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Non-destructive measurement of fruit firmness is a 
difficult problem and many different sensors have 
been developed in order to achieve this task. Three 
different European laboratories were associated in 
collaborative experiments on peaches, to compare 
three different sensing techniques, namely, sound, 
impact and micro-deformation. A Bayesian classifier is 
associated with each individual sensor and provides a 
classification into three categories, namely "soft", 
"half firm" and "firm". The fusión of the different 
sensors is performed by using Bayesian classifiers 
associated with heuristic methods for identity fusión. 
The result of the identity fusión is compared with the 
classification provided by an unsupervised algorithm 
based on destructive measurements. The fusión pro­
cess provides some improvement in the classification 
results. For the individual sensors, the error rate of 
the classification varied from 19 to 28%, but the fusión 
process reduced this to 14%. Moreover, all measures 
of agreement between sensors lead to the conclusión 
that fusing sensors is better than using individual 
sensors. 

1. Introductíon 

Peach quality is dependant on a combination of 
several factors such as firmness, sugar content, visual 
appearance and aroma. However, peach quality is 
highly related to firmness, as indicated by a Magness-
Taylor firmness test (Rood1). Firmness is important 
because the peach has to be firm enough to minimize 
damage during packing and shipping. Moreover the 
stage of development of the peach has to ensure 
acceptable ripening at the terminal market. Colour is 
often accepted as the second index of maturity 
(Delwiche2). 

Maturity sorting is a labour-intensive component of 
fresh packing lines, and non-destructive devices for 
on-line maturity assessment have been developed. 
Different techniques have been evaluated for non-
destructive sensing of fruit firmness (sound, impact or 
microdeformation), but it still remains difficult to 
compare one sensor with another, or to determine the 
specific advantages of each sensor. 

Sensor fusión is analogous to the cognitive process 
used by humans to intégrate data continually from 
their senses to make inferences about the external 
world. So far it has been widely applied to military 
situations (battlefield surveillance, tactical situation 
assessment), or non-military purposes (robotics, auto-
mated manufacturing, remote sensing). Theoretical 
developments in sensor fusión have influenced our 
study on non-destructive firmness sensing, based on 
the fact that combinations of sensors should give a 
better result than each individual sensor alone. 

Experimental sensors are supposed to measure the 
same property of the fruit, i.e. firmness. In order to 
compare them and to combine them, they have to be 
used on the same samples and in the same experimen­
tal conditions. A collaborative experiment was set up 
which enabled the comparison and the fusión of the 
firmness sensors. The object of the present work was 
(1) to compare the performance of each individual 
non-destructive sensor to the destructive sensors; (2) 
to apply sensor fusión techniques in order to deter­
mine peach firmness; (3) to find statistical tools in 
order to compare the fusión process with the in­
dividual sensors; and (4) to compare the performance 
of the fusión process with each individual sensor. The 
ultimate objective was to show whether a combination 
of sensors would give a better result than a single 
sensor. 



2. Equipment and instrumentation 

2.1. Sound based sensor 

During the past two decades, frequency based 
measurement techniques have been studied for non-
destructive evaluation of fruit firmness (Armstrong et 
al.3). The excitation is applied by striking the fruit at 
the top with a small hammer. A microphone, installed 
inside the support médium, but not in contact with the 
fruit, measures the vibration response signal. The 
measured signal is amplified in a signal conditioner, 
passes through a low-pass filter, and is finally sent to a 
computer, which extracts the frequency measurement. 
The raw output and the data processing for this sensor 
are presented in Fig. 1. The second resonant fre­
quency / was shown to be related to apple firmness 
via the stiffness factor f2m2B, where m is the apple 
mass. Features extracted from this curve by using the 
Hankel matrix-based total least square method 
(HTLS), lead to the resonant frequency / , and the 
stiffness factor f2mm (Chen and De Baerdemaeker4). 

2.2. Micro-deformation based sensor 

A non-destructive penetrometer has been de-
veloped by Cemagref in order to measure micro-
deformation (Bellon et al.5). The principie of the 
measurement consists in applying a 4mm diameter 
micro-sphere, which emerges from a reference sur-
face, to the surface of the fruit with a constant forcé. 
The penetration of the sphere into the skin of the fruit 
is measured with high precisión (300 pum at máxi­
mum), and determines the fruit firmness. This pene­
tration does not leave any permanent deformation on 
the surface of the fruit because of the small size of the 
microsphere. The apparatus is shown in Fig. 2. The 
result of the measurement is an index ranging from 0 
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Fig. 1. Vibration response spectrum of a peach measured 
using a microphone 
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Fig. 2. Micro deformation based firmness sensor 

to 100 (the apparatus is calibrated with a máximum 
deformation related to an index valué of 100 rep-
resenting a firm surface). 

2.3. Impact response based sensor 

Determination of peach firmness has been widely 
applied based on impact response (Mohsenin,6 

Delwiche,7 Brusewitz8). The basic principies of this 
sensor are presented in Fig. 3. A non-destructive 
penetrometer using these principies has been de-
veloped (Ruiz9) to predict firmness. A 50 g steel 
sphere, instrumented with a miniature accelerometer, 
with a radius of curvature of 98 mm is dropped from a 
predetermined height depending on the fruit tested 
(4 cm, for peaches) onto the cheek of the fruit. The 
deceleration of the impactor during contact is 
measured versus time. The máximum deceleration 
corresponds to the point of máximum deformation. 
From the original response curve of deceleration 
versus time, four other parameters can also be ex­
tracted, namely, máximum deformation during im­
pact, duration of impact, absorbed energy during 
impact and elastic modulus (máximum 
force/maximum deformation). The user of the sensor 
can select and extract the needed parameters. For 
peaches, the máximum forcé is the primary impact 
response parameter of interest. 

2.4. Destructive sensors 

Two different destructive sensors are used: a 
Magness-Taylor, which measures the máximum forcé, 
i.e. firmness, and an Instron-type machine, which 
measures forcé versus deformation, i.e. stiffness. The 
Magness-Taylor sensor consists of a plunger (23 mm 
length) attached to a calibrated spring scale which is 
graduated in kg. The 8 mm diameter round tip of the 
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Fig. 3. Impact based firmness sensor 

sensors provide a local assessment. One of the aims of 
this paper is to take advantage of this complemen-
tarity, and to combine these two types of measure-
ments (local and global) to improve the firmness 
assessment. 

3. Sensor comparison techniques and sensor fusión 

3.1. Measures of agreement between sensors 

Before performing sensor fusión, it is important to 
check whether or not the sensors provide the same 
information. When the sensors are supposed to mea-
sure different properties from a sample, the sensors 
are complementary. In the opposite case, some of the 
sensors may be redundant, and the failure of one can 
be tolerated. Since three different sensors are used, it 
is interesting to compare the measurement of each 
individual sensor (variable x{) with the measurements 
given by the destructive sensors (variable y). The 
literature provides some measures of association 
among variables in order to characterize the relation-
ship with some numerical similarity measurements. 

3.1.1. Box-plot 
The box-plot (Tukey10) is a graphical display that 

allows visual presentation of information extracted 
about properties (mean, variability and symmetry) of 
a set of data. This plot cannot be used for direct visual 
comparison of the means when the variables do not 
have the same unit, but it is still helpful for comparing 
variability and symmetry using reduced variables such 

plunger is pressed with increasing forcé into the fruit 
to a depth of 8 mm, marked on the plunger. The 
penetrating forcé is then read on the scale. The 
Instron-type machine also uses a 8mm steel plunger 
which is pressed into the fruit at a rate of 0-3 mm/s 
and the resulting force-deformation curve is recorded. 
The resulting curve displays a straight portion, for 
which forcé increases with deformation until the yield 
point is reached at which point the plunger breaks the 
skin and a sudden decrease in forcé is observed. The 
slope of the straight portion is recorded as a measure 
of stiffness. These two destructive methods are used 
in order to provide reference measurements. 

These sensors provide information on the firmness 
of a small part of the fruit. However, the sound-based 
sensor provides a global assessment concerning firm­
ness, while the impact and micro-deformation based 
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Fig. 4. Box and whisker plot 



1 = 
as xí = xjm, where m = -2í=í*i and n is the sample 

n 
number. Fig. 4 shows an example of a box-plot 
diagram. This plot endoses the interquartile range of 
the reduced data in a box that has the median display 
within. The interquartile range has as its extremes the 
75th percentile (upper quartile) and the 25th percen­
tile (lower quartile). In addition, "whiskers" extend, 
showing extreme observations in the sample. The y 
axis does not provide any information, it is just the 
way the box-plot is usually sketched. 

3.1.2. Correlation coefficient 
The correlation coefficient measures the strength of 

a linear relationship between two variables. However 
the nature of the relationship is not known from the 
correlation coefficient itself, but some tests can be 
made to find this relationship. As a first step, the test 
for linearity of regression between x¡ and y can be 
made, and a confidence interval (90%) can be comp-
uted for the correlation coefficient. The correlation 
coefficient provides a means of checking whether 
there is redundancy or complementarity between two 
sensors. Let pAS be the correlation coefficient comp-
uted between the data measured with sensor A and 
the data measured with sensor B. Similarly, let pAC be 
the correlation coefficient computed between the data 
measured with sensor A and the data measured with 
sensor C. If the confidence interval of the correlation 
coefficient pAS overlaps the confidence interval of the 
correlation coefficient pAC, then sensors B and C are 
said to be redundant with respect to sensor A, 
otherwise they are complementary. 

The two previous Índices are calculated based on 
the raw data provided by each sensor. However, 
when the sensors provide a classification, it is 
necessary to use other Índices to measure the 
agreement between sensors. In this case, the results 
for these índices are dependent on the classification 

process. This will be developed in the following 
sections. 

3.1.3. x2 valúes 
Table 1 shows results of comparing the classification 

provided by a non-destructive sensor and the classi­
fication provided by a destructive sensor, where n is 
the number of samples used during the experiment, q 
is the number of classes, ni+ is the summation of the 
number of fruits on line i, and n+j is the summation 
of the number of fruits on column ;'. Based on Table 1, 
a x2 valué can be computed as defined in Eqn (1). 

*2 = SS 
ni+n +j 

n 
W i + n + j 

n 

(1) 

When the classification of the two sensors totally 
agree, Table 1 results in a diagonal matrix, and ny 

equals zero when i is different from/. In that case, and 
by using Eqn (1), it can be shown that the valué of x2 

is equal to n(q -1). For each non-destructive sensor, 
a x2 valué can be computed and all the valúes are then 
sorted: the largest x2 valué should indícate the non-
destructive sensor that is most closely related to the 
destructive sensor. 

3.1.4. Coefficient of contingency 
The coefficient of contingency C (Maung11) can be 

computed as described in Eqn (2), where n is the 
sample number and q the class number. 

C = X 
n(q -1) 

(2) 

It can be shown that the valué of C belongs to the 
interval [0,1], and C = 1 when the classification results 
in a diagonal matrix because #2 = (g - l)n as derived 
in the previous section. The coefficient C should 

Table 1 
Two-sensor classification 

Classification made by the destructive sensor 

Class 1 Class 2 Class q Summation 

Classification made by a non 
destructive sensor 

Class 1 
Class 2 

Class q 
Summation 

« i i 

« 2 1 

« q l 

« + 1 

« 1 2 

« 2 2 

« q 2 

« + 2 

Pij 

« + i 

« l q 

« 2 q 

« q q 

« + q 

« 1 + 

« 2 + 

« i + 

« q + 

n 

«¡j = number of fruits classified into class i by the non-destructive sensor while they are 
classified into class ;' by the destructive sensors. 



provide a measure of association between the classi­
ñcation made by the sensors. However, some authors 
(Goodman and Kruskal12) have pinpointed the major 
problem, that is to say, the difficulty in the inter-
pretability of C. Alternative measures have been 
proposed based on the ranking process and on optimal 
class prediction. 

in Eqn (7). The similarity index is especially ap-
propriated for independent sensors performing iden-
tity declarations. For complete agreement of the two 
sensors, 91 = K = 1, and 92 = 0. 

0i = S PÜ (5) 

3.1.5. Similarity index 
Cohén13 proposed a similarity index for two sensors 

A and B which independently classifies items into one 
of q mutually exclusive categories. This similarity 
measure is computed with the probabilities p^ that 
sensor A classifies an object into category i while 
sensor B classifies the same object into category j 
(Table 2). The probability that sensor A will classify 
the observations into category i regardless of sensor's 
B classification of the observations into the categories, 
is then given by Eqn (3). Similarly, the probability 
that sensor B will classify the observations into 
category i regardless of sensor's A classification of the 
observations into the categories, is given by Eqn (4). 

02 = E(A+)(P+O 

+ = É Pn 
; = i 

i 

n = E Pji 

(3) 

(4) 

The proportion of cases where the sensors agree is 
defined as 8t in Eqn (5). These are two reasons for 
which the sensors can agree on the classification. The 
first one is chance, and the proportion of cases where 
the sensors agree purely by chance is defined as 92 in 
Eqn (6). The second one is the ability of the two 
sensors to provide the same classification because they 
measure the same property. This reason can be named 
"determinism" because it is the way the sensors were 
built or used for this purpose. 8t - 92 is then the 
proportion of cases where the two sensors agree by 
determinism, and the similarity index is defined as K 

K = 
01 02 

1 - 0 7 

(6) 

(7) 

01 and 62 are calculated based on the probabilities p{i. 
Probabilities pi} are in general unknown, and are often 
replaced by estimated or observed valúes as in Eqn 
(8). 

(8) Pü= 
n 

3.2. Review of sensor fusión techniques 

Multisensor fusión is an evolving technology con­
cerned with the problem of how to combine data from 
múltiple sensors in order to make inferences about a 
physical event, activity, or situation (Hall and 
Nauda14). The ultimate objective of multisensor fusión 
is to find a combined declaration based on two (or 
more) sensors. The approach relies on the hypothesis 
that fusión of signáis from several sensors (similar or 
disparate sensors) will give better results than the 
signal from one single sensor (Holmbom et a/.15). 

Data fusión is composed of three different cate­
gories, i.e. techniques for positional fusión, methods 
for identity fusión and ancillary support algorithms, 

Table 2 
Two-sensor classification of probabilities 

Classification made by sensor B 

Class 1 Class 2 • • • Class q Summation 

Classification made by 
sensor A 

Class 1 
Class 2 

Class q 
Summation 

Pu 
Pll 

jPql 

P+l 

Pll 

Pll 

Pql 

P+l 

Pü 

P+, 

jPlq 

Pl^ 

Pll 

P+q 

Pl + 
Pl+ 

Pi+ 

Pq + 

P + + 

PÍJ = probability that sensor A classifies an object into category i while sensor B 
classifies the same object into category ;'. 



i.e. data pre-processing techniques. The first category 
has been mostly applied to military situations (target 
tracking), and the third category to data alignment 
and pre-processing techniques. Since pre-processing 
techniques have already been developed for each 
individual sensor, this paper will focus on the applica-
tion of the identity fusión techniques. Fusión of 
identity declarations can be done at different levéis: a 
raw data-level (i.e. frequency spectrum), a feature 
level (i.e. stiffness factor), a decision-level (i.e. the 
fruit firmness prediction) or a combination of the 
three previous methods. 

3.3. Fusión identity declaration 

Since feature-level extraction has already been de­
veloped for each individual sensor, the decision-level 
fusión was applied to the identity declaration level of 
each individual sensor (Fig. 5). Statistical classification 
includes the Bayes minimum risk classifier (Tou and 
González16). This classifier was applied to each non-
destructive sensor for the firmness evaluation, and for 
separating the peaches into the three categories com-
monly used by the growers and called firm, soft and 
half firm. 

Decisión level fusión seeks to process identity 
declarations from múltiple sensors to achieve a joint 
declaration of identity. Techniques for decision-level 
fusión have been described (Hall17) and include (1) 
classical inference, (2) Bayesian inference, (3) 

Dempster-Shafer (D-S) method, (4) generalized evi-
dence processing (GEP) theory and (5) heuristic 
methods. 

The performance of various identity fusión tech­
niques has not been studied in a systematic way. 
Several authors have performed comparisons under 
limited circumstances (Abdulghafour and Abidi18). 
Unfortunately, numerical comparisons of D-S, GEP 
and Bayesian techniques are very limited and more 
research needs to be performed in this área to assess 
the comparative inference accuracy for these alterna-
tive techniques. Therefore, heuristic methods were 
used in order to treat the identity fusión problem as if 
a group of humans were faced with a decisión 
problem. 

Applicable heuristic methods of identity data fusión 
include voting methods, scoring models, ordinal rank-
ing techniques, Q-sort methods and pairwise ranking. 
Voting methods address the identity fusión problem 
by a democratic process. The decisions from N sensors 
are simply counted as votes with a majority or 
plurality decisión rule. The decisión process can be 
refined by giving a weighting for the specific advan-
tages of each individual sensor. A "confidence" factor 
Cy can be defined for sensor / relative to the classifica­
tion of the samples into class j . For example, if sensor 
/ is known to be efficient for some classification 
aspects (no errors are made by this sensor when a 
sample is classified into class j), c{j = 1. These 
coefficients can be defined based on the a priori 
knowledge of the performance of each individual 
sensor. If c{j = 1, the sample is classified into class j 
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and no voting method is applied. Otherwise, a major-
ity voting method is applied. 

4. Experimental procedures and data acquisition 

4.1. Experimental procedures 

Three different varieties of peach (Early Red 
Haven, 95 samples; Royal Glory, 69 samples; and 
Pavie, 39 samples) representing a total of 203 fruits 
were collected in early July 1993 from a grower 
located in the Rhone Valley (France). These different 
varieties present different levéis of firmness: the va-
riety "Pavie" is generally firmer than the variety 
"Royal Glory", which is firmer than the variety of 
"Early Red Haven". 

This a priori knowledge was used in order to build 
the Bayesian classifier. A priori probabilities were set 
as indicated in Table 3. These valúes were chosen 
based on the knowledge of the properties of each 
variety, and the ratios were then arbitrarily chosen 
with the help of an expert in plant physiology in order 
to take into account this knowledge. 

The samples were collected at different harvesting 
dates. Each sample was processed successively 
through the three individual sensors for non-
destructive measurements in the following order: 
sound-based sensor, micro-deformation based sensor, 
and impact based sensor. Destructive measurements 
were then made with the destructive sensors, i.e. 
Magness-Taylor and an Instron-type machine. 

Among the 203 samples, about one third were used 
to build the Bayes classifier, and the other two thirds 
were used to test the classifier. For the manual 
penetrometer and the impact sensor, to measurements 
were made on each peach: the first one on the 
"greenest" part of the peach, the second one on the 
opposite part. For the micro-deformation sensor, 
three measurements were made on each side of the 
fruit, and for the sound sensor, three measurements 
were made on each fruit. For the Instron-type 
machine, one measurement was made. Data were 
then averaged for each sensor, and the average of the 

Table 3 
A priori probabilities versus peach variety 

Quality 1 Variety 

Early Red Haven 
Royal Glory 
Pavie 

Soft 

0-33 
0-3 
0-25 

Half-firm 

0-33 
0-3 
0-25 

Firm 

0-33 
0-4 
0-5 

measurements was supposed to represent peach firm­
ness as a whole. 

4.2. Refererice measurements 

The destructive measurements were used as re-
ferences, and were classified using an iterative par-
titioning method (centre mobile algorithms, 
Anderberg19). Data were classified into three classes, 
corresponding to the three classes "soft", "firm" and 
"half firm". The algorithm was applied once to the 
data, and repeated 20 times (Roux20). Different classi-
fications are obtained because the algorithm is 
initialized with a random process, i.e. the three initial 
cluster centres are randomly initialized. Samples be-
longing 20 times to the same class are allocated to this 
class. This leads to the three classes "firm", "soft", 
"half firm". Other samples that do not belong to 
these classes are classified into two fuzzy classes: "half 
firm or soft" for the samples that belong sometimes to 
the "soft" or sometimes to the "half-firm" class, and 
"half firm or firm" for the samples that belong 
sometimes to the "firm" or sometimes the "half-firm" 
class. This process resulted in five classes. 

4.3. Sensor data 

Data were acquired from each individual sensor. 
The type of output valúes are presented in Table 4. 

5. Resulte and discussion 

5.1. Sensor similarities based on raw data 

5.1.1. Box-plot 
Fig. 6 is a presentation of the various box-plot 

diagrams made with the 203 fruits. There is greater 
similarity between Fig. 6(d) and (c) than between Fig. 
6(d) and (a) or (b). This suggests that the micro-
deformation sensor shows the greatest similarity to the 
reference (Magness-Taylor sensor). However, the 
median valúes of these two diagrams are different. 
The width of Fig. 6 (a) is small because the standard 
deviation of the measurements provided by the 
impact sensor is 0-24, which is relatively low compared 
with the standard deviation of the other sensors (0-43 
for the sound sensor, 0-70 for the micro-deformation 
sensor and 0-69 for the Magness-Taylor sensor). 



Table 4 
Data acquisition structure 

Sensor type Sensors 

Sound 
Non-destructive Impact 

Micro deformation 
Destructive Magness-Taylor 

Instron 

5.1.2. Correlation coefficients between the non-
destructive and destructive sensors 

Table 5 shows the correlation coefficient valúes and 
their confidence intervals. For a linear regression 
model between non-destructive and destructive 
measurements, the confidence intervals of the correla­
tion coefficients from sensor "impact" and "mic­
rodeformation" do overlap. In other words, the perc-
entage of variation in the firmness measurements do 
not change significantly (at a 90% level) from sensor 
"impact" to sensor "micro-deformation" for a linear 
relationship. This tends to prove that the sensors 
based on impact and microdeformation are redundant, 
since the sensor based on sound is complementary. 
The correlation coefficient found for the sensor 
"sound" is somewhat different from the other, which 
is an expected result. As stated in Section 2.4, the 
destructive sensors and the impact and microdefor­
mation based sensors provide a local assessment of 
firmness, since the sound based sensor provides a 
global assessment of firmness. 

Table 5 shows also that there is a better correlation 
between the different non-destructive sensors than 
between the destructive sensors as a reference. 

5.2. Sensor fusión 

5.2.1. Unsupervised classification based on destructive 
sensors 

The result for unsupervised classification based on 
the Magness-Taylor and Instron-type sensors is pre-
sented in Table 6. The decisión boundaries used by 
experts for classification of peach firmness are pre-
sented in Table 7. The boundaries listed in Table 7 
are quite similar to the ones provided by the 
unsupervised classification, because the mean valúes 
of the two fuzzy classes "half-firm or soft" and 
"half-firm or firm" are more or less similar to the 
limits used by the expert. Unsupervised classification 
is not only a confirmation of the experts classification, 
but it also allows classes to be defined without firm 
limits. These fuzzy classes allow inclusión of samples 

Features Units 

Stiffness factor g2'3 s~2 

Máximum forcé N 
Firmness Índex % 

Máximum pressure kg/0-5 cm2 

Slope kg/mm 

for which it is not easy to determine the correct 
classification between "half firm" and "firm" or "half 
firm" and "soft". 

Table 8 describes the number of fruits used to build 
the Bayes classifier for each class. The fruits allocated 
to the fuzzy classes were the results of the centre 
mobile algorithms described in Section 4.2. The other 
fruits were randomly put into the training and into the 
test set, so that in total, one third of the fruits are in 
the training set, and two thirds are in the test set. 
Samples from the fuzzy classes were not used in the 
training set because there is a high level of uncertainty 
concerning their belonging to one class. However, 
these samples were used in the test set, and were 
considered as samples belonging to the contiguous 
classes. 

5.2.2. Supervised classification for the non-destructive 
sensors 

Tables 9 to 11 present the number of fruits resulting 
from the classification of the different non-destructive 
sensors with a Bayes classifier. The performance of 
the classification is evaluated by computing the num­
ber of errors. As a general rule, an error occurs when 
the assigned class provided by the non-destructive 
sensor is different from the class assigned by the 
destructive sensors. However, this rule is not applied 
for the fuzzy classes ("soft or half-firm" and "half-firm 
or firm"), because a sample that belongs to a fuzzy 
class can be assigned to either one class or the other 
by the non-destructive sensor. For example, a sample 
assigned to the fuzzy class "soft or half-firm" by the 
destructive sensors can be assigned by the non-
destructive sensor to the class "soft" or the class 
"half-firm" without considering this as an error. But, 
if the destructive sensor assigns the sample to the class 
"firm", it is an error. The percentage error is then 
defined as the total number of errors divided by the 
total number of samples. It can be seen from these 
tables that the impact sensor does not provide any 
classification errors for classes "soft" and "firm", and 
the micro-deformation sensor does not provide any 
classification errors for the class "firm". 
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Fig. 6. Box-plots for the different sensors. (a) Impact; 
(b) sound; (c) microdeformation; (d) destructive sensor 

(Magness - Taylo r) 

5.2.3. Fusión classification 
Based on the symbols defined in Section 3.3, the 

decisión at the fusión level was made with the 
following rules. 

(1) From Table 10, it can be stated that the impact 
based sensor is efficient for classifying soft and firm 
fruits, therefore the confidence factors for the impact 

cimpactfirm = 1. Similarly, from Table 11, it can be 
stated that the micro-deformation based sensor is 
efficient for classifying firm fruits, therefore the con­
fidence factors for this sensor is chosen to be 
Cmicrodeformation,firm = l. There is of course a possibility 
of conflict between sensor "impact" and sensor 
"microdeformation". This case of conflict is solved by 
rule number 2. 

(2) When the confidence factor is not equal to 1, or 
when a conflict is detected, a majority voting method 
is applied. 

Results of fusión classification are presented in 
Table 12. These results are obtained with a Bayesian 
classifier associated with each individual sensor, and 
the fusión classification method described in the 
previous paragraph. For example, a fruit can be 
classified as soft by the Bayesian classifier associated 
with the micro-deformation based sensor, as firm by 
the Bayesian classifier associated with the impact 
based sensor, and as soft by the Bayesian classifier 
associated with the sound based sensor. Since 
£impact,soft J- <mci Cmicrodeformation,firm i, mere is a con­
flict between the two sensors "impact" and "micro-
deformation". Then the majority voting method is 
applied: two sensors classify the fruit as "soft", which 
is the decisión of the fusión process. Results of Table 
12 have to be compared with the classification given 
by each individual sensor. The fusión process slightly 
decreases the classification error rate (from 19% down 
to 14%). It is important to realise that the error rate 
could not be less than 8% with this fusión method 
because all the sensors disagree in the same way for 10 
out of the 129 samples. In other words, the classifica­
tion of the samples into class "half-firm", when they 
actually belong to class "soft" or "firm", could not be 
improved because the three sensors classified these 
samples in the class "half-firm". 

One must try to explain the error rate of the fusión 
classification. First of all, only one feature (maximal 
forcé) was used from the impact sensor. The other 
features (máximum deformation, duration of impact, 
absorbed energy and elastic modulus (máximum 
force/maximum deformation) could have been used 
for this sensor. Secondly, it must be called that a few 
measurements were made for each fruit, and these 
data were then averaged. This can be a source of error 
for the classification, because averaging leads to a loss 
of information. Data could have been processed by 
using the two measurements made on each side of the 
peach, but this does not match the industrial objective 
of the non-destructive sensor, that is to say to provide 
a firmness assessment on the fruit as a whole, and not 
locally on a part of it. 



Table 5 
Correlation coeükients and 90% confidence intervals between the sensors 

Micro-deformation 
Impact 
Sound 
Magness-Taylor 

Impact Sound Magness-Taylor 

0-93 
1 

0-82 
0-86 
0 

0-88 [0-85-0-91] 
0-84 [0-80-0-87] 
0-67 [0-59-0-73] 

1 

Instron 

0-80 [0-76-0-84] 
0-79 [0-75-0-83] 
0-64 [0-54-0-74] 
0-88 [0-85-0-91] 

A source of error could also come from the 
destructive reference measurements. When all-non-
destructive sensors agree, they may be right and the 
destructive measurement may be suspect, as has 
already been mentioned in Section 5.1.2. 

Another source of error can be the small size of the 
training set (24 samples for the class "half firm" and 
16 for the class "firm"). However, since unsupervised 
classification was used to build the classes based on 
destructive measurements, it is rather difficult to 
forecast in the experimental design how many samples 
will be used in the training set. Using supervised 
classification could be a way of avoiding this problem, 
but would remove all the advantages of unsupervised 
classification, i.e. the use of fuzzy classes. 

It has been shown in Section 5.1.2 that the impact 
sensor is redundant with the microdeformation sensor 
when both are compared with the Magness-Taylor 
sensor. Table 13 describes the results when one of the 
sensors is removed from the fusión process. It should 
be pointed out that the voting method is not ap-
plicable when only two sensors are used. In that case, 
the decisión is made by choosing the sensor for which 
the risk provided by its minimum risk classifier is 
smaller than the risk provided by the minimum risk 
classifier of the other sensor. 

Table 13 shows that combining the sound sensor 
with the impact or the microdeformation sensor does 

not change the classification error rate. However, 
combining the impact and the microdeformation sen­
sors without the sound sensor provides a classification 
error rate which is slightly higher than the one 
provided by the fusión system with the three sensors. 
In order to obtain the best results, the three sensors 
should be included in the fusión process. 

5.3. Sensor fusión evaluation 

5.3.1. XLtest 
Fig. 7 shows the different computed valúes of x2 for 

each classification sensor. These valúes were comp­
uted based on the results of the classification of each 
sensor (Tables 8 to 10), and based on the result of the 
fusión sensor classification (Table 11). Fig. 7 shows 
that the fusión process provides the highest score, i.e. 
the fusión process does improve the classification 
process. 

5.3.2. Coefficient of contingency 
Fig. 8 shows the results of the computation of the C 

valúes for each sensor. These valúes are computed 
based on the x2 valúes from Fig. 8. First of all, the corre­
lation coefficient for the fusión process is larger than 
any other coefficient. It tends to prove that the fusión 
process was efficient in improving the classification. 

Table 6 

Results for unsupervised classification based on destructive measurements 

Mean 
Standard deviation 
Máximum 
Minimum 

Mean 
Standard deviation 
Máximum 
Minimum 

Firmness 
classes 

Number of fruits 

Magness-Taylor 
kg/0-5 orí 

Instron 
kg/mm 

Soft 

90 

0-94 
0-52 
2-25 
0-25 

0-24 
0-11 
0-56 
0-06 

Half-firm 
or soft 

8 

2-53 
0-08 
2-65 
2-40 

0-44 
0-11 
0-62 
0-03 

Half-firm 

46 

3-92 
0-59 
4-75 
2-80 

0-68 
0-28 
1-48 
0-05 

Half-firm 
or firm 

22 

5-00 
0-14 
5-20 
4-75 

0-96 
0-27 
1-51 
0-09 

Firm 

37 

5-96 
0-45 
6-80 
5-30 

1-12 
0-23 
1-65 
0-43 



Table 7 
Firmness classes used by experts 

Quality 

Magness-Taylor 

Soft 

<2 

Half-firm 

2-5 

Firm 

>5 

Firmness measured with a manual penetrometer, peak 
pressure, kg/0-5 cm2. 

Table 8 
Number of samples used for the classification 

Quality Soft Half-firm Firm Total 

Training set 34 24 16 74 
Testset 56 + 8* 22 + 8 + 22* 21+22* 129 
Total 90 + 8* 46+ 8*+22* 37 + 22* 203 

Samples belonging to the fuzzy classes 

However, it must be emphasized that this correlation 
coefficient is dependant on the architecture of the 
fusión process. Choosing another architecture would 
have led to another valué for the coefficient. From the 
C valué, it is possible to say that there is a higher 
association with the fusión process than any other 
sensors, but the remark about difficulty of interpreta-
tion made at the end of Section 4.1 adds caution to 
this statement. However, it can be seen that the order 
of the C coefficients confirms the classification of 
sensors that was found with the correlation coefficient. 

5.3.3. Similarity index between destructive and non-
destructive sensors 

The valúes of the similarity index are presented in 
Table 14. This table provides confirmation of what 
has already been found by using the %2 test and the 
coefficient of contingency. In other words, the order of 
the similarity index with respect to the different 
non-destructive sensor is the same as the order of the 
X2 valúes and the order of the coefficient of contin­
gency. However, by using the coefficient of contin­
gency, we have additional information concerning the 
proportion of cases in which the non-destructive 
sensors non-randomly agree with the destructive sen­
sors. This proportion is around 36% for each sensor. 

5.4. Discussion 

The box-plot provides some graphical interpretation 
of the data, but this interpretation remains rather 
subjective. Correlation coefficients enable a check to 

Table 9 
Classification for sound based sensor 

Destructive sensor 

Soft or Half-firm 
Soft half-firm Half-firm or firm Firm 

Non-destructive sensor 
Soft 42 4 6 2 4 
Half-firm 13 3 16 11 9 
Firm 1 1 0 9 8 

Total error: 28%. 

Table 10 
Classification for impact based sensor (máximum forcé) 

Destructive sensor 

Soft or Half-firm 
Soft half-firm Half-firm or firm Firm 

Non-destructive sensor 
Soft 41 1 0 0 0 
Half-firm 15 7 22 16 16 
Firm 0 0 0 6 5 

Total error: 24%. 

Table 11 
Classification for micro-deformation based sensor 

Destructive sensor 

Soft or Half-firm 
Soft half-firm Half-firm or firm Firm 

Non-destructive sensor 
Soft 49 1 2 0 0 
Half-firm 7 7 20 12 15 
Firm 0 0 0 10 6 

Total error: 19%. 

Table 12 
Classification for the fusión process by using all non-
destructive sensors (Sound-based sensor, micro-deformation 

based sensor and impact based sensor) 

Destructive sensor 

Soft or Half-firm 
Soft half-firm Half-firm or firm Firm 

Soft 50 1 2 0 0 
Half-firm 6 6 20 9 9 
Firm 0 1 0 13 12 

Total error: 14%. 



Table 13 
Classification results by removing one of the sensors Q 

Sensor combination 

Sound and impact 
Sound and microdeformation 
Impact and microdeformation 

Error rate 

20% 
19% 
16% 

Fusión (164) 

100 J, 200 

Sound 
(90) 

Microdeformation 
(142) 

Impact 
(117) 

T 
Ideal valué 

(258) 

Fig. 7. %2 valúes for the different sensors 

be made on which sensors are redundant or com-
plementary, and produce some questions about the 
validity of the destructive sensor measurements. The 
correlation coefficient is the most interesting para-
meter before performing the fusión process. Though 
the error rate was still 14%, the chosen architecture 
for sensor fusión was reasonably successful with re-
gard to the industrial requirements. However, all the 
coefficients (x2 test, coefficient of contingency, simila-
rity index) show that the fusión process was more 
efficient than any individual sensor. The coefficient of 
contingency is interesting because it provides the 
performance of the fusión on a normalised scale. The 
similarity index is also interesting, since it provides 
information on the agreement of sensors only by 
chance. Therefore, these two coefficients are the more 
attractive for evaluation of the fusión process. 

The variety of the peaches appears to be an 
important factor in order to refine the classification 
during the classification at the decisión level, as it 
influences the probability of occurrence of the firm-
ness classes for each variety. A priori knowledge of 
the performance of each individual sensor turns out to 
be valuable information in the fusión process design. 

6. Conclusión 

In this paper a model was tested which offers the 
possibility of fusing different non-destructive firmness 
sensors. This model integrates the features extracted 
from each individual sensor, and associates them with 
a Bayesian classifier and a voting method that per-
forms a joint identity declaration of peaches among 

0-5 

Fusión (0-8) 

i 
t 

Sound 
(0-59) 

T Ideal valué 

Microdeformation 
(0-74) 

Impact 
(0-67) 

Fig. 8. Coefflcient of contingency (C) valúes for the different 
sensors 

three classes "soft", "half firm" and "firm". The three 
classes are provided by the mobile centre algorithms 
based on destructive sensors. 

Different tools (box-plot) or Índices (correlation 
coefficient, %2 test, coefficient of contingency, simila­
rity index) were described in order to assess whether 
the fusión process does or does not improve the 
classification. It was shown that the coefficient of 
contingency and the similarity index are the more 
attr active for evaluation of the fusión process, but it is 
important to note that all Índices led to the same 
conclusions, as there appears to be consistent results 
in the errors observed for firmness classification. 

Only one fusión technique (applied at the decisión 
level) was investigated in this study, and the fusión 
process provided some improvement in the classifica­
tion results. The error rate of the classification de-
creased to 14% for the fusión process, while it varied 
from 19 to 28% for the individual sensors. Moreover, 
all measures of agreement between sensors lead to the 
conclusión that fusing of sensors is better than using 
individual sensors. More developments are on the way 

Table 14 
Similarity index between sensors 

Similarity index Sound Impact Microdeformation Fusión 

Magness-Taylor 
0-72 
0-36 
0-56 

0-76 
0-37 
0-62 

0-81 
0-36 
0-71 

0-86 
0-35 
0-79 



for sensor fusión techniques applied to fruit quality 
assessment. Firmness prediction was the object of this 
paper, but fusión could also be performed on 
different kinds of sensors measuring, for example, 
sugar content, visual appearance, aromas and firm­
ness. Also a wider number of parameters for each 
sensor could be used. This will be the object of fu ture 
research. 
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