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Abstract. The effect of viscosity is considered in the capülary-gravity waves that are 
parametrically excited by vertical vibrations in a horizontal fluid layer. Special attention 
is paid to the viscous mean flow generated by time averaged Reynolds stresses in the oseil-
latory boundary layers attached to the solid walls and the free surface. It is explained that 
this secondary mean flow affeets the dynamics of the primary waves themselves. Several 
specific limiting cases of practical interest are considered to ilmstrate the consequences of 
this coupled evolution. 
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1. INTRODUCTION 

As an homage to Amable Liñán in liis 70th birthday, I describe below some results 
obtained in the last years by the applied mathematics group at the E.T.S.I. Aeronáuticos, 
in coílaboration with the Physics department of the University of California at Berkeley. 
Since Amable himself is not participating in this review, the reader will not find here 
the mastery use of both mathematics and physical concepts that is always present in his 
work, but some trace can perhaps be found of various lessons that I learned as a gradúate 
student of him. 

The smoll viscosity limit is a singular Jimit in fluid mechanics and in the presence of 
(even weak) nonlinearity leads to fairly rich dynamics. This limit allows the application 
of singular perturbation methods, which both clarify subtle concepts and simplify the 
analysis, two advantages that become evident in the wise use of these methods by Amable 
Liñán. 
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Water waves have held fascination of fluid dynamicists and applied mathematicians 
since the XIX Gentury and are of intcrest in a variety of problems, ranging from the 
study of waves and currents in lakes and the ocean to the analysis of vibrating containers. 
The dynamics of strictly inviscid water waves were uncovered through the theoretical 
work by Stokes, Airy, Boussinesq, Rayleigh, and others. The simplest formulation ineludes 
dispersión and nonlinear effects, and leads to the Schrodinger and KdV equations, namely 

At = iaA^ + ip\A\2A and ht = ahaxx+phhxi (1) 

which are paradigms of soliton forming systems [1]. These equations apply in a moving 
rcfcrence frame that travels with the group velocity, which ciiminates the cffcct of an 
additional convective term that is large compared to dispersión in the scaling that leads 
to both the Schrodinger and KdV equations. 

Viscous effects play a non central role in the dynamics of long water waves encountered 
in lakes and the ocean. These exhibit a wavelength i of the order of several meters and 
(since the kinematic viscosity is v ~ 1 cm2 s _ 1 for water) a viscous time, ??¡v, of the 
order of severa! days, which is too large compared to the usual observation times. The 
viscous time is much smaller, or the order of minutes, for the short waves generated in 
small vibrated containers, which are the object of this paper. Viscous effects are measured 
by the nondimensional parameter 

where w* is the wave frequency, and produce a linear dumping of the waves and a sccondary 
viscous mean flow. The former comes in practice from several physically different sources 
and the latter affeets the dynamics of the primary waves. Also, the presence of lateral walls 
where the waves are reflected and/or the nature of the forcing deviee, require to consider 
two counterpropagating waves at each point. Thus the effect of the group velocity cannot 
be climinated and the relevant equations exhibit terms that are not of the same order. 
All these involve additional subtleties that will be discussed below. 

In the sequel, I concéntrate in extensions of the Schrodinger equation, which applies in 
deep containers, whose depth is at least comparable to wavelength. 

2. L I N E A R D A M P I N G 

Linear damping adds a new term to the Schrodinger equation (la), .which becomes 

At = inA„-5A + iP\A\2A. (3) 

All solutions to this equation converge to the basic state A = 0 for large time unless a 
forcing term is added either in the equation itself or in the boundary conditions. The 
damping ratio, S > 0, is small and may carne from either of the following sources: 

1. Viscous dissipaMún in both the oscilíatory boundary layexs attached to solid bound-
aries and the free surface, and the bulle, which are 0(e^2), 0(es/2), and 0(e), 
respectively. Por (small but) finite realistic valúes of e, the 0(£)-correction is neecs-
sary to get a good agreement with the experiments, as pointed out in [2] to explain 



earlier quite preeise measurements in a cylindrical container [3]. The theory in [2] 
was exiensively checked experimenfcaHy [4], with a compJetely satisfactory agreo-
ment. 

2. Surface contamination, which is to be expected in water unless a lot of care is tallen 
in the experimental set up, may increase the linear damping rate by a factor of 
5 [3]. This effect is usually modeled through the effect of contaminant (insolnble) 
surfactants, which produce a tangential stress proportional to the tangential gradient 
of surfactant concentration [5, 6]. This effect can be so strong as to' make the 
free surface almost inextensibie, and completely changes the structure of the upper 
boundary layer, attached to the free surface. These (oíd) ideas have been applicd 
to cylindrical containers [7], to obtain quantitative rcsults that compare well with 
the experiments using tap water by Henderson and Miles [3]. The results are not so 
good as those for clean free surface due to uncertaintics in the parameter valúes; note 
that the nature of surfactants is not known for tap water. Surface contamination 
has also an effect in the generation of mean flows, to be commented below. 

3. Contact Une motion promotes additional damping whose analysis requires a precise 
modeling of the dynamical contact angle, which remains laking nowadays. Contact 
line motion has other subtle effeets in the structure of the viscous mean flow, but 
these are beyond the scope of this paper. 

3 . M E A N F L O W S 

As in any physical problem involving oscillations, nonlinear terms promote (through the 
product of in phase oscillatory terms, as in, e.g., 2s in 2 í — cos2£ + 1—oscillatory+steady) 
the appearance of steady (or slowly varying} terms that forcé a slowly varying mean flow. 
This can be slaved to the oscillatory solution, but can also exhibit its own dynamics 
and affect the weakly-nonlinear evolution of the primary oscillatory flow provided that 
the linewrized problem exhibits nearly marginal, nonoscillatory modes. This is the case in 
water waves because these exhibit the so called viscous, or hydrodynamical modes, which 
are non-oscillatory and nearíy marginal, involve a quite small free surface deflection, and 
exhibit nonzero vorticity everywhere. All these are in contrast with the jiearly-inviscid, or 
surface modes that are directly responsible for water waves. These are also nearly marginal 
but they are oscillatory, involve a significant free surface deformation, and exhibit zero 
vorticity except in viscous boundary layers. Viscous modes of nearly inviscid waves liad 
been known for decades [8j. Their role in promoting the coupled evolution of the waves 
and the viscous mean flow, however, has not been recognizcd until quite recently {see [9] 
for a recent review). 

In fact, mean flows are produced in water waves by three different sources: 

1. The Siokes drift [10] is a purely kinematical effect that results from nonlinearity in 
the ODEs that provide the trajectories of fluid elements, namely 

%=v{x,t)i (4) 



where the vectors x and v stand for position and velocity, respectively. By the way, 
nonlincar terms in this equation can also yield in 3D chaotic behavior (somefcimes 
callcd chaotic advection [11,12]), which has nothing to do with (pre-) turbulent flows 
but is quite relevant in visualizations, transport of passive scalars, and mixing. The 
Stokcs drift is slaved to the primary waves and thus has no dynamical consequences. 

2. The inviscid mean flow is produced by nonlinear terms in the kinematical boundary 
condition at the freo surface, and is present in classical strictly inviscid water wave 
descriptions [13]. The associated forcing temí is a vertical forcing velocity at the 
unperturbed free surface, which is proportional to the square of the wave amplitude. 

3. The viscous mean flow is produced by time averaged Reynolds stresses (which vanish 
in the bulk at leading order) in the oscillatory boundary layers. This flow was 
visualized already by Faraday in his seminal experiment [14] through the anomalous 
accumulation of sand near the bottom of a vertically vibrated container. A first 
analysis of the viscous mean flow was made by Rayleigh [15] in a pioneering analysis 
of the oscillatory boundary layer attached to a solid boundary. He also recognized 
that the same explanation applies to the accumulation of dust in sound tubes (or 
Kundt tubes), known as Kundt figures. He did not realize instead that averaged 
Reynolds stresses were high enough as to produce a nonzero tangential velocity at 
the edge of the boundary layer, which should forcé a viscous mean flow also in 
the bulk. This was analyzed much later by Schlichtíng [16], and extended to the 
boundary layer attached to a free surface by Longuet-Higgins [17]. This viscous 
mean flow (also known as steady streaming, or acoustic streaming [18]) has been 
studied in many contexts, but always as a byproduct of the primary waves. It took 
much more time to recognize that the secondary mean flow does affect the dynamics 
of the primary waves. 

4. C O U N T E R P R O P A G A T I N G WAVES 

Water waves are traveling waves that because of reflection symmetry can propágate 
to either side. Early studies of water waves were concerned with one sided waves. This 
restriction exchides many realistic configurations in which both waves are generated. Re­
flection at lateral walls and/or symmetric forcing (e.g., vertical vibrations of the container, 
which parametrically forcé the so callcd Faraday waves [19], the inost studied example of 
water waves in finite containers) produce both countcrpropagatmg waves. For the sake of 
cíarity I add the parametric forcing effect of vertical vibrations, but this is unessential in 
the main points discussed below. Also, I will consider one-dimensionaí waves in a laterally 
unbounded fluid layer, and impose periodic boundary conditions in the horizontal direc-
tion. This 2D model is intended to mimic three-dimensional containers with an annular 
eross section. 

Ignoring at the moment the mean flow, the nondimensional free surface elevation can 
be written as 

h - A+(x, t)^"**-**> 4- A~(x, í)ei<ürt-fc*> + ce . + . . . , (5) 

where A± are the small, slowly varying flA*^ < \A^\ < 1 ^ 1 , \Af\ < \A±\ < 1) 



complex amplitudes of the envelopes of the two waves, which travel with phase vcloc-
ities ^k/ijj. The nondimensional frequency (a half of the forcing frequency because of 
parametric forcing [20]) and wavenumber satisfy the dispersión relation 

u2 - k[S+ (1 - S)k2]tanhkd + 0{y/e), (6) 

where S = a/(a + pgO2) (with a= surface tensión, p—density, and g~ gravitational ac-
celeration), d is the nondimensional depth, and e is as defined in (2). A^ satisfy the 
amplitude equations cf.(3) 

Af = ±vgAt + iaAt - 5A± + i f A l ^ l 2 + ^W\2)A± + M * , (7) 

where the coefficients vg ~ a <**> fií ̂  /32 ~ 1 and ¡x ~ 5 -C 1; these account for 
the group velocity, dispersión, nonlinear self and counter-interaction, parametric forcing, 
and damping, respectively. Thus the first term in the right hand side, which cannot 
be eliminated using moving axes, is large compared to the second term. The boundary 
conditions, 

A± (x + L,t)= e * ^ (x, i ) , (8) 

result form spatial periodicity; the spatial detuning 5 — 2kL (mod 2K) aecounts for the 
mismatch between the period of the waves and the imposed spatial period. Eqs.(7)-(8) 
are invariant under the actions A± —> A±e±lci, x —» x + o¿ for all c\, ci G ffi, A + *-• A", 
and x —> —x, which result from invariance of the original problem under the orthogonal 
group generated by reflection and x-translations. Those actions genérate a largor group 
than the original one, the additional symmetries being an artifact of truncation. 

The presence of the large term in the system (7) allows two possible scalings, depending 
on the comparative valúes of slow spatial scale L > 1 and the damping ratio 5. 

• If 8 < L^1 then the appropriate scaling is L~l ~ \8¡dt\ ~ \dfdx\ » \A±]f and 
the equations (7) simplify to leading order to the homogeneous wave equations 
Af = ±vgA^, which give A± = A±(^±,r)^ where ^ — {x±vgt)¡L are characteristic 
variables that involve two slow spatial and temporal scales, and r -^ t/L2 is a 
still slower timescale in which forcing, damping, and nonlinearity are comparable. 
Applying a two-time scales method [21], it follows that the complex amplitudes 
evolve according to the following pair of nonlocal equations (after rescaling yS, ^JJi, 
and ,4* with 1/L [22]), 

A$ = iaAfH± - 5A± + i í A l ^ l 2 + / 5 a ( | ^ ] 2 ) ) A ± + p(A*), (9) 

A ± ( í ± + l ) r ) = 0
± ü i l ± ( í ± , T ) , " (10) 

where (•) stands for the spatial average. Note that coupling between both equations 
only oceurs through the nonlocal term, whose appearance can be explained as fol­
lows. The waves are traveling in opposite directions with a velocity that is quite 
fast for the evohition in the slowest timescale, r ~ 1. Thus each wave only 'sees' the 
spatial mean valué of the other wave. Nonlocal (Ginzburg-Landau-like) equations 
of this type had been already derived and analyzed for fully dissipative systems in 
various places ([23, 24] and references therein). 



• If 5 ~ L~x then the group velocity term is balanced in first approximation by all 
terms, except dispersión, and after rcscaling l/£, 1/a;, 5, ¿s, and (A*)2 with 1/L, 
eqs.(7)-(8) are rewritten as 

At^vgAt^iL-1aAt;-SA± + i(01\A
±\2 + l32\Á?\2)A± + tlÁ

:f
! (11) 

A±(x + l , í ) = éki'sA±(x,t)l (12) 

The analysis of this system requires some caro because of the following facts: 

— Since L^S> 1, one is tempted to neglect dispersión (namely, set L _ 1 = 0 in (11)), 
to obtain a system of nonlinear hyperbolic equations that provide a coupled 
evolution of A^, which in fact gives a good approximation of solutions of (11). 
But these can (and do [25]) develop discontimiities; near these, dispersión 
effects cannot be neglected. Also, smooth solutions of the hyperbolic equations 
can be unstable as (approximate) solutions of (11) because of the presence of 
dispersión. This is a subtle question (first solved for dissipative systems in 
[24, 26]) whose analysis requires to considcr the stability of general solutions 
of the hyperbolic approximation against dispersive scales, with a wavelength 
of the order of L~xl2, still large compared to the basic wavelength (~ L _ 1 with 
the scaling that leads to (11)) of the surface waves. This has been analyzed in 
[25], where it was seen that dispersive scalcs are in fact unstable in most part 
of the bifurcation diagrams, and lead to spatio-temporal chaos for sufirciently 
largo forcing. 

— In the absence of diffusion, which is quite small in water waves, there is no an 
obvious mechanism to pack the spatial wave spectra around a given wavenum-
ber and it may well happen that the solutions of (11)-(12) develop arbitrarily 
small scales. This is a central point that has been solved in related contexts 
(unforced, two dimensional waves) with some ingenuity. Namely, higher order 
dispersive terms, involving higher order spatial derivativos have been added 
that prevented the appcarance of small scales [27]; small scales are also inhib-
ited if the truncated (parabolic) linear dispersión relation of the primaiy waves 
tha t is implicit in the approximation (7) is replaced by the exact dispersión 
relation [28]. In the case of parametric forcing, tliis question has been solved 
'numerically' after an order-of-magnitude analysis [25], noting that the wave 
spectra is effectively packed provided that not too many modes are eonsid­
ered, namely that the wave packet does not inciude the shortest basic length, 
x ~ 1/L with the scaíing that leads to (11). This shows that arbitrarily small 
scales are not produced if they are not present initially [25], But an analytical 
proof of this property is lacking for parametric forcing and the problem rcmains 
open in more general situations. 

5. C O U P L E D A M P L I T U D E - M E A N F L O W E Q U A T I O N S 

The equations for counterpropagating waves eonsidered above do not inciude the efifect 
of the mean ñow. This appoars in a natural way when the simplified equations describing 



the weakly nonlinear dynamics are derived from the original exact formulation (continuity 
and Navier-Stokes equations, with boundary conditions at the frce boundary) via matched 
asymptotic expansions and two-time scales methods [29]. The mean flow adds an addi­
tional term (which has a counterpart in classical hrviscid forrmilations [13]} in (7) that 
depends bilinearly on both A^ and the horizontal component of the mean flow; see the last 
term in the right hand side of eq.(22} below. The viscous mean flow itseif is given in the 
bulk (outside the oscillatory boundary layers) by some continuity and Navier-Stokes-like 
equations, with nonhomogencous boundary conditions that include a tangential velocity 
(at solid boundaries) and a shear stress (at the free surfacc}; these depend quadratically 
on the complex amplitudes A*1, The mean flow exhibits nonzcro vortícity and in fact is 
responsible for vorticity transport frorn the edge of the boundary layers to the bulk. All 
these amount to a fairly complex system of coupled amplitude-mean flow equations [29] 
that is riot amenable to reasonable anaiysis without further simplifications, like the ones 
made below for ilmstratkm in several, especially relevant particular cases 

5.1. Drift instabilities of spatially constant waves 

Drift instabilities, which lead to drifting pat tems, appear when reflection symmetry is 
broken [30], and have been experimentally observed in spatially constant surface waves 
in verticaliy vibrated annulax containers [31]. The origin of drift however is not clear in 
this case because spatially constant waves are reflection symmetric at leading order, see 
eq.(15) below. Thus, there is no a symmetry breaking mechanism in the waves themselves 
to trigger a driffc ínstability. Let us see that the drift instability is due to a symmetry 
breaking of the associated viscous mean flow, which is thus essential to understand these 
drifting waves. In fact, ignoring the coupling of the surface waves to the mean flow 
leads to additional, related inconsistencies, which I discuss first. Assuming that A^ are 
independent of x, the system (7) simplifies to the following system of (complex) ODEs, 

dA^/dt = -5,4* + ifAI-A*!2 + foW?)^ + M*, (13) 

whose solutions are readily seen to converge for large time to a steady state of the form 

A± = ite-*"*****, (14) 

with i?, $, and ^ real constants. Substituting this into (5) gives the following expression 
for the free surface elevation 

h — ácoBto(t — <f)cosk(x — t¡>), (15) 

which shows tha t the wave is a standing wave. Note that since I¡J is constant, this wave 
exhibits no drift, which is consistent with the fact that it is reflection symmetric. 

After appropriate nondimensionalization and scalirtg, the viscous mean flow produccd 
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Figure 1. Strcairüines of the stable steady state of (16)-(21) with i¡r = 0, for fe = 2.37, L ~ 2jr/fe = 2.65, 
and Re = 35 {uppcr plot) and 40 (lower plot). Couitcsy of Elena Martín. 

by this standing wave is given by the following well known set of cquations [32] 

% + vy = 0, (16) 

du/dt + v{uv - v*) = ~qx + Ke - i ( u . ^ + ti9!í), (17) 

dv/dt - u(uy - u,) = -q„ + i t e " 1 ^ + vyy), (18} 

u— — sin2í;(a; —i/i), v — 0 at y — —1, (19) 

du/dy = v = 0, at y - 0, (20) 

tí, v and q are x-periodic, of period L — 27r/k, (21) 

where u and y are the horizontal and vertical mean flow velocity components, q is the 
associated stagnation pressure, i¡> is the phase of the standing waves, which at the moment 
is assumed constant, and for consisteney, I am imposing periodic boundary conditions, 
with the period of the waves; k is the nondimensional wavelength of the surface wavcs 
and Re ~ 7Í?2 /e, with 7 ~ 1, is the streaming flow Reynolds number. Since R and e are 
independent of each other and small, Re varíes in a wide range (typically, 0 < Re < 2000). 

For small Re, this system exhibits a unique, globally stable, reflcctioa symmetric steady 
state that consists of an array of counterrotating eddies, like that plotted in fig.l (npper 
píot). This solution was qualitatively described for large Re elsewhere [33] and has always 
been assumed (but never checked!) to be stable. It turns out that this is true only for 
not too large Re [34]. As Re incroases, this steady state looses stability in a reflection-
symmetry breaking bifurcation, and a new branch of non-symmetrie steady states appears, 
see fig.l (lower plot). The new solution exhibits a net horizontal velocity that is not 
compatible with the assumption that the wavcs are strictly standing (namely that the 
phasc ip is constant) because of advection by the streaming flow. This means that the 
assumption that the surface waves are decoupled from the mean flow is inconsistent, as 



anticipated above. 
Thus, the effect of the mean flow in the surface waves dynamics must be added, whieh 

is done replacing (13) by 

/

O i-L 

i g(y)udxdyA±
> (22) 

where 
g(y) = 2k cosh2í:(y + l) /s inl i2/ ; . (23) 

Note that J_lg{y)dy = 1, as required by invariance of the equations and boundary 
conditions at the upper boundary under the action x ^ x + ct, «-->«-{-c, I/J — -0 + cí, 
which correspond to Galilean transformations. 

Equations (16)-(21), and (22) can be further simplified trough the variable change 

A±=A£e:&*, (24) 

where the spatial phase ip is given by 

d-4>/dt = L~1 / / g(y)udxdy. (25) 

Replacing this into (22), it follows that Af satisfy (13), which means that after an initíal 
transient stage, A$ converge to a steady state or, invoking (24) that the surface wave 
converges to a wave that is standing in a reference frame moving horizontally according 
to x — i¡){t). The mean flow is again given by (16)-(21), with the spatial phase 'i}¡ no 
longer constant, but given by (25); these equations will be calied below coupled phase 
shift-mean flow (CPSMF) equations. Note that eq.(25) gives precisely how the waves are 
advected by the mean flow, and is essential to understand drift instabilities. In particular, 
it shows that the drift velocity, dift/dt, vanishes if the mean flow is reflection symmetric 
as is the basic steady sohition in fig.la. Thus, the origin of drift instabilities is now elcar: 
they are associated with a symmetry breaking of the mean flow, as anticipated above. 
Numerical integration of the CPSMF equations [34] shows that the mean flow stabilizes 
the reflection symmetric steady state; in fact, for Re — 40 the reflection-symmetric steady 
state of (16)-(21), (25) is still stable; it looses stability in a Hopf bifurcation at Re -- 270 
whcre a stable branch of direction-reversing viaves, whose nodes oscillate back and forth 
is born; these solutions exhibit a periodic drift but no overall drift. Similar oscillatory 
(periodic, quasi-periodic, or chaotic) drifting solutions are obtained for other valúes of the 
parameters [34]. Steadily drifting solutions are also obtained, but only throiigh secondary 
bifurcations. [34]. 

These results show that the origin of drift is connected with the viscous mean flow, 
which solves the main conceptual open problem mentioned above, but does not explain 
the experimental results in [31]. The main difference is that steadily drifted solutions 
were quite robust in the experiment [35] but only appear in secondary bifurcations in the 
CPSMF equations. This can be due to the fact that the experiment was done with tap 
water, which is strongly contaminated. As explained above, contamination completely 
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Figure 2. Streamíines of a reflectioii symmetric steady state for Re = 60 (upper plot) and a steadily 
drifting state, with a drift vclocity i¡>' = -0.077 for fíe = 200 (lowcr plot), of the CPSMF equations 
(16)-(18), (25), (26)-(27), (29) ; the remaining parameters are L = 2.65, k = 2.37, and V = 0.9. The 
streamíines in the lowcr plot apply in moving axcs, x m o v = x^xed ~ ^ ' í - Courtesy of Elena Martín. 

changes (the boundary condition aecounting for shear stress at the upper boundary and 
thus) the structure of the upper boundary íayer, which in turn affeets the boundary 
condition (20). This and (19) (which is also rescalcd for convenience) are now 

u=-(l-T)Bm2k(x-ip), v = 0 afc¡í = - l , (26) 

u = - r s in2fe(x -i¡)) + u0(t), v = 0 at y - 0, (27) 

where the net velocity u0 is determined imposing the additional condition 
L 

uy(x,0yt)dx = 0 (28) 

and P > 0 is a measure of eontamination effeets, which in the distinguished limit that 
leads to (27) are strong enough as to make the free surface almost inextensible. The 
additional condition (28) can be interpreted noting that the massless, inextensible free 
surface can balance a local shear stress from the flow, but not an overall stress, which 
would produce an infinite acceleration. The additional condition (28) does not apply 
when the 2D problcm above is a model of a 3D annular container. In this case, the inner 
and outer walls of the container may have an effect if the surfactant monolayer exhibits a 
not too sniall surface shear viscosity, which can in fact prevent any overall motion of the 
monolayer. In this case, eq.(28) must be replaced by 

uQ = 0. (29) 

Numerical integration of the new CPSMF equations (16)-(18), (21), (25)-(27), and 
either (28) or (29) have shown [36] that for small F, the bifurcation diagrams are qual-
itatively similar to those of the non-contaminated case described above. This was not 

L 



neeessarily so because the new boundary conditions (26)-{27) does not reduce to (19)-
(20) as r — 0, which is due to the fact that the new boundary condition does not apply 
for too small V. An intermedíate limit should be considered in which a mixed boundary 
condition (involving both the horizontal velocity and shear stress) applies; but this limit 
yields results tha t are qualitatweíy similar to those obtaiíied in the cíean case considered 
above. For larger valúes of T, the primary bifurcation from the basic steady state is a 
parity breaking bifurcation [30], which yields a new branch of steadily dñfting waves like 
that plotted in fig.2 (lower plot}, where the basic stahle reflection symmetric state for 
Re = 60 is also plotted for comparison. For the parameter vaiues in fig.2, the parity 
breaking bifurcation occurs at Rec — 109.8 and the branch of steadily drifting solutions 
remains stable in the range Rec < Re < 433.2. Thcse solutions are (L/2)-periodic in the 
horizontal direction (lower plot in fig.2). At Re — 433.2 there is a spatial pcriod dou-
bling bifurcation that yields a new branch of L-periodie steadily drifting solutions, which 
remains stable for larger valúes of He. These steadily drifting solutions remain stable 
when the horizontal length L is doubled and tlrus are quite robust, which is in complete 
accordance with experiments. 

5.2. Standing waves near threshold 

Near threshold, parametric forcing favors an equal superposition of both counterprop-
agating waves (namely, \A+\ ™ |^4~j), which as in last section produces a standing wave. 
But if the aspect ratio is sufficiently large, spatial modulation cannot be ignored, and 
the relevant equation for the standing wave amplitude, A ™ .A*, is a Ginzburg-Landau 
equation, 

EM = fcA^ + ÜA- £
2&\A\*A (30) 

where all coefficients are real, the bifurcation parameter jí is a scaled measure of departure 
from threshold, and the small parameter e is as defined in (2). This equation can be 
derived from (7) provided that some higher order terms accounting for nonlinear damping, 
nonlinear forcing, and a víscous correction to the group velocity are added. Note that 
eq.(30) is fully dissipative, which could be surprising at first sight because nonlinear terms 
are strictly conservative in the original counterpropagating waves equations; diffusion, in 
particular, comes from a balance between transport at the group velocity, linear damping, 
and linear forcing. Note that although A ~ A^, eq.(30) is not obtained setting A± = A 
in (7), which cannot be done unless A^ are spatially constant. The derivation of (30) 
requires to consider two higher order corrections to the approximate relation A± ~ A 

[37]-
Equation (30) can also be derived without the assumption of small viscous effects 

[38], to check the asymptotic expression of /55 for small e, whose repeated derivation in 
the fiterature has been controversial [39]. To our surprise [38], nono of the asymptotic 
expressions in the literature matched with the exact valué of ¡3$. Moreover, /?5 shows 
a surprising dependence on wavenumber; namely, a 0(£2)-shift on the wavenumber pro-
duced a ü(l)-correction on /%. This was not due to any mistake in the viscous calculation 
of ¡35 performed in [38], which perfectly matched with former indepcndent calculations by 
Chen and Viñals [40] (who did not notice this surprising dependence on wavenumber). 



This high sensitivity to wavenumber shift cannot be understood in the context of the 
Ginzburg-Landau equation (30): a 0(s2)-shift on wavenumber is accounted for replaeing 
A by Aee KX, which produces a new term proportional to ÍZ2A^ and a 0(s4)-correction in 
the bifurcation parameter ¡í, but has no effect on fe. The effect can neither be understood 
in the context of the more general quintic equation first guessed (not derived) by Milner 

[41], 
sA = faA^ + JJ.A-e2fe\A\2A -P2\A\*A, (31) 

which has been always taken from granted but has never been derived. This confused 
situation could only be clarifled by trying to derive Milner equation from the original 
counterpropagating equations (corrected with higher order terms as indicated above). 
This has been done in [37], whcre it was shown that, in addition, the viscous mean flow 
(also ignored by Milner) produces a new term that was comparable to the rcmaining ones 
in Milner equation. It follows that the correct description of the standing waves is given 
by 

sAt = 0ÍAXX + ¡iA - e2fe\A\2A - A H 4 A + ifc\A\2Ax 4- i & ( | 4 | 2 M + ifehxA, (32) 

where h is the (slowiy varying) free surface elcvation associated with the viscous mean 
flow and is given by the following equation 

eht = frhxx + íh{\A\2)ax, (33) 

which is a balance between inertia, the restoring action of gravity, and the forcing effect 
of the surface waves. Note that now, because of the new term proportional to i ¡A| 2AB, a 
0(e 2 ) wavenumber shift does produce a 0(1) correction on fe. The various coefficients 
in this equation have been derived in closed form in [37] and cliecked with their exact 
counterparts cakulated numerically in the viscous lirait [38j. In particular, the asymptotic 
expression for the cubic coefficient shows the above mentioned sensitivity on wavenumber 
shift, and does match with its exact valué for small e, see fig.3. Note that the agreement is 
quite good, except in a vicinity of T — 1/3, where the asymptotic valué of fe diverges due 
to a well known 2:1 resonance (the inviscid dispersión relation (6) is such that w(2&) = 
2üt(k)). 

Note that all terms in (32)-(33) can be made of the same order under appropriate 
scaling. Thus, the new terms in (32) do not account for higher order effeets, but do have 
a O( l ) effect in the dynamics when the ratio between the parameters £ « 1, L > 1, 
and ¡i *C 1 is appropriate. In fact, the new terms have two qualitative effeets, which are 
expected to change the dynamics dramatically. Namely: 

1. They prevent the existence of the Lyapunov function exhibited by Milner equation. 

2. They break a spurious reflection symmetry of Milner equation, which is invariant 
under the actions x —» —x and A —> Á separately, while (32) is only invariant under 
the joint action (x,A) —> (—x,Á). 

Some preliminary calculations by Dr. María Higuera have shown that eqs.(32)-(33) do in 
fact exhibit oscillatory instabilitics, which cannot be present in Milner equation. 



102 

101 

10° 

0 0.2 0.4 0.6 0.8 1 
S 

Figure 3. The coeiñcient /fe appearingineqs.(30)-(32in terms of the gravity-capillaEy balance parameter 
S, definedjustaftereq.(6). ( ) Asymptotic valué as e —> 0; ( ) as calculated in [38] fore = 1.25-10_a, 
5 - 1 0 - 3 , a n d 5 - 1 0 - 4 ( t h e arrows indícate decreasing valúes of e); { ) as calculated in [42] for e = 0; 
(v) as calculated in [40] for e = 5 - 10 - 4 ; (o) as calculated (for e — 0) in [39], where only the capillary 
limit was considered . Courtesy of Francisco Mancebo. 

5.3. Modulated counterpropagating waves at large aspect ratio 

The analysis in last section requires that the forcing amplitude be conveniently cíese 
to its threshold valué. Outside this vieinity of threshold, both counterpropagating waves 
must be considered scparately. In this case, the general coupled amplitude-mean flow 
equations can only be simplified under additional assumptions concerning detuning [29, 43] 
and the ratio of the container depth to wavelength [29, 44]. If the latter is large, the 
mean flow is almost paraliel and both inertia and convective terms can be neglected in 
momentum equations, allowing a numerically cheap integratíon of the resulting simplified 
equations [44], which however exhibit the subtleties mentioned in §4 in connection with 
eq . ( l l ) . Itfollows that the main overall effeets of the mean flow are (i) to inhibit dispersive 
scales and the associated spatio-temporal chaotic behavior, and (ii) to promote oscillatory 
instabilities. Reflection symmetry is typically broken in gravity waves (which therefore 
exhibit drifting patterns), but is inhibited for capillary waves. Note that the origin of drift 
is now associated with wave modulation, and tlius quite different from that described in 
§5.1. 

5.4. Small aspect ratio containers 

A complete theory for parametrically excited water waves in small aspect ratio con­
tainers (with a width comparable to wavelength) has been developed [45, 46], extending 
previous related results on one-mode capillary waves in the liquid bridge geometry [47], 
The surface waves are described by a finite number of modes. The coupled amplitnde-
mean flow equations for that case have shown that the surface waves are afFected by the 
viscous mean flow whenever more than one surface mode is present, as in the seminal ex-



periments by Ciliberto and Gollub [48] (two pairs of non-axisynimetric modes in circular 
containers) and Simonelli and Gollub [49] (two modes in almost square containers). Some 
predictions (e.g., existence of relaxation oscillations and canard behavior [50, 51]} have 
been also made [52] for a case that is potentially interesting and has not been checked 
experimentally, namciy the case a single pair of nonaxisymmetric modes in an almost 
circular container. 

5.5. Two dimensional waves a t large a spec t ratio 

Two dimensional waves in large aspect ratio (three dimensional) containers show a 
great variety of patterns [53]. The first bifurcation from the flat state yields standing 
wave rolís, squares, hexagons, or quasipatterns, depending on the various non-dimensional 
parameters, and has been completely explained by Viñals and collaborators [42, 40], 
whose theory has been experimentally checked with great precisión [54]. This primary 
bifurcation is not affected by the viscous mean flow, which is consistent with the fact that 
Viñals quasipotentiai theory ignores the mean flow. This theory has not been successful 
in explaining the remaining instabilities [55] beyond the first one. The mean flow can be 
added to Viñals theory fairly straightforwardly, but gives coupled amplitude-mcan flow 
equations whose numerical integration is too expensive [56] because they involve three-
dimensional Navier-Stokes-like equations. Thus, we have introduced a cascade of simpler 
equations [56] that are more tractable. The last step is a toy model, in the spirit of the 
Swift-Hohenberg equations [57], which have shown that the mean flow does affect the 
surface wave dynamics, promoting a new oscillatory instability and modifying the various 
instability boundaries that already existed in Viñals theory. But this is only a first step 
in the correct analysis of two dimensional waves, which remains essentially undone. 

6. C O N C L U D I N G R E M A R K S 

The cffeet of small viscosity in water waves has been considered, focusing in the gencr-
ation of a viscous mean flow, which is a second order effect, namely its strength depends 
quadratically on the wave amplitude. Thus, in the shorter timescale aasociated with wave 
oscillation, the mean flow only produces a small drift of material elements. In the slower 
timescale associated with wave modulation instead, the mean flow produces an effect that 
is of the same order as that of the cubic nonlinear terms that satúrate the dynamics, and 
thus it affeets the dynamics of the primary waves in an essential way. This has not been 
noticed in previous analyses of surface waves, perhaps because (in contrast with the anal­
ysis reviewed above) equations had not been derived from first principies in a consistent 
way, except in the strictly inviscid case. Viscous effeets, which are responsible for the 
appearance of the mean flow had been added a posterioñ to the elassical Hamiltonian 
formulations, through some ad hoc terms accounting for linear (and nonlinear) damping. 

Unfortunatcly, without further simplifying assumptions, the mean flow obeys Navier-
Stokes-like equations, which maltes it difEcult to extract precise predictions from the 
general coupled amplitude-mean flow equations. To make things worse, the amplitude 
equations exhibit their own subtleties in large aspect ratio systems (the natural candidates 
to simplify the mean flow equations) due to the interplay between advection at the group 



velocity and dispersión. Thus, simplícity is not easily attained in the analysis of nearly-
inviscid water waves in small confcainers. Rigor (which does not mean to only accept 
results stated as theorems) is essential to constmct a theoiy that puts somc order in the 
(largely unexplained) fascinating complexity observed in experiments, which are the final 
judges of scientific relevance. 
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