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ABSTRACT Many powerful techniques from Hamiltonian mechanics are 
available for the study of ideal hydrodynamics. This articte explores some of 
the consequences of including srnall viscosity in a study of surface gravity-
capillary waves excited hy the vertical vibration of a container. It is shown 
that in this system, as in others, the addition of smatl viscosity provides 
a singular perturbation of the ideal fluid problem, and that as a result 
its effects are nontrivial. The relevance of cxisting studies of ideal fluid 
problems is discussed from this point of vicw. 
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1 Introduction 

Jerry Marsden has bcen a driving forcé in studies of ideal hydrodynamics 
using mcthods from Hamiltonian mechanics. Perhaps his most important 
contribution has bcen the discovery of a systematic procedure for the con-
stniction of noncanonical Hamiltonian structures for such flows. The re-
quired noncanonical Poisson brackcts are typically singular, implying the 



presence of additional conserved quantities known as Casimirs. Using these 
techniques he and Iris colleagues were able to extend Arnol'd-type stability 
theorems to a number of flows of importance in geophysics and engineer-
ing (Marsden and Morrison [1984]; Holm, Marsden, Ratiu, and Weinstein 
[1985]; Abarbanel, Holm, Marsden, and Ratiu [1986]; Holm, Marsden, and 
Ratiu [1986]; Lewis, Marsden, Montgomery, and Ratiu [1986]). These are 
major contributions to the field of ideal hydrodynamics and are nowadays 
taught in gradúate level courses on the subject. 

Although these techniques are powerful, and enable one to obtain results 
that would be hard to obtain by other meaiis, there remains an important 
question as to their relevance to flows in the real world. Unless one studies 
ftows in a superfluid, for example 4He below the A-point (i.e., at tempera-
tures below the transition to superfluidity) such flows are inevitably affected 
by dissipative processes, be they viscous or thermal. These may have an 
importance beyond being rcsponsible for the decay of the flow on the slow 
diffusive time scale (Batchclor [1967]; Chorin and Marsden [1979]). In gen­
eral the presence of small viscosity is rcsponsible for the formation of thin 
boundary layers where the flow departs drastically from that in the bulk. 
In such boundary layers vorticity is generated by viscous effects and this 
vorticity may then diffuse or be convected into the bulk. In such cases the 
flow in the bulk may be substantially modified. Boundary layers may be 
classifkd as passive or dynamic, depending on their effect on the bulk flow. 
Passivc boundary layers do not affect the flow in the bulk, which wiil then 
resemble the potential solution over long times; such boundary layers serve 
merely to adjust the flow to the physically relevant boundary conditions. In 
the absence of boundary laycr separation such boundary layers are found, 
for example, in steady flow around obstacles. Oscillatory boundary layers 
may likewise be passive if the oscillation amplitude is small and only the 
leading order oscillatory flow is considered. However, as discussed further 
below, this is no longer so at second order in amplitude. In this and other 
cases the boundary layers can become dynamic, and forcé the flow in the 
bulk even though this flow remains largely inviscid. In such cases the in-
viscid flow in the bulk differs substantially from the flow that would be 
obtained by ignoring the boundary layers altogether, and this effect per-
sists in the limit in which the viscosity vanishes, i.e., in these cases the 
limit of vanishing viscosity may have at most a tenuous connection with 
the behavior of the strictly inviscid system (Batchelor [1967]). The present 
article is devoted to the explication of this phenomenon in the context 
of a particularly interesting physical system, gravity-capillary waves in a 
vertically vibrating container (the Faraday system). 

The difference between the properties of the Euler equation for an ideal 
incompressible fluid and the Navier-Stokes equation in the limit of large 
Reynolds number provides the most famous example of the dangers of 
ignoring viscosity entirely, in the sense that the 'thermodynamic equilib-
rium' spectrum that results bears no relation to the energy spectrum in 



the so-called inertial range. But there are simple examples of problems 
not involving turbulence where viscosity, however small, also plays a pro-
found role. Perhaps the simplest is provided by the computation of the 
Lagrangian drift of a fluid element whcn a surface gravity-capillary wave 
passes overhead. This drift is important because its sum over all the fluid 
elements may be identified with the linear momentum associated with the 
wave (Knobloch and Pierce [1998], and references therein). In the following 
we einploy Cartesian coordinates, with the x-axis along the unpcrturbed 
free surface of the fluid and y vertically upwards. An irrotational incom-
pressible flow then satisfies the equation 

V 20 = 0, 

where u = {(¡>x,(py) is the Eulerian vclocity, subject to the boundary con-
ditions 

4>y = 0 at y = — h ; 

ft+4>xL = 4>y, 4>t+\u\2/2 + p/p + gf = G &ty = f. 

Here / is the free surface deflection, p — PQ — Tfxx(l 4- / z ) _ 3 ^ 2 , the excess 
pressure being a consequence of the presence of the surface tensión T, and g 
and p are, respectively, the acceleration due to gravity and the fluid density. 
A formulation of this type assumes that the fluid remains irrotational if it 
is irrotational initially. This is so only if the fluid is strictly inviscid. 

Since a particle starting at x = a at í = 0 is at 

x = a + f v(sL,t')dt' 
./o 

at time í, the Lagrangian velocity of the fluid element at time t is given, 
to second order, by 

v(a, t) = u(a, t) + ( u(a, t')dt' j • V au(a, í ) . 

For a progressive sinusoidal wave of (srnall) amplitude A, f = Acos(kx — 
íut) + 0(A2) and <j> = [/, cosh k(y + h)\/k sinh kh] + 0(A2). If A is constant 
in space it is possible to show that the time-averaged Eulerian velocity (u) 
vanishes to second order but the time-averaged Lagrangian drift (v) does 
not: 

This drift is known as the Stokes drift. However, in the presence of small 
viscosity, this result is misleading. The argument that follows goes back to 
the work of Schlichting [1932]. Observe that for sufficiently small viscosity 
(namely @h ^> 1, 0/k 3> 1, where /? = (UJ/2U)1^2) the inviscid solution 



applies everywhere except in the two thin oscillatory viscous boundary 
layers of O(0~l) thickness along the top and bottom. whosc contribution 
can be superposed on top of the irrotational flow just computed. Therefore, 
if in the bottom boundary layer we write u = V 0 + u ' , then at leading order 
u ' = (u',v'} satisfies the linearized vorticüy equation 

an fd2ü d2n\ _ _ , 
^ = < ^ + ¿ v ) < n = V x u > 

subject to the boundary conditions 

u' = -tf)x , v' = 0 at y = -k\ u' = 0 for 0(y + h) > 1. 

This problem has the solution 

u' = -uAcosechkh e~ /3( i /+ ' ! ) cos(kx - ut + ¡3(y + h)), 

v' — — I [du'(x,z,t)/dx\dz. 
J-h 

With these expressions it is possible to compute a time-averaged Reynolds 
stress in the oscillatory boundary layer, 

, uj2kA2 

{u v ) = 4/?sinlT kh 
2{pysiuPy + c o s / í ^ e " ^ - e"2/? í 

correct to second order in the wave amplitude A. Here y = y + h. This 
Reynolds stress drives a mean flow (U'(y),0) according the mean momen-
tum equation vd2U'¡dy2 = d{u'v')/dy, i.e., 

dU' 
ua^ = {u'vl)-{u'v')OQ, (1.5) 

where (u'w')oo represents the Reynolds stress just outside of the boundary 
layer. Letting /3(y + í i ) -»oo one finds that 

In view of the requirement U'(—h) = 0 equation (1.5) now implies that 

U'{y)^U'ao = 3ujkf for 0(y + h) » 1. 
00 4 s i n h 2 U 

Thus the time-averaged Eulerian velocity at the edge of the boundary layer 
is (a) finite at second order, and (b) independent oí v (for sufficiently small 
v), provided only that v > 0! Since this Eulerian mean flow also carries 
the fluid elements with it its effect must be added to the Stokcs drift (1.2) 
computed on the basis of inviscid theory. Thus the net Lagrangian drift for 
Ph » 1, 0/k > 1 is in fact 

- ( 5 w ^ 2 

\4sinh2/cfr' 



avalué that is 5/2 times the inviscid vahíe (Longuet- Higgins [1953]; Batche-
lor [1967]; Phillips [1977]; Craik [1982]). As rccognized already by Longuet-
Higgins [1953], a somewhat similar effect is present at the free surface as 
well. It is clear therefore that the oscillatory viscous boundary laycrs must 
be retained even in the limit of arbitrarily small viscosity, and that these 
are effective at driving largo scale mean flows even when the viscosity v is 
arbitrarily small. 

In the following we discuss in some detail the corresponding phenom-
ena in the Faraday system, where oscillatory viscous boundary layers are 
incvitably prcscnt, and explore the interaction between the Faraday in-
stability and the mean flow driven in these boundary layers. In systems 
of small to modérate aspect ratio such mean flows are entirely of viscous 
origin (Nicolás and Vega [1996]; Higuera, Nicolás, and Vega [2000]), but 
in the larger aspect ratio systems of interest below the situation is rather 
more subtle because of the presence of an additional inviscid mean flow. 
For inviscid free waves this mean flow is associated with spatial modula-
tion of a single mode, as described by the celebrated Davey-Stewartson 
equations (Davey and Stewartson [1974]; Pierce and Knobloch [1994]). If 
viscosity is retained and the system forced, as in a shear flow, a similar set 
of equations but with complex coefficients can be derived (Davey, Hock-
ing, and Stewartson [1974]). In general the mean flow present will contain 
both viscous and inviscid contributions, even in nearly inviscid flows. It is 
because of these effeets that one cannot miniic the cffeets of viscosity on 
an oscillating fluid system by simply adding dissipation post Jacto to an 
otherwise inviscid theory. 

2 The Faraday System 

Surface gravity-capillary waves excited parametrically by the vertical oscil-
lation of a container provide a convenient and well-studied system (Miles 
and Henderson [1990]; Fauve [1995]; Kudrolli and Gollub [1997]), where 
the issues raised in the preceding section come to the fore. We nondi-
mensionalize distances with the unperturbed depth h and time with the 
gravity-capillary time [gj'h + T'/'(p/i3)]-1''2. In two dimensions the resulting 
viscous problem is then described by the dimensionless equations (Vega, 
Knobloch, and Martel [2001]), 

V'xx + Í>yy = fí, íí¡ — 1py£lx + 1px£ly = Cg(£lxx + Qyy) , (2-1) 

ft - $x - $ufx = (i>Vy - ipxx){l - fl) - 4 / a ^ j , = 0 a t y = / , (2.2) 

(1 - S) fs - S{fm/y/l + fi)„ - Í>yt + fe/* - W>x + tó)^ 
+ (tlÍ + i>2

y)xf2 + {i>l + ip¡)Jx/2 - A/iLü2 cos(2wt)fx 

™ is g [*5 Wxxy ~r Wyyy ~~ \tyxxx H"~ Wxyy) Jx\ 

file:///tyxxx


+ 2C0 
^xyíl + 0>xx - Í>yy)fx 

+ 2Cg ̂
xxv - tmlñ zjpm±i '*>•>* a t , . .. 2... [tyxxy Vyyy/Jx WxyyK^- JxlSx 

1 + /,2 

/ Oj, rfar = i¡> = % = O at y = - 1 , / /£& = O, (2.4) 
Jo 7o 

where i/> is the streamrunction. defined such that u = (—Vv<^W is the 
velocity, fí = V xu is the vorticity, and / is again the free surface deflection. 
The latter is required to satisfy volume conservation as in (2.4d). In an 
annular container of dimensionless length L periodic boundary couditions 
are applied to all quantities; in this case the boundary condition (2.4a) 
guarantees that the pressure is also periodic in x. The resulting problem 
dcpends on 

L the aspect ratio, 

¡j, the nondimensional vibration amplitudc, 

2UJ the nondimensional vibration frequency, 

Cg = v/[gh3 + {Thjp)]l/2 the capillary-gravity number, 

S = T/(T + pgh2) the gravity-capillary balance parameter. 

Here v is the kinematic viscosity. Thus Cg and S are related to the usual 
capillary number C = v\pjTh]ll2 and the Bond number B — pgh2/T by 

Cg = C/(l + B)^2 and S = 1/(1 + 5 ) . 

Note that 0 < S < 1 and that the extreme valúes S = 0, 1 correspond to 
the purcly gravitational (T = 0) and the purely capillary (y = 0) limite, 
respectively. 

The formulation employed above uses the streamfunction iji and not the 
velocity potential tj>, since formulations of the Faraday problem in terms 
of the latter miss both the mechanism for the generation of (Eulerian) 
mean flows already discussed in §1, and the possibility that vorticity will 
diffuse from the viscous boundary layers along walls and the frec surface 
into the nominally inviscid interior. These boundary layers form because 
in the presence of viscosity the tangential velocity must vanish along any 
wall while the tangential stress along the free surface is also required to 
vanish. Neither of these two effects is restored by the a posteriori addition 
of damping to a fundamentally inviscid formulation, i.e., a formulation 
based on the velocity potential. In fact, for times that are not too long 
the vorticity contamination of the bulk does remain negligible, so that the 
flow in the bulk is correctly described by an inviscid formulation but with 
boundary conditions determined by a boundary layer analysis as in §1. 

The basic assumption made below is that viscosity is small, naincly 

C3 « 1. (2.5) 



However, as already mentioned, this does not mean that viscous effects 
can be safely ignored. Indeed, the subtleties arise already at the level of 
the linear problem. The normal modes of the unforced problem, linearized 
around xp = / = 0, take the form 

(</>,/) = (*,F)eA i + , Í ! ; r . 

In the limit (2.5) there are two types of such modes (Kakutani and Mat-
suuchi [1975]; Martel and Knobloch [1997]): 

A. The ncarly inviseid modes (or surface modes) obey the dispersión re-
lation 

A = ku - {1 + i)aiCs
1 /2 - a2Cg + 0{Cf2), (2.7) 

where 
u = [ka(l - S + Sfc2)]1/2 , 

k{üj/2)lf2 

°l ~ sinh(2*) ' (2-8) 

a2 = ^ ( l + 8a2 - a 4 ) , 

and a = tanh&. Eq. (2.7) provides a good approximation for both the 
frequency ±Im(A) and the damping rate, 

ó = -Re(A) = aiC¡/2 + a2Cg , (2.9) 

for small but fhced valúes of Cg, see Fig. 2.1. However, as noted in Martel 
and Knobloch [1997], if the (corrccted) third term in (2.7) is omitted the 
resulting approximation breaks down as soon as k > km ~ | lnC s | . Since 
these moderately large valúes of k are also of interest this term is retained 
in what follows. 

The eigenfunction associated with the dispersión relation (2.7) is given 
(up to a constant factor) by 

(*,f)=(*o,i>+0(0n * 0 = « ± M . 

These modes therefore exhibit a significant free-surface deflection; more-
over, they are irrotational in the bulk, outside two thin boundary layers of 
thickness 0{{Cg/us)ll2) attached to the bottom píate and the free surface. 

1 /2 
Since the decay rate of these modes is 0(Cg ) for small Cg these modes are 
near-marginal in nearly inviseid fluids. Note that the horizontal wavenum-
ber k is only restricted by the periodicity condition and thus can take any 
valué of the form 2nN/L, where N is an integer; in the limit L —* oo the 
allowed wavenumbers become dense on the real line. In the following we 
assume that the basic disturbance consist.s of a pair of counterpropagat-
ing wavetrains with wavenumber ±k and frequency w determined from the 
above dispersión relation, and that the mean flow arises from nonlinear 
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FIGURE 2.1. The nearly inviscid dispersión relation, íimA and fffe A vs. fc, for 
10" 1/2", S = 0.5, from Eq. (2.7) using the 0(Cg ) results (dashed line) and 

the 0{Cg) results (solid line). These parameters correspond to the experimente 
of Henderson and Miles [1994]. 

intcractions involving these two modes. Here w represents half the forcing 
frequency. Thus the relevan t nearly inviscid modes are either of long wave-
length (k —> 0) or are concentrated aronnd the two counterpropagating 
modes. The long wave modes consti tute the nearly inviscid mean flow; in 
the strictly inviscid case, this flow is the mean flow considered in inviscid 
theories (Davey and Stewartson [1974]; Pierce and Knobloch [1994]). How-
ever, because of its long wavelength this mean flow does not appear if the 
aspect ratio is of order unity (Nicolás and Vega [1996]; Higuera, Nicolás. 



and Vega [2000]). 

B. The viscous modes (or hydrodynamical modes) obey the dispersión 
relation 

X=-Cg[k2+qn(k)2] + 0(C2
g), 

where for each k > 0, qn > 0 is the n-th root of q tanh k — k tan q, and henee 
decay orí an 0{Ca) timescale, i.e., more slowly than the surface modes when 
Cg is sufficiently small. Consequcntly these modes are also near-marginal. 
Since the associated eigenfunction is 

^ = sinq,¡sinh(£:t/) — sinhfcsin(í„i/) + 0(Cg), F = 0(Cg), 

these modes do not result in any significant free-surface deformation at 
leading order. On the other hand they are rotational throughout the domain 
and, when forced at the edge of the oscillatory boundary layers along the 
bottorn (Schlichting [1932]) and the free surface (Longuet-Higgins [1953]) 
by the mechanism described in §1, they constitute the viscous mean flow. 
In view of its slow decay this ñow must be included in any realistic nearly 
inviscid description. 

With this in mind it is now possible to perform a multiscale analysis of the 
viscous fluid equations using Cg, L~l and ¡x as unrelated small parameters. 
We focus on two well-separated scales in both space (as ^ I and x » 
1) and time (í ~ 1 and i ^> 1), and derive equations for small, slowly-
varying amplitudes A and B of left- and right-propagating waves. Since 
viscosity is small, we must distinguish three regions in the physical domain, 
namely, the two oscillatory boundary layers (of thickness 0{Cj )} and the 
remaining part (or bulk) of the domain (see Fig. 2.2). The boundary ]ayers 
must be considerad in order to obtain the correct boundary conditions for 
the solution in the bulk. The details of the derivation are quite involved 
and can be found in a recent paper {Vega, Knobloch, and Martel [2001]), 
where explicit conditions for the validity of the resulting equations as a 
description of the two-dimensional nearly inviscid Faraday system are also 
derived. The resulting equations takc the form 

At - vgAx = iaAxx - (S + id)A + i(a.3|^|2 - a4\B\2)A + ia5y,B 

+ ¡a6J y(y)(^rdyA + ia7{fmyA, (2.11) 

Bt + vgBx = iaBxx - (S + id)B + i{a3\B\2 - aA\A\2)B + ia5fiÁ 

- iae I ^ g(yWy
n)x dyB + ia7{rY B , (2.12) 

A{x + L,t) = A(x,t), B(x + L,t)sB(xtt), (2.13) 

where /i denotes the (small) amplitude of the periodic forcing. The first 
seven terms in these equations, accounting for inertia, propagation at the 
group velocity vg, dispersión, damping, detuning, cubic nonlinearity and 
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0(CgL)i 0(Cj) 

FIGURE 2.2. Sketch of the primary and secondary boundary layers, indicating 
their widths in comparison to the layer depth. 

parametric forcing, are familiar from existing weakly nonlinear, ncarly 
inviscid theories (Ezerskii, R.abinovich, Reutov, and Starobinets [1986]). 
These theories lead to expression (2.9) for the damping 5 and the expres-
sions 

vg=J{k), a = -w"{k)/2, 

u>fc2[(l - 5)(9 - a2)(l - a2) + Sk2{7 - a2)(3 - a2) 
<*3 

a4 

gjk2 

05 = uikcr, 

A<72\{\-S)a2-Sk2{?,-a2) 

[8(1 - S) + 5Sk2]ujk2 

4{l-S + Sk2) ' 

(1 - S + Sk2)(l + a2)2 

{l - S + 4Sk2)a2 

4(1 - S) + 7Sfc2 

l-S + Sk2 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

where w = w(k) is the dispersión relation (2.8), and are recovered in 
the present formulation. In particular, the cubic coeñicients coincide with 
those obtained in strictly inviscid formulations (Pierce and Knobloch [1994]; 
see also Miles [1993], Hanscn and Alstrom [1997] and references therein). 
The coefficient a$ diverges at (cxcluded) resonant wavenumbers satisfying 
Lü(2k) = 2w(fe). The last two terms describe the coupling to the mean flow 
in the bulk (be it viscous or inviscid in origin) in terms of (a local average 
(•}x of) the streamfunction rtpm for this flow and the associated free surface 
elevation fm. The coeñicients of these terms and the function g are given 



by 
ka wk{\-a2) . , 2uik cosh[2k(y + 1)1 

Q 6 = 2 ^ ' a"= 2a ' ^ ) = ^ ^ ü T f c • 

The ncw terms are therefore conservative. impiying that at leading order 
the mean flow docs not extract energy from the systcm. This result is 
consistent with the small steepness of the associated surface displacement 
and its small speed compared with the speed V0¡ due to the surface waves. 
The mean flow variables in the bulk depetid weakly on time but strongly 
on both x and y, and evolve accordíng to the equations 

i>f-fT = MS\2-\A\%, V& = 02(\A\2 - \B\2), attf = 01 
(2.19) 

(1 - S)f? - Sf™* - 1% + Cg(^yy + 3V&„) 

= -j33(\A\2 + \B\2)x, a t y = 0, 
(2.20) 

i 
L 

SI™ dx = y.>m = 0 , a t y = - l , 
0 a ' (2.21) 

Ifi* = - / ? 4 [ iABc 2 Í h +c .c . + |fí|2 - \A\2}, at y = - 1 , 

4,m(x + L,y,t)=i>m(x,y,t), fm[x + L,t) = fm(x,t), (2.22) 

subject to the constraint 

/ fm{x,t)dx = 0. (2.23) 
Jo 

Here 

0i = 2uj/a , /32 = 8wfc2/cr, 

/J3 = ( l^<x 2 V 2 /c r 2 , /34 = 3 ( 1 - cPfyk/o2. 

Thus the mean ftow is forced by the surface waves in two ways. The right 
sides of the boundary conditions (2.19a) and (2.20) provide a normal forc­
íng rnechanism; this mechanism is thc only one present in strictly inviscid 
thcory (Davey and Stewartson [1974]; Pierce and Knobloch [1994]) and does 
not appear unless the aspect ratio is large. The right sides of the boundary 
conditions (2.19b) and (2.21c) describe two shear forcíng mechanisms, a 



tangential stress at the free surface and a tangential velocity at the bottom 
wall. Note that, as in the simpler example considered in §1, neither of these 
forcing tcrms vanishes in the limit of small viscosity (i.e., as Cg —• 0). The 
shear nature of these forcing terms leads us to retain the viscous term in 
(2.18b) even when Cg is quite small. In fact, when Cg is very small, the 
effective Reynolds mimber of the mean flow is quite large. Thus the mean 
flow itself gcncrates additional boundary layers near the top and bottom of 
the container, and these must be thicker than the original boundary layers 
for the validity of the analysis. This puts an additional restriction on the 
validity of the equations (Vega, Knobioch, and Martel [2001]). There is a 
third, less effective but inviscid, volumetric forcing mechanism associated 
with the sccond term in the vorticity equation (2.18b), which looks like 
a horizontal forcé {\A\2 — \B\2)g(y)Qrn and is sometimes called the vortex 
forcé. This term plays an important role in the generation of Langmuir 
circulation (Leibovich [1983]). Although this term vanishes in the absence 
of mean flow, it can change the stability properties of the flow and enhance 
or limit the effect of the remaining forcing terms. However, this is not the 
case in the limit considered in §3 below. 

In the following we refer to Eqs. (2.11)-(2.13) and (2.I8)-(2.23) as the 
general coupled amplitude-mean-flow (GCAMF) equations. These equa­
tions differ from the exact equations forming the starting point for the 
analysis in the presence of the forcing terms in the boundary conditions 
(2.19)-(2.21), and in two essential simpliñeations: the fast oscillations as­
sociated with the surface waves have been filtered out, and the bound­
ary conditions are applied at the unperturbed location of the free surface, 
y = 0. The forcing terms capture completely the effect of the primary 
viscous boundary layers on the bulk. 

The GCAMF equations are invariant under reflection, 

$m _, _^m ¡ nm _^ _ í l m ^ A ^ B, x -* - x , (2.24) 

and henee admit reflection-symmetric solutions. The simplest such Solu­
tions are the spatially uniform standing waves given by A = B = Rew, 
where 8 is a constant and the amplitude R is given by 

52+[d + (a3 - a4)R
2]2 = a\¡? , 

with an associated reflection-symmetric streaming flow that is periodie in 
x with period n/k (see Eq. (2.21c)). Since this mean flow does not couple to 
the amplitudes A, B (i.e., the mean flow terms are absent from Eqs. (2.11)— 
(2.12)), the presence of this flow does not affect the standing waves. These 
much-studied waves bifúrcate from the fíat state at 

(52 + d2)1'2 

and do so supercritically if d < 0 and subcritically if d > 0, see Fig. 2.3. Note 
that pi can be of order ¡ic without violating the conditions for the validity of 



the GCAMF equations, and that these equations describe correctly both 
cases d < 0 and d > 0. In the former case, the waves are stable near 
threshold, but may lose stability at finite amplitude through the action of 
the mean flow as the forcing amplitude increases. Like the secondary saddle-
node bifurcation which stabilizes the spatially uniform standing waves when 
d > 0 (see Fig. 2.3), this bifurcation is well within the regime of validity 
of the GCAMF equations. Thus the mean flow is involved only in possible 
secondary instabilities of the primary standing wave branch. 

R0 

FIGURE 2.3. The primary bifurcation from the flat state to spatially uniform 
standing wave solutions. The GCAMF equations describe correctly all states 
with \(JL — nc\ ~ ¡J,C, including the secondary saddle-node bifurcation present when 
d > 0 and the stable solutions beyoiid it. 

The special case d — 0 (zcro detuning) and p, = p¡,c defines a codimension-
two point for the analysis since both L (or equivalcntly u) and fi must be 
chosen appropriately. In this case the direction of branching is determined 
by higher order terms ncglected in the analysis, such as the real parts of 
the coefficients of the cubic terms, and this is so for sufnciently small but 
nonzero valúes of d as well. In other words, the limit d —» 0 (although welb 
defined within the GCAMF equations) may not describe correctly the cor-
responding behavior of the underlying fluid equations appropriately cióse 
to threshold, i.e., for \fi— ¡j,c\ <C ¡jtc. However, even in this case the GCAMF 
equations capture correctly any secondary instabilities involving the mean 
flow, provided these oceur at (i ~ fic. A similar remark applies to other 
codimension-two points as well. 



3 Gravity-Capillary Waves in Moderately 
Large Aspect-Ratio Containers 

The GCAMF equations describe small amplitude slowly varying wavetrains 
whenever the parameters C'g, L~l and fi are small, but otherwise unrelated 
to one another. Any relation between them will therefore lead to fnrther 
simplification. To derive such simplified equations we consider the distin-
guished limit 

5L2/a = A ~ 1, dL2/a =D~l, iiL2/a = M ~ 1, (3.1) 

with 1 < k < | lnC3 | , and | l nC s | taken for simplicity to be 0(1) as well. 
— 1/2 

The simpliñed equations will then be formally valid for 1 <C L -C Cg if 
k ~ 1. These are derived under the assumption 1 — S ~ 1 using a múltiple 
scale method with x and í as fast variables and 

C = x/L, t/L, tjÜ (3.2) 

as slow variables. In terms of these variables the local horizontal average 
(•)x becomes an average over the fast variable x. Note that assumption 
(3.1) imposes an implicit relation between L and Cg. When 1 — S ~ 1 the 
nearly inviscid and viscous mean flows can be clearly distinguished from 
onc another as discussed in §2, and the viscous mean flow can be identified 
by taking appropriate averages of the whole mean flow over an intermedíate 
timescale r, i.e., the mean flow variables ipm, í ím and fm take the form 

i>m(x, y, C, r, T) = i,»(x, y, C, T) + tf(x, y, (, r, T), (3.3) 

Qm(x,y,<:!T!T)=nv(x,y,(;>T) + ní(x,y,(,TíT), (3.4) 

/ m 0r ,C , r ,T ) = f(x,Q,T) + fl(x,(,r,T), (3.5) 

with 

Jo 
ipldr + í ipí dr + / tpi dr + f & dr 

Jo Jo Jo + r. 
Jo 

fdr 

(3.6) 
bounded as r —• ce. Thus the nearly inviscid mean flow is purely oscilla-
tory (i.e., it has a zero mean) on the timescale r. Since its frequency is of 
the order of L~l (see (3.2)), which is large compared with Cg, the iner-
tial term for this flow is large in comparison with the viscous terms (see 
Eq. (2.18)), except in two secondary boundary layers, of thickness of the or­
der of {CgL)1/"1 (<g; 1), attached to the bottom píate and the free surface. 
Note that, as required for the consisteney of the analysis, these bound­
ary layers are much thicker than the primary boundary layers associated 
with the surface waves (see Fig. 2), which próvido the boundary conditions 
(2.19)-(2.21) for the mean flow. Moreovcr, the width of these secondary 



boundary layers remanís small as T —» ce and (to lcading order) thc vor-
ticity of this nearly inviscid mean flow remains oonfined to these boundary 
layers. This is becanse, according to condition (3.6), the nearly inviscid 
mean flow is purely oscillatory on the timescale r . Consequently, condition 
(3.6) is essential for thc validity of the analysis that follows, and the mathe-
matical definition of the nearly inviscid mean flow through Eqs. (3.3)-(3.6) 
is the only consistent one; without this condition vorticity would diffuse 
outside the boundary layers and affect the structure of the whole 'nearly 
inviscid' solution even at leading order. In fact, vorticity does diffuse (and 
is convected) from the boundary layers, but this vorticity transport is in­
cluded in the viscous mean flow. The vorticity associated with the nearly 
inviscid mean flow is readily seen to be of, at most, the order of 

||A|2-|B|21 and {\Af + \B\*)(CaL)-W 

in the upper and lower secondary boundary layers, respectively; the jump 
in the associated streamfunction ifr across each boundary layer is 0{CgL) 
times smaller. This jump only affeets higher order terms; as a consequence 
the secondary boundary layers can be completely ignored and no additional 
contributions to the boundary conditions on the nearly inviscid flow need be 
included in (2.19) and (2.21). Outside these boundary layers, the complex 
amplitudes and the flow variables associated with the nearly inviscid mean 
flow are expanded as 

(A,B)=L-1(AQ,B0) + L-'2{AuBl)+--- , (3.8) 

( í / J \Á í r )=^ 2 (4 ,F ü \ 0 ) + L - V i ^ t ^ ) + --- , (3-9) 
{r,r,W')=L-2(ót

0AlWZ) + L-2(ct>v
1,F¿,Wi:) + --- . (3.10) 

Substitution of (3.1) (3.6), (3.8)-(3.10) >nto (2.11)-(2.23) leads to the fol-
lowing: 

(i) From (2.18) (2.21), at leading order, 

<PQXX + 4¡yy = 0 i n ~ 1 < y < 0, $ = 0 at y = - 1 , 4>x = 0 at y = 0, 

together with F¿x = 0. Thus 

4 = (» + l )**(C,r 1T) ) F* = F*(CT,T). 

At second order, the boundary conditions (2.19a) and (2.20) yield 

4>¡
lAx^<;,T,T) = FÍT-&QC + pl(\Bo\2-\Ai}W, 

(1 - S)F{X - SF¡XXX = **T - (1 - S)JFÍC - fc(\Ao\2 + \B0\\ 

at y — 0. Since the right hand sides of these two equations are independent 
of the fast variable x and both <p>\ and F¡ must be bounded in x, it follows 



that 

*K-Hr = lh(\B0f-\AoW1 

where 
vp = (l-S)1/2 (3.13) 

is the phase velocity of long wavelength surface gravity waves. Equations 
(3.12) must be integrated with the following additional conditions, which 
result from (2.22)-(2.23) and (3.6), 

*£(C + l , r t T ) 3 * S ( í , T , : r ) 1 F¿(C + l,r,T)=F¿(C,r,T), (3.14) 

. fT p | (3.15) 
/ $¿^ dr + I F^dr \ = bounded as r —> oo . 

' Jo Jo ' 

(ii) The leading order contributions to equations (2.11)—(2.12) yield 

A 0 T - vgAa<: = B0T + vgBüí = 0. 

Thus 

where £ and r¡ are the characteristic variables 

í = < + v f f r , r} = C-vsT. (3.17) 

Moreover, according to (2.13), 

A0(S + l,T) = A0(Z,T), BQ(v + l,T)=B0(^T). (3.18) 

Substitution of these expressions into (3.12) followed by integration of the 
resulting equations yields 

77 — 7J 

VP[F+(C+VPT,T)-F-(C-VPT,T)} , (3.19) 

^ [ M o ! 2 + | B 0 | 2 - ( | A o | 2 + |i?0|2)í] 
— V 

p 

+ [F+ (C + vpr, T) + F " (C - Wpr, T)] , (3.20) 



where {•)* denotes the mean valué in the slow spatial variable ft i.e., 

(G)c = í Gd<, (3.21) 
Jo 

and the functions F ± are such that 

F±(C + l ± í ; p r , r } = F ± ( C ± U p r , T ) , ( F ± ) í = 0 . (3.22) 

The particular solution of (3.19)-(3.20) yields the usual inviscid mean flow 
included in nearly inviscid theories (see Pierce and Knobloch [1994] and 
references therein); the averaged terms are a consequence of the conditions 
(3.15), i.e., of volume conservation (cf. Pierce and Knobloch [1994]) and 
the requircment that the nearly inviscid mean flow has a zero mean on 
the timescale T; the latter condition is never imposed in strictly inviscid 
theories but is essential in the limit we are considering, as explained above. 
To avoid the breakdown of the solution (3.19)-(3.20) at vp = vg we assume 
that 

| t> j , - í> 9 | ~ l . (3.23) 

The functions F^ remaní undetcrmined at this stage. In fact, they are 
not needed below bccause the evolution of both the viscous mean flow and 
the complex amplitudes is decouplcd from these functions. However, at next 
order one finds that F± remain constant on the timescale T, but decay ex-
poncntially due to viscous cffeets (resulting from viscous dissipation in the 
secondary boundary layer attached to the bottom píate) on the timescale 
t~(L/C3)V

2, 

(iii) The evolution equations for AQ and BQ on the timescale T are readily 
obtained from equations (2.11)-(2.13), invoking (3.1)-(3.6), (3.19)-(3.20), 
(3.22) and climinating secular terms (i.e., requiring |¿4i| and |Bi| to be 
bounded on the timescale r ) : 

A0T =iaAO Í Í - (A + iD)AQ 

+ i [(a3 + a$)\AQ\2 - a8( |¿0 |2}« - ^( jSol 2)"] A0 

+ iasM{B0)
r> + iael fl(»)<W)e<fei4o, (3.24) 

BQT =iaBüm - (A + iD)B0 

+ i [(as + a8)\B0\
2 - as{\B0\

2)^ - a^lA»!2}1] BQ 

+ vasMiAtf - ia6 j g{y){{4>lyT)< dy B0 , (3.25) 

subject to (3.18). Here £ and T] are the comoving variables defined in (3.17), 
and (•}*, {•}£, (•)« and (• }*> denote mean valúes over the variables x, £, £ 
and r¡, respectively. Note that £ averages over functions of AQ are equivalent 



to £ averages, while thosc over functions of B<¿ are equivalent to r¡ averages. 
The real coefficient a& is given by 

a8 = [Q6(2^/fj)(/?1^ + p3vg) + arifavg + ft)]/(t£ - v2
p). 

Eqs. (3.24)-(3.25) are independent of F^ because of the second condition 
in (3.22). 

Since 

(\AQ\2 - \B0\
2y = {\AQ\2)Z - ( | 5 0 | 2 ) " - 0 as T - oo 

the long time bchavior of the viscous mean flow is described by 

*&« + 45tw = Wo m - l < y < 0 1 (3.27) 

W$r ~ KW$* + tibWSy = fo~HW^x + W&y) in - 1 < y < O, (3.28) 

<t>Oz = <t>%yU = Q «*» = 0 , (3.29) 

«W&}X>C = *3 = 0 a t » = - l , (3.30) 

¿8» = - f t [ i{^ 0 So) r e 2 Í ^ + c.c.] at y = - 1 , (3.31) 

<¡%(x + L,C + l,y,T)=<l%{x,C,y,T), (3.32) 

where the effective Reynolds number associated with this viscous mean flow 
is 

Re= \¡{CgL
2). (3.33) 

Remarks . Some remarks about these equations and boundary conditions 
are now in order. 

a. The viscous mean flow is driven by the short gravity-capillary waves 
through the inhomogeneous term in the boundary condition (3.31). Since 
{AQBQ)T depends on both Q and T (unless either Aa or BQ is spatially uni-
form) the boundary condition implies that 0Q (and henee WQ) depends on 
both the fast and slow horizontal spatial variables x and Q. This dependence 
cannot be obtained in closed form (except, of course, in the uninteresting 
limit Re —> 0), and one must resort to numerical computations for realisti-
cally large valúes of L. 

b. The higher order oscillatory terms absent from the boundary condi­
tion (3.31) oscillate on the intermedíate timescale r, and henee genérate 
sccondary boundary layers. However, the contributions from these bound­
ary layers are all sub dominant and have no effect at the order considered. 
Moreover, the free-surface deflection accompanying the viscous mean flow 
is also small, fv ~ L~¿ (sec Eq. (3.10)), and so plays no role in the evolu-
tion of this flow, as expected of a flow involving the excitation of viscous 
modcs (see §2). 



c. The dominant forcing of the viscous mean flow comes from the lowcr 
boundary. This forcing vanishes exponentially when k » 1 leaving only 
a narrow range of wavemmibers within which such a mean flow is forced 
while S = 0(Cg), see Fig. 2.1. Thus in most cases in which a viscous mean 
flow is present one may assume that 

S = 0(C'/¿). 

Note, however, that in fully three-dimensional situatíons (such as that in 
Douady, Fauve, and Thual [1989]) in which lateral walls are included a 
viscous mean flow will be present even when fc 3> 1 because the forcing 
of the mean flow in the oscillatory boundary layers along the lateral walls 
remains. 

d. According to the scaling (3.1) and the defmitions (2.8), (2.9) and (3.33), 
the cffective Reynolds number Re is largc, and ranges from logarithmically 

— 1/2 
large valúes if k ~ | ln C^ to 0{Cg } if k «* 1. However, even in the 
latter limit we must retain the viscous terms in (3.28) in order to account 
for the second boundary conditions in (3.29)-(3.31). Of course, if Re » 1 
vorticity diffusion is likely to be confined to thin layers, but the structurc 
and location of all these layers cannot be anticipated in any obvious way, 
and one must again rely on numerical computations. 
e. Note that the change of variables 

A0 = Á0e~'w , So = B0e
ie , 

where 

$'{T) = -asf giym^r^dy, 

reduces Eqs. (3.24)-(3.25) to the much simpler form 

ÁaT = i f i i 0 « - (A + \D)ÁQ + ia5M(B0)^ 

+ i [ (Q 3 + a 8 ) | ^ 0 | 2 - (a4 + a8){|J40 |2) í] Á0 , (3.36) 

BQT = íaB0vv - (A + iD)B0 + i a 5 A/( I u ) 5 

+ i ' (a3 + as)\B0\
2 - (o* + asXIBol2}"] BB , (3.37) 

ÁQ(íi + I,T) = ÁQ(z,T), éoifo + i . D s B b f a . r ) . (3-38) 

from which the mean flow is absent. This decoupling is a special propcrty of 
the regime defined by Eq. (3.1). The resulting equations provide perhaps the 
simplest description of the Faraday system at large aspect ratio, and it is for 
this reason that they have been extensively studied (Martel, Knobloch, and 
Vega [2000]). We summarize some of their properties in the next section. • 



4 Dynamics of the Reduced Equations 

In this section we describe some basic properties of the nonlocal equa­
tions (3.36)-(3.38) in the invariant subspace A0(-J.au) = B0(-,tau) = 
C{ • ,tau)t say, in which the dynamics are described by the partial differ-
ential equation (PDE) 

CT = \aCxx - (A + \D)C 

+ i [(a3 + as)\C\2 - (a4 + añ){\C\2)] C + \arjM{C), (4.1) 

subject to periodic boundary conditions. Henceforth the variable x stands 
for either r¡ or £, depending on whether C stands for A$ or BQ. Eq. (4.1) 
describes standing wave solutions of Eqs. (3.36)-(3.38). It is possible to 
show that such standing waves (hereafter SW) are the preferred state at 
onset (Riecke, Crawford, and Knobloch [1988]) although at larger valúes 
of the forcing amplitude such waves may become unstable with respect 
to perturbations transverse to this subspace (Martei, Knobloch, and Vega 
[2000]); if this is so the dynamics of Eqs. (3.36) (3.37) and (4.1) will differ. 

After an appropriate rescaling (and taking the complex conjúgate in (4.1) 
if «3 —1*4 < 0, and changing the sign of a and d if a?, + as < 0) the standing 
waves obey an equation of the form 

CT = \aCxx - (1 + id)C + i [|Cf + {A - l)<|q2}] C + p(Q , (4.2) 

C(X + 1,T)=C(X,T). (4.3) 

Thus the relative size of the nonlinear terms is measured by the single 
parameter A = 1 — (a4 + a g ) / ( a 3 + Q 8 ) . 

The results of solving equations (3.36)-(3.38) and (4.2)—(4.3) for tdentical 
parameter valúes are summarized in the bifurcation diagrams shown in 
Fig. 4.1. These are constructed by noting that equations (4.2)-(4.3) imply 

£\\C\\l2=-2\\C\\l2+K{C)2+ c e ) , 

so that successive intersections of a trajectory with the hypersurface 

\\C\\l2 = ^((C)2 + c.c.) 

are always well defined. In fact this surface contains all the steady states, 
while each periodic trajectory interseets it at least twice. in each period, at 
the turning points in | | C | | L 2 . In the bifurcation diagrams we plot successive 
máxima oí \\C\\L2 at each valué of \i after transients have died away. In the 
general case (\AQ\ ^ \BQ\) we likewise plot the outward interscctions with 
the hypersurface 

\\Á0\\l2 + \\B(i\\l2=t¿({Á0}(B()}+ c e . ) , 

http://-J.au


corresponding to máxima in ||^4o||| + ll^olü - Although this procedure for 
generating bifTircation diagrams is convenient for most purposes it suffers 
from the disadvantage that it is insensitive to phase drift. Thus additional 
diagnostics are necessary to identify such drifts, as discussed in detail in 
Martel, Knobloch, and Vega [2000]. 

In both cases the first instability produces uniform steady solutions and 
these subsequently lose stability in a symmetry-breaking pitchfork bifurca­
ron, giving rise to time-indepcndent but spatially nonuniform states. Both 
these bifurcations preserve the identity AQ — DQ and henee are common to 
both sets of equations. Both also preserve the spatial reflection symmctry 
1Z : x —> —x. In the case shown in Figs. 4.1a,b the resulting nonuniform 
but reflection-symmetric states subsequently undergo a Hopf bifurcation 
and produce a branch of oscillatory solutions. Shortly thereafter chaos sets 
in, interspersed with nonuniform temporally periodic motion. Some of the 
observcd transitions are the result of crises while others appear to be due 
to period-douhling cascades. Observe that the details of this behavior differ 
in the two figures, indicating that the invariant subspace A^ — B$ does not 
remain attracting for all valúes of /.t. In the following we restrict attention to 
the origin of this more eomplicated dynamical behavior in Eqs. (4.2)-(4.3). 

Analysis of the system (4.2)-(4.3) is eomplicated by the absence of wave-
number-dependent dissipation: the damping is ide.ntical for all modes. As a 
result the theorem of Duan, Ly, and Titi [1996] establishing the existence 
of a finite-dimensional inertial manifold for a nonlocal Ginzburg-Landau 
of the same type and with the same boundary conditions does not apply. 
Nonetheless, for the weakly damped nonlinear Schródinger (NLS) equation 
with direct external forcing, Ghidaglia [1988] was able to demónstrate the 
existence of a weak finite-dimensional attractor. This result was improved 
upon by Wang [1995] who used an energy equation to obtain strong con-
vergence, showing that the attractor is in fact a strong, finite-dimensional, 
global attractor. Subscquent work (seo, e.g., Goubet [1996]; Oliver and Titi 
[1998]) has dealt with the task of proving additional rcgularity properties 
of the attractor. In particular, Oliver and Titi [1998] showed that the global 
attractor for the weakly damped driven (but local) NLS equation with di­
rect forcing is analytic, indicating that the Fourier expansión of a solution 
on the attractor converges exponentially fast (as the number of terms is in-
creased) to the exact solution. We believe that these properties continué to 
hold for the nonlocal equation with parametric forcing, and explain why a 
simple two-modc truncation of the PDE discussed next describes the PDE 
dynamics so well over a large range of parameter valúes. 

4.1 Two-Mode Model and Basic Solutions 

In view of the fact that both the primary and secondary bifurcations 
preserve the reflection symmetry 7Í : x ^ —x we focus on the class of 
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FIGURE 4.1. Bifurcation diagrams for the two systems described in (3.36)-(3.38) 
and (4.2)-(4.3), with a = 0.1, d = 0 and A = 2/3. Courtesy C. Martel. 



reflection-invariant states of the form 

1 
C ( x , r ) = - ^ c o ( r ) + 2 j c n ( r ) e q s ( 2 ? r n a ; ) . (4.7) 

v 2
 n = i 

Projection of equation (4.2) onto the first two modes then leads to the 
dynarnical system (Higuera, Porter, and Knobloch [2002]) 

¿o = - ( 1 + id)c0 + ?.A(|c0|2 + I c a l 2 ) ^ + ¿(cod + c i c 0 ) y 4- fícb , (4.8) 

éi = - ( 1 +id1)c1 + ¿Adco^ + lci | 2 ) - ^ + ¿(c0C! + CICQ) — + i | c i | 2 ^ , 

(4.9) 

where di = d + 47r2o;. These equations are equivariant under the operations 

RQ :{c0,ci) -^ {-c0,ci), fií :{CQ,CI}-*(CO,~CI), (4.10) 

where RQ = KT\¡2 and R\ = T\/2, and 7\/2 : £ ^ x + ^ , C —> C, and 

« : <7 —» — C represent two symmetries of the original equations (4.2)-
(4.3). These actions genérate the group D2. 

Eqs. (4.8)-(4.9) contain three types of fixed points whose properties are 
summarized below. In what follows we set d — 0 (both for simplicity and 
for comparison with Martel. Knobloch, and Vega [2000]) and write 

c0 = x0 + iya , Ci =Xi+ iyl, 

where Xo,Xi,yo and yi are all real. 

Trivial state (O): This solution has the ful! symmetry D2. I ts stability is 
determined by the four eigenvalues ±fi — 1 and —1 ±ÍUJ, where LÚ = A-K2a. 
The first two give the growth rate of per turbat ions within the invariant 
plañe c\ = 0, while the complex conjúgate pair describes perturbat ions 
within the invariant plañe CQ = 0. When ¡i — 1 there is a supercritical 
pitchfork bifurcation giving rise to a branch of spatially uniform states U: 
CQ •£ 0, ci = 0; note that there are no fixed points of the form CQ = 0, 
c i # 0 . 

Uniform steady states (U): These solutions take the form c$ -£ 0, c-¡ = 0, 
where 

|A | | c 0 | 2 = 2y/fi2-l, c o s 2 t f = l / ¿ í , (4.11) 

and CQ = |(?o|ell?, and are invariant under R-y but not under RQ; when 
necessary we distinguish between the two iío-rehtted branches using the 
notation U± (the ± reflects the sign of the zo coordínate). Since d — 0 
these solutions are always stable to perturbat ions within the plañe Ci = 0 
with the corresponding eigenvalues, s, satisfying 

(fi + l ) 2 - (5 - 4¿i2) = 0 . (4.12) 



Note that thcse eigenvalucs are complex when ¿u > v/5/2. Stability with 
respcct to the mode ci is described by the characteristic equation 

(s + l ) 2 + J- + p? - 1 + -(¡J2 - 1) - — (A + 1) v / ^ T = 0 . (4.13) 

Thus, when s = 0, the uniform states U undergo a pitchfork bifurcation 
which breaks the Ri symmetry and produces time-independent nonuniform 
states with n = 1 (NU). Note that because of the form of Eqs. (4.12)-(4.13) 
Hopf bifurcations are not possible. 

Nonuniform steady states (NU): The fixed points NU have no symmetry: 
consequently, the NU states come in quartets, related by the actions of RQ, 
Ri, and RQRI. Depending on the valué of A, the NU states may become 
unstable, with increasing ¡j,, at either a saddle-node or a Hopf bifurcation. 
If a Hopf bifurcation occurs it generates four symmetry-related periodic 
orbits. Thc fate of these and other time-dependent solutions is investigated 
in the following section. 

4.2 Numerical Results 

In this section we present the results of a carcful numerical investigation 
of Eqs. (4.8)—(4.9) using a combination of AUTO (Doedel, Champneys, 
Fairgrieve, Kuznetsov, Sandstede, and Wang [1997]) and XPPAUT (Er-
mentrout [2000]). In addition to the simple bifurcations mentioned above 
these equations can exhibít extremely complicated dynamics. We find that 
over a large range of parameters this complex behavior is organized by a 
codimension-one heteroclinic connection between the uniform and trivial 
states, a global bifurcation which can be best understood in the context of 
a two-parameter study. We therefore set d — 0, a = 0.1 and vary A along 
with the forcing amplitude ¡i. 

Fig. 4.2 shows the important local bifurcation sets in the (¿i, A) plañe: the 
n = 1 neutral stability curve (labeled SB) and the loci of Hopf and saddle-
node (SN) bifurcations on thc NU branch which bifurcates from the U state 
along the neutral curve. Fig. 4.3 shows the bifurcation diagrams obtained on 
traversing this plañe in the direction of increasing fj, at several different (but 
fixed) valúes of A. Fig. 4.2 reveáis the presence of two singularities. There is 
a degeneracy when A = 0: at this valué of A spatially uniform states exist 
only at ¡i = 1 and at no other valué of fi. It is thus not surprising that there 
are many bifurcation sets emanating from thc singular point (/t, A) = (1,0). 
In the present problem there is, in addition, evidence of singular behavior 
at A ~ —1.1428, where the amplitude of the NU branch (but not the U 
branch) becomes infinite. As A decreases toward this valué the two saddle-
node bifurcations on the NU branch (at fi ~ 2.33 and \i ~ 5.67) oceur at 
roughly constant ¡i valúes but at larger and larger amplitude (see Fig. 4.3g). 
When A < —1.1428 these two saddle-node bifurcations no longer oceur at 
all (seeFig.4.3h). 



FIGURE 4.2. Local bifurcation sets with d = 0 and a. = 0.1: symmetry-breaking 
bifurcation (SB) on the U branch, and Hopf and saddle-node (SN) bifurcations 
on the NU branch. Courtesy M. Higuera and ,1. Portcr. 

The bifurcation diagrama of Fig. 4.3 show the U and NU branches, as 
well as recording the fate of the branches of periodic orbits (when present) 
generated in Hopf bifurcations on the NU branch (Figs. 4.3a-f). For typical 
parameter valúes the NU branch is S-shaped, with the Hopf bifurcations 
occurring on the lower part. For example, a cut (not shown) at A = 1 
barely crosses the locus of Hopf bifurcations but does so twice in quick 
succession indicating the presencc of two Hopf bifurcations back to back 
(see Fig. 4.2); connecting these bifurcations is a stable branch of periodic 
orbits. With A = 0.9 {Fig. 4.3a) there is a period-doubling bifurcation on 
this original branch but the cascade (not shown) is incomplete (there are 
just two period-doublings followed by two reverse period-doublings). Bi­
furcation iLbubbles" of this type are familiar from problems related to the 
Shibnikov bifurcation (Knobloch and Weiss [1981]; Glendinning and Spar-
row [1984]). For A = 2/3 (Fig. 4.3b), the valué corresponding to Fig. 4.1, 
there is (presumably) a complete period-doubling cascade and one can eas-
ily find a variety of periodic and chaotic attractors (see Fig. 4.4). Evidencc 
that this cascade is not the wholc story, howcver, is provided in Fig. 4.3c. 
The figure shows that, for A = 0.645, the branch of periodic orbits has 
split apart, each half terminating in a Shil'nikov-type homoclinic connec-
tion with the uniform state. The abruptness of this transition suggests the 
presence of other periodic orbits with which the original periodic branch is 
colliding. This interpretation is further supported by a second abrupt tran­
sition which oceurs by A = 0.633 (Fig. 4.3d); the branch of periodic states 
produced in the second Hopf bifurcation (at y¡, ~ 4.8) now terminates in a 
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FIGURE 4.3. Series of bifurcation diagrams, \c\ = (\ct¡\2 + |ci |2)1 , /2 versus fi, for 
different valúes of A. Stable (unstable) solutions are rendered with thick (thin) 
lines. Branches of periodic solutions originating in Hopf bifurcations are also 
shown. Courtesy M. Higuera and J. Porter. 

homoclinic bifurcation on the NU states rather than the U states. As A is 
decreased even further (see Fig. 4.3e) the first homoclinic bifurcation (with 
the U state) moves very cióse to the initial Hopf bifurcation, occurring at 
[i ~ 1.112 when A = 2/9, while the second homoclinic bifurcation (on the 
JVÍ7 branch) moves closer to the rightmost saddle-node bifurcation. The 
branch of periodic solutions corresponding to the former is almost invisi­
ble on the scale of the figure. A comparison of Figs. 4.3e and 4.3f shows 
that when A is small in magnitude the bifurcation diagrams on either side 
of A = 0 are qualitatively similar. The main differences are the change 
in scale (larger fi valúes for negative A) and the absence of the rightmost 
symmetry-breaking (SB) bifurcation when A < 0: although the JVÍ7 branch 
comes very cióse to the U branch for large fi the two branches remain 
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diffcrent valúes of A. Stable (unstable) solutions are rendered with thick (thin) 
lines. Branches of periodíc solutions originating in Hopf bifurcations are also 
shown. Courtesy M. Higuera and J. Porter. 

homoclinic bifurcation on the NU states rather than the U states. As A is 
decrcased even further (see Fig. 4.3e) the first homoclinic bifurcation (with 
the U state) moves very cióse to the initial Hopf bifurcation, occurring at 
¿¿ ÍSÍ 1.112 when A = 2/9, while the second homoclinic bifurcation (on the 
NU branch) moves closer to the rightmost saddle-node bifurcation. The 
branch of periodic solutions corresponding to the former is almost invisi­
ble on the scale of the figure. A comparison of Figs. 4.3e and 4.3f shows 
that when A is small in magnitude the bifurcation diagrams on either side 
of A = 0 are qualitatively similar. The main differences are the change 
in scale (larger ¿t valúes for negative A) and the absence of the rightmost 
symmetry-breaking (SB) bifurcation when A < 0: although the NU branch 
comes very cióse to the U branch for large /i the two branches remana 
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FIGURE 4.4. Attractors for d - 0, a = 0.1, A = 2/3 and (a) /i = 1.86, (b) ¿t = 2.2, 
(c) ¡J, = 2.5. Courtesy M. Higuera and J. Porter. 

distinct, in contrast to the situation for A > 0. 
It turns out tha t the interesting periodic and chaotic behavior which 

onc finds for valúes of A such as those used in Figs. 4.3b-f is associated 
with a keteroclinic bifurcation involving both O and U. The bifurcation 
sets for this global connection, U —* O —» U, are shown in Fig. 4.5. In 
this figure there are three curves of heteroclinic bifurcations which emerge 

FIGURE 4.5. Heteroclinic (Het) bifurcation sets (solid lines) representing the cycle 
U —> O —> U. The inset shows an enlargement of one of these curves near its 
termination in the codimension-two heteroctinic cycle U —» NU —* O —* U. Note 
that the cut A = 2/9 passes through four heteroclinic bifurcations. Courtesy M. 
Higuera and J. Porter. 

from (fj-.A) — (1,0) into the región A > 0 and three that emerge into 



the región A < 0. For A > 0 two of thcsc conncct up smoothly form-
ing a loop while the third oscillates back and forth an infinite number 
of times before terminating in a codimension-two heteroclinic bifurcation 
point at (fi, A) ~ (2.5803,0.1877). The heteroclinic cycle at this point in­
volves all three types of fixed points: O, U, and the NU state between the 
two saddle-node bifurcations on the NU branch. For A < 0 the three curves 
of heteroclinic bifurcations remaín sepárate (the upper two are almost in-
distinguishable on the scale of the figure). Two of them continué out to large 
valúes of ¡i (they have been followed to ¡i > 50) while the third wiggles back 
and forth before terminating in another codimension-two heteroclinic cycle 
involving O, U, and NU. This point, {¡j., A) ~ (5.065,-0.159), is rnarked 
in Fig. 4.5 by a small circle; the wiggles are not visible on this scale. This 
point differs from the previous codimension-two point for A > 0 in a fun­
damental way because it involves the small amplitudc NU state (after the 
first Hopf bifurcation) whose stable and unstable manifolds are each two-
dimensional. Thus the codimension-two heteroclinic cycle for A > 0 involves 
three points with one-dimensional unstable manifolds; the connection O —* 
U is structurally stable (due to the invariance of the uniform plañe) while 
the connections U —• NU and NU —> O are each of codimension-one. For 
A < 0 the connections O —* U and NU —* O, are both structurally stable 
but the third, U —> NU, is üselfoí codimension two. 

Fig. 4.5 also shows the cut A = 2/9. This cut corresponds to the bi­
furcation diagram of Fig. 4.3e and crosses the heteroclinic bifurcation set 
four times. We use this A valué to investígate further the dynamics asso-
ciated with this bifurcation. Along this path the first Hopf bifurcation (at 
¿i 2i 1.106) occurs almost immediately after the birth of the NU branch 
(see Fig. 4.5). Between this Hopf bifurcation and the leftmost saddle-node 
bifurcation on the NU branch at ¡i =¡ 2.674 there are no stable fixed points: 
in this región one can easily find chaotic attractors, such as those shown in 
Fig. 4.6, as well as a variety of interesting periodic solutions (sec Fig. 4.7). 

(a) (b) (c) 

FIGURE 4.6. Chaotic attractors for d = 0, a = 0.1, A = 2/9 and (a) ¿u = 1.51, 
(b) ¡x = 2.0, (c) ¡i = 2,54. Courtesy M. Higuera and J. Porter. 



(a) (b) (c) 

FIGURE 4.7. Zu-symmetric periodic attractors for d — 0, a = 0.1, A = 2/í) 
and (a) ¡i — 1.41, ño Tí i-symmetry; (b) ¡i = 1.64, Zii-symmetry; (c) fi = 1.875, 
ño-symmetry. Courtesy M. Higuera and J. Porter. 

Notice that the periodic orbits in Fig. 4.7 have Z2 symmetry, i.e., they 
are invariant under one of the reflections: RQ, J?I , RQRI. Although these 
particular periodic orbits are somewhat exotic (in the sensc that they do not 
belong to one of the basic families of periodic solutions analyzed below but 
resemble something like the 'multi-pulse' orbits identified in perturbations 
of the Hamiltonian problem) there are also sequences of simpler periodic 
orbits which come cióse to both O and U. These orbits, characterized by 
their symmetry (or lack thercof) and by the number of oscillations they 
experience near O, are related in a fundamental way to the heteroclinic 
connection U —• O —* U. A bifurcation diagram obtained by following 
many of these solutions numerically is displayed in Fig. 4.8, along with 
four representative orbits. This figure shows the period (half-period for 
symmetric orbits) as a function of \i. 

Two of the branches shown (the ones with lowest period) cióse on them-
selves to form isolas but most of the solutions terminate in homoclinic 
(U± —• U±) gluing bifurcations or heteroclinic (U± -^ UT) symmetry-
switching bifurcations. This is evident from the dramatic increase in period 
which oceurs as the periodic orbits approach the fixed points. In the glu­
ing bifurcations two asymmetric periodic orbits come together (using U+ 

or J7_) to créate a single fií-symmetric periodic orbit. In the symmetry-
switching bifurcations two /?o- sym m°f r ic periodic orbits transform (using 
both U+ and U-) into two RQR\-symmetric periodic orbits. In this second 
case the symmetry neither increases ñor decreases but switches from one 
Z2 symmetry to another. 

Under appropriate conditions each of these processes is associated, as 
in the usual Shirnikov scenario (Glendinning and Sparrow [1984]; Wig-
gins [1988]), with cascados of saddle-node and either period-doubling or 
symmetry-breaking bifurcations; the Z2-symmetric orbits must undergo 
symmetry-breaking prior to any period-doubling bifurcations since such 
orbits do not (generically) have negative Floquet multipliers (Swift and 
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FIGURE 4.8. Cascades of gluing (.4 + 4̂ «-* R\) and symmetry-switching 
(ño + iío <-> ñ o ñ i + ñ o ñ i ) bifurcations for d = 0, a = 0.1 and A = 2/9. 
These accumulate from opposite sidcs on the principal heterocíinic bifurcations, 
the first two of which, labeled (1) and (2), are shown (upper panel). At point 
(3) there is a homoclinic connection to NU, The lower panel shows an cnlargc-
ment of the región near point (1). The diagrams show the period (half-period) of 
asymmetric (symmetric) periodic orbits as a function of ¡\i. Courtesy M. Higuera 
and J. Porter. 

Wiesenfeld [1984]). Note also tha t the way the two branches (c.g., an 
asymmetric and an ñ i - symmet r i c branch) merge with increasing period 



differs from that of the corresponding Shil'nikov problem in three dimen-
sions with symmetry (Glendinning [1984]). This is because the reflection 
symmetry in the latter case must be a complete inversión (Tresser [1984]; 
Wiggins [1988]), while in our case the relevant symmetry i?i is not (see 
Eq. (4.10)); in particular ñ j does not act on the swirling part of the flow 
near U± in the píane C\ = 0. In our case the two types of branches oscillate 
"in phase" around the homoclinic or heteroclinic points as their period 
increases (cf. Fig. 4.8), while they oscillate "out of phase" in the three-
dimensional case with inversión symmetry. These differences between the 
standard situation and ours are a direct consequence of the fact that our 
two-mode truncation is four-dimensional, allowing new types of connection 
that are not possible in three dimensions. Note that in Fig. 4.8 we have only 
investigated the first two of the main heteroclinic bifurcations (recall that 
there are four such bifurcations when A = 2/9) and that therc are many 
periodic solutions (e.g., those of Fig. 4.7) which have not been shown; these 
may form isolas or termínate at other, substdiary, conncctions. In short, 
the full situation is extremely complex. 

4.3 Comparison with the PDE 
Since it is the dynamics of the PDE (4.2) (4.3) that are of ultimate interest, 
one would like to understand how faithfully their behavior is represented 
by a truncated set of ordinary differential equations (ODEs). While there 
is no a priori reason to assume that a finite number of modes can accu-
rately capture the effect of the noulinear ternas, it turns out that in many 
problems they do (Knobloch, Proctor, and Weiss [1993]; Doelman [1991]; 
Rucklidge aud Matthews [1996]). Higuera, Porter, and Knobloch [2002] find 
numerically that these equations frequently have reflection-symmetric at-
tractors (in x) and that these are well described by the restriction to the 
cosine subspace. In addition, the numerical simulations indícate that the 
influence of the higher modes is often negligible, particularly for periodic 
orbits and chaotic attractors which are approximately heteroclinic. Fig. 4.9 
shows that the heteroclinic behavior found within the two-mode model 
(4.8)-(4.9) also occurs in the full PDE. 

To examine the influence of higher modes (n > 1) on the dynamics 
we have computed |co|, |ci|, and E^L^I6»! as functions of time, after first 
allowing transients to die away. The solutions in Fig. 4.10 represent typical 
chaotic attractors that can be found for A = 2/9 and 1.5 < (i < 2.8, 
together with the time series representing their harmonic content. Not ice 
that in all cases the amplitude of the higher modes (bold curves in the 
righthand set of panels) remains small, indicating that these modes do not 
play a significant role in the dynamics. 

While such a low-dimensional description is not unexpected for small am­
plitudes (i.e., near onset at ¡i — 1) Eqs. (4.2)-(4.3) continué to be described 
by the two mode truncation even relatively far from the primary bifurca-
tion. Notice that, e.g., for A = 2/9 and p, > 1.875 the uniform states are 
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FIGURE 4.9. Stable periodic orbits of the PDE (4.2)-(4.3) with different symme-
tries for A = 2/9. Gluing and symmetry-switching bifurcations, as in the ODEs, 
appear to be present. Courtesy M. Higuera and .1. Porter. 

unstable to at least two nonuniform modes and onc might thereforc suppose 
that a two-mode truncation will be of dubious validity. However, wc often 
ñnd that the system (4.8)-(4.9) continúes to apply (see Figs. 4.10b,c). This 
increased range of validity is likely due to the prominence of the hetcro-
clinic bifurcation since for orbits which are approximately hetera clinic the 
potentially complicated dynamics of the full PDE are controlled mainly 
by symmetries and by the local properties of the fixed points O and U 
wherc most time is spent; recall that O and U are the same in both the 
PDE (4.2)-(4.3) and the ODE model (4.8)-(4.9). Also important is the fact 
that due to the spatial avcraging of the forcing term in Eq. (4.2) the ori-
gin is always stable with respect to nonuniform modes. The higher modes 
are thus quickly damped under the attracting influence of the trivial state. 
We conclude that the evident low-dimensional behavior of the PDE (4.2)-
(4.3) is relatcd to the presence of the heteroclinic bifurcation involving 
the origin and its associated eascades. Whenever one is relatively cióse to 
thesc bifurcations in parameter space (see Fig. 4.5) the dynamics will typi-
cally be dominated by the many periodic and chaotic attractors associated 
with them. For parameter valúes outside of this regime (e.g., ¡.i > 3 when 
A = 2/9) the dynamics are no longer heteroclinic and henee are more likely 
to involve other modes. 

When A = 2/3, the valué used in Martel, Knobloch, and Vega [2000] for 
Fig. 4.1, the heteroclinic bifurcation does not actually oceur (see Fig. 4.5), 
but the dynamics may nonctheless be dominated by the various periodic 
orbits and related chaotic attractors which exist in nearby regions of pa­
rameter space; gluing bifurcations still oceur even though the full cascade 
does not. Fig. 4.11 shows several chaotic attractors for A = 2/3 demou-
strating that the dynamics are again dominated by the first two modes. As 
for A = 2/9, this low-dimensional behavior does not hold for all valúes of /J. 
and the two-mode ODE model eventually fails. But in contrast to the case 
A = 2/9, when A = 2/3 this failure can arise for two reasons. The first fail-
ure of Eqs. (4.8)-(4.9) is due to a Ti symmetry-breaking bifurcation, which 
occurs at fi ~ 3.4. In this case it is not the two-mode nature of the model 



(a) 

FIGURE 4.10. Relative importance oí' the Fourier components for A = 2/9: (a) 
chaotic attractor at /j = 1.51, (b) at ¡i = 2.0, (c) at ¡J, = 2.8. The lines ( } 
correspond to |co|, ( ) to |ci| and ( ) to ^=2\cn\- Courtesy M. 
Higuera and J. Porter. 

tha t becomes inappropriate (the uniform s ta te does not lose stability to 
the n — 2 mode until ¡x ~ 4.093) but the restriction to the cosine subspace. 
Fig. 4.12a shows a solution, which possesses low-dimensiona] character but 
is not reflection-symmetric and is therefore not contained within the sys-
tem (4.8)-(4.9). After a narrow interval (3.4 < \i < 3.46) the dynamics re-
cover their reflection-symmetric character, and subsequently (see Fig. 4.1) 
a second window of stable uniform states appears for 3.5 < ¡i < 4.3. At 
(i ~ 4.3 the system becomes abruptly chaotic, with many modes partaking 
in the dynamics. This situation, however, does not persist uniformly as p, 
increases further. For example, at p, = 4.65 the trajectories spend a long 
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FIGURE 4.11. Relative importance of the different Fourier components when 
A = 2/3 for chaotic attractors at: (a) ¡x = 1.85, (b) (i = 1.925, and (c) ¡i = 3.2. 
The lines ( ) correspond to |co|, ( ) to |cij and ( ) to S^=2|cn|. 
Courtesy M. Higuera and J. Porter. 

time near the invariant even subspace (c„ = 0 If n is odd), occasionally 
coming under the influence of unstable periodic orbits in this subspace and 
being briefly ejected from the even subspace (see Fig. 4.13). These excur-
sions are associated with episodio phasc drift of the solution (type I drift 
in the terminology of Martcl, Knobloch, and Vega [2000]). This interest-
ing behavior is reminiscent of the so-called blowout bifurcation (see, e.g., 
Ashwin, Buescu, and Stewart [1996]). Iit the present case the attractor 
is completely contained in the even subspace (with dynamics dominated 
by the first two even modes, n = 0,2) over a moderately large interval, 
•̂O < (i % 6.5, but loses stability, apparently in the above manner, as [i 

decreases below (i ~ 5.0. We remark that blowout bifurcations provide a 
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FIGURE 4.12. Space-time diagrams corresponding to (a) a quasipcriodic attractor 
wíthout reflection symmetry. A = 2/3 and ¿¿ = 3.4; and (b) a periodic attractor 
with reflection symmetry, A = 2/9 and ¡i — 3.46. Courtesy M. Higuera and J. 
Porter. 

general mechanism by which at t ractors in invariant subspaces lose stability 
with rcspect to perturbat ions out of the subspace. 

5 Concluding Remarks 

In thia paper we have summarized the results of a systematic derivation of 
the amplitude equations dcscribing the evolution of slowly varying wave-
trains on thc surface of a nearly inviscid liquid excited by small amplitude 
vertical vibration of its container. Because of the presence of oscillatory vis-
cous boundary layers along the rigid boundaries and the free snrface viscous 
mean flows are drfven in the largely inviscid interior of thc fluid. These aug-
ment any inviscid mean flows tha t may be present and the two togcther 
interact with the parametrically excited waves producing them. This non-
trivial interaction between the mean flows and the waves is a consequence 
of the presence of the hydrodynamic modes which decay, for C J < 1 , more 
slowly than gravity-capillary waves, and henee are easily excited by the os-
cillations. The resulting equations, albeit still complex, provide a significant 
simplification of the original problem in that the boundary conditions are 
now applied at the undeformed surface, and the fast osciliation frequeney 
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FIGURE 4.13. Norm of the first three modes versus r for A = 2/3 and pt — 4.65. 
The thin, médium, and thick hnes denote |co|, |c21, and |ci|, respcctively. Note 
the episodic excitation of the mode c\. Conrtesy M. Higuera and J. Porter. 

associated with the vibration of the container has been eliminated. As part 
of the analysis explicit expressions for all the coefñcients are obtained, as 
are explicit conditions for the validity of the resulting equations (Vega, 
Knobloch, and Martel [2001]). As such the resulting equations rcpresent a 
novel system for the study of pattern formation and subsequcnt instabilities 
of the resulting patterns via the excitation of mean flows. 

In certain spccific cases thcsc equations can be simplified further. We dis-
cussed one such case, in which the mean flow dccouples from thc amplitude 
equations for the left- and right-traveling waves. The remaining equations 
are still not trivial, in that they are nonlocal and include both dispersión 
and damping, although no wavenumber-dependent dissipation. Equations 
of this type were studied by Martel, Knobloch, and Vega [2000] and provide 
perhaps the simplest description of the Faraday system in an extended do-
main under preciscly stated conditions. It is important to emphasize that 
this description differs from those obtained by ad hoc procedures. In par­
ticular, the usual approach of formulating the problem as an inviscid one 
at leading order, and adding some damping after the fact to mimic the role 
of viscosity fails on two levéis: it omits the basic mechanisms that drive 
the (viscous) mean flow (Schlichting [1932]), and it omits the back-reaction 
of this flow on the waves that are responsiblc for it. Evcn the simplest 



description of the Faraday system that reaults includes nonlocal terms in 
the amplitude equations whose origin can be traced to the fact that am-
plitude inhomogcities are advected at the group velocity on a timescale 
that is much faster than the timescale on which the waves equilíbrate. An 
additional nonlocal contribution arises from the requirement that mass be 
conserved (Piercc and Knobloch [1994]). Since the Reynolds number of 
the associated flow can be (indeed must be) substantial the equations for 
this flow must in general be solved numerically as already done in other 
circumstances (Nicolás, Rivas, and Vega [1997, 1998]). 

A careful examination of the analysis that led us to equations (2.11)— 
(2.23) shows that these in fact apply under the conditions 

kfltf.l + W ) * " . l/l + l /xl«l , L~l<k, (5.1) 

or equivalently, 

A:(|¿| + |£Í|) + | / ™ | « 1 , * # ™ | « Ü , , (5.2) 

and the condition 

Hcre vg is the (nondimensional) group velocity of the surface waves, defined 
in (2.14), Q5 is given in (2.16) and we assumed that the smallest spatial scale 
is k~1. The condition (5.1) can be stated succinctly as requiring that the 
nonlinearity be weak and the aspect ratio of the system be large compared 
to the nondimensional wavelength of the surface waves; the condition (5.3) 
requires that the terms accounting for inertia and propagation at the group 
velocity in the amplitude equations (2.11)—(2.12) be much larger than the 
remaining terms. In addition, the requirements 

(1 - S)k2 + Sk4 » Cl, ki(l-S + Sk2)-1- « C - 1 , (5.4) 

or equivalently, 

Cg < u, cloji « 1 - S + (Sio/Cg). (5.5) 

are imposed implicitly both on the carrier wavenumber k as well as on 
all wavenumbers associated with the (viscous) mean flow. These conditions 
guarantee that the thickness of the associated boundary layers will be small 
compared to the depth (if k <C 1) or compared to the wavelength (if k ~^> 1), 
see Fig. 2.2. Since the lowest wavenumber of the mean flow is k — 2ir/L the 
condition (5.4) implies, in particular, that 

(1 - S)L-'2 + (2nfSL-4 » C¡ . (5.6) 

Several additional assumptions appcar in the course of the analysis (Vega, 
Knobloch, and Martel [2001]). 



It is evident that strictly inviscid treatments of the problem and the 
powcrful techniques that are available for such treatments miss qualita-
tively important properties of vibrating systems. Similar issues arise in 
the theory of vibrating liquid bridges (Nicolás and Vega [1996]) and re-
lated systems (Higuera, Nicolás, and Vega [2000]), where mean fíows gen-
erated in the viscous boundary layers can be used to control the amplitude 
of any convection that may be present. Whether the approach described 
here for the Faraday system will yield a quantitatively precise description 
of existing experiments on the Faraday system with nearly inviscid flu-
ids (Ezerskii, Rabinovich, Reutov, and Starobincts [1986]; Douady, Fauvc, 
and Thual [1989]; Tufillaro, Ramshankar, and Gollub [1989]; Kudrolli and 
Gollub [1997]) remains to be seen, however. Any experiments in a narrow 
annulus will suffer from effeets due to oscillatory boundary layers at the 
lateral (radial) boundaries which are diíRcult to minimize. Likewise precise 
experiments on liquid bridges are difficult under terrestrial conditions, and 
stability predictions of the type given by Kruse, Mahalov, and Marsden 
[1999] remain to be confirmed. 

The relation between the type of theory described here and earlicr work 
(Kovacic and Wiggins [1992]; Haller and Wiggins [1993, 1995a,b]) on the 
origin of complex dynamics in the forced weakly damped nonlinear Sehrod-
inger equation is also of interest. This work focused on the ncar-Hamilton-
ian limit and exploited generalizations of the Mel'nikov theory to PDEs 
to establish the presence of a variety of multipulse orbits homoclinic or 
heteroclinic to a slow manifold. In contrast, our approach has focused on 
the dynamics substantially farther from this limit. Although much of the 
dynamical behavior found numerically in the nonlocal parametrically forced 
damped nonlinear Schródinger equation derived here could be understood 
in detail using a two-mode model system, the relation of the cascados of 
gluing and symmetry-switching bifurcations that appear to be responsible 
for it to the near-Hamiltonian dynamics analyzed for this class of systems 
by Kovacic and Wiggins [1992] and Haller and Wiggins [1993, 1995a,b] 
remains to be examined. Indeed, because of the parametric nature of the 
forcing (and in particular the resulting symmetry C —> — C) the behavior 
found here bears a greater resemblance to that discussed by Rucklidge and 
Matthews [1996] in their study of the dynamics of the shearing instability 
in magnetoconvection than to the damped nonlinear Schródinger equation 
with direct forcing. Like our system the former has D2 symmetry and 
exhibits global bifurcations involving both the origin (corresponding to the 
conduction state) and the convective state SS. The latter state is reflection-
symmetric and can undergo a pitchfork bifurcation to a tilted convection 
state STC. From a symmetry point of view these states play the same role as 
O, U and NU in our problem. The essential difference between our system 
and that studied by Rucklidge and Matthews lies in the fact that in our case 
the leading stable eigenvalues of both O and U are complex (the former in 
the CQ = 0 subspace, and the latter in the c\ — 0 subspace). The dynamical 



behavior that results is new and is discusscd in detail in Higuera, Portcr, 
and Ktiobloch [2002] and Porter [2001]. Truncated Galerkin expansions of 
the type that led us to this behavior have, of course, also been used to study 
the effect of direct forcing on the sine-Gordon equation, a system closely 
related to ours. Here, too, the study of the finí te-dimensional system proved 
of substantial help in understanding the PDE simulations (Bishop, Forest, 
McLaughlin, and Overman [1990]; McLaughlin, Overman, Wiggins, and 
Xiong [1996]). It should therefore not come as a complete surprise that the 
two-mode model constructed here captures so much of the behavior found 
numerically in the PDE (4.2)-(4.3) by Martel, Knobloch, and Vega [2000]. 
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