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We consider a wcll-known thermo-diffusive model for the propagation of a premixed, adiabatic 
flame front in the large-activation-cnergy limit. That model depends only on one 
nondimensional parameter /?, the reduced Lewis number. Near the pulsating instability limit, 
as ¡}]/¡i9 — 32/3, we obtaín an asymptotic model for the cvolution of a quasi-pianar flamc 
front, via a multi-scale analysis. The asymptotic model consists of two complex Ginzbürg-
Landau equations and a real Burgers equation, coupled by non-local terms. The model is used 
to analyse the nonlinear stabihty of the flame front. 

1 Introduction 

This paper deals with the stabihty of a uniformly propagating premixed, adiabatic, plañe 
flame front in two space dimensions. In the farge-activation-energy limit, the chemical 
reaction is confined to an infinitely thin reaction sheet (whose location must be detertnined) 
and the governing mathematical model is a free boundary problem. We shall use a well-
known thermo-diffusive model, first derived by Matkowsky & Sivashinsky (1979). After 
convenient nondimensionalizalion, the model is 

W¡dt = Ad if x<f{y,t), d=\ otherwise, (1.1) 

dS/dt = AS+0JO ir x + i/r(yj), (1.2) 

where for each / > 0, 8, S and Sx+0:i are continuóos across íhe curve x = ijr(y, t), while 

0x = -(\+^y*exp(S/2) at x-#(y,t) = 0-. (1.3) 

The boundary conditions are 

0 = 5 = 0 at ;c = - o o , | 5 | < c o at x = a o , [0\,\S\<cfj at y = ±ca. (1.4) 

Here A is the Laplacian operator, / is the time variable, x and y are the space variables, 6 
is the temperature and S is an enthalpy (i.e. a linear combinaíion of temperature and the 
concentration of the deficient reactant). The reaction sheet is located at x — i¡r(y, f) and, 
since 6X = 0 at x — ifr(y,t) = 0+ (see (1.1)), according to (1.3) the slope of the temperature 
profile jumps across the reaction sheet to account for the effect of the exothermic chemical 
reaction. The model depends only on one parameter, the reduced Lewis number /?. 

In addition to the jump conditions and the boundary conditions above, we need some 
additional assumptions on the behaviour of the dependent variables as >>-^+ <x>, in order 
to ensure the existence of some spatial averages that will appear in the course of the 
analysis. For the sake of clarity, we do not anticípate these additional assumptions, and 
they will be imposed when needed. 
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FIGURE 1. 

We shall analyse the nonlinear stability of the following solution of (1.1)-(1.4) 

fs{y,t) = -t\ ds(x,y,t) = e:xp{x+í), Ss(x,y,t) = -/3(x + t)exp(x + l) if x + f < 0 , 

ds(x,y,t)-l = Ss(x,y,t) = 0 if x + t^O; (1.5) 

this solution is stationary in an appropriately moving reference frame and corresponds to 
a uniformly propagating plañe fíame front. 

A word about nondimensionalization is now necessary. In (1.1)-(1.4) the space variables 
x and y are scaled with the characteristic length of the preheated zone, lH. A typical valué 
of/win practice is /„ = 3 mm. Since the cross-section of the burner is usually equal to, say, 
10 cm, it makes sense to consider (1.1)-(1.4) in — co < y <oo, as we shall do for the 
moment. 

The linear stability of the plañe solution (1.5) was first analysed by Sivashinsky (1977). 
When seeking solutions of (1.1)-(1.4) of the form 

8 — 6b. — Av-^x) exp (iiJí + iky), S—S,. = Av2(x)exp(cút + iky)A ,. „ 

i¡r — i¡fs = A exp (wt + iky), ) 

for smalí valúes of the constant A, the linear approximation is seen to have a non-trivial 
solution if 

¡3(kt-pÍ) = 2p_(p+-p.)\ (1.7) 

where p± = [l±(l+4k* + 4u))i\/2. 

By setting Re w = 0 in (1,7) and eliminating Im a>, we obtain the neutral stability curves 
(Sivashinsky diagram) that are sketched in his fig. 1. In particular, the solution (1.5) is 
linearly síable if — 2 s? (1 < /?„ = 32/3, and it is linearly unstable otherwise (we are ignoring 
the continuous spectrum of the linearized problem; it is expected to be in the left-hand side 
of the compiex plañe). 

A fairly complete and quite enlightening local nonlinear stability analysis near the lower 



instabiiity limit, /? = — 2, was first made by Sivashinsky (1979) (see also Michelson & 
Sivashinsky), who showed that the fíame exhibits a chaotic cellular behaviour at this limit. 
A similar analysis of the upper instabiiity limit is lacking in the lilerature, although some 
works have given partial results. Matkowsky & Olagunju (1980) analysed the restricted 
one-dimensional probiem near (} — 4(1 + \/3) (see fig. 1), and showed that a Hopf 
bifurcation occurs at this limit. Matkowsky & Olagunju (1982) also made a first analysis 
near /i = /?„> a n d found travelling and standing waves along the fíame sheet, with wave 
number k = kn; in addition, they performed a restricted linear stability analysis of those 
waves, and concluded that the travelling ones are stable while the standing ones are 
unstable. Travelling waves along the fíame sheet had been found experimentally in, e.g,, 
Markstein (1964), Ferguson & Keck (1979) and Sabathier et al. (1979). In a series of papers, 
Matkowsky et al. (1985, 1987, 1988) considered the restriction of (1.1M1-4) í o s t r i P s ( in 

two dimensíons) and to tubes (in three dirnensíons), and found a large varíety of secondary 
and tertiary bifurcatíons to quasiperiodic behaviour. Tfiese results suggest that as the 
transversal characteristic length of the tube grows the fíame could exhibit chaotic 
behaviour. We shall come back to this point later on. 

In the sequel, we shall analyse the local nonlinear stability of the solution (1.5) as /? j /? u . 
In order to choose the appropriate scalings, let us point out that as /?->/?„, the marginally 
stable modes of the linearized probiem are associated with a real eigenvalue <wL and with two 
pairs of complex conjúgate eigenvalues, OJ2, o)2, w3 and ¿53, such that 

o>í = -(\+f¡J2)ie+... as k^Q and /?^/J0, (1.8) 

(ljí = iQ + ibkf¡(k~k0)-c(k-kny + d(/3-fi0) + ... as k^ka and P^P„, (1.9) 

(<)3 = iQ — ibka(k + kf¡) — c(k + kf¡y + d(/3—fJ0)+... as k-¡* — k0 and /?->/?„, 

(1.10) 

where 
A = 32/3, k0~ 0.204, Í3 ~ 0.781, b ~ 6.72, c =¿ 1.68-¿2.09, d~ 0.106 + /0.054. 

(1.11) 

Now, if we define the small parameter e > 0 as 

from (1.9) (1.10) we see that the significan! modes in a nonlinear stability analysis are those 
corresponding to w2 with k—k0 ~ e, and to a>9, with k + k0 ~ e. This means that we must 
consider an additional 'slow' variable in the j-direction 

•>] = ey (1-12) 

and, consequently, two additional slow time variables, 

. T=et and T = e2t. (1.13) 

Observe that the intermedíate time scale T is associated with the purely oscillatory, non-
dispersive terms ibkü(k—k0) and — ibka(k + k0) of w2 and w3, In connection with the 
dependent variables, we assume that 

6 — d„~ S—S.. ~ e (1.14) 



because we expect cubic nonlinearities to appear in the equations giving the evolution of 
the complex amplitudes of the modes associated with w2 and a3, as occurs in Hopf 
bifurcation (see, e.g., Hassard et al. 1981). In fact, observe that if the mode associated with 
tü1 were absent, then we would encounter an ordinary Hopf bifurcation as e -> 0. Finally, 
we assume that 

?A-V/5~i. (1.15) 
This assumption is based on the fact that if the modes associated with Ü>2 and &>8 were 
absent, then the reaction sheet location i¡r would evolve according to the phase-diffusion 
equation i}rT = (1 +[SJ2)fm — ipyi (see Kuramoto 1984), where the slow variables T and T¡ 
are as defined abo ve (with t small). 

In §2 we shall use these scalings to obtain, via a multiscale analysis, a real Burgers 
equation giving the leading order of the reaction sheet location and a pair of complex 
Ginzburg-Landau equations giving the leading order of the complex amplitudes of two 
wavetrains that travel along the reaction sheet in opposite directions; the three equations, 
to be referred to as the amplitude equations in the sequel, are coupled by noniocal terms and 
give a first approximation of the nonlinear evolution of the ñame at the slowest time scale 
T ~ 1. The amplitude equations are somewhat similar to those obtained at the onset of the 
so-called oscillatory imtability that has been recently considered, in a systematic way, in the 
literature of pattern formation (see Fauve 1987; Hohenberg & Cross 1989; Newell 1989; 
and references given therein); the main differences are associated with the presence, in our 
case, of a third real amplitude (the reaction sheet location), and the fact that our analysis 
involves two time scales. We should mention also that a similar problem was considered by 
Booty et al. (1988, p. 529), who obtained also two complex Ginzburg-Landau equations, 
but without non-local terms; nevertheless, that model is not correct from an asymptotic 
point of view (it is intended to describe the slow evolution of the ñame on the slowest time 
scale, but it involves the intermediate lime scale explicitly). 

In §3 we shall use the asymptotic model to describe the nonlinear evolution of the ñame 
in transversely imite strips, of transverso length L, in two cases: (i) L P e"1; and (ii) 
L ~ e_1. The results of §3 indícate that the ñame exhibits travelling waves in case (i), and 
time-oscillatory behaviour in case (ii), and that no chaotic behaviour is to be expected as 
/?^-/?o in two dimensions. It seems that, in order to encounter chaos by analytical means, 
one must consider three-dimensional effeets, as will be commented on in §4. 

After completing this work and sending it for publication, in Septembcr 1990, we heard 
about a manuscript by Ktiobloch & De Luca (1990), who used perturbation techniques to 
obtain averaged Ginzburg-Landau equations (similar to those obtained in this paper) as 
the amplitude equations in the context of pattern formation. In their manuscript the third 
(Burgers type of) amplitude equation is absent because the authors analyse the nonlinear 
stability of a steady state (while we consider a quasi-planar travelling wavefront). The 
formal derivation in Knobloch & De Luca (1990) has been justified rigorously in Vega 
(1991). 

2 Asymptotic derivation of the amplitude equations 

In this section we derive a coupled system of three PDEs giving the evolution, on the 
slowest time scale (e2 í = T ~ 1), of those modes that are near-marginal at the onset of 
ínstabiiity (i.e. the modes associated with the eígenvaiues CD1, W3 and w3, see (1.8)-(1.10)). 



The derivation wiU be made according to thc following mulü-scale scheme. First, the 
solution of (1.1)—(1.4) will be expanded in powers of the small parameter 

Then, at each order é, we shall apply the appropriate solvability conditions. As usual, these 
conditions are obíained by eliminating secular terms (that is, by requiring the dependent 
variables to be bounded) on the fast time scale, as í-s-ao, and aiso on the intermedíate time 
scale, as T-^oo. By imposing these conditions we shan obtam, at the order e3, a tirst 
approximation of the nonlinear evohition of the dependent variables on the slowest time 
scale T ~ 1. 

For convenience, we first rewrite the problem in a reference Trame attached to the 
reaclion sheet, by using the new spatial variables £j = x—i¡r(y,t) and y. In addition, we 
introduce the new slow time and space variables T = et,r = e2t and ij — ey, as suggcstcd by 
the scaling analysis in §1. Then (l.l)-(í.4) is written in the form 

= e{UT-fT Us-2Dty» f, Vu~fy, U€-f, U&-fv ^ + ¿t,)] 

+ <?[Ur-fTUí-IKP,üs-fnUÉ-2#,U6l+Unj\ if ¿4=0 (2.1) 

[t/] = 0; D[Uí] + (l+fl + 2^^,l + ¿i^l)-icxp(u2/2)S = 0 at g = 0 (2.2) 

U=Ú at £ = —co, «L = 0 if £ ^ 0 , H 2 < C O at £ = co, (2.3) 

where we use, as in the sequel, the vectorial notation 

and the brackets denote the jump across the reaction sheet 

[U] = (U\=íi+-(U\=0-. 

Also, as suggested by the scaling analysis in §1, we have U— Us = 0{é) and ijr — ijr,. — 
0{\), where U¡ and i¡rs are given by 

C/' = ( - 1
/ ? g ) e x p ( S ) i f í < 0 ' ^ = (0) ' f í > 0 ' *• = -*> 

and correspond to the uniformly propagating plañe flame front. Observe that since Us and 
the diffusion matrix depend on /? = /?0 + 6's, we have 

1 0\ JO 0\ 

Then we seek the expansions 

U&y, V, t, T, r) = U0(Q + é U2(Q + S e* Uu> (£,y, •>), t, T, r), (2.4) 
1-1 

fiy, TI, t, T, T) = flt) + 0<m
 (T?, T, T) + 2 ¿ <P (j>, 7, í, r , r), (2.5) 

where the fact that $m depends only on the slow variables may be seen as a consequence 
of eliminating secular terms at the order e°, on the time scale í ~ 1. When the expansions 



(2.4)-(2.5) are inserted in (2.1)-(2.3) we get a sequence of recursive linear problems of the 
form 

~U?^Uf+D¿Ug+W£) + f? 11^-^0^ = F™ if É + 0, (2.6) 

[tfw] = 0, 2)0[C^>]+{l/2)«««r=/« (2.7) 

E/cí> = 0 a t g = - o o , < = 0 if £ ^ 0 , uf <ao at g = oo, (2.8) 

where U'u = dt^/df and C/0 is given in the Appendix (equation (A. 1)). 
By eliminating secular terms in the time scale / ~ 1 at each order é we readily obíain the 

following (three) soívability conditions 

f 
Jo 

lo(FU\f»)dtdy = 0, (2.9) 
o 

•27T/Q f2w/lc0 

hiF^J^) e x p { _ iQt qr_ iKy) dtdy = 0j (2.io) 
o Jo 

where the linear operators /0 and lx are defined in the Appendix (equations (A 2)-(A 3)). 
At order e, we have Fm = <pf U'0,f

m = 0. Then the soívability conditions (2.9)-(2.10) 
yield 

0«? = O i.e. fi* = $m (v,r). (2.11) 

Consequenüy, the systetn (2.6)-(2.8) is homogeneous at order e, and Um and \¡ra) may be 
written as 

r/d) = wm(r¡, T, T) F(g) exp («2r+ ¿fc0 y) + Z (1) (7, T,r) V(Q exp (a3í-ffc0^) + c.c, 
(2.12) 

f (1> = íl(1) (Í;, T, T) + [ W(1> (v, T, T) exp (¿Qr+ /fc0jO + Z(1> (??, T, T) exp (iüt-ik,y) + c e ] , 
(2.13) 

where c.c. stands for the complex conjúgate, and the eigenfunction V is given in the 
Appendix (equation (A 5)). Observe that the eigenfunction U'0 (associated with the 
eigenvalue w = 0) does not appear in (2.12) because the problems (2.6)~(2.8) are not 
invariant under £-translations (due to the fact that we have attached the axis £ = 0 to the 
reaction sheet). Also, notice that in (2.12-2.13), Um and^(1> — <fim aresuperpositionsoftwo 
transverse wave-trains, of complex amplitudes Wa) and Xn\ travelling along the fíame 
front (in the time scale t ~ 1) in opposite directions. Our final purpose in this section is to 
obtain three equations giving the evolution on the slowest time scale T ~ 1 of the amphtudes 
<¡>m (the Icading order of the reaction sheet location), Wa) and Xa\ These equations will 
be called the ampíitude equations. 

At order ea, the right-hand sides of the equation (2.6) and the jump condiüon (2,7), F<2Í 

and f(í) — (_/53',./^2,)T
5 are given in the Appendix (see equations (A 6)-(A 8)). Then, by 

applying the three soivability conditions (2.9)-(2.10), on the time scale ( ~ 1, we get the 
foliowing equations on the time scale T ~ 1 

W™-k0bWf + ik0 Wm#/» = 0, (2.14) 

A™ + k, bX^ - ik0 X
(1> <¿<°> = 0, (2.15) 

<!>?> +<¡>f = (1 + fia/2)$™-\ms/2 + el(iW<1>\* + \X<1>\*), (2-16) 



where the constan ts b and e1 are given in (1.11) and in the Appendix (see (A 9)). No tice that 
the coefncient of <j>^ in (2.16) coincides with that of — k2 in (1.8), as was to be expected. 

Now the equations (2.14)—(2.15) are readily integrated on the intermedíate time scale 
T "•' 1 LO obtain (notice that T is constant on this time scale) 

wm (7> r > T) = y<i) (^ T) e x p (^(0) (Vf Tyby. xv> (^ Tj T) = Zm ^ T) e x p ^ o » ^ Ty¡^ 

(2.17) 

where the ñinctions K(1) and Zm are arbitrar}? funcíions (at this order) and 

•>j = i} + k0bT, and y = v-k0bT. (2.18) 

Observe that the solutions (2.17) contain no secular terms in the intermedíate time scale. 
Notice also that the moduli of the amplitudes Wm and Xm are travelling at constant speed 
(in the intermedíale time scale) in opposite directions. 

In order to intégrate the equation (2.16) on the intermedíate time scale observe that, 
according to (2.11) and (2.17), it may be written as 

<f>™ = G1(7i,T) + Gi{v + kilbT,T) + G,¡(7i-k0bT,T) (2.19) 

where G l s - ^ + ( 1 + ^ / 2 ) 0 < » - | ^ f / 2 , G ^ e ^ f , G^e^Z^f. 

Then (recall that T is a constant in this time scale) 

4>m {V, T, T) = 0<» (Vi 0, T) + TGfy, T) + f [G.¿(V + k0 bf, T) + Gt{if-knbf, T)] df, 
Jo 

and by imposing that <̂ (1) remains bounded as T~>CQ we get 

r ~ ~ 
G ^ . ^ + I i m r - 1 [Gi(i/ + kvbT¡T) + Gz(?i-kabT,T)]dT=0 as T^oo. 

Notice that the limit appearing above is independen! of i\ (when it exists). This condition 
readily yields the following equaíion for the evolution of <f>m on the slowest time scale 

<S?» = (1 +PJ2) «S«> -\ff>\*/2 + eM\ Y(1> I2 >+ + <[Z<" |2 >"), (2.20) 

where the spatial averages < - >+ and ( • ) " are defined by 

</!>*-l i rní íT 1 /i( + z,r)dz] as a^oo, (2.21) 

with h standing for |7 (1 )¡2 = \Ym\\%r) or | Z ° f = \Za)\%n,r). In the sequel we shall 
assume that the initial conditions of (1.1)-(1.4) are such that the averages appearing in 
(2.20) exist (this is tme, in particular, if ¡y(1)|2 and ¡Z(1)|2 are either periodic or quasi-
periodic in their dependence on the spatial variables, or if they converge as -»/^+ oo). The 
appearance of the averaged terms in the evolution equation (2.20) was to be expected, since 
\Ya)f and |Z(1)|2 are travelling at an infinite speed on the slowest time scale. 

To conclude the analysis at this order, we calcúlate the solution of (2,6)-(2.8) for j = 2 
(see equations (A 10)-(A 11) in the Appendix) that will be needed at the next order. In 
(A 10)-(A 11) ̂ (2), Wm and X(2) are arbitrary functions (at this order) that appear through 
the general solution of the homogeneous part of (2,6)-(2.8). 



At order es, the right-hand sides of the equation (2.6) and the jump condition (2.7), F'-m 

and/ ( 3 ) = (ft\jf)Y, are given in the Appendix (see equations (A 12)-(A 14)). Trien, by 
applying the two solvability conditions (2.10), in the time scale f ~ 1, we get the foilowing 
equations in the time scaíe T ~ 1 

Wf - kg b Wf + ik0 W™ (j>f + ik0 W
a) ft» 

= - W™ + cW™ + AW™ 4>f + Wm (d- Bf» - C \$y - D | Wíl) l2 - £ | Xm ¡3), (2.22) 

X<?> + k0 bXf - ik, X™ #»> - ik0 X<« # » 

= -Xí? + cX% + AXy<t>f + Xm(d-B(j>™-C\<l>™¥-D\Xw\*~E\ Wm\% (2.23) 

where the coefficients c and d are those obtained in the linear stability analysis (see (1-11)), 
as was to be expected, while A, B, C, D and E are given in the Appendix (see (A 18)). 

Since tj)'M appears expHcitly in (2.22)-(2.23), at first sight ít seems that we need a third 
equation for 0(1), which would be obtained by applying the as yet unused solvability 
condition (2.9). Nevertheíess, by introducing the new dependent variables Y{i) and Z(2), 
given by 

F<2> (V, T, r) = W™ (V, T, T) exp ( - #<"> (,, T)fb) - (#<» (v, T, r)/b) F'1 ' (v + k0bT, r ) , \ 

Z<2>0,, T,T) = X^ (y¡, T,r) exp ( - ¿0"» (V,r)/b)-(i<¡>^ (V, T , T ) / 6 ) Z<" (V~kBbT,T). J 

(where Ym and Zm are defined in (2.17)), and taking into account (2.16), we obtain the 
following equations for Yií},Z™, 7 (1),Z (1) and 0ín) 

Yf -kahYf = - yj» + cY™ + A, Y?4>™ 

+ Y ^ i d - B ^ - C ^ r - D ^ f - E ^ W (2.25) 

Zf + k0 bZf = -Z»> + cZ™ + AX Z<» <> 

where the coefficients AX>BVC1,DÍ and £ t are given in the Appendix (see (A 19)). 
Equations (2.25)-(2.26) allow us to obtain solvability conditions on the time scale T ~ 1, 

in a similar manner as we did at order él with the equation (2.16). Let us first consider 
equation (2.25). Since 7(1) = Ya\r¡ + kabT,T), Z<» = Za\r¡-kabT,T) and j>m = <?>m(y,r), 
the equation (2.25) is readily integrated to yield (again, recall that T is constant in the 
intermediate time scale) 

r<2> (ih T,T) = r(2> {v, o, T ) + n - Y™ + CY™+dYm - ^ r » i y(1> n 

+ {AJk0b)Y^\ ^0,0?,T)d^ 

- ( l /* 0 b) r<" (5, fl5<S> (T,, T) + Cx |<S<°> (,, T)|2) dr, 

- (EJ2kü b) r » |Z<» (?, r)|2 d?. (2.27) 

Now, when using the space variable •>] = i¡ + k0bT(i.e, in a reference frame moving at a 
constant speed on the intermedíate time scale, where Ym is stationary on this time scale), 



and impositig that F í2) (ij, T, r) remains bounded as T->co for each fixed valué of ij, we 
readíly obtain the followíng solvabílity conditíon 

W-cYft ~ ¥m(d-D1\Y^\s) = A, F f lim (l/k0bT) P < f f e r )d^ 

+ F<» iim (l/fc0 bT) P (5, 0«> (?, T) + Q |0<» (,/, r)¡s) d^ 
3" n» Js~knbT 

-EtY
a) lim (l/2fc„6r) ÍZm(^T)isd5/. (2.28) 

f-2*„6T 

We assume that the initial conditions of (1.1)-(J.4) are such that the ümits appearing in 
(2.28) exist (this is trae, in particular, if ^(0) and Z ( l ) are periodic or quasi-periodic in the 
space variables, or if they converge as T/-> + OO). Nottce that the limits are independent of 
ij. In addition, if (as we assume in the seque!) <pm and <S'0Í are bounded as y -> + oo (for each 
fbced r) then 

Jim (í/*„ bT) P # » (V, r) dV = lira (\/kB bT) P <6<? (V, r) dV = 0. 
V-KB J ri~ííht>T T-XÍI J í - í^M' 

Then, (2.28) is readily written as 

with the spatiaí average <•>" as defined in (2.21), with h standing now for \<j>m\* = 
| ^ > P ( ^ r ) o r ¡ Z ( I f = ¡Z<Tfer ) . 

By eliminating secular terms from the solution of (2.26), in a similar way, we obtain 

Zl
T

l) = cZ£) + Z í l>( í /-01¡Z í l>¡ a-C J<|9S«T > + -£ J < | r« ) | 3 > + ) , (2-30) 

again with the spatial average (->+ as defined in (2.21), with h standing for j ^ < 0 ' | a = 
\<PW\2(IÍ,T) or |F (1) |S = ¡ r a f (Í/,T). 

As happened with (2.20), the appearance of the spatial average terms in the evolution 
equations (2.29) and (2.30) was to be expected, since in the reference frame attached to Y<n 

(resp. to Zm), <¡>m and Za) (resp. 4>m and Ya)) are traveiling ío the right (resp. to the left) 
at an infinite speed, on the slowest time scale, T ~ l. 

Equations (2.20), (2.29) and (2.30) are the evolution equations giving the amplitudes <fim, 
7 a i and Z a ) , in the slowest time scale r ~ 1, as we anticipated at the begínning of this 
section. Notice that they are coupled by the averaged terms < • >+ and < •>~, which depend 
only on time. Thus, the coupling is non-local, and fairly weak. The weit-posed model (2.20, 
2.29—2.30) will be analysed in next section. Now, observe that the amplitude equations 
yield the weakly nonlinear evolution of the ñame front. In fact, the solution (2.4)-(2.5) of 
(2.1)-(2.3) may be written (in first approximation) in terms of the amplitudes cj¡W), Ym and 
Za\ as, (see (2.12-2.13, 2.17)) 

U(x,y,t)~Üs(x + t-^(y,T)) 

+c[Ym (r¡^k,}bT,T)V(x + t - ^ (TI,T)) exp (iQt + ikny + üf>m (^r)/b) 

+ Za)(->i-kvbT,T) V(x + t-<¡>m(y,T)) exp (i£2t-ik0y + i$m(i¡,T}/b)+c.c.}. (2.31) 



3 Local nonlinear stability analysis of the fíame through the amplitude equations 

Here we shal] use the model posed by the amplitude equations (2.20, 2.29-2.30) to analyse 
the nonlinear stability of ñames in two-dimensíonal stiips whose transversa size L is large. 
Thus we shall consider the problem (1.l)-(\ .4) in — co < x < oo, 0 < y < L, with Neiimann 
boundary conditions at y = 0, L. Two cases will be considered. 

K l/e2 L = 0(1) as e->0, we shall ignore those points of the strip whose distance to the 
boundary is of order 0(\/e). Tíien, the fíame appears as transversely infinite in the spatial 
variable T¡ and no boundary conditions are necessary for the amplitude equations. We shall 
assume that the largest spatial scale in the transverse directkm is y ~ e_1 (i.e. t¡ ~ 1); this 
assumption tnight fail on slower time scales (e2í = T ~ 1/e) which we shall ignore (thus, the 
attractors we shall find might be slow transients on these slower time scales). In addition, 
we shall assume that the initial conditions are suca that the spatial avevages appearmg in 
the amplitude equations are well-defined; this is true, in particular, if (¡)w\ Yll) and Zm are 
periodic in the first variable (?/,-// and i'¡, respectively), or equivalently, if the initial 
conditions for (1,1)-(1.4) are periodic in the ^-variable, with a period of the order of 1/e. 
This limit will be referred to as the transversely infinite one. 

The second case to be considered, to be referred to as transversely finite, is that in which 

e£ = A = 0( l ) as e^O. (3.1) 

Now the Neumann boundary conditions at y = 0, L lead to reñection conditions for the 
transverse waves. This is readíly seen by a reñection principie as follows. First, the problem 
(1.1)-(1.4) in the strip — Q O < J C < O O , 0 < y < L, is extended to the whole plañe by 
requiring 6, S and i¡r to be symmetric with respect to the line y = rL, for each integer r and 
each t > 0, so that 

0„ = SS = O, f„ = 0 at y = 0,L, (3.2) 

as required. Now, by imposing (3.2) to order e in (2.31), we readily obtain the following 
conditions on the amplitudes <¡>m, Ya) and Z(1) 

$»(rA,T) = 0, (3.3) 

Ym(rÁ - T, T) exp (irk0L/e) = Z(1\rA + T, r) exp (~irk0L/e), (3.4) 

for each integer r and each T > 0. Conditions (3.4) is equivalent to the following conditions 

Ym(z,T) = Zm(-z,T), Ym(z + 2A,T)=Ya>(z,T)txp(-iS), (3.5) 

if — co < z < oo and T > 0, where 

S = fractional part of k0L/nc. (3.6) 

Conditions (3.3) and (3.5) are to be imposed to the amplitude equations (2.20, 2.29-2.30) 
in this limiting case. Observe that as L varies by a 0(1) quantity, A remains constan t but 
8 varies. 

Now let us see that in both cases 

<PT^°> K?->° as T^°°-
This is a consequence of the fací that the averaged terms in the amplitude equation (2.20) 
depend only on time 

e1[<|F'1)|a>+ + < |Z ( T>-]= í (T) . (3.7) 



Then (2.20) is reduced to the heat equation by a Hopf-Cole transformation. In fact, the 
solution of (2.20) may be written as 

4>m(v,?) = fT£(<r)da-^(2 + / y log (h{V,r)\ (3.8) 
Jo 

where h satisfies the heat equation, hT = (1 +fiQ/2)hl¡I¡, and thus A -> 0 and ¿„ ^-0 as T->OO. 

Then, for sufficiently large T, the amplitude equations (2.20, 2.29-2.30) reduce to 

d^0 ,/dT = ei[<| Y™\* >+ + < |Z í l f >"], (3.9) 

yT<« = cY^ + Y^id-D^Y^^-E.QZ^Yri (3-10) 

Z«> = c Z ^ + ZWCrf-ZJJZOf -E,<,\Ym\2}+l (3.11) 

Observe that equation (3.9) yields a first correction to the burning rate, and that the system 
(3.10H3.11) is decoupled from (3.9). 

Finally, we reduce (3.10)-(3.11) to a simpler form for convenience. If the following new 
variables are used 

cr = ajT, £ = ££„#, £ = a2??, (3.12) 

r i = a3r (1)exp(í"a4T), F2 = a3Z
w exp (za4r), (3,13) 

with the real constants deíined by 

a, = Re(í/), a2 = V(Re(rf)/Re(c)), (3.14) 

a3 = y (Re (D^/Re (rf)), a4 = - Im (Í/) , (3.15) 

then rx = í^f, o-) and Y2 = Y¿t <*) satisfy 

Y1<r = (1 + i^) % + TJ1 -(I + ía2)IT/-K + ia4) <|7/>1, (3.16) 
IL = 0 + fc,) *k+ ni i - (i + «,)! ra)

s - (a,+w j <| i¡r >1, (3.¡7) 
where the real constants al,...,alí are given by 

a1 = Im(c) /Re(c)~-1 .242, a2 = Im(£>,)/Re(/),) ~ -4.507, (3.18) 

a, = Re (£j)/Re ( i y ĉ  7.328, a4 = Im (Ej/Re (DJ = 1.664, (3.19) 

and the spatiai averages <• )* are deñned as above. Observe that for transversely finite 
ñames, conditions (3.5) lead to 

y i(z f (r)=7 a(-¿ )o-)> yi(2 + 2 1 í i f (r)=^(z, (r)exp(- tó) J (3.20) 

for all z and all a > 0, where 5 is deflned in (3.6) and 

¿i = a2A, (3.21) 

3.i Transversely infinite flames (\fb2L — 0(1)) 

As explained above, for large T the amplitudes of the transverse waves are given in this case 
by equatious (3.16) and (3.17), wliich are now analysed. The simplest non-uniform 
solutions of (3.16) and (3.17) are given by the following pair of (one-parameter) families of 
solutíons 

Y1 = ±yJ{\-a*)txp[i(-a2 + {a.í-al)a?)o- + iaQ, Y% = 0, - l ^ a ^ l , (3.22) 

Í ; = 0, T 2 ^ ± V ( í - a s ) e x p [ i ( - < j 5 , + (aa-fl1)a2)tr+¡'a¿¡, - l í S a ^ l , (3.23) 
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and by the following (two-pararneter) family 

Y, = H ^ f l e x p (iy^a, flcr + ¿0$, Y2 = i?2(a;/?)exp 0y2(a ;/?)cr-Hm (3-24) 

where the scalars Rí,Rt,yí and y2 are defined as 

^(«,/F)* = ( l - f l s - a ' + a ^ V d - a S ) , *2(a,¿?)2 = ( l - ^ - ^ + ^ a ^ d - a D , 

y i ( a J ^ = [(aa + a J ( a a - l ) + K - a s f l 4 - f l i ( l - ^ ) ) a 2 - ( a 2 a 3 - ú ! 4 ) / í 2 ] / ( l - ^ ) , 

y2(a, /?) = [(«2 + a4) (a3 - 1 ) + (a2 - a3 a4 - « / l - a|)) /?2 - (a2 as - a¿ a2]/(l - a3), 

for those valúes of the parameters a and p such that 

l - í / 3 - a B + a3/?
2 < 0 , 1 - a a - / 3 a + a3 «*<(). 

Observe that these inequalities define a bounded domaín of the a-fi plañe. 
The solutions of the families (3.22) and (3.23) (resp. of the family (3.24)) correspond to 

transverse periodic traveiling waves (resp. to quasi-periodic waves) with a frequency and a 
wave-number cióse to Ü and k0, respectively. In particular, if either (i) a = 0 in (3.22), or 
(ii)a = 0 in (3.23), or (iii)a = p = 0 in (3.24), then the wavenumber of the corresponding 
wave of (1.1)-(1.4) is precisely equal to £0 (to order e). The solutions (i) and (ii) correspond 
to traveiling waves of (1.1)-~(1,4), while the solutions (iií) correspond to standing waves. 
These three particular members of the family (3.22)-(3.24) are thc oniy ones found by 
Matkowsky & Olagunju (1982). 

When taking into account the numerical valúes of the coefficients of (3.16)—(3.17) (see 
(3.18-3.19)), by a straightforward linear stability analysis, the following resuits are readily 
found. Since al > 1, every member of the families (3.22) and (3.23) (resp. (3.24)) is stable 
(resp. unstable) under spatially uniform perturbations. Also, when considering spatially 
non-uniform perturbations, it is seen that the solutions (3.22) and (3.23) are stable if a2 is 
sufficiently small, and unstable otherwise; at the threshold, a family of more complex 
solutions of (3.16)-(3.17) is expectcd to bifúrcate ftom the families (3.22) and (3.23). 
Nevertheless, we nave not analysed that bifurcation because we do not expect the new 
solutions to be of use in our search for chaotic solutions of (1.1)-(1.4). 

Now, concerning the global dynamics of (3.16) (3.17), observe that the coupling between 
both Ginzburg-Landau equations is fairly weak. If the averaged terms are ignored, then 
one obtains two uncoupled Ginzburg-Landau equations which are not expected to exhibit 
chaotic dynamics because l+axa2 > 0 (see, e.g., Kuramoto 1984). Therefore, we do not 
expect the global dynamics of the model (3,16)~-(3,17) to be chaotic. 

3.2 Transversely finite flaities (cL = 0(1)) 

Now we consider those solutions of (3.16)—(3.17) satisfying (3.20). By using (3.20), 
(3.16)—(3.17) may be reduced to the following problem on Yl 

r l r = (1 + «O % + yjl - ( 1 + ia2) | 7 / - (a, + ia¿ <| 7 / >], (3.25) 

r i(£+ 2/*, o-) = Y^C, cr) exp ( - iS), (3.26) 

where, since I7J2 is spatially periodic, {¡FJ2} is the spatial average over a period, i.e. 

<ur,r> = (2/t)-ir'ir1(¿;ír)iíd¿r. 
Jo 



The simplest solutions of (3.25)-(3.26) are given by 

Y1=± / { - ^ exp [Íy(a) a + k$, (3.27) 

where y(a) = — [<z2 + <z4 + ^ (1 + a3) a
2]/(l + a3), 

and the parameter a satisfi.es 

«2 < 1; 2/ÍÍC = — S+2m for some integer /• if a # 0. 

Then, for each pair of valúes of ¡i and 5, we have a imite number N ^ 1 of solutions of 
(3.16)—(3.17). These soJutions are readily seen to correspond to time-periodic (or standing 
wave) solutions of (1.1)-(1.4). Observe that for fixed fi, N varies wiíh 8. This fact yields to 
a somewhat surprising conclusión when we take into account the definition of the 
parameters ¡i and 8 (see (3.1), (3.6), (3.21)). Namely, a givenperiodic solution o/(l.l)-(1.4) 
mayfaü to exist as the transverse length of the ñame L(~ 1/e) varies by a 0(1) quantity. 

The solution (3.27) correspondíng to a = 0 is linearly stable as it is readily seen. The 
remaining solutions are stable to spatially uniform perturbations, but they are stable to 
spatially non-uniform perturbations only if a2 is sufficiently small. Again, at the threshold, 
a family of more complex solutions of (3.25)-(3.26) is expected to bifúrcate from the 
solutions (3.27). However, for the same reason as in §3,1, we do not pursue this matter 
further. As in §3.1, since 1 +a1a2 > 0 we do not expect the dynamics of (3.25)-(3.26) to be 
chaotic. 

4 ConcJuding remarks 

We have anal y sed the nonlinear stability of adiabatic two-dimensional plañe ñame fronts, 
near the so-called pulsating instability limit, by using a standard thermo-diffusive model 
which seems appropriate in the large activation energy limit. The well-known linear 
stability results, recalled in §1, predict the appearance of two transverse wave-trains of 
small amplitude along the fíame sheet, travelling in opposite directions. In §2 we derived, 
via a multi-scale analysis, three amplitude equations (2.20, 2,29-2.30), giving the reaction 
sheet location to leading order <fiim, ana the complex amplitudes of the transverse travelling 
wavetrains Ym and Z(1) in terms of the slowest space and time variables. The three 
equations are coupled by non-local terms involving the spatial averages of the amplitudes. 

In §3 we used the amplitude equations to analyse transversely fmíte flames, of large 
transverse characteristic length L, We considered two cases. For L ~ <r2 or larger (e2 = 
/?—/?<, is the small parameter in the problem, the deviation of the reduced Lewis number ¿3 
from its valué at threshold) the fíame is considered as transversely infinite. In this case we 
found three families of transverse waves; by a linear stability analysis, we concluded that 
only some of these waves, namely those that are periodic travelling ones, are stable. For 
L ~ e -1 we derived the appropriate reflection conditions of the transverse waves at the 
sidewalls, which were added to the amplitude equations. By inspection of the resulting 
model we found a fmite number N ^ 1 of periodic solutions. Of course, N depends on L 
and (surprisingly to some extent) TV varies as L is varied by a 0(1) quantity. One of these 
branches of solutions is stable for ail L, whiíe the remaining ones may be stable or unstabie, 
depending on L. 
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From these results we may get the following picture about the behaviour of the ñame 
as e varíes, for a fixed, large, valué of the transverse length L. For sufficientiy small e, 
eL = 0(1) and the fíame is cxpected to exhibií cellular periodic behaviour. As e increases, 
L becomes of order e"s or larger, and the ñame is expecíed to exhibit transverse travelling 
waves in the bulk, except in the vicinity of the sidewalls. 

Some remarks about these results are in order: 

(A) For L ~ é the behaviour of the fíame near the side-walls (withrn a distance of order 
e"1 from them) has not been analysed. Such an analysis should answer the question as to 
whether the walls affect the bulk, either on the slowest time scale considered in this paper 
(r ~ e'2) or on still larger time scales. For a discussion of this question in a related problem, 
including an incompiete answer, see Knobloch & De Luca (1990). 

(B) At the level of the analysis in this paper, i,e. weakiy nonlinear, two space dimensional, 
no chaotic behaviour has been found. Nevertheless, spatially three-dimensional eíTects 
might lead to chaos. A first partial answer to this question will be obtained by considering 
the weakiy three-dimensionai case, in which the reaction sheet location and the complex 
amplitudes of the transversal waves are considered as slowly dependent on the third spatial 
coordinate (see Vega 1991). 

(C) For simplicity in the calculation of the coefficients of the amplitude equaííons (which 
is fairly wearisome) we only considered the adiabatic case. If volumetric heat losses are 
taken into account, the analysis is similar, and Ieads again to the amplitude equations 
derived in §2, with the coefficients depending on the heat loss parameter m. If, for some 
valué oí m, the coefficients of the equations (3.16) (3.17) were such that l+a^a^ changes 
sign, then an analytical description of chaotic behaviour, via the Kuramoto-Sivashinsky 
equation, would readily foilow (see, e.g., Kuramoto 1984). 
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Appendix 

The function U0 appearing in (2-6) and thereafter is given by 

TO = (-i„s)exp(S) if ííí0' Vai0 = ^) if g>0- (A1) 

The linear operators lQ and lv appearing in the solvabiJity conditions (2.9)-(2AQ) are 

deñned as 

lv(F,f) = i" [2F&y, % U Z T) + Fg(£, y, V, t, T, r)j d£ 
J — co 

+ 

h(F,f) 

P2(£,y, y, t, T, T) exp ( - £ ) d £ + 2f¿y,% í, T,T) +f2(y, v, l, T,T), (A 2) 

q + iQ . 

M-S-rj Fiií, y,y,t, T'T)+FM> y, v< f> T>T) \ e x P ( - q£) ^ 

+ FM,y> V> f< T> r> e x P ( - P ® d £ + 2(-P~9) f¿y> V, t, T, T) +ft{y, v, t, T, r ) , 

(A 3) 

where F = {Ft, F2)
T a n d / = (fvf¡f stand for the right-hand sides of the equation (2.6) and 

the jump condition (2.7), respectively, and the (complex) constants p and q are given by 

2p-1 = I -2q = (1 +4kl + 4iüf. (A 4) 



The eigenfunction Fappearing in (2.12) and thereafter is associated with the eigenvalue w2 

(see (1.9)) at k = kn and ŷ  = /?„. It is given by 

\ P <i 

exp (j>Q + ( ^ + J exp (£) if f < 0, 

Vi0 = (¿) CXP (<7° Íf g>°" 
(A 5) 

When taking into account (2.12) and (2.13), the right-hand sides of equations (2.6) and (2.7) 
at order e3, í*2' and/<2) = C/Í2\/£2)}T are seen to be given by 

+t?c ÍJ„ í/; - I # T A, */; - (*r+^;>) í/a/2 
+[( W™ 1- 2ik0 Wf D0) ( K - t/¡)+2ífc0 ^ { 1 ) $ « D 0( V - U¡)] exp («31 + ik0 y) 

+ [(X^Í+2ik0X^Da)(V-U^-2ikBX^^D0(V'-££)] exp {iQt~ik0?) 

+ [klDa{U;-W)-iQ¥'][(Wmy exp (2iQt + 2ik0y) + {Xmf exp (2¡fi/-2ifcoj0] 

+ WmW* [k\D0(2u;-W-3V') + iQ(V- V')] exp (2ifc0j>) 

+ 2 ^ ( 1 ) r ( 1 ) [/c2D0(F"- U'^-iQV] exp (2H20 + ac., (A 6) 

/¡*> = {kl-q^W^f + |X<«H/2+ 1^174 ' 
+ &o 0f l^1" CXP (¿í3í + lKy) - ^ ( l í exP (iQt-ik0y)] 
-[(^o + 42)/21[(^a>)2 exp (2¿A:ay) + (X(1))2 exp (~2ikay)] exp (2/Í30 

+ Wil)Xm (le*-q2) exp {2330- Wa)X™(kl + \q\2) exp (2ik0y) + c.c., (A 7) 

/ f = 0, (A 8) 

where / is the 2 x 2 unit matrix and, as above, overbars and c.c. stand for the complex 
conjúgate, and primes denote differentiation with respect to £. 

The constant ex appearing in equation (2.16) and thereafter is found to be 

H = W-K-ia^-qf ^ 0.0418. (A 9) 

When using the solvability conditions (2.14)-(2-16), the solution of (2.6)-(2.8) for,/'= 2, 
([/™,f(2>)is found tobe 

U™ = [<>(17<M>-(1 + A/2) gU'ü)-\^\\£U',)(2 + (\Wm\* + \Xm[*) (JJ<*»-exgU'¿y2 

+ [Wf (k0 bUw + í/(23>) + Wm 0™ {Ul2i)-z/c0 t/(22>) 

+ W(2)(v, T,T) V\ exp (iüt+ ik0y) 

-\X™<fc06í/í23) + C/(23>) + JST(U¿™ (t/<24) + ika t/<
23))- X™{-r¡, I » F| exp (¡Qt-ik0y) 

+ [(Wm)t exp (2ikay) + (X{1))2 exp (-2flt0j/)] t/<85> exp (2iÜt) 

+ Wm Xa> Um) exp (2/Qí) 

+ H - ^ F " <7(27> exp (2ífc0 j») +c .c , (A 10) 

•̂<2> = ^ f o , T,r)+ ^ ( 2 > ( Í? , 7 » exp (iüt + ik0y) + X(2\v, T,T) exp (iQt-ik„y) 

+ [(Wmf exp (2/Á:0>') + (Xa ))2 exp (-2A0^)]a (a5> exp (2iÜt) 

+ W^Xa)a{^exp{2iüt) 

+ Wa)Xmam) exp (2ik0y) + c.c. (A l J) 



tíere, the functions Ua and V are given by (A i) and (A 5), while the consíanís a (S6\..., aJ27> 

and the functions t/(2TO,..., Um) are given by 

«<*« ~_(0 .287+ H.058), a<2 l i )~-(0.615+ /0.906), a(27) 2; 0.448, 

where fe = £ exp (f), fe = - A.0 + D exp (£>, fe = - A>, 

gu = >h(0 +P exp (g) + c c , 

fe = héD + iAz-PoPD e xP (É) + c c , g13 s /í3(g)+C.C, 

fe© = -{p-q)~1í exp OÉ), 

*- = r M + l^ + ^l 1 + 2 o^#Jj í + / ? o (F : # £ iexp (pa 

fe =-2í/c0g2 i(í) , 

fe = -2ífc0 fe© + A-
P - 9 

- £ exp(p£> = —2ikn fe(0+A, 
exp_(£|) 

(^-?)SJ* 

-2ik„pE, 
fe = — exp {/>£), 

S43 — ¿irC(j 

„2 

^ T / ^ + Í ^ + T ^ - A ^ W£3ff (^-?)8 \ ^ - ? (/>-?)* r "(/'-?> 'O»-?)11 exp (/>£), 

£43 — 2¡/C0 V4AO+-
PoP V Í 

exp (<?£), 12 '{.P-qf P~q\' 

g s l = ^(g) + (a(25) + 1 /2) K(Q + A,, exp ( ^ Q, 

fe = ^( í ) -^ / l 4 {D/2+(a < 2 S > + l/2)//5(0 + ^ 5 2 + A ^ l ^ r j 1 í l e x p (^g) , 

fe s ^ ( D + A s e xP [(i-pi)Bi> 

gtl s 2/,^)+(«<*» + 1)A4(£) + J4C1 exp (Pag), 

fe = 2A3(D - A A4(£) + (a<26) +1) A,© + A,, -fi0A i exp(/j3£), _A_ 
fe s 2hs(D + Am exp [(1 —/?a>¿]* 

fe=^(í) + (a(27) + l)/í4(í)/2 + A i e x p ( ^ g ) + c.c„ 

fe = A 2 ©-/?oVO/2 + (a ( 2 ' ,+ l) / í 6©/2 + ^ 7 2 + / ? ü ^ 7 1 ^ ^ ^ e x P ( / ; 3 0 + C.c., 

fe = hs(Q + An exp [(1 -p4)£]+c.c. , 



with the constants A12,...,Als,p1,...,p3, and the functions A ls...,/i5, as given by 

A12^ -24.00, A22~ 0.364 + ¿0.275, /f4 -3.044 + /3.75, ^ 5 1 =; 1.037 + ¿1.579, 

Ab2~ -(17.29 + /15.97), ^ 3 - - 0 . 8 9 1 + ¿ 0 . 8 6 8 , AB1 ~ 2 . 1 1 5 + Í 1.947, 

¿lC 2~ -(33.31 +¿20.22), Ae -0.0750+ ¿0.546, 

¿ t 7 1^ 0.526, ^ 7 2 ~ - 1 0 . 8 3 , ,4,3-0.112, 

2Pl - 1 = (1 + 16A:2, + SiQ% 2 p s - 1 = (1 + 8¿fl)*, 2p8 - 1 = (1 +16**)*, 

7>2 

¿i(í) = - P exp (/>£), A2(£) = pCtq + fiJ + fa1-—H\+PÍ) 
p-q 

exp (/>©, 

/ra(|) = 2?1 exp (9 | ) , A4(£) == exp (£), A6(£ = -/?0(1 + £) exp (£). 

When taking into account (2.12) and (2.13) and (A 10) and (A 11), the right-hand sides of 
equations (2.6) and (2.7) at order é\Fm and/ í 3 ) = (jT\ftn)J are seen to be of the form 

F<3> = 2 Mír „(£, TI, T,T) exp (irQt+iskay) + c.c., 
r, s 

/ T = 2 mUr¡sj(V, 7 » exp (irQt+isksy) + ce, 

íf = S m2(1, „(?;, T, r) exp (/>£/ + i ! ^ ) + c . c . 

(A 12) 

(A 13) 

(A 14) 

where the integers r and s are such that 0 ^ r < 3 , 3 < s < 3. In order to apply the (two) 
solvability couditions (2.10), we only need to calcúlate the coeflicients of (A 12)-(A 14) for 
(Í-,j) = (1,1) and for (r,s) = (1, — 1). For r = s=l, those coefficients are given by 

Mai) = -2ík0 W™DQ K1 + 2¿/cQ(fií;
, W™ + <¡>™ W^)D(Í V[ + {W™ + W™) V, 

- W%{Da V1 + k0Ds Us)-W™ [D¿V"-kl VJ + (kl + iQ) U'¿ 

+ $f W?[2D0( V¡ + ik0 LQ - ik0 Us - K I>* UJ 

+ C ^ a , [ ( A , - ( l + A/2)/) V'-DA U'5-ik0 l/,-2ifc0i50 £/J 

+ | <p™\2 W™[V'/2-Da V' + D¿£Ud'/2-ik0 {/4 + 2¿/í0¿>n U'J 

+ 1F(1> | ^(1> |2 [k* D¿V' - 2V") -eiV-a(26) (4fcJ £)0 E/J + 2iOP) - Di U't + O, £/J] 

- Wm ¡X{1f [2k\ Dn V" + eiV' + 2iüa™ ?' + 4fc* a<27) D, U'¿ 

+ DiU't + DiU't-D6Ua (A 15) 

where I is the unit matrix, D2 is defined in §2, Ds = 2iDa — bI, Di = klD0 + iQI, D5 = 
3klD0 + iQT, Us is defined in §2, Vx = V- U'0, Us = Ui2i)+k0bU(m, Ut = Ul2i)-ik0 Í7(a2), 
Ue = C/(20)-(l+/J0/2)(gf7;), U, = W2»~eiEU'0, U7 = t/<36), t/8 = Í7<a9>, [£ = E/(27), and the 
remaining constants are as defined above. 

m1(1,„ = ikM? W™ + <¡>™ W<H) + <¡>™ W™-<¡>™ ^ ( 1 \ ( 0 ) W r ( 0 ) / 4 + |^;;f W«\(0)/4 

- Wm I Waf [»a(0) (1^(0)174 + w<al)(0)- 2k¡) + v2(0) («««(0) + fe») - 8** a<25)]/4 

- W«» \X(1f [vt(0) (|«S(0)J72+ ««"(0) + »iS,,(°)) + ».(°) KM,(0)-2*S) - 8¿aa<2"]/4, 

(A 16) 



wherc v is the sccond component of the function V, and, forj = 0,... , 7, wf' is the second 

component of the function Üf3) defined above. 

mWA, = qW™, mm^qX™. (A 17) 

To obtain Ma _i> (resp. m1(1 _1}) we only need to change the sign of the first three terms 
(resp. of the first term) in the right hand side of (A 15) (resp. of (A 16)) and interchange Wm 

with Xw and W™ with Xm everywhere. 
When applying the solvability conditions (2.10) at order e3, the coefficienls c and d of 

(2 22) and (2.23) are seen to coincide with those obtained in the linear stability analysis (see 
(1 11)), as it was to be expected, while the coefficients A, B, C,D and E are found to be 

¿ = _ 1 J S - - 1 . 4 8 + /8.51, C ^ ¿0.139, D es 0.089-¿0.409, E~ 0.655 + ¿0.143. 
(A 18) 

The coefficients A1!B1,C1,D1 and E1 of eqnations (2.25) and (2.26) are 

Ai = A + 2ic/b^ -0.378 + ¿0.501, B, = B+i{\ + /]J2-c)/b =s -1 .79 +í9.20, ' 

c = C'iA/b + (c-ib/2)/b^ ~ 0.037 +¿0.167, D1 = D + ieJb a¡ 0.089-/0.403, -

£ i = £ + / e i / ¿ ~ 0.655+ Í 0.149. 

(A 19) 


