The case (3\ = 0 is shown as a reference, 
and it agrees with the results of Zhang and Viñals [23]. 

Basic solutions that are stable against all steady perturbations consid-
ered here (Eckhaus, TAM, and zig-zag) exist in a small región cióse to 
threshold at /¿ = 0 between the TAM and zig-zag lines. Periodic solutions 
are stable against transverse perturbations below the dashed-dotted line in 
the figure (zig-zag, denoted "Z"), and above the dashed line (TAM). Eck
haus perturbations have negative growth rate below the dotted line. We 
observe that with increasing (3\ both Eckhaus and TAM curves are shifted 
so that larger regions in the (/i, q) space become destabilized with respect 
to Eckhaus or TAM perturbations. As discussed above, the zig-zag line is 
not affected by the mean flow. 

The picture just described changes dramatically if one allows for os
cillatory longitudinal perturbations. The oscillatory Eckhaus perturbation 
leads to an instability provided that fti / 0. This finding is consistent with 
the appearance of an oscillatory instability in the horizontally 1-D, large 
aspect ratio Faraday system [14], which is also absent when the effect of the 
mean flow is ignored. The oscillatory nature of the instability is apparent 
from the non-zero imaginary part of the eigenvalue a at the critical point 
in which Re(cr) = 0. Furthermore, the instability occurs at small but finite 
wavenumber k, a fact that has been confirmed by calculating the wave num-
ber with largest growth rate both slightly above and below the instability 
threshold. As mentioned above, the origin of the oscillatory instability can 
be traced back to the two eigenvalue branches that have small real parts 
for k —» 0. As k increases, the two real eigenvalue branches merge leading 
to a complex conjugated pair and therefore to the oscillatory nature of the 
instability at finite k. 

Results concerning the location of the oscillatory instability boundary 
as a function of q for two valúes of ¡3\ are shown in Figure 2. Stable regions 
are located to the right of the plotted curves. As expected, the stability 
boundary moves toward the steady Eckhaus line with decreasing /?1? pre-
sumably merging with it for ¡3\ —> 0. Note that for ¡3\ — 0.5 the unstable 



TAM 

u n s t a b l e 

Fig. 1. Bifurcation diagram for (a) the order parameter model without mean flow, and 
(b) with P\ — 0.5. Other valúes of the parameters are 7 = 0.1, a = 0.5, and F — 0.8. The 
following stability lines are plotted: Eckhaus (dotted), TAM (dashed), zig-zag (dash-
dotted), neutral stability curve of the primary instability (solid line denoted by N), 
and a saddie node bifurcation (thick solid line marked S). Only the left branch of the 
Eckhaus line is shown emanating from (q = 1, \x — 0). The región of stability of the basic 
solution against an Eckhaus instability is the región below the dotted line. Comparison 
of (a) and (b) shows that the mean flow decreases the regions of stability against both 
Eckhaus instability and transverse amplitude modulation. 

región covers most of the región of existence of the basic states except for 
a narrow stripe cióse to the saddie node bifurcation. 



Fig. 2. Stability boundaries of the oscillatory instability for three valúes of (3\: 0.05 
(dotted Une), 0.2 (dashed line), and 0.5 (solid Une). The thick solid line indicates the 
saddle node. Periodic solutions are unstable to the left of the curves. 

6. Mean Flow Generated by Defects 

In the following we will describe numerical simulations that have been per-
formed to estimate the influence of the mean flow on the dynamical evolu-
tion of real patterns. Here we will consider the most simple configuration, a 
sample that contains two isolated dislocations. In general, the presence of a 
dislocation splits the sample into two regions which possess different wave 
numbers. If these two wave numbers are taken to be stable against sec-
ondary instabilities (according to the stability analysis described above) we 
can exelude that the defects are dynamically driven by a global instability. 
However, typically defects are found in motion which consists of two com-
ponents: a climbing motion along the stripes and a gliding motion parallel 
to the wave vector of the sample [3,32]. It is well-known that a climbing 
motion of the defect can be driven by an evolution of the whole pattern 
towards an optimal wave number [33]. A second source of climbing motion 
is the advection term in the order parameter equation due to mean flow 
and it is the form of the mean flow that we want to study in the following. 

Considering the necessity of having a finite range of periodic solutions 
that are stable with respect to all secondary instabilities, we have cho-
sen a large valué for the nonlinear coefficient a. As described by Rüdiger 
and Viñals [34] this causes a stabilization with respect to the zig-zag and 
the Eckhaus perturbations. Figure 3 shows the resulting various stability 



Fig. 3. Stability región for increased nonlinear damping a = 0.5 and (3\ = 0.1. Other 
valúes of the parameters used are 7 = 0.1, and Y = 0.8. We show the steady Eckhaus 
line (E), the oscillatory Eckhaus line (O), the zig-zag line (Z), and the TAM Une (TAM). 
Periodic solutions exist above the neutral stability curve (N) or, for q > 1 the saddle 
node bifurcation (S). The región of stability of the basic solution against an Eckhaus 
instability is the región between the thin solid Unes. 

boundaries for the case (3\ = 0 . 1 . The valúes used for the other parameters 
are 7 = 0.1 and T = 0.8. The figure also includes the neutral stability curve 
of the basic periodic solution and, since the primary bifurcation is subcrit-
ical for q > 1, we have included the saddle node curve where the periodic 
solution bifurcates. The range of basic solutions that is stable against all 
the perturbations considered here (Eckhaus, TAM, and zig-zag) is a re
gión cióse to threshold at s = 0 between the zig-zag, TAM and oscillatory 
Eckhaus lines. 

The parameters of Figure 3 are thus suitable for the numerical simula-
tion of dislocations. In the simulations we have integrated Eqs. (27-31) and 
(34) on a two-dimensional domain of length 1287T (equivalent to about 60 
stripes) using periodic boundary conditions in each direction [34]. The inte-
gration code exploits a Fourier function decomposition in a pseudo-spectral 
method with about 8 points per period of the basic Faraday pattern. A 
background pattern of wave number 1.0156 was used with two isolated 
dislocations placed in the sample thus creating a wave number of about 
1.031 between the two defects. Although at the valué e — 0.15 used for the 
simulations the second wave number is located in the unstable región, it 



turned out to be only slightly unstable and thus no secondary instability 
that could disturb the defect motion was detected at the time scale of the 
defect motion. 

Fig. 4. The "ms" or long wave length component of the mean flow for (3\ = 0 . 1 and fi = 
0.15 (other parameters as for Figure 3). The amplitude of the velocity is approximately 
0.028 (maximal amplitude of the vertical component), and 0.013 (horizontal component). 
The defect moves downwards. 

In the simulations the defects were generally found to be in a climbing 
motion with a velocity that converges to a steady valué after short times. 
For vanishing mean flow (/?i = 0), as well as for all of the tested con-
figurations with mean flow, the two defects move towards each other and 
annihilate, thus reducing the wave number of the pattern to 1.0156. The 
velocity fields Ums as generated around a dislocation after a transient time 
are plotted in Figure 4. The amplitude of the small wave length part Um° 
is negligibly small. For the long wave length part Ums we found a pattern 
with two vórtices cióse to each defect. The resulting flow at the defect drives 
the defect in the same direction as in comparable simulations for (3\ — 0 
and therefore increases the velocity of the defect. The defect velocities for 
increasing (3\ are plotted in Figure 5. 



The dominant advection flow generated by the defect is a long wave-
length flow. This flow comprises two contributions: the viscous mean flow 
determined by Eq. (29) and the inviscid mean flow determined by Eq. (31). 
By increasing F and thus suppressing the effect of the inviscid forcing term 
on Ums we have found a strongly decreasing component of the mean flow 
in direction of the climb. Therefore we conclude that at least for the current 
choice of parameters the main contribution to the advection of the defect 
originates from the inviscid forcing term in Eq. (31). 

Fig. 5. Velocity of an isolated defect for ¿z = 0.15 and with increasing coupling to the 
mean flow (other parameters as for Figure 3). 

7. Conclusions 

We have reviewed recent work on the generation and action of mean flow for 
Faraday waves in a horizontally two-dimensional domain. As in similar hy-
drodynamical pattern forming systems, mean flow effects have been ignored 
in early studies, but, as has been shown in this article, they have important 
implications for the stability of patterns. In particular, mean flow couples 
to perturbations of the stripe pattern and thus changes the domain of sta-
ble regular solutions, generally in a destabilizing manner. The strongest 
coupling, and therefore the strongest destabilization occurs for longitudinal 
perturbations. More importantly, the mean flow generates a qualitatively 
new oscillatory longitudinal perturbation, which for small nonlinear damp-
ing in the phenomenological equation renders all stripe patterns unstable, 
resulting in time-dependent patterns at onset. A weaker effect of the mean 



flow contribution has been found for the TAM instability. It is interesting 
to note that the TAM perturbations, which are of finite wavelength, cou-
ple to the short-wave part of the mean flow, whereas the long wavelength 
Eckhaus perturbations couple to the large scale mean flow. 

Furthermore we have presented preliminary results of numerical simu
lations of patterns with defects. A background pattern which is stable to 
secondary perturbations has been found by using large valúes of the non-
linear damping coefficient. Next, we studied the simplest case of a defect, a 
pair of dislocations moving in a pattern of perfect stripes. Using numerical 
simulations we found that the main flow generated by a dislocation is a 
large scale flow consisting of two vórtices. In the parameter range consid-
ered here the mean flow increases the velocity of the dislocation. Simula
tions with different valúes of the gravity-capillary number T showed that 
the main contribution to the climb of the dislocation originates from the 
inviscid forcing term. 

Owing to the complexity of the derivation of mean flow equations we 
have limited the analysis to a specific limit in terms of the physical param-
eters. This concerns in particular the conditions on the dimensions of the 
layer. Further restrictions of the recent studies are the approximation of the 
surface waves using a phenomenological equation, and the assumption of a 
stripe pattern at onset. To consider more general situations and to test the 
results for the model equations described in this article further work needs 
to address these limitations. 
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