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Abstract, The effect of viscosity is considercd in the capillary-gravity waves that are
parametrically excited by vertical vibrations in a horizontal fiuid layer. Special attention
is paid to the viscous mean flow generated by time averaged Reynolds stresses in the oscil-
latory boundary layers attached to the solid walls and the free surface. It is explained that
this secondary mean flow affects the dynamics of the primary waves themselves. Several
specific limiting cases of practical interest are considered to illustrate the consequences of
this coupled evohition.
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1. INTRODUCTION

As an homage to Amable Lifian in bis 70th birthday, I describe helow some resuits
cobtained in the last years by the applied mathematics group at the B.T.S.1. Aeronduticos,
in collaboration with the Physics department of the University of California at Berkeley.
Since Amable himself is not participating in this review, the reader will not find here
the mastery use of both mathematics and physical concepis that is always present in his
work, but some trace can perhaps be found of various lessons that I learned as a graduste
student of him. "

The small viscosity imit is a singnlar limit in flnid mechanics and in the presence of
{even weak) nonlinearity leads to fairly rich dynamics. This limit allows the application
of singular perturbotion methods, which both clarify subtle concepts and simplify the
analysis, two advantages that become evident in the wise use of these methods by Amable
Lifidr.
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Water waves have held fascination of fluid dynamicists and applied mathematicians
since the XTX Century and are of interest in a variety of problems, ranging from the
study of waves and currents in lakes and the ocean to the analysis of vibrating contajners.
The dynamics of strictly inviscid water waves were uncovered through the theoretical
work by Siokes, Airy, Boussinesq, Rayleigh, and others. The simplest formulation includes
dispersion and nonlinear effects, and leads to the Schridinger and KdV equations, namely

At - i&Am:ﬂ + iﬂIAizA and h, = a'hz:z::: + Bhhk,, (1)

which are paradigms of soliton forming systems [1]. These equations apply in a moving
reference frame that fravels with the group velocity, which eliminates the effect of an
additional convective texm that is large compared to dispersion in the scaling that leads
to both the Schrodinger and KdV equations.

 Viscous gffects play & non central role in the dynamics of long water waves encountered
in lakes and the ocean. These exhibit a wavelength € of the order of several meters and
(since the kinematic viscosity is » ~ 1 em® ¢! for water) a viscous time, £ /v, of the
order of several days, which is too large compared fo the usual observation times. The
viscous time is much smaller, or the order of minutes, for the short waves generated in
small vibrated containers, which are the object of this paper. Viscous effects are measured
by the nondimensional parameter

v
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where w* is the wave frequency, and produce a linear damping of the waves and a secondary
wiscons mean flow. The former comes in practice from several physically different sources
and the [atter affects the dynamics of the primary waves. Also, the presence of lateral walls
where the waves are reflected and/or the nature of the forcing device, recatire to consider
two counterpropagating waves at cach point. Thus the effect of the group velocity cannot
be climinated and the relevant equations exhibit terms that are not of the same order.
All these involve additional subtleties that will be discussed below,

In the sequel, T concentrate in extensions of the Schrédinger equation, which applies in
deep containers, whose depth is at least comparable to wavelength.

2. LINEAR DAMPING

Linear damping adds a new term to the Schrédinger equation (1a), which becomes
Ay = iedgy — §A +i8APPA. (3}

Al} solutions to this equation converge to the basic state A = 0 for large time unless a
forcing term is added cither in the equation itself or in the boundary conditions. The
damping ratio, § > 0, is small and may came from either of the following sources:

1. Viscous dissipation in both the oscillatory boundary layers attached to solid bound-
aries and the free surface, and the bulk, which are O{e¥/2), O(c*?), and O{e),
respectively. For (small but) finite realistic values of ¢, the O(e)-correction is neces-
sary to get a good agreement with the experiments, as pointed out in [2] to explain



earlier quite precise measurements in a cylindrical container [3]. The theory in [2]
was extensively checked experimentally [4], with a completely satisfactory agree-
ment.

2. Surface contemination, which is to be expected in water unless a lot of care is taken
in the experimental set up, may increase the linear damping rate by a factor of
5 {3]. This effect is usually modeled through the effect of contaminant (insoluble)
surfactants, which produce a tangential stress proportional to the tangential gradient
of surfactant concentration [5, 6]. This effect can be so strong as to make the
free surface almost inextensible, and completely changes the structure of the upper
boundary layer, attached to the free surface. These {old) ideas have been applied
to eylindrical containers [7], to cbtain quantitative results that compare well with
the experiments using tap water by Henderson and Miles [3]. The results are not so
good as those for clean free surface due to uncertainties in the parameter values; note
~that the nature of surfactants is not known for tap water. Surface contamination
: has also an effect in the generation of mean flows, to be commented below.

3. Contact line motion promotes additional damping whese analysis requires a precise
modeling of the dynamical contact angle, which remains laking nowadays. Contact
line motion has other subtle effects in the structure of the viscous mean flow, but
these are beyond the scope of this paper.

3. MEAN FLOWS

Asin any physical problem involving cscillations, nonlinear terms promote (through the
product of in phase oscillatory terms, as in, e.g., 2sin®{ = cos 2t 4 1=oscillatory+steady)
the appearance of steady {or slowly varying) terms that force a slowly varying mean flow,
This can be slaved to the oscillatory solution, but can also exhibit its own dynamics
and affect the weakly-nonlinear evolution of the primary oscillatory flow provided that
the linearized problem exhibils nearly marginal, nonoscillatory modes. This is the case in
water waves because these exhibit the so called viscous, or hydrodynamical modes, which
are non-oscillatory and nearly marginal, involve a quite small free surface deflection, and
exhibit nonzero vorticity everywhere. All these are in contrast with the nearly-inviscid, or
surface modes that are directly responsible for water waves. These are also nearly marginal
but they are oscillatory, involve a significant free swrface deformation, and exhibit zero
vorticity except in viscous boundary layers. Viscous modes of nearly inviscid waves had
beer known for decades [8]. Their role in promoting the coupled evolution of the waves
and the viscous mean flow, however, has not been recogrized until quite recently {see {9}
for a recent review).

In fact, mean flows are produced in water waves by three different sources:

1. The Stokes drift {10] is a purely kinematical effect that results from nonfinearity in
the ODEs that provide the trajectories of fluid elements, namely
de

En =v(=z,1), . 4



where the vectors & and » stand for position and velocity, respectively. By the way,
nonlinecar terms in this equation can also yield in 3D chaotic behavior (sometimes
called chaotic advection [13, 12}), which has nothing to de with {pre-) turbulent fiows
but is quite relevant in visualizations, transport of passive scalars, and mixing. The
Stokes drift is slaved to the primary waves and thus has no dynamical consequences.

2. The inviscid mean flow is produced by nonlinear terms in the kinematical boundary
condition at the free surface, and is present in classical strictly inviscid water wave
descriptions [13]. The associated forcing term is a vertical forcing velocity at the
unperturbed free surface, which is proportional to the square of the wave amplitude.

3. The viscous mean flowis produced by time averaged Reynolds stresses (which vanish
in the bulk at leading order) in the oscillatory boundary layers. This flow was
visualized already by Faraday in his seminal experiment [14] through the anomalous
accumulation of sand near the bottom of a vertically vibrated container. A first
analysis of the viscous mean flow was made by Rayleigh [15] in a pioneering analysis
of the oscillatory houndary layer attached to a solid boundary. He also recognized
that the same explanation applies to the accumulation of dust in sound tubes (or
Kundt tubes), known as Kundt figures. He did not realize instead that averaged
Reynolds stresses were high enough as to produce a nonzero tangential velocity at
the edge of the boundary layer, which should force a viscous mean flow aiso in
the bulk. This was analyzed much later by Schlichting [16], and extended to the
houndary layer attached to a free surface by Longuet-Higgins [17]. This viscous
mean How (also known as steady streaming, or acoustic streaming [18]) has been
studied in many contexts, but always as a byproduct of the primary waves. It took
much more time to recognize that the secondary mean flow does affect the dynamies
of the primary waves.

4. COUNTERPROPAGATING WAVES

Water waves are traveling waves that because of reflection symmetry can propagate
to either side. Early studies of water waves were concerned with one sided waves. This
restriction exclizdes many realistic configurations in which both waves are generated. Re-
flection at lateral walls and for symmetric forcing (e.g., vertical vibrations of the container,
which parametrically force the so called Faraday waves [19], the most studied example of
water waves in finite containers) produce both counterpropagating waves. For the sake of
clarity I add the parametric forcing effect of vertical vibrations, but this is unessential in
the main points discussed below. Also, I will consider one-dimensional waves in & laterally
unbounded fAuid layer, and impose periodic boundary conditions in the horizontal direc-
tion. This 2D model is intended o mimic three-dimensional containers with an annular
eross section.

Tgnoring at the moment the mean flow, the nondimensional free surface elevation can
be written as . .

ho= At (z, )el® ) A (5, )@ Leo ., (5}

where A* are the small, slowly varying (|4, < |AZ] < 4%, |4E| < |4%] < 1)



cotnplex amplitudes of the envelopes of the two waves, which travel with phase veloc-
ities Tk/w. The nondimensional frequency (a half of the forcing frequency because of
parametric forcing [20]) and wavenumber satisfy the dispersion relation

w? = E[S+ (1 — S)k?] tanh kd + G(+/e), (6}

where § = /(o + pgé?) (with 6= surface tension, p=density, and g== gravitational ac-
celeration), d is the nondimensional depth, and £ is as defined in (2). A% satisfy the
amplitude equations cf.(3)

AF = v AL 1 ia AT, - GAT 1 (B AT] 4 Bl AT AT + pdE, (7)

where the coefficients v, ~ o ~ i ~ fy ~ 1L and p ~ & < 1; these account for
the group velocity, dispersion, nonlinear self and counter-interaction, parametric forcing,
and damping, respectively. Thus the first term in the right hand side, which cannot
be eliminated using moving axes, is large cormpared to the second term. The boundary
conditions,

Az + D,8) = e:FiﬁAi(w ), (8)

result form spatial periodicity; the spatial detuning § = 2kL {mod 2x) aceounts for the
mismatch between the period of the waves and the imposed spatial period. Fgs. (7)-(8)
are invariant under the actions A* — Ate™ ¢ — z+ ¢ for all ¢, € R, AT > A7,
and # — —z, which result from nvariance of the original problem under the orthogonal
group generated by reflection and z-translations. Those actions generate a larger group
than the original one, the additional symmetries being an artifact of truncation.

The presence of the large term in the system (7) allows two possible scalings, depending
on: the comparative values of slow spatial scale L >3 1 and the damping ratio 8.

s If § < L' then the appropriate scaling is L™ ~ |8/8t] ~ 18/8z| > |A*|* and
the equations {7) simplify fo leading order to the homogeneous wave equations
Af = Lu AL, which give A¥ = A*(£F 1), where £ = {zd:n,t)/ L are characteristic
variables that involve two slow spatial and temporal scales, and 7 ~ /L% is
still slower timescale in which forcing, damping, and nonlinearity are comparable.
Applying a two-time scales method [21], 1§ follows that the complex amplitudes
evolve according to the following pair of nonlocal equations {after rescaling VB, 3, /I,
and A with 1/ [22]),

AE —iaAfi) - GAT 8| AT + B AT AT 4 n(AF), ©)
A(E 1,7) = At ), S )

where {-} stands for the spatial average. Note that coupling between both equations
ondy occurs through the nonlocal term, whose appearance can be explained as fol-
lows. The waves are traveling in opposite directions with & velocity that is quite
fast for the evolution in the slowest timescale, 7 ~ 1. Thus each wave only ‘sees’ the
spatial mean value of the other wave. Nenlocal (Ginzburg-Landau-like) equations
of thig $ype had been already derived and analyzed for fully dissipative systems in
various places ([23, 24] and references therein).



o If § ~v L~! then the group velocity term is balanced in first approximation by all
terms, except dispersion, and after resealing 1/t, 1/%, 8, s, and (AY)? with 1/L,
egs.(7)-(8) are rewritten as

Af o AF = L7 0 AL, - SAT L 1GAT] + BIATAT + pAF,  (11)
At 4 1,8) = VA% (2, 1), (12)

The analysis of this system reguires some carc because of the following facts:

— Bince L = 1, one is tempted to neglect dispersion {namely, set L~ = 0in (11)),
to obtain a system of nonlinear hyperbolic equations that provide a coupled
evolution of A%, which in fact gives & good approximation of solutions of (11),

- But these can {and do [25]) develop discontinuities; near these, dispersion
effects cannot be neglected. Also, smooth solutions of the hyperbolic equations
can be unstoble as (approximate) solutions of (11) because of the presence of
dispersion. 'This is a subtle question (first solved for dissipative systems in
[24, 26]) whose analysis requires to consider the stabilify of general solutions
of the hyperbolic approximation against dispersive scales, with a wavelength
of the order of L=/, still large compared to the basic wavelength (~ L™ with
the scaling that leads to (11)) of the surface waves. This has been analyzed in
[25], where it was seen that dispersive scales are in fact unstable in most part
of the bifurcation diagrams, and lead to spatio-temporal chaos for sufficientiy
large forcing.

. — In the absence of diffusion, which is quite small in water waves, there is no an
obvious mechanism to pack the spatial wave spectra arotnd a given wavenum-
ber and it may well happen that the solutions of (11)-(12) develop arbitrarily
small scales. This is a central point that has been solved in related contexts
(unforeed, two dimensional waves) with some ingenuity. Namely, higher order
dispersive terms, involving higher order spatial derivatives have heen added
that prevented the appearance of small scales [27]; small scales are also inhib-
ited if the truncated (parabolic) linear dispersion relation of the primary waves
that s implicit in the approximation (7) is replaced by the exact dispersion
relation [28]. In the case of parametrie forcing, this question has been solved
‘numerically” after an order-of-magnitude analysis [25], noting that the wave
spectra is effectively packed provided that not too many modes are consid-
ered, namely that the wave packet does not include the shortest basic length,
& ~ 1/L with the scaling that leads to (11). This shows that arbitrarily small
scales are not produced if they are not present initially [25]. But an analytical
proof of this property is lacking for parametric forcing and the problem remains
open in more general situations.

5. COUPLED AMPLITUDE-MEAN FLOW EQUATIONS

The equations for counterpropagating waves considered above do not include the effect
of the mean flow. This appears in a natural way when the simplified equations describing



the weakly nonlinear dynamics are derived from the original exact formulation (continuity
and Navier-Stokes equations, with boundary conditions at the free boundary) via matched
asymptotic expansions and two-time scales methods [29]. The mean flow adds an addi-
tional term {which has a conngerpart i classical inviscid formulations {13]) n (7) that
depends bilinearly on both A% and the horizontal component of the mean flow; see the last
term in the right hand side of eq.(22} below. The viscous mean flow itself is given in the
bulk (outside the oscillatory boundary layers) by some continuity and Navier-Stokes-like
equations, with nonhomogeneous boundary conditions that include a tangential velocity
(at solid boundaries) and a shear stress (at the free surface); these depend quadratically
on the complex amplitudes AT, The mean flow exhibits nonzero vorticity and in fact is
responsible for vorticity transport from the edge of the boundary layers to the bulk. All
these amount to a fairly complex system of coupled amplitude-menn flow equations [29]
that is riot amenable to reasonable analysis without further simplifications, like the ones
made below for ustration in several, especially relevant particular cases

5.1. Drift instabilities of spatially constant waves

Drift instabilities, which lead to driffing patterns, appear when reflection symmetry is
broker: [30], and have been experimentally observed in spatially constant surface waves
in vertically vibrated annular containers [31]. The origin of drift however is not clear in
this case because spatially constant waves are reflection symmetric at leading order, see
eq.(15) below. Thus, there is no a symmetry breaking mechanism in the waves themselves
to trigger a drift instability. Let us see that the drift instability is due to a symmetry
hreaking of the associated viscous mean flow, which is thus essential to understand these
drifting waves. In fact, ignoring the coupling of the surface waves to the mean flow
leads to additional, related inconsistencies, which I discuss first. Assuming that AF are
independent of =, the system (7) simplifies to the foflowing system of (complex) ODEs,

dA% Jdt = —8AT F1(B1|AT[2 + Bo ATPVA® + pAt, (13)
Whose.soluti_ons are readily seen to converge for large time to a steady state of the form
AT = Re—iwm:ikw’ (14)

with R, ¢, and 1 real constants. Substituting this into (5) gives the following expression
for the free swiface elevation

‘h=4cosw(t - gYeosk{z—4), ) (15)

“which' shows that the wave is a standing wave. Note that since 1) is constant, this wave
exhibits no drift, which is consistent with the fact that it is reflection symmetric.
After appropriate nondimensionalization and scaling, the viscous mean flow produced
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Figure 1. Streamlines of the stable steady state of (16)-(21) with 4 = ¢, for k = 2.37, L = 2z /k = 2.65,
and Re =35 (upper plot} and 40 (fower plot). Courtesy of Elena Martfn.
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by this standing wave is given by the following well known set. of equations {32]

Uy + vy =0, (18)
BBt + vty ~ vg) = gz + Re™ (g + )}, . (17)
AfOt — ulty — vg) = ~qy + Re ™ (vps + vy, (18}
u == —sin 2k(x — 9}, v=0 aty=-1, (19)
Sufdy=v=0, aty=0, (20)
1, vand ¢ are z-periodic, of period L = 2 /k, (21)

where « and v are the horizontal and vertical mean flow veloeity components, ¢ is the
associated stagnation pressure, 1 is the phase of the standing waves, which at the moment
is assumed constant, and for consistency, T am imposing periodic boundary conditions,
with the period of the waves; k is the nondimensional wavelength of the swrface waves
and Re = vR*/e, with y ~ 1, is the streaming flow Reynolds number. Since R and ¢ are
independent of each other and small, Ee varies in 2 wide range (typically, 0 < Re < 2000).

For small Re, this system exhibits a unique, globally stable, reflection symmetric steady
state that consists of an array of counterrotating eddies, like that plotted in fig.1 (upper
plot). This solution was qualitatively deseribed for large Re elsewhere [33} and has always
been assumed (but never checked!) to be stable. It turns out that this is true only for
not too large Re {34]. As Re increases, this steady state looses stability in a reflection-
symmeftry breaking bifurcation, snd a new branch of non-symmetric steady states appears,
see fig.1 (lower plot). The new sclution exhibits a net horizontal velocity that is not
compatible with the assumption that the waves are strictly standing (namely that the
phasc 1 is constant) because of advection by the streaming flow. This means that the
assumption that the surfoce waves are decoupled from the mean flow is inconsistent, as



anticipated above.
"Thus, the effect of the mean flow in the surface waves dynamics must be added, which
is done replacing (13) by

0 L
AAE [t = —BA* 4 (P A + AT AT + pAb il f f olyyudedyAt, (22)
—1.J0

where
g(y) = 2k cosh 2k(y + 1)/ sinh 2. (23)

Note that jj’l gly)dy = 1, as required by invariance of the equations and boundary
conditions at the upper boundary under the action z —» z +¢t, v — u+ ¢, b =9 + ct,
which correspond to Galilean transformations.

Equations (16)-(21), and (22} can be further simplified trough the variable change

AE = AFeTH, (24)

where the spatial phase 1 is given by

0 pL
dep et — L7 -/;1/9 gl{y)u dedy. {25)

Replacing this into (22), it follows that A satisfy (13}, which means that after an initial
transient stage, AF converge to a steady state or, invoking (24) that the surface wave
converges to a wave that is standing in a reference frame moving horizontally according
to z = (). The mean flow is again given by (16)}-(21), with the spatial phase ¢ no
longer constant, but given by (25); these equations will be called below coupled phase
shift-mean flow {CPSMF) equations. Note that eq.(25) gives precisely how the waves are
advected by the mean flow, and is essential to understand drift instabilities. In particufar,
it shows that the drift velocity, dip/dt, vanishes if the mean flow is reflection symmetric
as is the basic steady solution in fig.1a. Thus, the origin of drift instabilities is now clear:
they are associoted with a symmetry breaking of the mean flow, as anticipated above.
Numerical integration of the CPSMF equations [34] shows that the mean flow stabilizes
the reflection symmetrie steady state; in fact, for Re = 40 the reflection-symmetric steady
state of {16)-(21), (25) is still stable; it looses stability in a Hopf bifurcation at Re = 270
where a stable branch of direction-reversing waves, whose nodes oscillate back and forth
is horn; these solutions exhibit a periodic drift but no overall drift, Similar oscillatory
(periedic, quasi-periodic, or chaotic) drifting solutions are obtained for other values of the
parameters [34]. Steadily drifting soluticns are also obtained, but only through secondary
bifurcations. [34].

These results show that the origin of drift is connected with the viscous mean flow,
‘which solves the main conceptual open problem mentioned above, but does not explain
the experimental results in [31]. The main difference is that steadily drifted solutions
were quite rabust in the experiment [35F but only appear in secondary bifurcations in the
CPSMF equations. This can be due to the fact that the experiment was done with tap
wafer, which is strongly contaminated. As explained above, contamination completely



Figure 2. Sircamlines of a reflection symmetric steady state for Re = 60 (upper plot) and a steadily
drifting state, with a drift velocity o' = —0.077 for Re = 200 (lower plot}, of the CPSMF equations
(16)-(18), (25}, (26)-(27), {29) ; the remaining perameters are L = 2.85, & = 2.37, and T = 0.9. The
streamnlines in the lower plot apply in moving axes, Tmey = Thxed ~ 1. Courtesy of Elena Martin.

changes (the boundary condition accounting for shear stress at the upper boundary and
thus) the structure of the upper boundary layer, which in turn affects the boundary
condition (20). This and (19) (which is also rescaled for convenience) are now

w=—(1-Dsin2k{z —¢), v=0 aty=—1, {26)
w=~Tsin2k(z — ) + uw(t), v=0 aty=0, 2n
where the net velocity wp is determined imposing the additional condition
L
/ uy(z,0,t)dz = 0 (28)
0

and I’ > 0 is a measure of contamination effects, which in the distinguished limit that
leads to {27) are strong enough as to make the free surface almost inextensible. The
additional condition (28) can be interpreted noting thai the massless, inextensible free
surface can balance a local shear stress from the flow, but not an overall stress, which
would produce an infinite acceleration. The additional condition {28) does not apply
when the 2D problem above is a model of a 3D annular container. In this case, the inner
and outer walls of the container may have an effect if the surfactant monolayer exhibits a
not too small surface shear viscosity, which can in faet prevent any overall motion of the
monolayer. In this case, eq.(28) must be replaced by

2o = 0. (29)
Numerical integration of the new CPSMF equations (16)-(18), (21), {25)-(27), and

either (28) or (29) have shown [36] that for small I", the bifurcation diagrams are qual-
itatively simiiar to thosc of the non-contaminated case deseribed above. This was not



necessarily so because the new houndary conditions (26)-{27) does not reduce to (19)-
(20) as T = 0, which is due to the fact that the new boundary condition does not apply
for teo small I". An intermediate limit should be considered in which a mixed boundary
condition {involving both the horizontal velocity and shear stress) applies; but this limit
vields results that are qualitatively similar to those obfained in the clean case considered
above, For larger values of T, the primary bifurcation from the basic steady state is a
parity breaking bifurcation [30], which yields a new branch of steadily drifting waves like
that plotted in fig.2 (lower plot}, where the basic stable reflection symmetric state for
Re = 60 is also plotted for comparison. For the parameter values in fig.2, the parity
breaking bifurcation occurs at Re, = 109.8 and the branch of steadily drifting solutions
remains stable in the range Re, < Re < 433.2. These solutions are (L/2)-periodic in the
horizental direction (lower plot in fig.2). At Re = 433.2 there is a spatial period dou-
bling bifurcation that yields a new branch of I-periodic steadily drifting solutions, which
remains stable for larger values of Re. These steadily drifting solutions remain stable
when the horizontal length L is doubled and thus are guite robust, which is in complete
accordance with experiments.

5.2. Standing waves near threshold

Near threshold, parametric forcing favors an equal superposition of both counterprop-
agating waves (namely, |A*| ~ |A~]), which as in last section produces a standing wave.
But if the aspect ratio is sufficiently large, spatial modulation cannot be ignored, and
the relevant equation for the standing wave amplitude, A ~ A%, is a Ginzburg-Tandau
equation,

eAy = fiAz + A — 205 AP A, (30)

where all coefficients are real, the bifurcation parameter f is a scaled measure of departure
from threshold, and the small parameter € is as defined in (2). This equation can be
derived from (7) provided that some higher order terms accounting for nonlinear damping,
nonlinear forcing, and a viscous correction to the group velocity are added. Note that
eq.(30) is [ully dissipative, which could be surprising at first sight because nounlinear terms
are strictly conservative in the original counterpropagating waves eguations; diffusion, in
particular, comes from a balance between transport at the group velocity, linear damping,
and lincar forcing. Note that although A ~ A%, eq.(30) is not cbtained setting A% = A
in (7), which cannot be done unless A% are spatially constant. The derivation of (30)
requires to consider two higher order corrections to the approximate relation A% ~ A
7). |

Equation {80) can also be derived without the assumption of small viscous effects
[38], to check the asymptotic expression of 85 for small &, whose repeafed derivation in
the literature has been controversial [39]. To our surprise [38], none of the asymptotic
expressions in the literature matched with the exact value of 5. Moreover, F; shows
a surprising dependence on wavenumber; namely, a O(z?)-shift on the wavenumber pro-
duced a O(1)-correction on: B5. This was not due fo any mistake in the viseous caleulation
of B performed in [38], which perfectly matched with former independent calculations by
Chen and Vifials [40] (who did not notice this surprising dependence on wavenumber).



This high sensitivity to wavenumber shift cannot be understood in the context of the
Ginzburg-Landau equation (30): a O(z?)-shift on wavenumber is accounted for replacing
Aby Ae”™% which produces a new term proportional to ie? A, and a O{g*)-correction in
the bifurcation parameter i, but has no effect on 5. The effect can neither be understood
in the context of the more general quintic equation first guessed (not derived) by Milner
[4%],

EAt = ﬁlAm:c + ﬁ'A "— EaﬁE!AiﬂA - }32EAI4A7 (31)

which has been always taken from granted but has never been derived. This confused
situation could only be clarified by trying to derive Milner equation from the original
counterpropagating equations (corrected with higher order terms as indicated above).
This has been done in [37], where it was shown that, in addition, the viscous mean flow
(also ignored by Milner) produces a new term that was comparable to the remaining ones
in Milner equation, Tt follows that the correct description of the standing waves is given
by

€Ar = BiAu + BA — " G| APA — Bol AlA P AP As +iB5(| A} A + iBsha A, (32)

where k is the (slowly varying) free surface elevation associated with the viscous mean
flow and is given by the following equation

ehe = Prhes + G5 (1A )ae (33)

which is a balance between inertia, the restoring action of gravity, and the forcing effect
of the surface waves. Note that now, because of the new term proportional to i|A|2A,, a
O(e*) wavenumber shift does produce g (1) correction on F5. The various ecoefficients
in this equation have been derived in closed form in [37] and checked with their exact
counterparts caleulated numerically in the viscous limis [38]. In partienlar, the asymptotic
expression for the cubic coeflicient shows the above mentioned sensitivity on wavenumber
shift, and does match with its exact value for smali ¢, see fig.3. Note that the agreement is
quite good, except in a vicinity of I' = 1/8, where the asymptotic value of 85 diverges due
to a well known 2:1 resonance (the inviscid dispersion relation (8) is such that w(2k) =

Note that all terms in (32)-(33) can be made of the same order under appropriate
scaling. Thus, the new terms in (32) do not account for higher order effects, but do have
a O(1) effect in the dynamics when the ratic between the parameters ¢ < 1, L >» 1,
and i € 1 is appropriate. In fact, the new terms have two qualitative effects, which are
expected to change the dynamics dramatically. Namely:

1. They prevent the existence of the Lyapunov function exhibited by Milner equation.

2. They breal a spurious reflection symmetry of Milner equation, which is invariant
under the actions © — —=z and A —» A separately, while (32) is only invariant under
the joint action {&, 4) — (~z, A).

Some preliminary ealculations by Dr. Marfa Higuera have shown that egs.(32)-(33) do in
fact exhibit oscillatory instabilitics, which cannot be present in Milner equation.
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Figure 3. The coefficient A5 appearing in egs.(30)-(32 in terms of the gravity-capillazy balance parameter
S, defined just after eq.(6). {(—) Asymptotic value as € — 0; (-- -) as calculated in [38] for ¢ = 1.25- 1072,
5-1073, and 5-10~* (the arrows indicate decreasing values of €); {—+ — — } as calculated in [42] for e =0
(V) as calculated in {40] for ¢ = 5 - 1074 (o) as caloulated (for & = 0) in [39], where only the capillary
limit was considered . Courtesy of Francisco Mancebao.

5.3. Modulated counterpropagating waves at large aspect ratio

The analysis in last section requires that the forcing amplitude be conveniently close
to its threshold value, Outside this vicinity of threshold, both counterpropagating waves
must be considered separately. In this case, the general coupled amplitude-mean flow
equations can only be simplified under additional assumptions concerning detuning [29, 43}
and the ratio of the container depth to wavelength [29, 44]. If the latter is large, the
mean fow is almost parallel and both inertia and convective terms can be neglected in
momentum equations, allowing a numerically cheap integration of the resulting simplified
equations [44], which however exhibit the subtleties mentioned in §4 in connection with
eq.(11). Tt follows that the main overall effects of the mean flow are (i) to inhibit dispersive
scales and the associated spatio-temporal chaotic behavior, and (it} to promote oscillatory
instabilities. Reflection symmetry is typically broken in gravity waves (which therefore
exhibit drifting patterns}, but is inhibited for capillary waves. Note that the origin of drift
is now associated with wave modulation, and thus quite different from that described in
§5.1.

5.4. Small aspect ratio containers

A complete theory for parametrically excited water waves in small aspect ratio con-
tainers (with a width comparable to wavelength) has been developed [45, 46}, extending
previous related results on one-mode capillary waves in the liquid bridge geometry [47].
The surface waves are described by a finite number of modes. The coupled amplitude-
mean flow equations for that case have shown that the surface waves are affected by the
viscous mean flow whenever more than one surface mode is present, as in the seminal ex-



periments by Ciliberto and Gollub [48] (two pairs of non-axisymmetric modes in circular
containers) and Simonelli and Gollub [49] (two modes in almost square containers). Some
predictions (e.g., existence of relaxation escillations and cansrd behavior [0, 51]) have
been also made [52] for a case that is potentially interesting and has not been checked
experimentally, namely the case a single pair of nonaxisymmetric modes in an almeost
circular container.

5.5, Two dimensional waves at large aspect ratio

Two dimensional waves in large aspect ratio (three dimensional) containers show a
great variety of patterns {53]. The first bifurcation from the flat state yields standing
wave rolls, squares, hexagons, or quasipatterns, depending on the various non-dimensional
parameters, and has been completely explained by Vinals and collaborators [42, 40),
whose theory has been experimentally checked with great precision [54]. This primary
bifurcation is not affected by the viscous mean flow, which is consistent with the fact that
Viiials quasipotential theory ignores the mean flow. This theory has not been successfid
in explaining the remaining instabilities [55] beyond the first one. The mean flow can be
added to Vifials theory fairly straightforwardly, but gives coupled amplitude-mean flow
equations whose numerical integration is too expensive {56] because they involve three-
dimensional Navier-Stokes-like equations. Thus, we have introduced a cascade of simpler
equations [56] that are more tractable. The last step is a toy model, in the spirit of the
Swift-Hohenberg equations {57], which have shown that the mean flow does affect the
surface wave dynamics, promoting a new oscillatory instability and modifying the various
instability boundaries that already cxisted in Vifials theory. But this is only a first step
in the correct analysis of wo dimensional waves, which remains essentially undone.

6. CONCLUDING REMARKS

The effect of small viscosity in water waves has been considered, focusing in the gener-
ation of a viscous mean flow, which is a second order effect, namely its strength depends
quadratically on the wave amplitude. Thus, in the shorter timescale associated with wave
oscillation, the mean flow only produces a small drift of material elements. In the slower
timescale associated with wave modulation instead, the mean flow produces an effect that
is of the same order as that of the cubic nonlinear terms that saturate the dynamics, and
thus it affects the dynamics of the primary waves in an essential way. This has not been
noticed in previous analyses of surface waves, perhaps because (in contrast with the anal-
ysis reviewed above) equations had not been derived from first principles in a consistent
way, except in the stricily inviscid case. Viscous effects, which are responsible for the
appearance of the mean flow had been added a posteriori to the classical Hamilionian
formulations, through some ad hoc terms accounting for linear {and nonlinear) damping.

Unfortunately, without further simplifying assumptions, the mean flow cbeys Navier-
Stokes-like equations, which makes it difficult to exiract precise predictions from the
general coupled amplitude-mean Bow cquations. To make things worse, the amplitude
equations exhibit their own subtleties in large aspect ratio systems (the natural candidates
to simplify the mean flow equations) due to the interplay between advection at the group



velocity and dispersion. Thus, simplicity is not easily attained in the analysia of nearly-
inviscid water waves in small containers. Rigor (which does not mean to only accept
results stated as theorems) is essential to construct a theory that puts some order in the
{largely unexplained) fascinating complexity observed in experiments, which are the final
Judges of scientific relevance.
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