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ABSTRACT Many powerful techniques from Hamiltonian mechanics are
available for the study of ideal hydrodynamics. This articte explores some of
the consequences of including small viscosity in a study of surface gravity-
capillary waves excited by the vertical vibration of a container. It is shown
that in this sysiem, as in others, the addition of smatl viscosity provides
a singular perturbation of the ideal fluid problem, and that as a result
its effects are nontrivial. The relevance of existing studies of ideal fluid
problerns is discussed from this point of view.
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1 Introduction

Jerry Marsden has been a driving force in studies of ideal hydrodynamics
using methods from Hamiltonian mechanics. Perhaps his most important
contribution has been the discovery of a systematic procedure for the con-
struction of noncancomical Hamiltomian structures for such flows. The re-
quired noncanonical Poisson brackets are typically singular, implying the



presence of additional conserved quantities known as Casimirs. Using these
techniques he and his colleagues were able to extend Arnol’d-type stability
theorems to a number of fows of importance in geophysics and engineer-
ing (Marsden and Morrison [1984]; Holm, Marsden, Ratiu, and Weinstein
[1985|; Abarbanel, Holm, Marsden, and Ratiu 1986]; Holm, Marsden, and
Ratiu [1986G]; Lewis, Marsden, Montpomery, and Ratin [1986]). These are
major contributions to the field of ideal hydrodynamics and are nowadays
taught in gradunate level courses on the subject.

Although these technicques are powerful, and enable one to obtain results
that would be hard to obtain by other means, there remains an important
question as to their relevance to flows in the real world, Unless one studies
flows in a superfluid, for example *He below the A-point {i.e., at tempera-
tures below the transition to superfluidity) such flows are inevitably affected
by dissipative processes, be they viscous or thermal. These may have an
importance beyond being responsible for the decay of the flow on the slow
diffusive time scale (Batchelor [1967]; Chorin and Marsden [1979]). In gen-
eral the presence of small viscosity is responsible for the formation of thin
boundary layers where the fiow departs drastically from that in the bulk.
In such boundary layers vorticity is generated by viscous effects and this
vorticity may then diffuse or be convected into the bulk. In such cases the
flow in the bulk may be substantially modified. Boundary layers may be
classificd as passive or dynamic, depending on their effect on the bulk flow.
Passive boundary layers do noet affect the flow in the bulk, which will then
resemble the potential solution over long times; such boundary layers serve
merely to adjust the flow 1o the phvsically relevant boundary conditions. In
the absence of bonndary layer separation such boundary layers are found,
for example, in steady flow around chstacles. Oscillatory boundary layers
may likewise be passive if the oscillation amplitude s smazll and only the
leading order oscillatory dow is considersd. However, as discussed further
helow, this is no longer so at sccond arder in amplitude. in this and other
cases the boundary layers can become dyoamic, and foree the flow in the
bulk even though this flow remains largely inviscid. In such cases the in-
viscid flow in the bulk differs substantially from the flow that would be
obtained by ignoring the boundary lavers altogether, and this effect per-
sists in the limit in which the viscosity vanishes, ie., in these cases the
limit of vanishing viscosity may have at most a tennous connection with
the behavior of the strictly inviseid system [Bacchelor [1967]). The present
article is devoted to the explication of this phenomenon in the context
of a particularly interesting plvsical system, gravity-capillary waves in a
vertically vibrating container [the Faraday system).

The difference between the properties of the Euler equation for an ideal
incompressible fluid and the Navier-Stokes equation in the limit of large
Reynolds number provides the most famous example of the dangers of
ignoring viscosity entirely, in the sense that the ‘thermodynamic equilib-
rinm’ gpectrum that results bears no relation to the energy spectrum in



the so-called inertial range. But there are simple examples of problems
not involving turbulence where viscosity, however small, alse plays a pro-
found role. Perhaps the simplest is provided by the computation of the
Lagrangian drift of a2 fluid element when a surface gravity-capillary wave
passes overhead. This drift is important because its sumn over all the fluid
elements may be identified with the hnear mormentum associated with the
wave {Knobloch and Pierce [1998], and references therein}. In the following
we employ Cartesian coordinates, with the r-axis along the wnperturbed
free surface of the fluid and y vertically upwards. An irrotational incom-
pressible flow then satisfies the equation

Vip =1,

where u = (¢, ¢,) is the Eulerian velocity, subject to the boundary con-
ditions

gy =0 aty=-h;
frtdafo=0y, S+ ufi2rpforgf=0 aty=Ff

Here f is the free surface deflection, p = py — T ezl + f217%2 the excess
pressure being a consequence of the presence of the surfuce tension 7', and g
and p are, respectively, the acceleration due to gravity and the fluid density.
A formulation of this type assumes that the fiuid remains irrotational if it
is irrotational initislly. This is so only if the Auid is strictly inviscid.

Since a particle starting at x = a at # = 0 is at

T
x==a+ [ via, )4t
o
at Ume {, the Lagrangian velocity ol the fluid element at time ¢ is given,
to second order, by

¢
v(a,t) = ufa,t! + (f ufa, t’}df') -Vau(a,f).
0

For a progressive sinusoidal wave of {small] amphitude A4, f = Acos(kx —
wt) + O(A?) and ¢ = [f; cosh k(y + )]k sinh kk* + G(A*%). If A is constant
in space it is possible to show that the time-averaged Eulerian velocity {(u)
vanishes to second order but the time-averaged Lagrangian drift {(v) does
not:

whkA® cosh 2k(, '

(JJR cor 2&[_y+1‘1].0)_ (12)
2sinh” kh

This drift is known as the Stokes drift. However, in the presence of small

viscaosity, this result is misleading. The argument that follows goes back to

the work of Schlichting [1932). Observe that for sufficiently small viscosity

(namely Gh 3 1, 8/k 3 1, where 3 = (w/21)'/2) the inviscid solution



applies everywhere except in the two thin oscillatory viscous boundary
layers of O{3~") thickness along the top and botiom, whose contribution
can be superposed on top of the irrotational flow just computed. Therefore,
if in the bottom boundary layer we write u = Vé -+, then at leading order
u’ = (v, #') satisfies the linearized vorticify equation
: 2 2
%:u(g+%), =vV=xu,

subject to the boundary conditions
W= ¢, v=0aty=-h; u=0fr3y+h>1l.
This problem has the solution

v = —wAcosechkk e P cos(hz — wt + Bly + 1)},

2]
o —f [Bul(z, 2, 3/ 0] dx .
—h

With these expressions it is possible to compute a time-averaged Reynolds
stress in the osciliatory boundary laver,

wikA?
43sinh? kh
correct to second order in the wave amplitude 4. Here 4 = y + h. This
Reynolds stress drives a mean flow {L7(y),0) according the mean momen-

{u'v"y = [2(3@ sin 3§ + cos Bij)e ™% — o720 1] ,

tum equation ¥32U 8y? = Bl iy, e
vt s .
v = AT S Vil T S (1.5)
u

where (1'v') s represents the Reynolds stress just outside of the boundary
layer. Letting Siy + ) — nc one finds that

125" e = —w? i A% (48 sinh® kA .

Tre
N

In view of the requirement U7'{—k) = 0 equation {1.5) now implies that

JukA®
Thus the time-averaged Eulerian velocity at the edge of the boundary layer
is (a) finite at second order, and (b} independent of ¢ (for sufficiently small
v), provided only that v > (! Sinece this Eulerian mean flow also carrics
the fluid elements with it its effect must be added to the Stokes drift (1.2)
computed on the basis of inviscid theory. Thus the net Lagrangian drift {or
Ohe 1, 8/k » 108 in fact

(oo = (o 0)
dsinh” kh



a value that i3 5/2 times the inviscid value {Longuer-Higgins [1953]; Batche-
lor [1967]; Phillips [1977); Cralk [1982]). As recognized already by Longuet-
Higgins [1953]. a somewhat similar effect is present at the free surface as
well. It is clear therefore that the oseillatory viscous boundary layers maust
be retained even in the limit of arbitrarily small viscosity, and that these
are cffective at driving large scale mean Hows even when the viscosity v is
arbitrarily small.

In the following we discuss in some detail the corresponding phenom-
ena in the Faraday system, where oscillatory viscous boundary layers are
inevitably present, and explore the interaction between the Faraday in-
stability and the mean Row driven in these boundary layers. In systems
of small to moderate aspect ratio such mean Hows are entirely of viscous
origin (Nicolds and Vega [1996 ; Hignera, Nicolds, and Vega [2000]}, but
in the larger aspect ratio svstems of intercst below the situation is rather
more subtle because of the presence of an additional inwiscid mean flow.
For inviscid free waves this mean flow iz associated with spatial modula-
tion of a single mode, as described by the cclebrated Davey-Stewartson
equations (Davey and Stewartson [1974]: Pierce and Knobloch [1994]). If
viscosity is retained and the system forced, as in a shear flow, a similar set
of cquations but with complex cocflicients can be derived {Davey, Hock-
ing, and Stewartson [1974°). In general the mean flow present will contain
both viscous and inviseld concributions, even in nearly inviscid flows. It is
because of these effects that one cannet mimic the effects of viscosity on
an oscillating fluid system by simply adding dissipation post facte to an
otherwise inviseid theory.

2 The Faraday System

Surface gravity-capillary waves excited paramaetrically by the vertical oscil-
lation of 4 container provide s convenient and well-studied system (Miles
and Henderson [1990]; Fauve [1993]; Kudrofli and Gollub [1997]), where
the issues raised in the preceding section come to the fore. We nondi-
mensionalize distances with the unperturbed depth h and time with the
gravity-capillary time [g/h—T/(ph?y ~ 172, In rwo dimensions the resulting
viscous problem is then described by the dimensionless equations (Vega,
Knobloch, and Martel [201]),

Yoz + Pyy =8, 0 — w0l + 3y = Colr + Oy ), (2.1)
fo—te =t fa = (yy — W )1 = f7) —dfathey =0 aty=f, (22)
(L= 8)fu = SU/VT+ fBlaz — iyt + W fo — (e + Py fo)02
+ (03 + a2 4+ (W5 + 021, /2 — dpe® cos(2ut) o
= —CylBbrry + Vyyy — (Wazs + Uirgy ) fel
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where 4 is the streamfunction, defined such that u = {—#,,%.) s the
velocity, {¥ = ¥ xu is the vorticity, and f is again the free surface deflection.
The latter is required to satisfy volume conservation as in {2.4d). In an
annular container of dimensionless length L perindic boundary conditions
are applied to all quantities; in this case the boundary condition (2.4a)
guarantees that the pressure is also periodic in 2. The resulting problem
depends on

L the aspect ratio,
U the nondimensional vibration amplitude,
2w the nondimensional vibration frequency,

Cy = v/[gh® + (Thip)]"? the capillary-gravity number,
S5 =T/HT + pgh®) the gravity-capillary balance parameter.

Here v is the kinematic viscosity. Thus €, and S are related to the usual
capillary number (7 = v|p/Th]'*? and the Bond number B = pgh®/T by

€= Ci(1 + BV and  $= 171 + B).

Note that & = & < | and that the extreme values § — (0, 1 correspond to
the purely gravilatiowal {T = 0} and the purcly capillacy {y = () limits,
respectively.

The formulation employed above nses the streamfunction +f and not the
velocity potential o, since formmlations of the Faraday problem in terms
of the latter miss both the mechanism for the generation of (Mulerian)
mean flows already discuessed in §1, and the possibility that vorticity will
diffuse from the viscous boundary lavers along walls and the frec surface
into the nominally inviscid interior. These boundary layers form because
in the presence of viscosity the tangential welocity must vanish along any
wall while the tangential stress along the free surface is also required to
vanish. Neither of these two effects is restored by the a posteriori addition
of damping to a fundamentally inviscid formulation, ie., a formulation
based on the velocity patential. In fact. for times that are not tco long
the vorticity contamination of the bulk does remain negligible, so that the
flow in the bulk is correctly described by an inviscid formulation but with
boundary conditions determined by a boundary layer analyvsis as in §1.

The basic assumnption made below is that viscosity is small, namecly

Oy < 1. (2.5)



However, as already mentioned, this does not mean that viscous effects
can be safely ignored. Indeed. the subtleties arise alveady at the level of
the linear problem. The normal modes of the wnforced problem, linearized
around ¥ = f = 0, take the form

(4,5 = (0, Pl ke,

In the limit (2.5) there are two types of such modes {Kakutani and Mat-
suuchi [1975]; Martel and Knobloeh [1897)):

A. The nearly inviscid modes (or surface modes) obey the dispersion re-
lation

A =iw — 1= Do C2 — aaC,y + O(CH2), (2.7
where
w = [ka{l — § — SK71)?,
k{22
o= sinh(2k) (2.8)
2

g = @(1 + Ba? — oty

and ¢ = tanhk. Eq.(2.7) provides a good approximation for both the
frequency £Im{X) and the damping rate,

1= —Reld) = e Ch/2 + oy, (2.9)

for small hut fixed values of f, sec Fig. 2.1, However, as noted in Martel
and Knobloch |1997], if the (corrected) third term in {2.7) is omitted the
resuliing approximation brealks dvwn as soon as £ 7 ke, ~ |InCy|. Since
these moderately large values of & are also of interest this term is retained
in what follows.

The eigenfunclion associated wilh the dispersion relation {2.7) is given
(up to a constant factor) hy

wsinh[k(y + 1)]
ksinh &
These modes therefore exhibit a significant free-surface deflection; more-

over, they are irrotational in the bulk, outside two thin boundary layers of
thickness O((C,/w)/?) attached to the bottom plate and the free surface.

(¥, F) = (Vo 1)+ QCL3). Wy =

Since the decay rate of these modes is O[C’,}*’ 2]. for small & these medes are
near-marginal in nearly inviscid flmids. Note that the horizontal wavenums-
ber & is only restricted by the periodicity condition and thus can take any
value of the form 2rN/L, where N is an integer; in the limit L — oo the
allowed wavenumbers become dense on the real line, In the following we
assume that the basic disturbance consists of a pair of counterpropagat-
ing wavetrains with wavenumber =k and frequency w determined from the
above dispersion relation, and that the mean flow arises from nonlinear
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FicurE 2.1. The nearly inviscid dispersion relation, Sm A and Re A vs. k, for
C, = 107, § = 0.5, from Eq.{2.7) using the (") results (dashed linc) and
the ({(C,) results (solid line}. These parameters correspond to the experiments
of Henderson and Miles [1594].

intcractions inveolving these two modes. Here w represents half the forcing
frequency. Thus the relevant nearly inviscid modes are either of long wave-
length (k — C) or are concentrated around the two counterpropagating
modes. The long wave modes constitute the nearly inviscid mean flow; in
the strictly inviscid case, this flow is the mean How considered in inviscid
theories (Davey and Stewartson [1974]; Pierce and Knobloch [1994]). How-
ever, because of its long wavelength this mean flow does not appear if the
aspect ratio is of order unity {Nicolds and Vega [1996]; Higuera, Nicolss,



and Vega [2000]).

B. The wiscous wmedes (or hydrodynamical modes]) obey the dispersion
relation

A= =05k + g (k)] + O(C2),
where for each & > 0, g, > Ois the n-th root of gtanh & = L tan g, and hence
decay on an O(C ) timescale, i.e., more slowly than the surface modes when
C, is sufficiently small. Consequently these modes are alse near-marginal.

Since the assoclated eigenfunction is
U = sin g, sinhiky) — sinhksinfg,y) - O(C,).  F = 0(C,),

these modes do not result in any sigaificant free-surface deformation at
leading order. Gn the other hand they are rotational throughout the domain
and, when forced at the edee of the oscillatory boundary layers along the
bottom (Schlichting [1932]) and the free surface (Longuct—Higgins [1953])
by the mechanism deseribed in §1, they constitute the viscous mean flow.
In view of its slow decay this flow must be included in any realistic nearly
inviscid description.

With this in mind it is now possible ro perforin a multiscale analysis of the
viscous fluid equations using C,. £7! and @ as unrelated small parameters.
We focus on two well-soparated scales in hoth space (2 ~ 1 and x >»
1) and time {¢ ~ 1 and t > 1}, and derive equations for small, slowly-
varying amplitudes A and B of left- and right-propagating waves, Since
viscosity is small, we st <listinguizh three regions in the physical domain,
namely, the two oseillatory boundary lavers {of thickness O{Cg“ 2)) and the
remaining part {or bulk) of the domain {see Fig. 2.2), The boundary layers
must be considercd in arder to obtain the correcet bonudary conditions for
the solution i the bulk, The details of the derivation are quite involved
and can be found in a reoent paper {Voga, Knobloch, and Martel [2001]),
where explicit conditions for the validity of the resulting equations as a
description of the two-dimensional vearly inviscid Faraday systemn are also
derived. The resulting equations take the form

Ay~ v, A, =ioA, — ([F+id)A + Has|d ? — g B[ A + iasuB

+ iovg fol gl T dy A +ias (f™T A, (2.11)
By 40,8y = iaBo, — (4 —id) B 1+ ilag|B % — ag|Al*)B + iaspA

— dag fU] o{yh (w1 dy B — ies (f7)" B, (2.12)
Alz + L) = Az, ), Blr+ 1.t = Blz.1), (2.13)

where p denotes the (small) amplitude of the periodic forcing. The first
seven terms in these equatious, accounting for inertia, propagation at the
group velacity wu,, dispersion, damping, detuning, cubic nonlinearity and
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Ficunre 2.2. Sketch of tne primary and secondary boundary layers, indicating
their widths in comparison to the laver depth.

parametric forcing, are familiar from existing weakly nonlinear, necarly
inviscid thecries (Ezerskii, Rabinovich, Reutov, and Starobincts [1986]).
These theories lead to expression [2.9) for the damping & and the expres-
sions

b= G W', (2.14)
WD &) — a1 — o) + SEHT — a?){5 - o2
- 102(1 — §'r? — SE2(A — 02)’
[8(1 &) 59EYwk? 5
kil 2.15
A - 81 Sk (2:15)
2 _ 5§ SEZY[] — o212 o v:
gy W [I=8 -8R0 -0 A1-S) 1T
2 (1 —5—45k%10% 1—-54 5k

as = wko, (2.17)
where w = w(k) is the dispersion relation {2.8). and are recovered in

the present formulation. In particolar, the cubic coeflicients coincide with
those obtained in strictly inviscid formulations [Plerce and Knobloch [1994];
sce also Miles [1993], Hanscn and Alstrom [1997] and references therein).
The coefficient oz diverges at {excluded) resonant wavenurnbers satisfying
w(2k) = 2w(k). The last two terms describe the coupling to the mean flow
in the bulk (be it viscous or inviscid in origin) in terms of {(a local average
{-}* of) the streamfunction v for this low and the associated free surface
elevation f™. The coefficients of these terms and the function g are given



by

ko O wk(l- g% oy Zwkcosh(2k(y + 1)]

2w’ T 2o v T sinh? &

The new terms arc therefore conservative, implying that at leading order
the mean flow does not extract energy from the system. This result is
consistent with the small steepness of the associated surface displacement
and its small speed compared with the speed V| due to the surface waves.
The mean flow variables in the bulk depend weakly on time but strongly
ou both r and gy, and evolve according to the equations

g =

W+ = Q7

R | 412 AR ey Iy m (2'18)
— [+ (1AP - Bl OF — T = GO + 03)

W - A= BB - AP, w = &UAP - (B]F), aty=0,

(2.19)
(1 - S).f;n - :1,:[:..'*: ql"yt + C'}'Eﬁ":}:ﬂ - 31”';.;;) (2 20)
= +IB le. atpyp=20, '
f O de =™ =0, aty=-1,
{2.21)
= B JiABTNT Lo+ B - |A], aty— -1,
P+ Loyt =9 ey b, M Ll = fMant), (2.22)
suhject to the constraint
L
/ fM™etide =0, (2.23)
Jo

Here

B =2w/e, 3y = 8wk /o
By = (1—oP?/a?, 8y =3(1 - o?k/o®

Thus the mean flow is forced by the surface waves in two ways. The right
sides of the boundary conditions (2.1%a) and (2.20) provide & normal fore-
ing mechanism, this mechanism is the only one present in strictly inviscid
theory (Davey and Stewartson 1974]; Pierce and Knaobloch [1994]) and does
not appear unless the aspect ratio is large. The right sides of the boundary
conditions (2.19b) and (2.21¢) describe two shear forcing mechanisms, a



tangentisl stress at the free surface and a tangential velocity at the bottom
wall. Note that, as in the simpler example considered in §1, neither of these
forcing terms vanishes in the limit of small viscosity (ie., as C; — 0). The
shear nature of these forcing terms leads us to retain the viscous term in
(2.18b) even when C, iz quite small. In fact, when C, is very small, the
effective Revnolds number of the mean flow is quite large. Thus the mean
flow itsell generates additional boundary layers near the top and bhottom of
the container, and these must be thicker than the original boundary layers
for the validity of the analvsis. This puts an additional restriction on the
validity of the equations (Vega, Knobloch, and Martel (2001]). There is a
third, less effective but inviscid, velumetric farcing mechanism associated
with the sccond term ix the vorticity equation (2.18b}, which looks like
a horizontal foree (|42 — |B|%)g{y)™ and is sometimes called the vorter
force. This term plays an important role in the generation of Langmuir
circulation {Leibovich 1983]). Aithough this term vanishes in the absence
of mean flow, it can change the stahility properties of the flow and enhance
or limit the effect of the remaining forcing terms. However, this is not the
case in the limit considered in §3 below.

In the following we refer to Egs. (2.11)-{2.13) and {2.18)-(2.23) as the
general coupled amplitude-mean-flow [GCAMF) equations. These equa-
tions differ from the exact equations forming the starting point for the
analysis in the presence of the forcing terms in the boundary conditions
(2.19)-(2.21), and in two essential simplifications: the fast oscillations as-
soclated with the surface waves have been fittered out, and the bound-
ary conditions are applied at the uwnperturbed location of the free surface,
y = 0, The lorcing terms capiure completely the offect of the primary
viscous boundary layers on the bulk.

The GCAMYE equations arve invariant under reflection,

$™ o -, Am Q7 A B, w— -, (2:24)

and hence admit reflection-symmetric somtions. The simplest such solo-
tions are the spatially uniform standing waves given by A = B = Rel?,
where & 15 a constant and the amplitude F is given by
. . g2 5 og
67+ [d+ (o3 — cg)R* " = agp”,
with an associated reflection-symmetric streaming flow that is periodic in
x with period m/k (see Eq. {2.21c}). Since this mean flow does not couple to
the amplitudes 4, B (i.e., the mean fiow terms are ahsent from Eqgs. (2.11)-
(2.12)), the presence of this flow does not alfect the standing waves. These
much-studied waves bifurcate from the flat state at
{52 + d'l}'.;’?
.Cf5|

= e

H

and do so supercritically if d < (Fand sulcritically if o > 0, see Fig. 2.3. Note
that g can be of order u, withows viclasing the conditions for the validity of



the GCAMF equations, and that theose equations describe correctly both
cases d < 0 and ¢ > 0. In the [ormmer case, the waves arc stable near
threshald, but may lose stability at finite amplitude through the action of
the mean flow as the forcing amplitude increases. Like the secondary saddle-
node bifurcation which stabilizes the spatially uniform standing waves when
d > 0 {see Fig. 2.3). this bifurcation is well within the regime of validity
of the GCAMFE equations. Thus the mean How is involved only in possible
secondary instabilities of the primary standing wave branch.

Ficure 2.3. The primary bifurcation from the flat state Lo spatially aoilorm
standing wave solutions. The GCAME equations describe correctly all states
with | — pe| ~ o, Including the secondary saddlenode bifurcation present when
d = () and the stable solutions bevond i,

The special case d = 0 {zero detuming) and @ = p, defines a codimension-
two point for the analysis since both L [or equivalently w) and g must be
chosen appropriately. In this case the direction of branching is determined
by higher order terms neglected in the analysis, such as the real parts of
the coefficients of the cubie terms, and this is so for sufficiently small but
nonzero values of d as well, In other words, the limit ¢ — 0 {(although well-
defined within the GCAMF equations) may not describe correctly the cor-
responding behavior of the underlyving fluid equations appropriately close
to threshold, i.e., for |p— u.| < p.. However, even in this case the GCAMF
equations capture correctly any secondary instabilities involving the mean
fow, provided these occur at g ~ p.. A similar remark applies to other
codimension-two points as well.



3 Gravity-Capillary Waves in Moderately
Large Aspect-Ratio Containers

The GCAMF equations describe small aunplitude slowly varying wavetraing
whenever the parameters Cy, £.7! and p are small, but otherwise unrelated
to one another. Any relation between them wi'l therefore lead to further
simplification. To derive such simplified equations we consider the distin-
guished limit

SLifa=A~1, dl¥fa=D~1, plija=M;M~1, (3.1)

with 1 £ & < [InCy|, and |InCy| taken for simplicity to be O(1) as well,
The simplified equations will then be formally valid for 1 < L < Cy V2 i
k ~ 1. These are derived under the assumption 1 — 8 ~ 1 using a multiple
scale method with x and ¢ as fest variables and

¢=ux/L, T =1t/L, T =t/L? (3.2)

as slow variables. In terms of these variables the local horizontal average
(-)* hecomes an average over the fast variable r. Note that assumption
(3.1} imposes an impiicit relation between L and C,. When 1 — 8 ~ 1 the
nearly inviseid and viscous mean flows can be clearly distinguished from
one another as discussed in §2, and the viscous mean flow can be identified
by taking appropriate averages of the whole mean flow over an intermediate
timescale 7, i.e., the mean flow variablos ™, 1™ and f™ take the form

B ey O T =m0 (T + 9% (09,47 T, (3.3)
O™y, (T =0 (2. 0T + Qe y, {7, T), (4.4)
M G Th= 0Tt e n T, (3.3)

with

| [nar |+ | [utar|~| [ogar|-| [oar|+| [5ar]
Q S 0 1l i}
(3.6)

bounded as 7 — oc. Thus the nearly inviscid mean flow is purely oscilla-
tory (i.e., it has a zero mean) on the timescale 7. Since its frequency is of
the order of L™! (see {3.2}), which is large compared with Cy, the iner-
tial term for this flow is large in comparison with the viscous terms (see
Eq. (2.18)}), except in two secondary boundary layers, of thickness of the or-
der of (C,L}/% {« 1), attached to the botton plate and the free surface.
Naote that, as reguired for the consistency of the analysis, these bound-
ary layers are much thicker than the primary boundary layers associated
with the surface waves (see Fig. 2], which provide the houndary conditions
(2.19)-(2.21) for the mean flow. Moreover, the width of these secondary



boundary layers remains small as ¥ — oc and (ta leading order) the vor-
ticity of this nearly inviscid mean flow remains confined to these boundary
layers. This is because, according to conditivn [3.6), the nearly inviscid
mean fow is purely oscillatory on the thmescale . Consequently, condition
(3.6) is essential for the validity of the analysis that follows, and the mathe-
matical definition of the nearly inviscid mean flow through Egs. {3.3)-(3.6)
is the only consistent ome: without this condition vorticity would diffuse
outside the boundary layers and affect the structure of the whole ‘nearly
inviscid’ solution even at leading order. In [act, vorticity does diffuse (and
is convected] from the boundary layers, but this vorticity transport is in-
cluded in the viscous mean flow. The vortieity associated with the ncarly
inviscid mean flow is readily seen to he of, ar most, the order of

[|A* = |B*| and {|AZ+'B*{C,L171/?

in the upper and lower secomdary boundary layers, respectively; the jump
in the associated streamfunctios ¢ across each boundary layer is O(C,L)
times smaller. This jump only affects higher order termns; as a consequence
the secondary boundary layers can be completely ignored and no additional
contributions to the boundary conditions on the nearly inviscid flow need be
included in (2.19) and (2.21}. Outside these boundary layers, the complex
amplitudes and the flow variables associated with the nearly inviscid mean
flow are expanded as

(A, B) =L YA, By + L 2(AL B+ (3.8)
(@' 1.0 = L7 eh FRLOy+ L7000l FL W) + - (3.9)
(¥, f7, ) = L7350, 0, W) « L73@ Fy, W) 1o (3.10)

Substitution of {(3.11 [3.6), {(3.8-0110) into {2.11) (2.23} leads 1o the fol-
lowing:

(i) From (2.18} (2.21), at leading ovder,
Ghep + by =0in —1<y<l, gh=0Oaty=-1, ¢, =0aty=0,
together with Fj = 0. Thus
$p = (y + (.. T). Fp=FHCnT).
At second order, the boundary conditions (2.182) and (2.20) yield

(20,0 7T = Fy, — Bc + & Bul® — |Aﬁl2)c,
(1= $)Fi, = SF,., = B, — (1 - S)FL — Ba{]Aol* + | Bol?);

at y = 0. Since the right hand sides of these two equations are independent
of the fast variable  and both ¢! and £ must be bounded in z, it follows



that
B~ Fo, = HillBo F = Al (3.12)
o, — 2 Ey = Ball Aol + Bl |
where
u, = (1 — 8§72 (3.13)

is the phase veloeity of long wavelength surface gravity waves. Equations
(3.12) must be integrated with the following additional conditions, which
result from {2.221-{2.25} and (3.6),

L+ L, Ty =8 7. T, F{+1LnT)=F{(nT), (3.14)

/1Fuid€—ﬂ.
7 - (3.15)
|/ 3Cdf|+|/F&dr|=bﬂluldeda,5‘r-»m‘
0 0

(#) The leading order cantributions to equations (2.11)-(2.12) yield
Apr — 'i'-’g-‘ll}{ = By + 'JJFB()C =1q.

Thus
Ag = Agle. Ty, Iy = Byln, 17,

where £ and 7 are the characieristic variables
= (kT m=( T (3.17)
Moreover, according to (2.13),
Ao(€+1,T) = Agl£. T, Baln+ 1.T) = Boln,T). (3.18)

Substitution of these expressions inte (3.12) followed by integration of the
resulting equations yields

_ ﬁ; ?.-'g + .531“9

®) = — 57 [Aol” = [Bol* — {i4ol* = | B[]
"
Py [FHCHmnT) - FT(C - D). (3.19)
i g+, .
Fi="0" s ol = 180 — (ol + [Bol)]
t.'g — T;p

+ [FH (v Ti4 FT (- 6, T)], (3.20)



where ()¢ denotes the mean vahic in the siow spatial variable ¢, ie.,

1
((;}c:f Gdg, {3.21}

and the functions F* are such that
Fre+1tw,nTi=FH o T, (F5)=0. (3.22)

The particolar solution of (3.191-{3.20} yields the usual inviscid mean flow
included in nearly inviscid theories (see Pierce and Knobloch {1994] and
references therein}, the averaged terms are a consequence of the conditions
(3.15), i.e., of volume conservation [¢f. Pierce and Knobloch [1994]) and
the requircment that tne nearly inviscid mean flow has a zero mean on
the timescale 7; the latter condition is never imposed in strictly inviscid
theories but is essential in the lmit we are considering, as explained above.
To avoid the breakdown of the solution {3.19)-(3.20) at v, = v, we assume
that

"t — vy ~ 1. (3.23)

The functions F* remain undetormined at this stage. In fact, they are
not needed below because the evolution of both the viscous mean flow and
the complex amplitndes is decoupled from these functions. However, at next
order one finds that = remain constant on the timescale T, but decay ex-
ponentially due to viscous cffects (resulting from wviscous dissipation in the
secondary benndary layer attached to the bottomn plate) on the timescale

t~ (L)) 2.

(1) The evolution equations for 4 and By on the timescale T oare readily
obtained from cquations (2.11}-(2.13), invoking {3.1)-(3.6}, (3.19)-(3.20),
(3.22) and climinating secnlar terms (e, requiring |4, and |34] to be
hounded on the timescale 1%

AU]" =i{IAQ§§ — L.l - ]D:lﬁg
+1 [{(13 + {}:g:li."-l[}lz - 0:3-"| ‘iglz}i - C}'.q'(IBQIQ)n] Ap

+iasM{By)" ~ iaﬁ/ gﬁy}{fﬁ]y}’ dy Ag, (3.24)

BQT =iO‘BUrm - (._"'A + ID}BL'}.
+1[(oa + aa)'Bol* — asi|Bo %" — aq{|Ag*)*] By

Q

+ias M (Ag)t — iy f ain)iidn, Y dy By, (3.25)
-1

subject to (3.18). Here £ and 5 are the comoving variables defined in (3.17),
and ()%, {-}%, {-)¢ and {-}? denote mean values over the variables x, ¢, £
and 7, respectively. Note that { averages over functions of Ay are equivalent



to £ averages, while those over functions of By are equivalent to w averages.
The real coefiicient og is given by

g — [06{214,';"0)[';':!‘11.-‘12] - ,l"-J"g'Ug:I + o |:.|'31'Ug + fﬁ)];"{l’
Egs. (3.24)-(3.25) are independent of F* because of the second condition
in {3.22).
Since

(Aal® = 1Bo*}" = { ¥ ~ {|Bo )" 0 28T — o0

the long time behavior of the viscons mean flow is described by

Pozz + Doyy = Wy in -1 <y <0, (3.27)
Wer — d5, W + 65, W5, = Re LW, + Wi,) in-1<y<0, (328
Boe = Poyy =0 at p =0, (3.29)
(We)) =45 =0 aty=-1, (3.30)

‘y=—ﬁ4[{AaBu” 2k +cc] at y=—1, (3.31)
polz+ L. C+ 1,4 T) = ég(= Cp. 7], (3.32)

where the effective Reynolds number associated with this viscous mean flow
is

Re = 17{C, 72}, (3.33)

Remarks. Soine remarks aboot these equations and boundary conditions
arc now in order.

a. The viscous mean flow iz driven by the short gravity-capillary waves
through the inhomogeneous tern in Lhe boundary condition {3.31). Since
{AgBa}™ depends on both £ and T (unless either Ag or By is spatially uwi-
form) the boundary condition implies that ¢f {and hence Wy) depends on
both the fast and slow horizontal spatial variables = and {. This dependence
cannot be obtained in closed form (except, of course, in the uninteresting
limit Re — 0}, and one must resort to numerical computations for realisti-
cally large values of L.

h. The higher order vscillatory terms abgent from the boundary condi-
tion (3.31) oscillate on the intermediate timescale 7, and hence generate
secondary boundary layers. However, the contributions from these bound-
ary layers are all subrominant and have no effect at the order considered.
Moreover, the free-surface deflection accompanying the viscous mean flow
is also small, f* ~ L% (scc Eq.(3.10)), and so plays no role in the evolu-
tion of this flow, as expected of a flow involving the excitation of viscous
modes (see §2).



e. The dominant forcing of the viscous mean flow comes from the lower
bonndary. This forcing vanishes exponentially when & 2> 1 leaving only
a narrow range of wavenumbers within which such a mean flow is forced
while ¢ = O(L,), see Fig. 2.1. Thus in most cases in which a viscous mean
flow is present one may assume that

§=0{CHY).

Nate, hawever, that in fully three-dimensional siteations {such as that in
Douady, Fauve, and Thual [1859]} v which lateral walls are included a
viscous mean flow will be present even when & >3 1 becanse the forcing
of the mean flow m the oscillatory boundary layers along the lateral walls
remains.

d. According to the scaling (3.11 and the definitions (2.8), (2.9) and (3.33),
the cffective Reynolds number Ke is large, and ranges from logarithmically
large values if & ~ |InC,; to Oi:Cg._I""E} it & ~ L. However, even in the
latter limit we must retain the viscous terms in {3.28) in order to account
for the second boundary conditions in (3.29)-(3.31). Of course, if Re = 1
vorticity diffusion is likely to be confined to thin layers, but the structure
and lacation of all these layers cannot be anticipated in any obvious way,
and one must again rely on numerical computations.

e. Note that the change of variables
Ap = «fjin;)'l’."ﬁi'a . By = Eu{‘ig .

where a
o7 = —oc [ al)ish, )¢ d.

S—=1

reduces Eqgs (3,247 (3.25) Lo the mueh simpler form

Agr = i Apee — (A + 1DV Aqg + iy M{Bg)"
;iUF}f" A, (3.36)

+1 [[Qg + (Isjlz‘ig 2 _ {l!'}:.q + &E‘,:ll:

Bur = iaBygy — (A + 1008y + iog M {dy)®

+i [(aa + o5 Bol® — (o + ag]{lénﬁﬂ By, (3.37)
Al + LTy = Apie, T, Byin~1.T)V= By(n.T). (3.38)

from which the mean flow is absent. This deroupling is a special property of
the regime defined by Eq. {3.1}. The resulting equations provide perhaps the
simplest description of the Faraday svstem at large aspect ratio, and it is for
this reason that they have been extensively stuadied {Martel, Knobloch, and
Vega [2000]}. We summarize some of their properties in the next section.



4 Dynamics of the Reduced Equations

In this section we describe some hasic properties of the nonlocal equa-
tions (3.36)-(3.38) in the invariant subspace Ag{ . .tow) = By(-,tay) =
C{-,tau), say, in which the dynamics are described by the partial differ-
ential equation (PDE)

Cr =i,y — (A+1D)C
+1[loa + as)|C? — [oa + @ ){| O3] C +iosA{CY, (4.1)

subject to periodic boundary conditions. Henceforth the variable x stands
for either » or £, depending on whether € stands for Ag or By. Eq. (4.1)
describes standing waeve solutions of Egs. (3.36)-(3.38). It is possible to
show that such standing wawves [hereafter SW) are the preferred state at
onset (Riecke, Crawford, and Knobloch [1988 ] although at larger valucs
of the forcing amplitude such waves may become mstable with respect
to perturbations transverse to this subspace [Martel, Knebloch, and Vega
[20001); if this is so the dynamics of Eqgs. (3.36) (3.37) and (4.1) will differ.

After an appropriate rescaling {and taking the complex conjugate in {4.1)
if g —exq < 0, and changing the sign of & and o if as+ g < 1) the standing
waves obey an equation of the form

Cr =iaChy — 1 +1C+I[|C % +{A — {1 C+ (Cy,  (4.2)
Clx+ 1,7y =Ce, 7).

Thus the relative skze of the nounlinesr terms is measured by the single
parameter A = 1 — {rms + ) /ey + s

The results of solving equations [3.36) (338 and (4.2] {4.3) lor ideutical
parsmeter values are summarired in the bifurcation diagrams shown in
Fig. 4.1. These are constructed by nating chat squations (4.2)-{4.3) imply

d 2 2 2
d—I%C'I 1. = —2[|C| 7, + p{{C) — co),
-
so that successive intersections of a trajectory with the hvpersurface

117, = 3ui€)% +ex)

are always well defined. In fact this surface contains all the steady states,
while each periodic trajectory intersects it at least twice in each period, at
the turning points in | Cf .. In the bifurcation diagrams we plot successive
mazima of ||C||z, at each value of p after transients have died away. In the
general case (1Ap| # | Bo|} we likewise plot the vutward intersections with
the hypersurface

4ol %, + IBalli, = nl{Ao}{Bo) — cc),


http://-J.au

corresponding to maxima in || Ag I3, +11Boll3,- Although this procedure for
generating hifurcation diagrams is convenient for most purposes it suffers
from the disadvaniage thai it is insensitive to phase drift. Thus additional
diagnostics are necessary to identify such drifts, as discussed in detail in
Martel, Knobloch, and Vega [2000-.

In both cases the first instability produces uniform steady solutions and
these subsequently lose stability in a symmetry-breaking pitchfork bifurca-
tion, giving rise to time-independent. bur spatially nonuniform states. Both
these bifurcations preserve the identity Ag = Bg and hence are common to
both sets of equations. Bath also preserve the spatial reflection symmetry
R :x — —az. In the case shown in Figs. 4.1a.b the resulting nonuniform
but reflection-symmetric states subsequently undergo a Hopf bifurcation
and produce a branch of oscillatory solutions. Shortly thereafter chaos sets
in, interspersed with nonuniform temporally pericdic motion. Some of the
observed transitions arc the resule of crises while others appear to be due
to period-doubling cascades. Observe that the details of this hehavior differ
in the two figures, indicating that the invariant subspace Ay = By does not
remain attracting for all values af g. In the following we restrict attention to
the origin of this more complicated dynamical behavior in Eqgs. (4.2)-{4.3).

Analysis of the system {4.2]-(4.3) is complicated by the absence of wave-
numher-dependent dissipation: the damping is identical for all modes. As a
result the theorem of Duan, Ly, and Titi [1996] establishing the existence
of a finite-dimensional inertial manifold for a nonlecal Ginzburg-Landau
of the same type and with the same boundary conditions does not apply.
Nonetheless, for the weakly damped nonlinear Schrodinger {NLS) equation
with direcl external forcineg, Ghidaglia 1988] was able to demonstrate the
cxistence of a weak finite-dimensional attractar. This result was improved
uzpon by Wang [1995] who used an ensrgy equation te obtain strong con-
vergence, showing that the allractar is in fact a strong, finlte-dimensional,
global attractor. Subsequent work (see, e.g.. Goubet [1996]; Oliver and Titi
[1998]) has dealt with the task of proving additional regularity properiies
of the attractor. In particular, (Miver and Titi ;1998 showed that the global
attractor for the weakly damped driven {but local) NLS equation with di-
rect forcing is analytic, indicating that the Fourier expansion of a sclution
on the attractor converges exponentially fast (as the number of terms is in-
creased) to the exact solution. We bolieve that these properties continue to
hold for the nonlocal equation with parametric forcing, and explain why a
simple two-mode truncation of the PDE discussed next describes the PDE
dynamics so well over a large range of parameter values.

4,1 Two-Maoade Model and Basic Solutions

In view of the fact that botn the primary and secondary bifurcations
preserve the reflection symmetry B @ # — —2 we focus on the class of
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FIGURE 4.1. Bifurcation diagrams for the twa systems described in (3.36)-(3.38)
and (4.2)—(4.3), with & = 0.1, 4 = 0 and A = 2/3. Courtesy C. Martel.



reflection-invariant states of the form

[a'8)
i) + Z op T cos(2mnat . {4.7)

n=1

Clz,r) =

'.-:I,_,
3

Projection of equation {4.2) onto the first two modes then leads to the
dynamical system (Higuera, Porter, and Knobloch [2002])

éo = —(1 + 4 deg + 1A c|* ~ |ea]? IUE" —i[Egr: -~ Clcﬂ]E + pdy.,  (4.8)

. . . L e _ o . [
&L= —(L+idy)er + id{|eal* + |Cl|2:’§1 +il@er + clcﬂ)gﬂ * ﬂcllzf i
(4.9)

where d; = d+ 4m%a. These equations are equivariant under the operations

o {eo,e1) = (—enper), Rytieniar) — (e, —a1), {4.10})

where Rg = &Typ and By = Tipoand Tyypc 2z > 2+ L, C — €, and
A — —C represent two gymmetries of the original equations (4.2)-
(4.3). These actions generate the group Dy,

Eqgs. (4.8)-(4.9) contain three tvpes of fixed points whose propertics are
sumimarized be[ow. In what follows we set f = b {both for simplicity and
for comparison with Martel, Knobioch, and Vega [2000]} and write

C()EJ.‘[',-F'E-yD, ) EI]_‘I"E'.Iyl,

where &g, 71, Yo and gy are all real

Trivial state {(3): This solution has the full symmetry Ds. s stability is
determined by the four eigenvalues £¢ 1 and 1 + 4w, where w = 4770,
The first two give the prowth rate of pertorbaions wilhin the invariant
plane ¢; — O, while the complex conjugate pair describes porturbations
within the invariant plane gy = . When o — 1 there is a supercritical
pitchfork bifurcation giving rise to a branch of spatially uniform states [/
cg # 0, ¢p = 0; nate that there are no fixed points of the form ¢y = 0,
(&] 7’2 0.

Uniform steady stotes (L'} These solutions take the form g # 0, ¢1 = 0,
where

[Alleo|> = 24/ 2 — 1., cos2d = 1/u, (4.11)
and ¢g = [calei‘?, and are invariant under Ay but not under Rp; when

necessary we distingnish between the two Rp-related branches using the
notation Uy {the + reflects the sign of the =g coordinate). Since d = 0
these solutions are always stable to perturbations within the plane ¢; =0
with the corresponding eigenvalues, s, satisfying

(54117 = (5—4p®) =0. (4.12)



Note that these eigenvalucs are complex when p > +/5/2. Stability with
respect to the mode ¢ is described by the characteristic equation

. 2, D
(s+1)2+e? +pi -1 E“‘E -1 ll—;"m—: Vp2—1=0. (4.13)

Thus, when s = 0, the uniform states U7 undergo a pitehfork hifurcation
which breaks the R; symmetry and produces time-independent nomuniform
states with n = 1 (NI7). Note that because of the form of Eqs. {4.12)-(4.13)
Hopf bifurcations are not possible,

Nonuniform steady states (NU7): The fixed points NI/ have no symmetry;
consequently, the VU states come in quartets, related by the actions of Ry,
Ry, and RyR,. Depending on the value of A, the ¥ states may become
unstable, with increasing i, at cither a saddle-node or a Hopf bifurcation.
If a Hopf bifurcation occurs it generates four symmetry-related periodic
orbits, The fate of these and other time-depewdent solutions is investigated
in the following section.

4.2 Numerical Results

In this section we present the results of a carcful nunerical investigation
of Egs. {4.8]—(4.9) using a combination of AUTO (Doedel, Champneys,
Fairgrieve, Kuznetsov, Sandstede, and Wang [1997]) and XPPAUT {(Fr-
mentrout [2000]). In addition to the simple bifureations mentioned above
these equations can exhibit extremely complicated dynamics. We find that
over a large range of paramcters this complex hehavior is organized by a
cadimension-one heteroclinie connection between the uniform and trivial
states, a glabal bifurcation which can he best anderstood in the context of
a two-parameter study. We therefore sei f - 0, o — 0.1 and vary A along
wilh the lorcing amplitude .

Fig. 4.2 shows the impartant local biforcation sets in the {, A) plane: the
7t = 1 neutral stability corve (labeted 3B and the locl of Hopl and saddle-
node (SN} bifureations on the MU branch which nifurcates from the U state
along the neutral curve. Fig. 4.3 shows the bifurcation diagrams obtained on
traversing this plane in the direction of increasing g at several different (but
fixed) values of A, Fig. 4.2 reveals the presence of two singularities. There is
a degeneracy when A = [1: at this value of A spatially uniform states exist
only at g = 1 and at no other value of x. It is thus not surprising that there
are many bifurcation sets emanating from the singular point (g, A) = (1,0).
In the present problem there is, in addition, evidence of singular behavior
at A ~ —1.1428, where the amplitude of the N7 branch (but not the U
branch) becomes infinite. As A decreases toward this value the two saddie-
node bifurcations on the AU branch {at p ~ 2.33 and g ~ 5.67) cccur at
roughly constant x values but at larger and larger amplitude (see Fig. 4.3g).
When A < —1.1428 these two saddle-node bifurcations no longer occur at
all (see Fig. 4.3h).
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Ficure 4.2. Local bifurcation sets with d = 0 and @ = 0.1: syimmetry-breaking
bifurcation (SB) an the I/ branch, and Hopf and saddle-node (SN) bifurcations
on the NU branch, Courtesy M. Higuera and J. Porter.

The bifurcation diagrams of Fig. 4.3 show the {7 and VU branches, as
well as recording the fate of the branches of periodic orbits [when present)
generated in Hopf bifurcations on the NU7 branch (Figs. 4.3a-f}. For typical
parameter values the M7 hronmch is S-shaped, with the Hopf bifurcations
accurring on the lower part. For cxample, a oot (not shown) at A = |
barely crosses the locus of Hopf bifurcations bué does so iwice in quick
sucression indicating the presence of two Hopt bifurcations back to back
(see Fig 4.2); connecting these hifurcations is a stable branch of periodie
orbits, With A = 0.0 {Tig. 4.3a) lwre s o period-doubling bifurcation on
this original branch bat the cascade (not shown) is incompleie (there are
Just two period-deublings followed Ty two reverse pericd-donblings). Bi-
fureation *bubhles” of this type are familiar from problems related to the
Shil'nikov bifurcation {Knobloch and Weiss [1981 ; Glendinning and Spar-
row [1984]). For A = 2/3 (Fig. 4.3b}, the value corresponding to Fig. 4.1,
there is (presumably) a complete period-deubling cascade and one can eas-
ily find a variety of periodic and chaotic attractors (see Fig. 4.4). Evidence
that this cascade is not the whole story, however, is provided in Fig. 4.3¢.
The figure shows that, for & = {1.645, the branch of periodic orbits has
split apart, each half terminating in a Shil'nikov-type homoclinic connec-
tion with the uniform state. The abruptness of this transition suggests the
presence of other periodic orbits with which the original periodic branch is
colliding. This interpretation is further supported by a second abrupt tran-
sition which ocenrs by A = (1.633 (Fig. 4.3d]; the branch of periodic states
produced in the second Hopf bifurcation {at p ~ 4.8) now terminates in a
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Freure 4.3, Saries of hifureadion diagrams, io = ([eg]? + [e1]?3*2 versus g, for
different values of A. Stable [unstable) solutions are renderad with thick (thin)
lines. Branches of perindic soluticns originating in Hopf hifurcations are also
shown. Courtesy M, Higuera and 1. Porter.

homoclinic bifurcation on the NI states rather than the U7 states. As A is
decreased even further (see Fig. 4.3e) the first homoclinic bifurcation (with
the I7 state) moves very close to the initial Hopl bifurcation, occurring at
g~ 1.112 when A = 2/89, while the second homoclinic bifurcation (on the
NU branch) moves closer to the rightinost saddle-node bifurcation. The
branch of periodic solutions corresponding ¢o the former is almost invisi-
ble on the scale of the figure. A comparison of Figs. 4.3e and 4.3f shows
that when A is small in magnitude the bifurcation diagrams on either side
of A = 0 are qualitatively similar. The main differences are the change
in scale (larger p values for negarive A) and the absence of the rightmost
symmetry-breaking {SB] bifurcation when A < 0: although the NU branch
comes very close to the Y branch for large g the two branches remain
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FIGURE 4.3. Series of bifurcation disgrams, |o = (oo* + a2
different values of A. Stable [unstable) solutions are reudered with thick (thin)
lines. Branches of periodic selutions originating in Hopf bifurcations are also
shown. Courtesy M, Higuera and I, Porter.

versus 1, for

homoclinic bifurcation on the NI states rather than the 7 states. As A is
decrcased even further (see Fig. 4.3¢)] the first homoclinic bifurcation (with
the U state) moves very close to the initial Hopf hifurcation, occurring at
g~ 1.112 when A = 2/9, while the second homoclinie bifurcation (on the
NU branch) moves closer to the rightmost saddle-node bifurcation. The
hranch of periodic solutions corresponding to the former is almost invisi-
hle on the scale of the figure. A comparison of Figs. 4.3¢ and 4.3f shows
that when A is small in magnitude the bhifurcation diagrams on either side
of A = 0 are gqualitatively similar. The main rlifferences are the change
in scale (larger g values for negative A) and the absence of the rightmost
symmetry-breaking (SB) bifurcation when A < (: although the NU branch
comes very close to the £7 branch for large p the two branches remain



FiGURE 4 4. Attractors for d = 0, e = 0.1, A = 2/3 and (a) = 1.86, (b) p = 2.2,
(¢) ¢ = 2.5. Courtesy M. Higuera and J. Porter.

distinct, in contrast to the sitwation for A > 0.

It turns out that the interesting periodic and chaotic behavior which
one finds for valnes of A such as those wsed in PFigs. 4.3b-f 1s associated
with a hefereclinic bilurcatton involving hoth O and U, The bifurcation
sets for this global connection, £f — O — L. are shown in Fig. 4.5. In
this figure there are three curves of heteroclinie bifureations which emerge

[ o .
A | 5B ' Hopf SN - A

FicuRreE 4.5. Heteroclinic [Het} bifurcation sets (solid lines) representing the cycle
/' - O — U. The insct shows an enlargement of one of these curves near its
termination in the codimension-two heterociinic cycte U — NU — O — /. Note
that the cut A = 2/8 passes through four hetercelinic bifurcations. Courtesy M.
Higuera and I. Forter.

from (. A) = (1,0} into the tegion A > 0 and three that emerge into



the region A < 0. For A > 0 two of these conneet up smoothly form-
ing a loop while the third oseciliates back and forth an infinite munber
of times before terminating in a codimension-two heteroclinie bifurcation
point at (g, A} ~ (2.5803,0.1877;. The hetcroclinic cycle at this point in-
volves all three types of fixed points: 4, L7, and the NI/ state hetween the
two saddle-node bhifurcations on the N7 branch. For A < (¢ the three curves
of heteroclinic bifurcations remain separate (the upper two are almost in-
distinguishable on the scale of the figure). Two of them continne out to large
values of g (they have been followed to o > 50) while the third wiggles back
and forth before terminating in another codimension-two heteroclinic cycle
involving O, ¥/, and NI'. This point, {gz. A) =~ [5.065, —(.159), is marked
in Fig. 4.5 by a small circle; the wiggles are not visible on this scale. This
point, differs from the previous codimension-two point for A > 0 in a fun-
damental way because it involves the small ammplitude NU state (after the
first Hopf bifurcation} whose stable and unstable manifolds are each two-
dimensional. Thus the codimension-two heteroclinic cycele for A > 0 involves
three points with one-dimensional unstable manifolds; the connection O —
[/ is structurally stable [due to the invariance of the uniform plane) while
the connections If — NU and N7 — O are eazch of codimension-one, For
A < ( the connections O — U and NIF — (2, are both structurally stable
but the third, f — NI, is itself of codimension two.

Fig. 4.5 aleo shows the cut A = 2/9 This cut corresponds to the bi-
furcation diagram of Fig.4.3e and crosses the heteroclinie bifurcation set
four times. We use this A value to investigate further the dynamics asso-
ciated with this bifurcatiovn. Along this pash che first Hopl bifurcation (at
e == 1.106) oecurs almost immodiately after the hivth of the NU branch
(see Fig 4.51. Between this [Topl bilureation and the leftmost saddle-node
bifurcation on the NI branch at g = 2.674 there are no stable fived points;
in this region one can easily find chaotie attractors. such as those shown in
Fig. 4.6, as well as a variety of lulerasting periodic salutions {sce Fig. 4.7).

FiGurE 4.6. Chaotic atiractors for f =10, oo = 0.1, A = 2/9 and (a) g = 1.51,
{b) =20, (¢) p = 2.54. Courtesy M. Higuera and J. Porter.
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FIGURE 4.7. Zs-symmetric periodic attractors for d = (0, & = 0.1, A = 2/9
and {(a) p = 1.41, RaR-symmetry; (bl g = 164, M-symmetry; (¢) p = 1.875,
Hy-symmetry. Courtesy M. Higuera and J. Porter.

Notice that the periodic orbits in Fig. 4.7 have Z. symmetry, i.e., they
are invariant under one of the reflections: Ry, By, g . Although thesc
particular periodic orhits are somewhat exotic [in the sense that they do not
belong to one of the basic families of periodic solutions analyzed below but
resemble something like the ‘multi-pulse” orbits identified in perturbations
of the Hamiltonian problem) there are also sequences of simpler periodic
orbits which come close to both € and 7. These arbits, characterized by
their symmetry {or lack thereof} and by the number of ascillations they
experience near (), are related in a fundamental way to the heteroclinic
connection ¥ — O — U, A bifurcation diagram obiained by following
many of these solutions numericaliv is displayved in Fig. 4.8, aleng with
four representutive orhits. This fignre shows the period (halfperiod for
symmaetric orbiis) as a function of p.

T'wa of the branches shown {tho ones with lowest peried) close on them-
seives to form isolas but most of he solutiows tenminate in homoclinic
(U] — Uy} glhing bifurrations or hoteroclinie (Uy » &%) symmetry-
switching bifurcations. This is evident from the dramatic increase in period
which oceurs as the periodic orbits approach the fixed points. In the glu-
ing bifurcations two asymmetric periodic orbits come together {(using U,
or U_) to create a single R -symmetric pericdic orbit. In the symmetry-
switching bifurcations twa Rg-svmmetric periodic orbits transform (using
both 74 and /) into two Ry R-symmetric periodic arhits. In this second
case the symmetry neither increases nor decreases but switches from one
Zy symmetry to another.

Under appropriate conditions each of these processes is associated, as
in the usual Shil'nikov scenaric (Glendinning and Sparrow [1984]; Wig-
gins [1988]), with cascades of saddle-node and either period-doubling or
symmetry-breaking bifurcations; the Fp-symmetric orbits must undergo
symmetry-breaking prior to any pericd-doubling bifurcations since such
orbits do not (generically) have negative Floguet multipliers (Swift and
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FiGURE 4.8. Cascades of glumng (A ~ 4 — R, and symmetry-switching
(Ro + Ro ~ RoR) + RuR)) bifurcations for ¢ = 0, & = 0.1 and A = 2/9.
These accumulate from opposite sides on the principal hetereclinic bifurcations,
the first two of which, labeled {1} and {2}, are shown {upper panel). At point
(3) there is 2 homoclnic connection to ¥L7. The lower panel shows an enlarge-
ment of the region near point {1). The diagrams show the period {half-period) of
asymmetric (symmetric) periodic orbits as a function of . Courtesy M. Higuera
and J. Porter.

Wiesenfeld [1984]). Note also that the way the two branches (e.g., an
asymmetric and an Rj-symmetric branch) merge with increasing period



differs from that of the corresponding Shil'nikov problem in three dimen-
sions with symmetry (Glendinning [1984]). This is because the reflection
symmetry in the latter case 1mist be a comnplete inversion {Tresser |1984);
Wiggins [1988])., while in our case the relevant symmetry £; is not (sec
Eq. (4.10)); in particular Ry does not act on the swirling part of the flow
near U in the plane e; = . In our case the two types of branches oscillate
“in phase” around the homoclinic or hetercelinic points as their period
increases (cf. Fig 4.8), while they oscillate “out of phase” in the three-
dimensional case with inversion symmetry. These differences hetween the
standard situation and ours are a direct conseqoence of the fact that our
two-mode truncation is four-dimensional, allowing new types of connection
that are not possible iu three dimensions. Note that in Fig. 4.8 we have only
investigated the first two of the main heteroclinic bifureations {recall that
there are four such bifurcations when A = 2/9) and that therc are many
periodic solutions {e.g., those of Fig. 4.7} which have not heen shown; these
may form isolas or terminate at other, subsidiary, connections. In short,
the full situstion is extremely complex.

4.3 Comparison with the PDE

Since it is the dynamics of the PDE (4.2] -[4.3) that are of ultimate interest,
one would like to understand how faithfully their behavior is represented
by a truncated set of ordinary differential equations (ODEs). While there
18 no a priori reason to assume what a finite number of modes can acen-
rately capture the effect of the nonlinesar temns, it turns out that in many
problems they do (Knobloch, Proctor, and Weiss [1993); Doelman [1991];
Rucklidge and Maithews [1986]), Higuera, Tarter, and Knebloch {2002] find
numerically that these cquations frequently have reflection-symmetric at-
tractors {in &} aied that tlese ave well deseribed by the restriction to the
cosine subspace, In addition, the numerical simulations indicate that the
influrnee of the higher modes s often negligible, purlicularly for periodic
orbits and chaotic attractors which are approximately heteroclinic. Fig. 4.9
shows that the heteroclinic hehavior found within the two-mode model
{4.8)-(4.9) also occurs m the full PDE.

To examine the influence of higher modes (n > 1) on the dvnamics
we have computed |eg|, |eu], and £2,|e, as functions of time, after first
allowing transients to die away. The solutions in Fig. 4.10 represent typical
chaotic attractors that can be found for A = 2/9 and 1.5 < p £ 2.8,
together with the time series representing their harmonic content. Notice
that in all cases the amplitude of the higher mades (hold curves in the
righthand set of panels) remains small, indicating that these modes do not
play a significant role in the dynamics.

While such a low-dimensional description is not nnexpected for small am-
plitudes (i.e., near onset at p = 1) Egs. [4.2)-{4.3) continue tc be described
by the two moede truncation even relatively far from the primary bifurca-
tion. Notice that, e.g., for A = 2/ and g 2 1.8753 the uniform states are
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Ficunk 4.9. Stable periodic orbits of the PDE {4.2)-/4.3] with different symme-
tries for A = 2/9. Gluing and symmetry-switching bifurcations, as in the ODEs,
appear to be present. Courtesy M. Higuera and J. Porter.

unstable to at least two nominiform modes and coe might therefore suppose
that a two-mode trencation will be of dublous validity, However, we often
find that the system (4.8)-{4.9% continues to apply (see Figs. 4.10b,c). This
increased range of validity is likely due to the prominence of the hetero-
clinic bifurcation since for orbits which are approximately heteroclinic the
potentially complicated dynamics of the full PDE are controlled mainly
by symmetries and by the lecal properties of the fixed points O and U
where most time is spent; recall that £} and ¥ are the same in both the
PDE {4.2)-(4.3) and the ODE maodel (4.8)-(4.9]. Also important is the fact
that due to the spatial averaging of the forcing term in Eq.{4.2) the ori-
pin is always stable with respect to nonuniform mades. The higher modes
are thus quickly damped under the attracting influence of the trivial state.
We conclude that the evidenl Jow-dimensional behavier of the PDE (4.2)-
{4.3) is rolated to the presence of the heteroclinie bifurcation involving
the origin and ity associaled cascades, Whenever one is relatively close to
these bifurcations in parameter space (oo Fig. 4.5} the dynamies will typi-
cally be dominated by the many perlodic and chaotic attractors associated
wilh them. Tor parammeter values outside of this regime {c.g., ¢ = 3 when
A = 2/9) the dynamics are no longer heteroclinie and hence are more likely
to involve other modes.

When A = 2/3, the value used in Martel, Knobloch, and Vega [2000] for
Fig. 4.1, the heteroclinic bifurcation does not actually occur {see Fig. 4.5),
but the dynamics may nonctheless be dominated by the various periodic
orbits and related chaotic atiractors which exist in nearby regions of pa-
rameter space; gliing bifurcations still oeenr even though the full cascade
does not. Fig. 4.11 shows several chaotic attractors for A = 2/3 demon-
strating that the dynamics are again donminated by the first two modes. As
for A = 2/9. this low-dimensional behavior dues not hold for all values of u
and the two-mode ODE maodel evenrually fails. $3ut in contrast to the case
A =2/9, when A = 2/3 this fallure can arise for two reasons. The first fail-
ure of Eqgs. (4.8)-{4.9) is due to a & svmmetry-hreaking bifurcation, which
occurs at u ~ 3.4, In this case it is not the two-mode nature of the model



FiGURE 4.10. Relative impartance of the Fourier components for A = 2/9: (a)
chaotic attractor at & = 1.51, (b) at p = 2.0, (¢} at it = 2.8, The lines { )
correspond to jegl, { Y to ‘e’ and I 1 to B Lie.]. Courtesy M.
Higuera and J. [*orter.

that becomes inappropriate (the uniform state does not lose stability to
the n = 2 mode until f1 ~ 4.093) but the restriction to the cosine subspace.
Fig.4.12a shows a solution, which possesses low-dimensional character but
is not reflection-symmetric and is therefore not contained within the sys-
tem (4.8)-{4.9}). After a narrow interval (3.4 < 1 < 3.46) the dynamics re-
cover their reflection-symmetric character, and subsequently {see Fig.4.1)
a second window of stable uniform states appears for 3.5 < ¢ < 4.3 At
i ~ 4.3 the system becomes abruptly chaotic. with many modes partaking
in the dynamics. This situation, however, does not persist uniformly as p
increases further. For example, at p = 4.65 the rajectories spend a long



Ficunre 4.11. Relative imporiance of the different Fourier components when
A = 2/3 for chaoctic attractors at: (a) = 1.85, (b) p = 1.925, and {c) p = 3.2,
The lines ( ) correspond to |enl. [ ] to | and { ) to Tiolenl-
Courtesy M. Higuera and J. Porter.

time near the invariant ewven subspace (¢, = 0 if n is odd}, occasionally
coming under the influcnce of unstable pericdic orbits in this subspace and
being briefly ejected from the even subspace (see Fig. 4.13). These excur-
sions are associated with episodic phase drift of the solution {type 1 drift
in the terminology of Martel, Knobloch, and Vega [2000]). This interest-
ing behavior is reminiscent of the so-called blowout bifurcation (see, e.g.,
Ashwin, Buescu, and Stewart [1996]). In the present case the attractor
is completely contained in the even subspace {with dynamics dominated
by the first two even modes, » = 3, 2] over a moderately large interval,
5.0 £ i £ 6.5, but loses stability, apparently in the above manner, as p
decreases below u =~ 3.0. We remark that blowout bifurcations provide a
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FIGURE 4.12. Space-time diagramns corresponding bo (a) a quasiperiodic attractor
without reflection aymmetry. A = 2/3 and p = 3.4; and {b) a periodic attractor
with reflection symmetry, A = 2/8 and g = 3.46. Courtesy M. Higuera and J.
Parter.

genery] mechauisin by which attraclors in invariant subspaces lose stability
with respect to perturbations out of the subspace.

5 Concluding Itemarks

In this paper we have summuariszed the resuis of 4 svstematic derivation of
the amplitude equations describing the evolution of slowly varying wave-
trains on the surface of a nearly inviscid liquid excited by small amplitude
vertical vibration of its container. Becanse of the presence of oscillatory vis-
cous boundary layers along the rigid boundaries and the free surface viscous
mean flows are driven in the largely inviscid interior of the fuid. These aug-
ment any inviscid mean fows that may be present and the two together
interact with the parametrically excited wawes producing them. This non-
trivial interaction beitween the mean flows and the waves is & consequence
of the presence of the hydrodynamic modes which decay, for C; < 1, more
slowly than gravity-capillary waves, and hence are easily excited by the os-
cillations. The resulting equations, albeit still complex, provide a significant
simplification of the original problem in that the boundary conditions are
now applied at the undeformed surface, and the fast osciliation frequency



3.5

25

480 480 50 520

FIGURE 4.13. Norin of the first three modes versus + for A = 2/3 and g = 4.65.
The thin, medivm, and thick lines denote |cgl, |z, and |1, respectively. Note
the episodic excitation of the mode o.. Courresy 3. Higuera and J. Porter.

agsociated with the vibration of the container Lus been eliminaied. As part
of the analysia explicit. cxpressions far all the cocfliclents are obhtained, as
are explicit conditions for the walidity of the resulting squations (Vega,
Knohloch, and Martel 20017}, As such the resulting equations represent a
navel system for the study of pattern formation and subsequent instabilities
of the resulling patterns via the vxeitalion of mean flows,

In certain specific cases these cquations can be simplified further. We dis-
cussed one such case, in which the mean flow decouples from the amplitude
equations for the left- and right-traveling wavcs. The remaining equations
are still not trivial, in that they are nonlocal and include both dispersion
and damping, although no wasenumhber-dependent dissipation. Equations
of this type were studied by Martel, Knobloch, and Vega [2000] and provide
perhaps the simplest description of the Faraday system in an extended do-
main under precisely stated conditions. It is Important to emphasize that
this description differs from those ohtained by ad hoc procedures. In par-
ticular, the usual approach of formulating the problem as an inviscid one
at leading order, and adding some damping after the fact to mimic the role
of viscosity fails on two levels: it omnits the basic mechanisms that drive
the {viscous) mean flow {Schiichring [1932]), and it omits the back-reaction
of this flow on the waves that are responsible for it. Even the simplest



description of the Faraday system that results includes nonlocal terms in
the amplitwde sguations whose origin can be traced to the fact that am-
plitude inhomogeities are advected at the group velocity on a timescale
that is much faster than the iimescale on which the waves equilibrate. An
additional nonlocal contribution arises from the requirement that mass be
conserved (Pierce and Knobloch [1994'). Since the Reynolds number of
the associated flow can be {indeed must be) substantial the equations for
this flow must in general be solved mumerically as already done in other
circumstances {Nicolds, Rivas, and Vega [1997, 1998]).

A careful examination of the analysis that led us to equations (2.11)-
{2.23) shows that these in fact apply under the conditions

k(i + o) < w, [fl41fl <l Ll <k, (51
or equivalently,

ElAT+IBD+

< I, kel <w, (5.2)

and the condition
Lgu fl6+ d + o5 p). (5.3)

Here vy is the (nondimensiona:) group velocity of the surface waves, defined
in (2.14), a5 is given in (2.16) and we assumed that the smailest spatial scale
is k=, The condition {3.1) can be stated succinctly as requiring that the
nonlinearity be weak and the aspect ratio of the system be large compared
to the nondimensional wavelength of the surface waves; the condition (5.3)
requires that the terms aceounting for inertia and propagation al the group
velocity in the amplitude equations (2.11) {2.12) be much larger than the
remaining terms. Tn addition, the requirements

(1-S°+ 58" 2, k1-85-SE0"F <)ty (54)
or equivalently,

1
C,<w, Cfui«l-—8~(5/C,). (5.5)

are imposed implicitly both on the carrier wavenumber £ as well as on
all wavenumbers associated with the (viscous) mean flow, These conditions
guarantee that the thickness of the associated boundary layers will be small
compared to the depth (if & < 1] or compared to the wavelength (if & > 1),
see Fig. 2.2. Since the lowsst wavenumber of the mean flow is k = 2x/L the
condition (5.4) implies, in particular, tiat

(1-S)L7* 4 2x8L7 > O (5.6)

Several additional assumptions appear in the course of the analysis (Vega,
Knobloch, and Martel [2001]}.



It is evident that strictly inwviscid treatments of the problem and the
powerful techniques that are available for such freatments miss qualita-
tively important properties of vibrating svstems. Similar issues arise in
the theory of vibrating liquid bridges (Nicolds and Vega [1996]) and re-
lated systems (Higuera, Nicolas, and Vega [2000) ), where mean flows gen-
erated in the viscous boundary lavers can be used to control the amplitude
of any convection that may be present. Whether the approach described
here for the Faraday system will vield a quantitatively precise description
of existing experiments on the Faraday system with nearly inviscid flu-
ids (Ezerskii, Rabinavich, Rentow, and Starobincts 1986]; Dounady, Fauve,
and Thual [1889); Tufillaro, Ramshankar, and Gollub [1989]; Kudrolli and
Gollub [1997]) remains to be seen, however. Any experitents in a narrow
annulus will suffer from effects due to cscillatory boundary layers at the
lateral (radial} boundaries which are difficult to minimize. Likewise precise
experiments on liguid bridges are difficult under terrestrial conditions, and
stability predictions of the type given by Kruse, Mahalov, and Marsden
[1999] remain to be confirmed.

The relation hetween the t¥pe of theory described here and carlier work
(Kovagie and Wiggins [1992; Haller and Wiggins [1993, 1995a,b]) on the
origin of complex dynamics in the forced weakly damped vonlinear Schrid-
inger equation is also of interest. This work focused on the near-Hamilton-
ian limit and exploited generalizations of the hel'nikov theory to PDEs
to establish the presence of a variety of multipulse orbits homoclinic or
heteroclinic to a slow manifald. In contrast. our approach has focused om
the dynamics substantially farther from tlis lmit. Alihougl much of the
dynamical behavior found namerically in the nonlacal parametrically forced
damped nonlinesr Schridinger equativn derived here conld be understood
in detail using a two-mode model system, the relation of the cascades of
gliing and symmeatry-switching bifircations thaf, appear to be responsible
for it to the near-Iamiltonian dynamies analveed for this class of systems
by Kovagié and Wiggins 10092] and Hallor and Wiggins [1093, 1995a.b]
remains to be examined. Indeed, because of the parametric nature of the
forcing (and in particular the resulting symmetry C — —7) the hehavior
found here bears a greater resembiance to that discussed by Rucklidge and
Matthews [1896] in their study of the dynamics of the shearing instability
in magnetoconvection than to the damped wonlinear Schrodinger equation
with direct foreing. Like our system the former has Do symunetry and
exhibits global bifurcations involving both the origin {corresponding to the
conduction state) and the convective state 35. The latter state is reflection-
symmetric and can undergo a pitchfork bifurcation to a tilled convection
state STC. From a symmetry point of view these states play the same role as
0O, U and NU in our problem. The essential differcnce between our systemn
and that studied by Rucklidge and Mattoews lies in the fact that in our case
the leading stable eigenvalues of both {J and L are complex (the former in
the ¢y = 0 subspace, and the latter in the ¢; = (0 subspace). The dynamical



behavior that results is new and is discussed in detail in Higuera, Porter,
and Knobloch [2002] and Porver [2001]. Truncated Galerkin expansions of
the type that led ns to this hehavior have, of course, also been used to study
the effect of direet foreing on the sine-Gordon equation, a system closely
related to ours. Here, too, the study of the finite-dimensicnal system proved
of substantial help in wnderstanding the PIDE simulations {Bishop, Forest,
McLaughlin, and Overman [1990]; McLaughlin, Overman, Wigpgins, and
Xiong [1996]). Tt should therefors not come as a complete surprise that the
two-niode model constructed here captures so much of the behavior found
mumerically in the PDE {1.2}-{4.3) by Martel, Knobloch, and Vega [2000].
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