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A R T I C L E I N F O A B S T R A C T 

In this work, the unsteady simulation of the Navier-Stokes equations is carried out by using a Residual 
Distribution Schemes (RDS) methodology. This algorithm has a compact stencil (cell-based computations) 
and uses a finite element like method to compute the residual over the cell. The RDS method has 
been successfully proven in steady Navier-Stokes computation but its application to fully unsteady 
configurations is still not closed, because some of the properties of the steady counterpart can be lost. 

Kevwords- Here, we proposed a numerical solution for unsteady problems that is fully compatible with the original 
Unsteady numerical simulation approach. In order to check the method, we chose a very demanding test case, namely the numerical 
Finite element methods simulation of a Tollmien-Schlichting (TS) wave in a 2D boundary layer. The evolution of this numerical 
Boundary layer transition perturbation is accurately computed and checked against theoretical results. 

1. Introduction 

Unsteady flows appear in a wide variety of industrial problems, 
such as detached flow in high lift aircraft take-off configurations, 
flow in gaps, transitional flows, flow in very complex shapes im-
posed by ice accretion, aeroelastic coupling, and buffet prediction. 
The accurate prediction of these flows is not possible with conven-
tional steady solvers and unsteady simulation is unavoidable. 

However, simulation of unsteady flows is generally more com-
putational demanding than its steady counterpart. The steady 
solvers are designed to have certain numerical properties which 
tend to either elimínate or dissipate any "non-steady" component 
of the flow. Therefore, literal translation of these numerical meth­
ods by taking a global time step generates very inefficient, highly 
dissipative solvers, which require a very low time-step to get the 
desired accuracy. Moreover, some of the numerical properties of 
the original steady solvers, such as multidimensional upwinding or 
numerical precisión, can be lost in this translation procedure. 

In this work, the unsteady simulation of the Navier-Stokes 
equations is carried out by using a Residual Distribution Schemes 
(RDS) methodology (Valero et al. [21]). This algorithm has a com­
pact stencil (cell-based computations) and compute the residual 
over the cell using a finite element method. RDS were initially 
developed for the solution of scalar advection equations and sub-
sequently extended to systems of equations (Deconinck and Ric-
chiuto [6]). Regardless of the temporal scheme used, the original 
RDS formulation cannot be more than first order accurate in time-
dependent computations due to the inconsistency of the spatial 
discretization (Ferrante and Deconinck [8]). Various solutions have 

been proposed to overeóme this difficulty; see, e.g., Ferrante and 
Deconinck [8] and Caraeni [2], who made use of a finite-element 
like mass-matrix that were consistent with the spatial discretiza­
tion, and Ricchiuto et al. [16] and Csik and Deconinck [4], who in­
troduce space-time residual distribution schemes. But, all of these 
papers are focused on inviscid unsteady solutions, with non-steady 
viscous computation not conclusive (Caraeni et al. [3]) and putting 
more emphasis on the numerical aspect of the method than in 
its real predictive capabilities for complex viscous flows. Here, we 
propose the application of RDS to general systems of conservation 
laws and, particularly, to non-steady viscous problems. 

The performance of this new implementation is tested by the 
numerical simulation of a Tollmien-Schlichting (TS) wave in a 2D 
boundary layer. The first stage of the transition process in a flat-
plate boundary layer is governed by the amplification of TS two-
dimensional disturbances. The growth or decay of these waves 
is well described by linear stability theory (Schlichting and Ger-
sten [18]), which provides the temporal and spatial amplification 
rates of the disturbances under the assumption of parallel flow. 
Disturbances evolve downstream, with amplitudes growing or de-
caying as the distance from the leading edge increases. 

Various approaches can be found in the literature to numeri-
cally compute these perturbations. Most of them consider incom-
pressible flows, either using a linearized versión of the NS equa­
tions (Theofilis [20]) or integrating the full NS system (Fasel and 
Konzelmann [7]). However, the direct computation of the boundary 
layer using the Navier-Stokes equations does not exactly reproduce 
the linear stability of parallel flows, since non-parallel effeets are 
taken into account. The evaluation of non-parallel effeets for in-
compressible flows has been discussed by different authors, such 
as Fasel and Konzelmann [7], Saric and Nayfeh [17], and Gaster [9]. 
Although some differences are observed, they conclude that the 



amplitude and phase distribution with respect to the normal di-
rection (y) are practically coincident with those obtained from the 
eigenfunctions of linear (parallel) stability theory. These authors 
also advise that non-parallel effects are strongest cióse to the wall. 
These conclusions will be considered in our numerical simulation, 
but even with this limitations, accurate computation of a physical 
disturbance is a numerical challenge and as such, it can be consid­
ered as a good test for evaluating our method. 

The paper is organized as follows. After formulating the prob-
lem in the following section, the numerical tool used to calcúlate 
the unsteady flow is described in Section 3. The analytical founda-
tions of the TS waves is described briefly in Section 4. The descrip-
tion of the perturbation problem used as validation tool is exposed 
in Section 5. The validation results are summarized and discussed 
in Section 6. The paper ends with some summarizing comments at 
Section 7. 

2. Problem formulation. Navier-Stokes compressible flow 

The governing equations for the compressible, viscous fluid flow 
are the conservation of mass, momentum, and energy. In non-
dimensional form, using Cartesian tensor notation, such equations 
are 

dp d(pUj) _ Q 

dt dXj ~ 

d(pui) d(pUiUj+pSij) 

dt dXj 

d(pe) d[(pe + p)Uj] 

dt dXj ~ 

dTii 

dXj 

dqj a(TyU¡) 

dXj dXj 
(1) 

where p, u¡, and p denote the density, velocity components, and 
pressure, respectively. The total energy pe, the viscous stress ten­
sor Ty, and the heat flux components q¡ are given by 

pe= - + -pukuk 
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The non-dimensional parameters appearing in the above equa­
tions are the Reynolds number, Re = /¡oüoío/Ao. the Prandtl num­
ber, Pr = /loCp/k, the Mach number, M = ÜQ/J (y — l )C p fo , and 
the heat capacity ratio, y = Cp/Cv, which are based on the refer-
ence density (po), velocity (üo), length (Lo), temperature (fo), and 
molecular viscosity (/2o)- Cp and Cv are the constant-pressure and 
constant-volume specific heat capacities, respectively. On the other 
hand, the viscosity is temperature dependent and assumed to fol-
low the Sutherland law, which is written in non-dimensional terms 
as 

lx{T). 
¿i(f) r3/2(i+s) 

fio T + s 
(3) 

where T = í / í o . The parameter s depends on the reference tem­
perature, e.g., s = 0.37 for fo = 300 K. An equation of state is 
needed to cióse the above system, namely 

_pT_ 

yM2 (4) 

All numerical computations below will be performed for Re = 
105, y = 1.4, and various valúes of the Mach number, using the 
following reference units for non-dimensionalization: üo = 347.37-

M m / s , p0 = 1.1609 kg/m 3 , L0 = (Re/2 .184-M)10~ 7 m, and T0 = 
300 K. 

3. Numerical method 

As anticipated above, the RDS method was initially developed 
for the solution of scalar advection problems, and then success-
fully extended to systems of equations, see, e.g., Paillere [14] for 
a detailed description of the fundamentáis of these schemes. Here, 
we introduce the application of RDS to non-steady problems that 
result from general non-linear systems of conservation laws. 

For illustration, we consider the compressible Navier-Stokes 
system (1) in two-dimensions, although its generalization to three-
dimensional systems is straightforward. The system (1) can be 
written as 

+ V - F = 0 (5) 
3V 

"97 
where V(x, t) is the 4 component state vector containing the con-
served quantities p, pu\, pu2, and pe, and F is the 2 x 4 flux 
vector of components Fi and F2. F is decomposed in its viscous 
and non-viscous parts, Fv and Fn v , respectively, which receive a 
different numerical treatment. 

3.1. Numerical treatment of non-viscous fluxes 

For j = 1, 2, let A¡ be the components of the Jacobian of (Fnv). 
The associated quasi-linear flux is written as 

V F n 

9V 
M— + . 

dx 

9V 
(6) 

In the framework of RDS, the solution is discretized on Pl finite el-
ement meshes, which are triangles (T) in 2D in which a piecewise 
linear solution representation of the solution Mh is sought, namely 

Vh = ¿Vi(xi,t)Afí'(x) (7) 
i=\ 

where N is the total number of nodes in the mesh; V¡(x¡, t) is the 
time dependent nodal valué of the solution at node i; and JVÍ'(x) is 
the piecewise linear shape function that equals one at node i and 
vanishes outside the elements sharing i as a vértex. 

The application of RDS to vectorial schemes is done in the fol­
lowing way. First, integration of (6) over a triangle T yields the 
definition of the cell residual 4>T, 

<*> nv ' I V - F n v d í ? : 
• / ( ' 

T T 

whose discrete form is 

9V A 9 V \ , 

dx 2dyJ 

<*>' 
• 9V 
M—+ 

dx 

- 9 V \ 
^ K i V ¡ 

(8) 
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Due to the fact that V varíes linearly over T, its gradient ex-
hibits constant components ( | ^ and | ^ ) in each element, and 
takes the simplified form VV = (1/2) 5 ^ i = 1 3 V¡n¡, where n¡ = 
(n¡x>n¡y) is the inward normal of the face opposite to node i, scaled 
with the área of the element Sj, and the Índex i goes through the 
local nodes of the element T. Therefore, the multidimensional in-
flow matrix reads K¡ = (Áin¡x + A2n¡y)/2, where Ái and Á2 are 
the mean valué flux Jacobian over the domain T. 

The hyperbolic nature of (5) implies that the matrix K¡ has a 
set of q real eigenvalues (A¡) with linearly independent right and 
left eigenvectors (R¡, L¡). Therefore, it admits the Jordán decompo-
sition 



3.2. Numerical treatment ofviscousfluxes 

The contribution of the viscous fluxes (Fv) can be obtained us-
ing a finite element approximation. This is obtained multiplying 
the viscous component of the second term of (5) by the test func-
tion cJ¡ (see (14) below) with compact support Í2¡ (the región 
defined by all triangles meeting node i), and integrating by parts. 
It follows that 

<bT
v = í <üfv • Fvdí2 = - f VNf • Fv dí2 

•r,f-

üi 

•¥vdí2 : • E ! (13) 

Fig. 1. Schematic representaron of RDS approach. Node i is updated from informa­
ron coming of surrounding cells. 

KÍ = RÍAÍLÍ, ^ K ¡ = 0 

i=\ 

Introducing Af = (A¡ ± |/l¡|)/2, the multidimensional upwinding 
matrices can be defined as 

K ^ K M ^ L ; ¡ = 1,3 (10) 

The RDS consists of distributing the residual 4>JV to the sur­
rounding nodes, with weights summing up to one for consistency 
(Fig. 1). The sub-residuals are defined as $J and 

in each triangle T. The multidimensional upwinding property dis­
tributes the residual to node i (belonging to the triangle T), with 
weights proportional to the eigenvalues of the local matrix Kf. 
A family of residual distribution schemes can be defined to obtain 
the nodal valué 4>[ (see for instance Paillere [14]). In this work, 
the Lax-Wendroff (LW) matrix distribution scheme has been con-
sidered. In such a case, the distribution of the residual is given by 

where the contribution of the boundary of Q¡ has been canceled 
because of the compact support of a>¡ and Fv is an average valué 
of the flux Fv on the element T. 

3.2.1 Temporal discretization 
In order to perform the time integration, an equivalent Petrov-

Galerkin (PG) formulation is used that is consistent with the spa-
tial discretization of the residual distribution. The PG weighting 
function Ú)¡ is defined as equal to the shape function plus and up­
winding correction term a¡, namely 

CO: • NH + anPe (14) 

where Pe = 1 on the element subdomain and zero elsewhere. 
Then, the finite element spatial discretization of (5) is written as 

3V / 3V A 3V\ 
— + Á ! — + A2— + V F v 
dt \ dx dyj 

dí2 = 0 (15) 

with the sum extended to all the elements (T) surrounding node i. 
Setting Á¡ = Á¡ (which is constant over each element T) and 

recalling the definition of the sub-residuals (9)-( 13), yields 

£ / ^ - + £f/̂  dS2 + <¡>T
V : :0 (16) 

* Wñv 
where B¡ is the cell-wise constant distribution matrix 

(11) 

(12) 

that satisfies J2Í=Í ®¡ = 1 where I is the identity matrix. The pa-
rameter vj plays the role of a numerical viscosity. If neglected, the 
LW scheme is equivalent to a central scheme, which is unstable 
for compressible flows. High valúes of vj stabilize the numeri­
cal scheme, but introduce excessive numerical dissipation. In this 
work, the valué vj = 0.2 has been taken as a good compromise 
between these opposite effects. 

As compared to other high-order schemes, one of the main ad-
vantages of the RDS methods is that matrix B¡ can be modified to 
satisfy certain properties of monotonicity and accuracy, maintain-
ing the same compact stencil. Therefore, other numerical schemes 
(such as Low Diffusion-LDA and Narrow-N schemes) can be used 
that exhibit better monotonicity properties. However, they are also 
more dissipative. For the particular case of boundary layer sta-
bility, LW scheme is a good compromise between stability and 
low-dissipative behavior. 

After Abgrall [1], it is known that RDS schemes are well posed, 
even if the matrix ( ^ ¡ g j K t ) - 1 is singular. 

Here, both the viscous and non-viscous sub-residuals, 4>J a n d * í , , 
have been taken out from integral because of the linear representa-
tion of the conservative variables. Thus, the distribution matrix B¡ 
(11) can be expressed as 

— f o¿dí2 = — f NhdS2 + aiSj 
>r J Sj \_J 

where, in order to satisfy the equivalence between the second term 
of (16) and (11), the correction term a¡ must be defined as 

ST I 
NfldQ 

For a Galerkin finite element discretization, the second term of 
the right-hand side can be identified as the distribution matrix of 
a Galerkin (central) discretization 

»i,Gal : 

ST I Nf dí2 : 
1 

where the last term stands for triangular elements and linear 
shape functions, which implies that 

*i,Gal 



Using this definition of a¡ and (7), the spatial semi-discretization 
(15) can be written as 

T 
'« dt 

with the mass matrix defined as 

(17) 

/ • 
my = / ojllNl-dí2 

After assembling the global mass matrix, a system of ordinary dif-
ferential equations is obtained, namely 

dt 
+ R(U) = 0, U={V 0 

The numerical integration of this system can be made consid-
ering the two-parameter discretization schemes 

(1 + £ ) M n + 1 A U n + 1 - £ M n A U n 

At 
-[0R(Un+1) + ( l - í?)R(U n ) ] 

where AU"+1 =U" + 1 —U" is the increment of the variables at each 
time step At. These scheme are second order accurate in time pro-
vided that 

0=S + \ 

After some calibration that focussed on stability properties, the 
backward scheme (£ = 1/2, 6 = 1) has been selected, namely 

InAUn : -ArR Ü •n+\\ (18) - M n + 1 A U n + 1 - l l 
2 2 

Calibration consisted on numerical experiments, which have shown 
that this scheme gives fairly stable results and shows a quite small 
numerical viscosity in fairly long time spans. In other words, the 
selected scheme is A-stable and gives better results when the 
imaginary parts of the eigenvalues of the Jacobian go to infinity. 

Finally, in order to solve Eq. (18) (which is non-linear in the 
unknown Un+1) at each time step, a Newton sub-iteration is ap-
plied, which usually provides U"+1 in three sub-iterations, with a 
non-steady residual level of 1CT10. 

4. Analytical description of Tollmien-Schlichting waves 

A short analytical description of the compressible boundary 
layer over a fíat píate at zero incidence is now provided that will 
be used in next section to compare with the numerical simulation 
of the boundary layer. In the boundary layer approximation, we 
used the selfsimilar variable 

á = ^ 7 R e « l , r¡ = y/S (19) 

where 5 = ^/x/Re is proportional to the boundary layer thickness, 
and seek steady states (denoted with the subscript S) as that only 
depend on r¡, namely 

(ps,{u\)sÁU2)sJs,Ps) 

= (pin), u(T)),8V(r)), T(r¡), p{r¡)) (20) 

where the wall-normal velocity component has been also rescaled 
with 5. For convenience, we consider the Reynolds number based 
on the boundary layer thickness, namely 

R = ReS- (21) 

Replacing (19)-(20) into (1) and neglecting 0(l/J?)-terms yields 
the following system of ordinary differential equations 

-riipu)' + 2(pV)' = 0, pT = Bip 

p{—r¡u + 2V)u' = 2[/u.u'] 

p(-r]u + 2V)T' = 2Pr-l[/j,T']' + 2B/J,(u'f (22) 

where primes denote derivation with respect to r¡ and the param-
eters B\ and B are defined as B\ = yM2 and B = (y - 1)M2. The 
boundary conditions are 

u = v = T' = 0 atrj = 0, u = l, T = Te atrj = oo (23) 

which correspond to an outer flow temperature Te and a thermally 
insulated wall. Namely, we assume that the steady state is reached 
after a transient in which thermal equilibrium between the solid 
and the surrounding air is established. 

The TS-modes of this self-similar steady state exhibit a stream-
wise wavelength that is about one order of magnitude larger than 
the local boundary-layer thickness, and either grow or decay expo-
nentially in a characteristic length comparable to its wavelength; 
thus, they can grow quite fast as to promote non-linear interac-
tions. The mathematical description of TS-modes is obtained intro-
ducing a perturbation over the previous steady solution, namely 

(p,Ui,Vi,T,p) = (p,u,8V ,T,p) 

+ [(r, 0, Sx/r, 9, JI^CX-COD/S + Q Q j ( 2 4 ) 

where ce. stands for the complex conjúgate. In the analysis, the 
temporal (&>) and spatial (a) amplification rates have been rescaled 
with 5. The amplitudes of the modes {r,<j>,b\¡r,6,n) are assumed 
to depend only on r¡. Substituting the above expression into (1) 
and linearizing, we obtain 

i(oeu — co)r + (px/r)' + iap<p = 0, B\it =Tr+p9 

3ip(au — co)4> + 3pu'i¡r 

= -3iajt + R^ [3(/u.0')' + fi(iaf' - 4a2<f>) 

+ 3ia fi'T'x/j+3(fi'u'9)'] 

3ip(au — oS)x\r 

= -3n' + R^[4(fixl/')' + fi(ia<p' - 3a2xjf) 

+ iafi'(-2T'<p + 3u'9)] 

ip(au — co)9 + pT'xff 

-- {VxRy\{¡x9') - a2¡x9 + {¡x'J'9) ] + iB(au - co)x 

+ BR-X [2fiu'(<p' + \axjf) + [i'(u')29] (25) 

where ¡i denotes fi(T). A detailed description of the derivation of 
these equations for compressible flows can be found in Mack [13]. 

The appropriate boundary conditions are 

0 = ^ = 6 » ' = O at?7 = 0, (¡> = XIJ = 9 = 0 atr¡ = oo (26) 

Two remarks are now in order: 

• The boundary conditions at r¡ = oo must be numerically im-
posed at a (large but) finite distance and treated conveniently 
(Keller [11]), to avoid large errors due to wave-reflection. 

• We are retaining small 0(l/J?)-terms, which account for vis-
cous and heat conduction effeets and are essential to trigger 
the instability that promotes TS waves. The asymptotic analy­
sis of (25)-(26) as R —* oo leads to a triple-deck problem [19], 
which requires to consider fractional powers of R^1 and yields 
a poor approximation. Thus, the usual strategy is to retain 
0(J?_1)-terms, as we do here, and numerically solving the re-
sulting stiff problem. This can be done either discretizing the 
boundary valué problem or, as we have done here, using a 
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shooting method combined with a continuous orthonormal-
ization method [5]. 

5. Fully non-linear numerical description of the boundary layer 
problem 

In order to validate the numerical method described in Sec-
tion 3, we consider the numerical model of the compressible 
boundary layer of a fíat píate at zero incidence, whose linear ap-
proximation was provided in Section 4. To this end, we should con­
sider in principie an integration domain whose upstream boundary 
is fairly cióse to the leading edge of the píate and extends down-
stream to a position beyond transition, which arises at fairly high 
Reynolds namely Re ~ 105. Such computational domain leads to a 
numerically quite costly process. This is because the smallest scale 
associated with the viscous sublayer must be described. In order 
to overeóme such a difficulty, we take a computational domain in 
the streamwise direction covering only a portion of the boundary 
layer, and impose the steady profile at the entrance. Thus, we con­
sider the computational domain 

x0<x<x0 + L, 0 < y < y 0 (27) 

with L 4C xo but somewhat large as to include several wavelengths 
of the relevant waves, and yo is somewhat large compared to the 
boundary layer thickness. All lengths are in non-dimensional form. 

Then, we calcúlate the Navier-Stokes steady state solution, 
(ps, u\s, u2s, Ts), with the boundary conditions 

(ui s ,u2 s) = (uif,(y),u2b(y)), ps = pb(y) a tx = x0 

p = l / ( y M 2 ) a t y = y0 

(m,u 2 ) = 0, 3T/3y = 0 a ty = 0 

32u¡/3x2 = 0, i = l , 2 a t x = x0 + L (28) 

where the píate is assumed to be thermally insulated, and 
(Pb, u\b, u2b) are the three leading components of the Blasius self-
similar steady state solution at x = XQ, given by (20). At y = yo the 
outflow pressure boundary condition is imposed, whereas a simple 
extrapolation from interior points is used at x = xo + L. This steady 
initial solution does not coincide exactly with the self-similar Bla­
sius solution (20), due to non-parallel effeets. 

Once this steady solutions is obtained, the non-steady spatial 
evolution of a disturbance is studied (see below for a better de­
scription). In order to minimize the effeets of the boundary on the 
disturbances, the following considerations have been taken into ac-
count (Fasel and Konzelmann [7]): 

• At x = xo + L, the spurious reflection is minimized using an 
absorbing boundary layer condition, namely 

Here, the prime denotes the disturbance variable, u¡ = u¡s — 
u, and a is the local wavenumber of the disturbance waves. 
The valué of a is taken from the local linear stability analysis 
solutions (25) without non-parallel correction. 

• At y = yo, a similar approach is followed. However, here the 
unsteady disturbance velocity components are assumed to de-
cay exponentially according to the following law 

Additionally, the upper length yo is assumed to be far enough 
from the wall. According to our computations, the disturbances 

typically extends around ten displacements thickness to com-
pletely disappear. Thus, a valué of yo of the order of twenty 
boundary layer displacements thickness has been used in the 
computations. Moreover, an unnecessary increase of the num­
ber of nodes has been avoided using a potential law to cluster 
the nodes cióse to the wall. 

With this approach, no spurious reflections have been observed 
in the computations. The effect of these "inexact" output bound­
ary conditions has been significant only in a máximum of one 
wavelength of the perturbation upstream of the flow, which in fact 
limits the valid extensión of the computational domain. 

In order to genérate a TS wave in the boundary layer, we in­
clude a time-periodic blowing and suction through a narrow strip 
at the wall (see, e.g., Fasel and Konzelmann [7] and Theofilis [20]). 
Thus, a vibrating membrane oscillating with amplitude e and fre-
queney a>\ equal to that of the modeled TS wave is included at 
some position x = x\. The size of the membrane is not essential, 
because of the spatially parabolic character of the boundary layer. 
However, a membrane size similar to the wavelength of the TS 
wave is convenient to facilítate wave generation. Such a membrane 
is modeled as 

u\ = 0, t¿2(x,t) =sf{x)smoo\t \í\x — x\\ <k\/2 

u i= i¿2 = 0 if eitherxo < x^x\ — X\/2 or 

x\ +Xi/2^x<x0 + L (29) 

where a>\ and X\ are respectively the frequeney and the wave­
length of the perturbation provided by the linear stability analysis; 
x\ = X\ is the wall coordínate where the strip is located and f(x) 
is chosen as 

x — X\ + X\/2 
/(x) = /(£), £ = * .- , ifxi-M/2<x<*i 

X\/¿ 

/(x) = -/(£), £ = * 1 + M / 2 ~ X , ifxKX<X!+M/2 
X\/¿ 

(30) 

where 

7(f) = 15.18175£5 - 35.4375£4 + 20.25£3 

This distribution produces clean localized disturbances and 
causes negligible time-dependent changes in the mean flow 
(Konzelmann et al. [12]). In fact, it represents a realistic situation, 
which is also applicable for large-amplitude calculations. As it was 
explained in Section 1, a spatial perturbation approach is followed 
in this analysis. Taking a fixed perturbation frequeney &>, the cor-
responding spatial evolution rate a is determined. The real part 
of a, ar, defines the streamwise wave number and its imaginary 
part, a¡ is the spatial growth rate of the disturbance. 

The good numerical properties of RDS (namely, low diffusion, 
low dissipative effeets, second order precisión, genuinely multi-
dimensional, and good upwinding properties) make RDS suitable 
for computing compressible flows. Thus, it is expected that the 
developed numerical tool must be sufficiently precise to give an 
aecurate description of the TS-modes that are involved in the 
boundary layer evolution, which exhibit both large frequencies 
(and wavenumbers) and quite small growth/decay rates. 

6. Veriflcation and validation 

The perturbation problem described in the previous section has 
been computed for one valué of the Reynolds number, Re = 105, 
and two valúes of the Mach number, M = 0.3 and 0.7. According 



Table 1 
Characteristics parameters of the computations. 

Mach Reynolds Lo (m) 

0.3 105 1.52 x l O - 2 

0.7 105 6.54 x l O - 3 

Uo/Lo (Hz) 

6.827 
37.174 

Re=1 e5, co = 1 

15 

10 

5 -

! 

1 \\ 
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M=0.3 
co = 1 

" r = r ^ = ^ — _ _ _ _ 
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Fig. 2. Neutral stability curves obtained by linear stability theory at Mach num-
bers 0.3 and 0.7. The analyzed stable and unstable TS-modes are also indicated. 

to our comments at end of Section 2, these two valúes of M corre-
spond to the streamwise characteristic lengths Lo = 1.52 • 10 - 2 

m 
and 6.54 • 1CT3 m, respectively. The boundary layer marginal sta­
bility curves corresponding to Mach numbers 0.3 and 0.7 are 
shown in Fig. 2. The horizontal axis is the non-dimensional stream­
wise coordínate x, which is related to the local Reynolds number 
through Eq. (21), and the vertical axis is a>, the non-dimensional 
frequency. The reference dimensional valúes are given in Table 1. 
Following the perturbation strategy defined in (29), only one TS-
frequency a> is excited at a time, so advancing streamwise means 
moving in a straight horizontal line in Fig. 2. Two different TS-
frequencies have been considered, namely a» = 1, which involves 
a perturbation in the unstable región, and a» = 10, which corre-
sponds to the stable región. Some preliminary tests and a detailed 
convergence analysis have been performed. In order to simplify the 
exposition these results are shown in Appendix A. 

• Unstable frequency: a» = 1, lower straight line of Fig. 2. Ac-
cording to linear stability theory, these TS-waves are unstable 
for local Reynolds numbers VRex above 1544 and 1430, for 
M = 0.3 and M = 0.7, respectively. For the external Reynolds 
number considered here, Re = 105, the amplification factor a¡ 
has been depicted vs. x in Fig. 3. In order to facilítate com-
parison between the analytical and numerical results, a part 
of the fluid domain that is cióse to the máximum amplifica­
tion rate (x e [50,70]) is selected as computational domain. 
In that región, a¡ shows small variations around its máximum 
valué (0.27 for M = 0.3 and 0.23 for M = 0.7). In addition, the 
non-dimensional wavelength (X) in the área of study (showed 
in Fig. 4) is roughly constant (1.68 and 1.83 respectively for 
M = 0.3 and M = 0.7). Consequently, the chosen computa­
tional domain allows for simulating more than 10 wavelengths 
of the TS-waves. On the other hand, a computational domain 
thickness of 20 boundary layer thicknesses has been consid­
ered in the wall normal direction (yo). Although the strong 

100 120 

Fig. 3. Evolution of the spatial amplincation factor as a function of boundary layer 
streamwise coordínate x for TS-waves of frequency a> = 1. 
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Fig. 4. Evolution of TS wavelength inside the computational domain for unstable 
TS-waves of frequency a> = 1. 

variations of the TS wave modes are clearly located inside the 
boundary layer, a previous sensitivity analysis has shown that 
the TS waves can extent in some cases to more than 10 bound­
ary layer thicknesses. Thus, to be consistent with the far field 
normal boundary condition, such an extended computational 
domain must be considered. 
Two kind of comparisons are made between the results from 
both the full Navier-Stokes integration and linear stability the­
ory. (a) The normalized horizontal and vertical velocity profiles 
obtained for M = 0.7 at x = 60 are compared respectively in 
Figs. 5 and 6. As already observed in incompressible flows, 
non-parallel effects are almost negligible in compressible flows 
and a very good agreement between both numerical and an­
alytical profiles is obtained. (b) The spatial evolution of both 
the numerical and the analytical amplification factors are com-



Fig. 5. Comparison between the normalized amplitude distribution of the horizontal 
velocity at x = 60, a> = 1, Re = 105, M = 0.7, between the Navier-Stokes computa-
tion and linear stability theory. 
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Fig. 7. Numerical comparison between the spatial growth rate between Navier-
Stokes computations and linear stability theory for a> = 1 and Mach numbers 0.3 
and 0.7. 

Fig. 6. Comparison between the normalized amplitude distribution of the vertical 
velocity at x = 60, a> = 1, Re = 105, M = 0.7, between the Navier-Stokes computa-
tion and linear stability theory. 

pared in Fig. 7. Numerically, the TS-wave amplification factor 
a¡ is computed according to the formula 

aj(x)ns = log 
Mx) 

(31) 

where A is chosen as the máximum valué (per wavelength) 
of the perturbation of streamwise velocity component u! (see 
Fig. 8), and AQ is some initial perturbation valué taken as ref-
erence. The analytical result is obtained by integration of the 
amplitude factor given by linear stability theory (Fig. 3) 

a¡(. 

A 

)dx (32) 

xo 

Fig. 8. Máximum valúes of the perturbation for a> = 1, Re = 105, M = 0.7, x0 = 50, 
nx x ny = 500 x 41 and 100 steps per period. 

Apart from a fairly small oscillation, numerical and analytical 
results essentially coincide. Additionally, the average valúes of 
—a¡ in the computational domain are shown in Table 2. 

• Stable frequency: &> = 10, upper straight line in Fig. 2. Now, 
the TS waves are stable. The streamwise evolution of a¡ given 
by linear stability theory is represented in Fig. 9 for local 
Reynolds numbers VRex = 704 and 652 and a¡ ~ 2.6 and 2.1, 
which correspond to M = 0.3 and M = 0.7, respectively. In or-
der to minimize the a¡ variations, the computational domain 
is restricted to x e [10,15]; the associated non-dimensional 
wavelengths are also essentially constant, with a small vari-
ation around respectively 0.27 and 0.3 (see Fig. 10). Note 
that the computational domain with L = 5 contains at least 
15 streamwise wavelengths. Finally, as in the case of a» = 1, 
the domain extends up to 20 boundary layer thicknesses in 



Table 2 
Average spatial growth rate in the computational domain for a> -
between full Navier-Stokes (NS) and linear stability theory (LST). 

Mach 

0.3 
0.7 

Reynolds NS 

105 

105 
-0.268 
-0.220 

1. Comparison 

LST 

-0.270 
-0.214 

Table 3 
Average spatial growth rate in the computational domain for a> -
between full Navier-Stokes (NS) and linear stability theory (LST). 

Mach 

0.3 
0.7 

Reynolds NS 

10. Comparison 

LST 

105 

105 
2.674 
2.144 

2.641 
2.130 

Re=1e5, co=10 
NS simulation (M=0.7) 

— — — - Linear perturbation theory 
NS simulation (M=0.3) 
Linear perturbation theory 

Fig. 9. Evolution of the spatial amplincation factor as a function of boundary layer 
streamwise coordínate x for TS-waves of frequency a> = 10. 

Fig. 11. Numerical comparison between the spatial growth rate between Navier-
Stokes computations and linear stability theory for a> = 10 and Mach numbers 0.3 
and 0.7. 

Re=1e5, co=10 

Fig. 10. Evolution of TS wavelength inside the computational domain for unstable 
TS-waves of frequency a> = 10. 

the wall normal direction, which corresponds to a height of 
approximately yo = 0.5 for both M = 0.3 and M = 0.7. 
The comparison between the linear stability theory and 
Navier-Stokes computations (through the formula (31)) is 
shown in Fig. 11. Again, accurate quantitative and qualitative 
results are observed. The average valúes of — a¡ in the compu­
tational domain are shown in Table 3. 

7. Conclusions 

An accurate and efficient numerical method for the solution 
of unsteady Navier-Stokes equations was presented in Section 3 
for general systems of viscous conservation laws. The method is 
an extensión of the numerical residual distribution schemes (RDS), 
which was originally developed to treat steady problems and has 
been adapted here to simúlate unsteady viscous flows; such ex­
tensión is new in the literature, to our knowledge. The unsteady 
RDS requires the numerical solution of a non-linear system of 
equations, where for consistency, the temporal mass matrix is con-
structed taking into account the upwinding properties of the spa­
tial discretization scheme. 

In order to check the accuracy of the method, the numerical 
simulation of the compressible, fully non-linear, non-parallel, two-
dimensional flow in the boundary layer in a 2D boundary layer 
over a fíat píate at zero incidence has been considered. This test 
case bears quite stringent requirements on the numerical tool, in 
connection with numerical viscosity and stability properties. More-
over, comparison was made in terms of the small perturbations 
associated with the Tollmien-Schlichting (TS) waves, which made 
this test case a fairly demanding one. 

The numerically obtained solutions were compared with the 
parallel, linear approximation, which was obtained solving the as­
sociated set of ordinary differential equations using a shooting 
method plus continuous orthonormalization, as explained in Sec­
tion 4. Implementation of the method for the boundary layer prob-
lem was made in Section 5, where a computational domain was 
considered that accounts for a piece of the boundary layer in the 
streamwise direction, with appropriate boundary conditions for the 
incoming and outgoing flows; non-reflecting boundary conditions 
were implemented to match the unperturbed flow at free stream 
without non-physical effects. TS-like perturbations were generated 
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Fig. 12. Numerical differences between parallel and non-parallel steady solutions 
(M = 0.7 test case). Computational domain only partially showed. 
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near the upstream boundary using a vibrating membrane anal-
ogy. 

Comparison with the analytically obtained solutions always 
showed a very good agreement, in spite of the quite demand-
ing nature of the selected test problem. Thus, we expect that the 
method presented in this paper be useful in the efficient simula-
tion of related compressible, viscous problems. 

It is also worth to mention that, although this numerical test 
has been performed in a simple geometry. The application of this 
methodology to complex flows is straightforward and can be par-
ticularly suitable for aeroacoustic or Large Eddy Simulation (LES). 

Appendix A. Preliminary tests and convergence analysis 

Before proceeding with the comparative analysis, some prepara-
tory work must be done. 

To begin with, we calcúlate the unperturbed steady solution 
used in the numerical simulations, which includes non-parallel ef-
fects and is necessary to apply the boundary conditions (28). The 
iterative process to obtain such steady solution is initiated using 
the parallel Blasius compressible steady state at the streamwise 
position *o (see Eqs. (22)-(23)). This initial guess is obtained using 
an implicit Euler method with a large temporal step (CFL number 
equivalent to 105) to avoid the growth of any temporal distur-
bances that can appear in the convergence process. The differences 
with the Blasius solution due to non-parallel effects are plotted in 
Fig. 12. As was to be expected (and remarked in Section 1), non-
parallel effects are localized near the wall. 

To obtain a puré TS-wave, it must be triggered introducing suit­
able disturbances in the computational domain. This agrees with 
the convectively unstable character of the laminar fíat píate bound­
ary layer, see Huerre and Monkewitz [10]. Thus, a very small 
perturbation is introduced at the upstream end of the compu­
tational domain. Two valúes of the perturbation amplitude were 
initially tested, namely e = 10~10 and e = 10~5, obtaining re-
sults that were almost identical. Thus, only disturbances with an 
amplitude e = lCT10 were considered in the computations be-
low. 

As a second preparatory step, we calíbrate the appropriate 
number of nodes in the streamwise (nx) and wall-normal (ny) di-
rections, and time step (At) to be used in the computations. To 
this end, a preliminary convergence study has been performed. 
In the considered test case, the converged steady solution is dis-
turbed with a small perturbation of frequency a» = 1. Following the 

Fig. 13. Temporal convergence analysis for a> = 1, Re = 105, M = 0.7, x0 = 50, nx > 
ny = 125 x41. 
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Fig. 14. Spatial convergence analysis in normal direction for a> = 1, Re = 105, M = 
0.7, x0 = 50, nx= 125 and 100 steps per period. 

methodology described in (29), such a disturbance is introduced at 
x = 50 + Xi, namely near the upstream end of the selected com­
putational domain. For the selected unstable TS-modes, the com­
putational domain corresponds to x e [50, 70]. The wavelength X\ 
is extracted from Fig. 4 for both M = 0.3 and M = 0.7 at x = 50. 
Since the phase velocity cr = &>/ar = Ú)X/(2JZ) ~ 0.3 and the do­
main length is 20, the excited wave needs around 70 time units 
to cross the computational domain. Thus, a slightly larger compu­
tational time interval, of 80 units has been selected. In all cases, 
spatial nodes are equi-distributed streamwise and follow the po-
tential law 

x¡ = i • nx, i = \,nx 

1 - Fu- i ) 
y i = yo • \ _ f (ny-\) ' 

F = 1.12, j = l ,ny (A.1) 



Fig. 15. Spatial convergence analysis in streamwise direction for a> = 1, Re = 105, 
M = 0.7, xo = 50, ny = 51 and 100 steps per period. 
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Fig. 16. Numerical solution of the perturbation velocity for a> = 1, Re = 
0.7, xo = 50. Computational domain only partially showed. 

10b, M = 

along the wall-normal direction. Note that, although the mesh 
is structured, RDS is designed also to be used in non-structured 
meshes. Thus, a similar sensibility analysis can be performed in 
more complex geometries. 

The above mentioned convergence analysis has been performed 
in three consecutive steps: 

(1) Temporal convergence: An initial mesh of nx x ny = 125 x 41 
has been considered. The temporal convergence has been an-
alyzed by choosing time steps according to the law At = 
2jt/(ú)in), where &>i is the TS-wave frequency and n is the 
number of time steps per period. The perturbation máxima 
u'max for various valúes of n are shown in Fig. 13. Although no 
significant differences are appreciated beyond 50 points per 
period, the valué n = 100 will be used in all computations be-

low. Even for this high number of points, the final time step 
is only about 0.06 time units. This number of time steps is 
roughly a half of those used by Fasel and Konzelmann [7] in 
their incompressible boundary layer computations. 

(2) Wall normal convergence: In order to check the effect of the 
number of points in the wall normal direction y, three differ-
ent valúes of ny are considered, namely 41, 51, and 71. These 
node numbers correspond to characteristic variable increments 
in boundary layer units, Ay+ = 2, 0.5, and 0.05. The temporal 
step At and the number of nodes in the streamwise direc­
tion nx = 125 do not vary. It can be observed in Fig. 14 that 
no further improvement results as Ay+ is lower than 1. The 
valué ny = 51 has been selected for the comparative analy­
sis. 

(3) Streamwise convergence: With the valúes of At and ny se­
lected above, the evolution of the perturbation máxima u'max 

for various valúes of nx is given in Fig. 15, where it can be 
seen that results are very sensible to the streamwise refine-
ment of the computational domain. Higher valúes of nx imply 
a more accurate computation of spatial waves and, conse-
quently, more accuracy in the resulting spatial amplification. 
Various valúes of nx have been checked and, as a result, the 
number of points in the streamwise direction has been finally 
fixed as nx = 500, which means that Ax = 0.04. Such a spatial 
increment is approximately of the order of the displacement 
boundary layer thickness, in boundary layer scale Ax+ ~ 40. 
Although this valué is slightly smaller than that used by Rai 
and Moin [15] for the case M = 0.0849 (Ax+ ~ 25), it involves 
the use of larger number of points per wavelength than those 
used by Fasel and Konzelmann [7], in their computations of 
the incompressible case with a spatial fourth order scheme. 
As the upwinding nature of the RDS scheme introduces more 
numerical viscosity than the centered schemes used in incom­
pressible flows, it is expected that a larger number of nodes 
per wavelength are needed here. However, centered schemes, 
although more appropriate for these viscous problems, are not 
numerically stable in compressible flows. 

Summarizing, the selected number of steps and nodes are: 
100 steps per time period, ny = 51, and nx = 500. With this selec-
tion, a typical numerical solution of the u' disturbance for a» = 1 
at M = 0.7 is shown in Fig. 16. 
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