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We consider the harmonio and subharmonic modulated surface waves that appear 
upon horizontal vibration along the surface of the liquid in a two-dimensional 
large-aspect-ratio (length large compared to depth) container, whose depth is large 
compared to the wavelength of the surface waves. The analysis requires us also 
to consider an oscillatory bulk flow and a viscous mean flow. A weakly nonlinear 
description of the harmonic waves is made which provides the threshold forcing 
amplitude to trigger harmonic instabilities, which are of various qualitatively different 
kinds. A linear analysis provides the threshold amplitude for the appearance of 
subharmonic waves through a subharmonic instability. The results obtained are used 
to make several specific qualitative and quantitative predictions. 

1. Introduction 
Surface waves in vibrated containers have received much attention in the literature, 

largely focused on Faraday waves (Faraday 1831; Rayleigh 1883; Miles & Henderson 
1990; Cross & Hohenberg 1993; Fauve 1995), which are excited upon vertical vibra-
tions. Horizontally excited waves have received less attention and workers have con-
centrated on the case of containers with a modérate width (Miles 1984; Funakoshi & 
Inoue 1988; Nobili et al. 1988; Feng 1997; Billingham 2002; Hill 2003; Faltinsen, 
Rognebakke & Timokha 2006), whose horizontal size is comparable to the surface 
waves wavelength. In this case, only a few (depending on symmetries) sloshing modes 
are excited; note that depth plays no role in this discussion, and only affects the 
eigenmodes quantitatively. If mean flows are ignored, then the system is governed by 
a set of ODEs. Mean flows are due to time-averaged quadratic nonlinearities that 
produce both a global circulation and a deformation on the free-surface elevation. The 
former in turn can be associated either to viscous effects (viscous mean flows) or to 
mass conservation (inviscid mean flows) and has been largely ignored in the analysis 
of surface waves in modérate containers. Surface waves have been analysed usually 
from a Hamiltonian formulation, with viscous effects added a posteriori through a 
linear viscous damping, ignoring some more subtle, but equally important, nonlinear 
viscous effects. Viscous mean flows (also called streaming flows, Schlichting 1968; Riley 
2001), in particular, are produced by time-averaged Reynolds stresses in the oscillatory 
boundary layers, and have been mistakenly assumed to be only a byproduct of surface 
waves; instead, viscous mean flows have been proved to couple dynamically with the 
evolution of the primary surface waves (see Higuera, Vega & Knobloch 2002 and 



references therein). The mean free-surface deformation instead has been considered 
in connection with the so-called vibroequilibria (Gavrilyuk, Lukovsky & Timokha 
2004 and references therein) and also in connection with dynamic stabilization of, for 
example, Rayleigh-Taylor instability (Wolf 1969; Lapuerta, Mancebo & Vega 2001 
and references therein). 

For wider containers (namely, containers whose width is large compared to 
wavelength), we must consider a large number of surface modes and interaction 
with nearby modes, which leads to spatial modulation. This can be analysed invoking 
separation of scales using a description of the modulating amplitude in terms of 
(Schrodinger-like equations with convective terms resulting from group velocity) 
PDEs. Spatially modulated surface waves have received much less attention (two 
exceptions, with mean flows ignored are Ockendon & Ockendon 1973; Faltinsen & 
Timokha 2002) even though some related experiments (Wunenburger et al. 1999) 
suggest that they exhibit rich dynamics. Let us remark that Wunenburger et al. deals 
with a C02-system near the critical point. It is somewhat surprising that the simpler 
ordinary liquid problem has been analysed neither theoretically ñor experimentally; 
efforts have concentrated in both two-phase (Kozlov 1991, Ivanova, Kozlov & Evesque 
1996) and granular flows (Jaeger & Nagel 1996; Ristow 2000; Aranson & Tsimring 
2006). Spatially modulated surface waves are also interesting from the theorical point 
of view because the flow íield has a fairly rich structure. As is to be expected, 
vibrations produce surface waves near the free surface, but also an oscillatory flow in 
the bulk and a mean flow. The analysis of these is non-trivial for several reasons. 

(i) Surface waves are spatially modulated, counterpropagating waves that are 
described by two coupled Shrodinger-like amplitude equations. In addition to the 
usual effects of dispersión and conservative nonlinearity, these equations exhibit new 
terms accounting for (a) viscous dissipation, (b) forcing, (c) advection at the group 
velocity, and (d) coupling to the mean flow. The advection term is always much larger 
than the dispersive term, and (because both counterpropagating waves are present) 
cannot be eliminated by using a moving frame, as is done when only one-sided waves 
are considered, for example, in water wave theory (Newell 1985). If dispersión is 
neglected, then the equations become hyperbolic, as in related dissipative systems 
(first considered by Daniels 1978, see also Martel & Vega 1998), where small diffusive 
terms lead to subtle effects (Martel & Vega 1996). Similarly, dispersión cannot be 
ignored a priori in counterpropagating surface waves (Lapuerta, Martel & Vega 2002; 
Martel, Vega & Knobloch 2003) because dispersive scales can be destabilized. There 
are two kinds of surface waves, namely harmonic and subharmonic, whose frequency 
is the forcing frequency and half of the forcing frequency, respectively. 

(ii) The horizontally vibrating lateral walls act as wavemakers, and directly excite 
a pair of harmonic surface waves (HSW), analysed in §4, which travel along the free 
surface from the lateral walls inwards and decay from surface dissipation. Forcing at 
the lateral walls is not standard. This is because the walls extend down to the bottom 
of the container (which makes a difference with standard wavemakers in water waves) 
and thus they also excite an internal oscillatory flow in the bulk (OBF, analysed in 
§ 3), which affects a región whose size is of the order of the container's depth and 
contributes to the excitation of the surface waves in a subtle manner. Namely, it 
produces: 

(a) A contribution (namely, that term proportional to lná in (4.16) below) to 
direct excitation of harmonic waves at the lateral walls that is logarithmically 
large if the container depth is large compared to wavelength. This contribution 
has not been considered before in this context. 
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FIGURE 1. Sketch of the fluid domain, with the various asymptotic regions. The contact line 
is pinned to the upper edge of the lateral walls. 

(b) An oscillatory pressure gradient on the free surface that is able to excite 
parametrically (Fauve 1995) new subharmonic surface waves (SSW), analysed in 
§5. 

(iii) Surface waves excite a secondary viscous mean flow (VMF), which affects the 
weakly nonlinear dynamics of the primary waves, as repeatedly shown in related 
vibrating fluid systems (Higuera et al. 2002; Lapuerta et al. 2002, and references 
therein), and is at least as strong as the inviscid mean flow usually considered in 
large-aspect-ratio surface waves (Davey & Stewartson 1974). The effect of the VMF 
on the harmonic surface waves will be considered in §4, where it will be seen that 
this effect cannot be ignored when considering the stability of the primary waves. 
Similarly, the VMF affects the weakly nonlinear dynamics of subharmonic surface 
waves, but the analysis of this is beyond the scope of this paper. 

Against this background, the object of this paper is to analyse the dynamics of 
the spatially modulated nearly inviscid surface waves in a long container subject to 
horizontal vibration. In order to avoid additional difficulties and to clarify the analysis, 
we consider the restricted case of one-dimensional waves in a two-dimensional 
container, which models waves in a three-dimensional rectangular container whose 
width is small compared to length, but large compared to depth. Also, we assume 
a fixed contact line to avoid additional effects due to contact line hysteresis; see 
Henderson & Miles 1994; Bechhoefer et al. 1995 for the experimental realization of 
this condition. 

2. Formulation 
We consider a two-dimensional horizontal container (figure 1) of depth d* and 

length 2L*, which is vibrating horizontally with an amplitude a and a frequency 
CÚ. We use for non-dimensionalization the characteristic time co~l and characteristic 
length t , defmed by the inviscid capillary gravity waves dispersión relation in deep 
layer 

co*2 = g/t + a/(pt3), (2.1) 

in terms of the acceleration due to gravity g, surface tensión a, and density p, all 
assumed constant. The resulting non-dimensional governing equations are 

Ífxx + Ífyy=&, Í2t—l/ryüx+llrxí2y=e(í2xx+í2yy), (2.2) 

in — L < x < L,—d < y < f. The boundary conditions at the free surface are 

ft-fx- fyfx = 0, (fyy " fxx) (1 " fx) ~ 4fxfxy = 0, (2.3) 



(1-S)fx-S\ Jl— -x/ryt + fxtfx - (x/rx + ^yfx)C2 + \ (f2
x + f) 

+ \{fl+ ^yfx = -e[ÍÍTxxy + fyyy - {fxxx + fXyy)fX 

+ 2e 
2fxyfx + (fxx - fyy)fx 0 \Yxxy Yyyy)Jx fcyyU JxiJx fy A \ 

(L,d,a)=K V ; , S=— —, e = —-2, (2.8) 

l+ /x 2 

at y = / , while those at the bottom and lateral walls are 

f = 0, tf/y=acost at y =—d, (2.5) 

i>x=0, \¡ry=acost, / = 0 at x = +L—asiní. (2.6) 

Here, ^ is the streamfunction, defined such that the velocity 

(u, u) = (-1A3,, fx); (2.7) 

Í2 = i),, — ux is the vorticity, and / is the free-surface elevation, required to satisfy 
volume conservation f_L f dx = 0. Equations (2.2)-(2.6) are obtained in a standard 
way, replacing (2.8) and Í2 into the usual continuity and Navier-Stokes equations, 
and the usual boundary conditions (accounting for kinematic compatibility and 
equilibrium of tangential and normal stresses at the free surface, and no slip at the 
bottom). 

The problem depends on the following non-dimensional parameters: the container's 
length 2L and depth d, the forcing amplitude a, the capillary-gravity balance 
parameter S, and the non-dimensional viscosity e, defined as 

(L*, d*, a*) a 
l* ' a + pgt2' ~ üft 

where v is the kinematic viscosity. Note that S = 1/(1 + 5), where B = pgt1 ¡a is the 
Bond number based on the wavelength of the surface waves, £*, defined in (2.1). S is 
such that 0 < S < 1, and the extreme valúes S = 0 and 1 correspond to the purely 
gravitational (a = 0) and the purely capillary (g = 0) limits, respectively. 

The problem (2.2)-(2.6) is invariant under the action 

x —>• — x, f—>—f, Í2^—Í2, t—>t + K, (2.9) 

which results from reflection symmetry, and will play an important role below. 
The assumptions in this paper are 

e<l, Kd<L, a<í, (2.10) 

which means that (i) viscous effects are weak, (ii) the horizontal length is large 
compared to depth, which in turn is large compared to the wavelength of the surface 
waves. The assumptions that e < 1, a < 1 and L > 1 are essential in the analysis 
below, but the remaining assumptions are made only to simplify presentation, and 
could be relaxed. In fact, the assumption that L > 1 is only required in §4, where 
it is made in order that the viscous mean flow be almost parallel. The analysis in 
§ § 3-5 will be made in specific distinguished limits, which involve relations between 
the small parameters and will be defined such that as many terms as possible in 
the resulting asymptotic equations be of the same order. However, the analysis will 
be valid for arbitrary valúes of the small parameters satisfying (2.10); the only 
additional restrictions (validity limits of the analysis) will be that the coefficients of 
the asymptotic equations be bounded, which will exelude some resonances, see below. 
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In principie, we should consider several regions in the container (see figure 1). 
(a) The bulk, which is that part of the container outside the several boundary layers 
described next, (b) a nearly inviscid free surface boundary layer, with a 0(1) thickness, 
which is the región affected by the surface waves, (c) two nearly inviscid córner regions 
near the contact point, with (9(1) size, where the surface waves are directly forced and 
reflected, (d) a viscous free-surface boundary layer, with an 0(e1/2) thickness, and (e) a 
viscous boundary layer near the lateral walls and the bottom of the container, whose 
thickness is also 0(e1/2). Because d and L are both large, región (e) has a negligible 
effect in the analysis below. The assumption that d <€ L will only be required in 
§ 4 and relaxed in the remainder of the paper. All calculations below will be nearly 
inviscid. Viscous effects come into play only through the VMF mentioned above and 
the damping ratio of the various wavetrains. In order to calcúlate the latter, we recall 
the well-known result (Miles & Henderson 1990) that a resonant surface wave whose 
free-surface elevation is given by / = Ael(a>í±fa) + ce , where co and k satisfy the 
dispersión relation (cf. (2.1)) 

ü> = co(k) = y/(í-S)k + Sk3, (2.11) 

exhibits a damping ratio 

2k2e. (2.12) 

As explained in § 1, we must consider an oscillatory bulk flow (OBF), the harmonic 
and subharmonic surface waves (HSW and SSW), and a viscous mean flow (VMF). 
Thus 

"4? = Í^OBF + i^HSÍV + tysSW + "4? VMF, f = foBF + ÍHSÍV + fsSW + fvMF, (2.13) 

where (f0BF, ÍOBF), Í^HSW, ÍHSW), and (fssw, fssw) are given by (3.1), (3.6), (4.1)-(4.3) 
and (5.1) below. To the approximation relevant in this paper, the VMF can be ignored 
except in the analysis of the HSW. 

Note that the problem exhibits four well-separated spatial scales, or orders (9(e1/2), 
(9(1), 0{d) and O(L), and the associated time scales. Since, in addition, this is a 
free-boundary problem, direct numerical simulation is difficult. The analysis below 
instead filters out all spatial and temporal scales except for the largest ones. 

The remainder of the paper is organized as follows. The OBF is calculated in § 3, 
as we need to obtain its effect in promoting harmonic and subharmonic waves. The 
HSW are analysed in §4, where a system of weakly nonlinear amplitude equations 
coupled to the VMF is derived which is used in §4.1 to calcúlate the simplest reflection 
symmetric modulated waves and in § 4.2 to analyse the linear stability of these. The 
latter analysis provides the threshold amplitude for the appearance of harmonic 
instabilities of the system. The SSW are considered in § 5, where a linear stability 
analysis is made that provides the amplitude threshold for the parametric excitation 
of these waves, through a subharmonic instability. This is made in three distinguished 
regimes, depending on the relation between the container's depth and length and the 
viscous length; a more general, weakly nonlinear analysis of this flow is outside the 
scope of this paper. Harmonic and subharmonic instabilities are compared in § 6, to 
elucidate which instability dominates for each set of parameter valúes; some specific 
predictions are made and some experiments are suggested. Finally, the results are 
summarized and discussed in § 7. 



3. Oscillatory bulk flow 

The oscillatory bulk flow is produced by the lateral walls oscillations, and has not 
been considered before in this context. This flow affects both reflection at the lateral 
walls (considered in Appendix A) and excitation of subharmonic waves (considered in 
§ 5). To the approximation relevant in this paper, only the leading-order approximation 
(strictly inviscid and linear) in región (a) is necessary; note that the solution in the 
smaller regions (b)-(e) is slaved to the solution in región (a), which is always the case 
in nearly inviscid oscillatory flows when only leading-order terms are considered. The 
streamfunction in this región is given by 

tyoBF = ad(p{X, r¡) eos t, (3.1) 

where the rescaled spatial variables and the aspect ratio are defined as 

(?,1) = ^ , A = L-. (3.2) 
a a 

Substituting these into (2.2a), (2.4), (2.5a), (2.6b, c), and setting Í2 = e = 0, we obtain 

<PH + fin = 0 in — A < f < A, —í<r]<0, (3.3) 

(Pr!=0 at r¡ = 0, <p = 0 at r¡ = — 1, <p?, = 1 a t f = + 7 l , (3.4) 

where the kinematic boundary condition (2.3a) has not been used. The boundary 
condition at r¡ = 0 results from (2.4) (anticipating that / ~ a, see (3.6) below) 
and imposes a valué of zero on the horizontal velocity there. This is because no 
term in (2.4) can balance W (accounting for pressure perturbations associated with 
free-surface deformation), which makes a difference between the oscillatory bulk flow 
considered here (which exhibits an O(d) characteristic length) and surface waves, 
where pressure perturbations are balanced by capillary-gravity effeets. The boundary 
conditions (2.3b) and (2.5b) cannot be imposed in this inviscid approximation, but 
could be accounted for considering two oscillatory boundary layers. 

The (unique) solution of (3.3)—(3.4) is such that <p is an even function of f. Equa-
tions (3.3)—(3.4) are readily solved upon separation of variables, as 

^ cosh(/U) . 
(P = l^a"—TTT-TT sin/l„ /? + 1 , (3.5) 

^ cosh(l„A) 

where Á„ = (2n + Í)K/2 and a„ = 2(—\)n/)?n are such that Y^an sin[(Á„(r¡ + 1)] = r¡ + 1 
in — 1 < r¡ < 0. The free-surface elevation follows using (2.3a), 

foBF = a<Ps($, 0)sint, (3.6) 

and exhibits a logarithmic singularity at f = +A. This is seen noting that the vertical 
velocity at the free surface (which in turn is proportional to the vertical pressure 
gradient) 

ÍV ^lncoúi(l„A) 
-\n(A + i;)-H(A) 
K 

a s f ^ + A , (3.7) 

where the function H (plotted in figure 2) is given by 

exp(-
l„cosh(l„A) 

H(A) = h n A - - 2 ± " M - k " A \ (3.8) 
71 71 ^ LLCOMLÁ) 
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FIGURE 2. The function H(A) defined in (3.8). 

and is such that 
2 4 

H(A)^> H(oó) = - l n - ~ 0.154 as A - • oo. (3.9) 
71 71 

Because of this singularity, the solution above breaks down as f —>• +71, which leads 
us to región (c), analysed in Appendix A. 

Note that the analysis above does not require that the aspect ratio A be large. As 
A —>• oo, <p vanishes exponentially except in two lateral regions, where (| + f — A\ ~ 1 
and v = YJan exp[(/l„(+f - A)] sm[l„(r] + 1)]. 

4. Harmonic surface waves at large aspect ratio: L > d 
These are a pair of counterpropagating waves that are forced (and reflected) in 

región (c) and propágate along región (b) (figure 1). The description below is weakly 
nonlinear, and must include the effect of the viscous mean flow, whose analysis is 
greatly simplified at large aspect ratio. Thus, the assumption that L > d will be used 
below. We shall consider the limit (2.10), with d only logarithmically large, such that 
e-2d ^ j j n this c a s 6 j ¿ c a n b e treated as 0(1). 

According to the non-dimensionalization defined in § 2, the non-dimensional forcing 
frequency is 1. Then, the inviscid dispersión relation (2.11) shows that the non-
dimensional wavenumber is also (cióse to) 1. In fact, in order to include the effect of 
the spatial detuning (5, given by (4.16) below) resulting from the phase shift produced 
by reflection at the lateral walls, we shall correct this valué of k by an amount 
S/L <€ 1. Thus, the free-surface elevation and the streamfunction associated with the 
harmonic surface waves in región (b) are written as 

hsw = ^ [A+el(1+s/L)x + A-e-l(1+s/L)x] + ce. + • • •, (4.1) 

ÍTHSW = v^e^o [A+el(1+s/L)x - A-e-l(1+s/L)x] + ce. + • • •, (4.2) 

where % = ey. These waves are coupled to the viscous mean flow, whose associated 
free-surface elevation and streamfunction are 

fvMF = sfm, fvMF = eVl. (4.3) 

The complex amplitudes A± have been rescaled (with ^Je) imposing that the viscous 
damping term and the cubic nonlinearity be comparable in the amplitude equa-
tions (4.5) below; fm has been rescaled (with e) anticipating that the mean flow is 
quadratic in the complex amplitudes. Both A± and fm depend only on the following 
slow space and time variables, defined such that the time derivative and that term 



accounting for advection at the group velocity be both comparable to the viscous 
damping term in the amplitude equations (4.5) below, 

£ = ex, x = et, (4.4) 

while fm is also allowed to depend on y. 
The complex amplitudes A±, and the mean flow variables, fm and fm, evolve 

according to the following system of coupled amplitude-mean flow equations 

A± + vgAf = iea0A^ + (ivg8/L - 2)A± 

,o 
+ i(a1 |A± |2-a2 |A+|2)A±+2i / e2yf;dyA±, (4.5) 

Kr=Kyy i n - d < y < 0 , (4.6) 

with boundary conditions 

Vf-/T
m = 2 ( |A- | 2 - |A+ |% ^ = 8(|A+|2-|A-|2) a ty = 0, (4.7) 

(1 - 5) / f - Vr™ + ^ = 0 a t y = 0 , (4.8) 
fm = f* = o at y = -d. (4.9) 

These equations and boundary conditions are obtained substituting (3.1)—(3.2), (3.5)-
(3.6), (4.1)-(4.4) and (fssw, fssw) = (0,0) into (2.13), and the resulting expressions 
into (2.2)-(2.4), and applying solvability conditions associated with those resonant 
terms that either depend on the short time variable as elí±lx (harmonic surface waves) 
or are independent of the short time variable (mean flow). This is involved and 
requires us also to consider the solution in regions (a) and (d), as done for modulated 
Faraday waves (which also involve parametric forcing) by Lapuerta et al. (2002); see 
also Vega, Knobloch & Martel (2001) for a more detailed derivation of (4.5)-(4.9) in 
a more general setting. It follows that the group velocity and the coefficients «o, «i 
and a2 are 

, m , u „ w , «"(1) (1+2S)2 35 vg=co(í) = (í+2S)/2, a0 = — = —, (4.10a, b) 

35 8 - 3 5 2 4 + 35 /Atn ,. 
«i = 1 , a2 = - 1 . (4.10c, ¿i) 1 1 - 3 5 4 2 1 + 35 2 v ' ; 

These are plotted vs. 5 in figure 3. Note that «i diverges at 5 = 1/3, where a second-
order internal resonance takes place, and the coefficient of / " vanishes at 5 = 1, 
where capillarity can no longer be ignored. We avoid these resonances assuming that 

S + \, S + \. (4.11) 

The boundary conditions at the lateral walls are 

A± = A+ + (Pxa at £ = +L, (4.12) 

A± + A¡=+(Í- - ) $xa - - f e 2 ^ ; áy (A+ + A~) 
\L vgJ vg J_d 

-—|A+ |2(a1A+ + a'2A")+—|A-|2(a2A++a'iA-) at £ = ±L, (4.13) 
vg vg 

fm =2(\A-\2-\A+\2) a ty = 0 , f = + L , f / m ( f , r ) d f = 0 , (4.14a,b) 
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FIGURE 3. The quantities vg (—), ao ('' ')> a i ( )> aÁ )> defined in (4.10), and a\ — a2 

( ) in terms of S. 

FIGURE 4. The quantities (a) G\ ( ), G2 ( ) and a ( ) appearing in (4.16). 

where the re-scaled forcing amplitude a and container length L are defined as 

,1 /2' L =eL. 

The spatial detuning S and the coefficient <t>\ are 

5 = L - a{S) (mod27t), (Px{S,d) = GX{S) 
Ind //(oo) 

K 2 
+ G2(S), 

(4.15) 

(4.16) 

where the quantity //(oo) is given in (3.9) and the quantities a, Gx and G2 are given 
in (A 11) in Appendix A and are plotted vs^ S in figure 4. 

The boundary condition (4.12) at £ = L (that at £ = —L follows by reflection 
symmetry) results from matching conditions with the solution in región (c), calculated 
in Appendix A. This boundary condition accounts for wave reflection (the term A± 

on the right-hand side) and forcing at the lateral walls (the term <&\a). The boundary 
condition (4.13) must be imposed because since we are including dispersión, (4.5) 
is second order in £. As explained by Martel et al. (2003) (see also Martel & Vega 
1996), the appropriate additional boundary condition is the compatibility condition 
for the hyperbolic equations obtained when dispersión is ignored, which in our case 
is precisely (4.13). Equation (4.14a) at £ = +L imposes no net mass flux across the 



lateral sidewalls. To explain this, we must take into account that mass is transported 
by the mean flow with the so-called mass-transport (or Lagrangian) velocity, whose 
horizontal component, um\ is obtained by adding the Stokes drift to the Eulerian 
velocity considered above, —ty™. Using standard formulae (Batchelor 1967), we obtain 

umt = _^m _ 4(|A+|2 _ |A-|2)e2y_ (4 1 ? ) 

Equation (4.14a) is obtained by simply imposing J_du
mtdy = 0 at £ = +L (and 

neglecting e~d, which is small). Equation (4.146) results from volume conservation. 
The remainder of this section is devoted to the analysis of (4.5)-(4.9) and (4.12)-

(4.14). However, some remarks on these are now in order. 
(i) We are including a higher-order term in (4.5), namely that term proportional 

to AJJ, which is due to dispersión and is responsible for short-wave instabilities, see 
below. 

(ii) There is an additional requirement for the validity of the expansión above, 
namely that vg =f= ~J{\ — S)d (= the phase velocity of some slowly varying internal 
waves associated with the mean flow, see Appendix C) or, using (4.10), that 

S±J*+^=±Z±. (4.18) 

(iii) Equations (4.5)-(4.9) and (4.12)-(4.14) are invariant under the following action, 
which results from the reflection symmetry (2.9), 

£ ->• - £ , A+ <-• A~, fm ->• -fm. (4.19) 

(iv) The counterpart of the amplitude equation (4.5) for the liquid bridge geometry 
in the linear approximation \A±\ ~ a <€ 1 (the mean flow can be neglected in this 
limit) was considered by Nicolás, Rivas & Vega (1998), with quite good comparison 
with exact solutions. 

4.1. Reflection-symmetric steady states 
The reflection-symmetric (invariant under (4.19)) steady states of (4.5)-(4.9) and 
(4.12)-(4.14) build the primary branch of solutions, and can be written as 

A± = R±el6± with /T(£) = /?+(-£), 0~(£) = e+(-%). (4.20a-c) 

Non-symmetric steady states can be calculated in a similar manner, but they appear 
only in bifurcations from the primary branch, see below. 

Integration of (4.6)-(4.14) yields 

f- = i2d2 + l
dl

y-2d(y + d?[(R+f-(R-f] 

6(2d' + í)[(R-)2-(R+)2] 
^ dH\ - s) 

Note that the surface waves produce a non-zero steady-surface deflection (which could 
be obtained integrating (4.22) and imposing that fm = 0 at £ = +L). This is related 
to the so-called vibroequilibria (Gavrilyuk et al. 2004),but in a more general setting 
(the viscous mean flow is usually ignored in vibroequilibria analyses, but affects the 
quantitative valué of fm here). Substituting (4.20)-(4.22) into (4.5), and neglecting 

(4.21) 

(4.22) 



both <9(e)-terms and <9(e id)-terms, we obtain 

+vgRf = -2R±, 
Vg_S 

L 
R±eie± = R+e

i0T + i^á a t f = + L , 

+vgof = -T- + ai(R±f - ct2(R
+)2 + A>P+)2 - ( / r )2], 

where 
4dA - 8á3 + 3 

2¿3 

Integration of these equations invoking (4.20b, c) yields 

(4.23) 

R± = R0 exp(+2(f + L)/vg), (4.24) 

(QÜ + >0o)«o exp(+4(f + L)/^) + (a2 + A))^o exp(+4(f + L) /^) 
e ± = e0 + -^ 

L (4.25) 

where Ro and 0o are given by the following equations, which are obtained upon 
substitution of (4.22)-(4.25) into (4.12), 

sin(<90 - &Q - S) - exp(-4L/vg) sin(<90 - &0~ + s) = °> (4-26) 

cos(<90 - 0O
+ - 5) - exp(-4L/ug) cos(<90 - ©0" + s) = ^T". (4-27) 

«o 
with 

,a+ n2„-4L/,P ("i + A)) exp(+4L/t>g) + (q2 + A,) exp(+4L/t>g) 
wo = Koe 4 • (4-28J 

Multiplying (4.26) by itself and replacing (4.27), we eliminate 9o. It follows that 

— ^ ) = l - 2 e x p ( - 4 L / u g ) c o s ( 0 o
+ - 0 o - + 2á) + exp(-8L/tg, (4.29) 

Ro J 
where @0

+ — @0~ is readily obtained invoking (4.28), 

0+ - ©0- = / ? 0
2 ^ ^ ( 1 - exp(-8L/^)). (4.30) 

Substituting (4.30) into (4.29), we obtain the curves plotted in figure 5, which yield the 
size of the steady state, measured by Ro = \A±(+L)\ (see (4.20) and (4.24)) in terms 
of the (rescaled) forcing amplitude. The shape of A± is given by (4.24) and depends 
only on S (through vg) and L (see figure 6). Note that: 

(i) These curves are generally multiply S-shaped, showing infinitely many 
multiplicity intervals for increasing a (in fact, a = a/^Je <€ 1/^/e is bounded and 
only a finite number of these multiplicity intervals apply for a given valué of e <€ 1). 
This is not surprising since multiplicity must be expected in horizontally vibrated 
containers owing to the interplay between detuning and nonlinearity (see the simpler 
ODE description by Miles 1984 of horizontal vibrations in a short container). Here, 
in our large container, as a increases (Ro is also increased) the effective detuning 
&o+ — &o varíes repeatedly on the interval [0, 2K], owing to mismatch between the 
container length and the wavelength of the effective surface waves (which depends 
on R0, see (4.30)). Each such excursión gives a new multiplicity interval. 



FIGURE 5. Response curves of the reflection-symmetric steady states of (4.5)-(4.9) and 
(4.12)-(4.14), Ro vs. a given by (4.29), for d = 3, L = 0.5, S = 0 and (a) S = 0, (b) 0.2, 
(c) 0.5 and (d) 0.9. Stable and unstable steady states are plotted with thick and thin lines, 
respectively. 

FIGURE 6. Amplitudes, |A±(f )|/|A+(L)| = exp(+2(£ + L)/vg), of the reflection symmetric 
steady states of (4.5)-(4.9) for S = 0.5 (vg = 1) and L =0.1 (-•-), 1 ( ) and 10 ( ). 

(ii) Cubic nonlinearity appears in (4.5) only if 

ai ^ «2, (4.31) 

as we assume hereinafter; if ax = a2, then higher (quintic-)order terms must be 
considered. 

(iii) The results depend quantitatively on the detuning S, which changes by a 0{\)-
amount under small relative variations of either L, d or S (see (2.1), (2.8) and (4.16) 
above and recall that L > 1). 



(iv) As a general comment, multiplicity is enhanced by decreasing L = eL. In fact: 
(a) If L is large, the response curve in figure 5 becomes the straight line Ro ^ <&\a, 
and the solution is unique unless RQ ~ exp(2L/vg) or larger. Also (see (4.24)), 
each counterpropagating wave vanishes exponentially except in a boundary layer, 
of <9(lj-length, near the lateral wall where this wave is created (see figure 
(fe) If L is small, (4.30) yields 0O

H 

(4.29), we obtain 
0ñ 2(ai — a2)LRQ/vg. Replacing this into 

(pxa 
~R7 sin 

(«i - a2)LR2, 
+ 

if («i — a2)LRl/vg + S =f= 0, TÍ (mod 2K), while if («i 
some integer m, then we have 

(4.32) 

a2)LRl/vg + S ~ OT71 for 

\ 

16L2 

+ 4 
(«i -a2)LRl 

+ « OT71 (4.33) 

These expressions show that the response curve exhibits infinitely many, fairly 
wide, multiplicity intervals in this limit. The first multiplicity interval (m = 0) 
is obtained as \(a2 — a\)LRl + S\/vg ~ L <€ 1, and gives a ~ L. The steady 
state in this limit is such that the amplitudes of the counterpropagating waves 
vary only slightly with the horizontal coordínate (see figure 6). Thus \A+\ ~ |A~| 
everywhere and the harmonic wave is almost a standing wave. 

(v) The response curves in figure 5 are independent of the parameter fo, which 
bears the effect of the mean flow. This parameter does affect stability, which is 
considered next. 

4.2. Linear stability: harmonic instabilities 
Let (A±, fm, fm) = (A±, Vf, fT) b e a reflection symmetric steady state of (4.5)-(4.9) 
and (4.12)-(4.14), given by (4.20)-(4.22), (4.24) and (4.25). We set 

A± As
±[(a± + &±)e /T+(a 

VeÁT + c e , fm - / ; = FelT + c e , 
(4.34) 

and linearize, to obtain the linear problem (C1)-(C7) in Appendix C, which is 
invariant under the following actions, resulting from (4.19), 

-b+, F 
-V, 

-F. 

(4.35) 
(4.36) 

Eigenmodes invariant under (4.35) and (4.36) will be called reflection symmetric and 
antisymmetric, respectively. Also, we must distinguish between long- and short-wave 
instabilities, which exhibit wavelengths of orders 0(1) and <9(e~1/2), respectively. 
The difference between both is that dispersión (namely, the term ieaoA^ in (4.5)) 
can be neglected for long-wave instabilities, but plays an essential role in short-
wave instabilities. Distinction between symmetric and antisymmetric modes is not 
essential for short-wave instabilities. Both instabilities are numerically analysed in 
Appendix C. 

In order to present the results in a simple way, and to attempt to classify the possible 
situations, we first note that the linearized stability equations (C1)-(C7) depend on 
the steady state through |A+(L)| = R+(L) = R0 (a good measure of the basic steady 
state since for each R0 there is only one steady state as a is varied, see figure 5) and 
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FIGURE 7. Marginal instability curves RQ VS. &¿—&0 +25 for d = 3, L = 0.5, 5 = 0 , and (a) S = 
0, (b) 0.2, (c) 0.5, (d) 0.8, (e,/) 0.9. (cf. figure 5), associated with SW (• • •), LWSS ( ), LWAS 
( ), LWSO ( ), and LWAO( ). The diagram is 27i-periodic. The straight thick solid 
line ( ) corresponds to the basic reflection-symmetric steady state obtained for 5 = 0 , and 
must be translated to the left by an amount 25 if 5 =f= 0. 

Aj{L)/A-{L) = e+(L)-9-(L) = &¿-&Q+28 (given by (4.30)). Thus, for fixed valúes 
of L, d and S, the marginal instability curves (real part of Á = 0) can be plotted in the 
plañe Ro vs. &Q — &Q +28, and are 2rt-periodic in @0

+ — 0 ^ +25. Some representative 
examples are given in figure 7, where the straight thick line corresponds to the steady 
state obtained for 8 = 0 and must be translated to the left by an amount 25 as the 
detuning 5 is varied. According to (4.29)-(4.30), the slope of this straight line depends 
on «i — a2 (plotted in figure 3), and is positive except in the interval 0.21 < S < 1/3. 
The remaining lines in figure 7 correspond to the most dangerous instabilities of the 
various kinds, as indicated in the caption. The long-wave symmetric stationary (LWSS) 
instability (thick dashed line) corresponds to the turning points of the response curves 
in figure 5, which yield the end-points of the multiplicity intervals. The remaining 
instabilities are either short wave (SW), which are always oscillatory, or long wave, 
which in turn can be either antisymmetric-stationary (LWAS), symmetric-oscillatory 
(LWSO), or antisymmetric-oscillatory (LWAO). LWAS instability yields bifurcation 
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FIGURE 8. Response curves R\ vs. a for L = 0.5, d = 3, S = 0.5 and (a) 5 = 0.25, (b) 0.4. 

to non-reflection symmetric steady states, which, invoking (4.1), correspond to non-
symmetric pairs of periodic counterpropagating waves of the system. SW, LWSO 
and LWAO instabilities instead lead to more complex patterns consisting of pairs of 
counterpropagating quasi-periodic waves, which can be either reflection symmetric or 
not. With all these in mind, figure 7 yields the marginal instability points indicated in 
the response curves in figure 5. 

(i) The stability diagram for S = 0.5 in figure 7 exhibits all the five instabilities 
mentioned above. The thick straight line intersects first the SW instability line, which 
is thus the relevant instability, as indicated in figure 5. As S is increased, the straight 
line moves to the left and the nature of the instability changes. For instance, if 
0.20 < S < 0.36, the first instability is LWAO, whereas it is LWSO in the interval 
0.36 < S < 1.11. In the interval 0.20 < S < 0.475, there are three instability points, 
which give two disjoint instability intervals, bounded by two LW and one SW 
instability points; two examples are plotted in figure 8 that differ only in the nature of 
the lowest instability point, which is either LWSO or LWAO, the remaining two being 
LWAO and SW. At S = 0.36, a competition between LWSO and LWAO instabilities 
occurs that should give rich dynamics, as are to be expected near S = 2.11, where a 
competition between two SW instabilities (with different wavenumbers) occurs. Note 
that there are two additional codimension-two points, at S = 1.11 and 2.72, where 
SW-LWSO and SW-LWAS interactions occur. 

(ii) For the remaining four valúes of S in figure 7, the stability properties of the 
steady states in figure 5 are obtained in a similar manner. Again, the nature of the in­
stability changes for varying S. Let us just point out that for S = 0.2 and 0.8 the 
response curve exhibits infinitely many disjoint stability intervals, which for S = 0.8 
are interspersed with the multiplicity intervals (cf. figure 5). 

From the results described above, we may outline the following conclusions. 
1. As Ro increases, the first instability can be either short wave or long wave, and 

in the latter case, it can be either steady or oscillatory, and can either preserve or 
break reflection symmetry, depending on the valúes of the various parameters (L, d, 
S and S). 

2. The stability properties depend on the detuning S (compare the two plots in 
figure 8), which (as indicated in remark (iii) in §4.1) is quite sensitive to L, d and S. 

3. As explained in Appendix C.2, the appearance of SW instabilities depend on the 
sign of «otti- If aoai > 0 and is not numerically small (which occurs in the interval 
1/3 < S < 3^3/2—2, see figure 18 with d = 3), the SW instability sets in for modérate 
valúes of Rfi ~ 1 and thus competes with the long-wave instabilities. This is the case 
for S = 0.5 in figure 7. If ao«i > 0 is numerically small (which occurs in the intervals 



(b) 

2 • 

1 

' : l • • 
i / , . 1 

i ,: • 
j *• • 

/ ; 

• j | 

»i| 
(ff 

FIGURE 9. As in figure 7 for S = 0.5, 8=0. (a) L= 0.5, d = 10; (b) 0.01, 3. 

0 < S < 1 - ^3/2 and 0.82 < S < 1 if d = 3, see figure 18), then SW instabilities 
do appear for large RQ. This occurs in figure 7 for S = 0 and 0.9. If «o^i < 0 (in the 
intervals 1 - ^3/2 < S < 1/3 and 3 ^ / 2 - 2 < S < 0.82 (see figure 18 with d = 3), 
then SW instability curves are either above other long-wave instability curves or are 
absent, as in the plots for S = 0.2 and 0.8 in figure 7. 

4. Although we have assumed that d is only logarithmically large, the results above 
remain valid also for larger valúes of d provided that d <€ L; if d ~ L or larger, then 
the amplitude equations (4.5) stand, but the viscous mean flow is no longer parallel 
and £-derivatives must be added in (4.7)-(4.9). If 1 < d < L, then LWAS instability 
appears as RQ ~ d~{ (or invoking (4.29) as a ~ d~1/2); this is because since \\¡r\ ~ á, 
that term accounting for coupling to the mean flow becomes of the same order as 
viscous damping in this limit. This is illustrated in figure 9{á). Short-wave instabilities 
can appear too (depending on the sign of ao«i, see figure 18), but require much larger 
valúes of the forcing amplitude. 

5. As L <€ 1, the marginal instability curves in figure 7 are such that RQ ~ 1, which 
means that a ~ 1 (see (4.32)), except near some minima, at &0

+ — @0~ + 25 ~ 0, K (mod 
2K), where a ~ L (see (4.33)). Thus, the instability curves (figure 9b) shows quite steep 
tongues near certain resonance valúes of the detuning S, where resonant sloshing 
modes are excited. In fact, near these resonant valúes of detuning, the amplitude 
equations above reduce to a cubic complex ODE, which is similar to that derived by 
Miles (1984) for horizontally vibrated containers. 

5. Subharmonic instability: subharmonic surface waves 
As in § 3, the analysis below does not require the assumption that L > d. The OBF 

considered in §3 produces an oscillatory normal pressure gradient (see (3.7)) at the 
free surface, which is appropriate (through nonlinear interaction with the free-surface 
elevation) to parametrically excite subharmonic waves near the free surface. This 
parametric excitation is standard; the only difference with the Faraday system (Miles 
& Henderson 1990; Fauve 1995) is that now the oscillatory pressure gradient at the 
free surface is not uniform and thus produces a non-uniform forcing term in the ampli­
tude equation (namely, the last term in (5.3)). In this section, we obtain the threshold 
valué of the forcing amplitude a for the excitation of these waves, which affect región 
(b) (figure 1), producing an oscillatory flow such that (cf. (4.1)-(4.2)) 

fssw = étl2 [B+é(l+~SIL)x + B-Q-i{l+~SIL)x] + ce. + • • •, 

fssw = t^0e
ií/2 [B+é(l+llL)x - B-Q-i(l+llL)x] + ce. + • • •, 

(5.1) 



FIGURE 10. The wavenumber for subharmonic waves k in terms of the 
capillary-gravity balance parameter S. 

where the spatial detuning 8 is defined below, in (5.6), and the wavenumber k and the 
eigenfunction #0 are given by (Vega et al. 2001 and references therein) 

(Í-S)k + Sk3 i 
4 ' #b 

eky 

2F 
(5.2) 

A plot of k vs. S is given in figure 10. For simplicity, we ignore at the moment both 
the harmonio surface waves and the mean fiow, whose effect is not essential and will 
be discussed in § 5.3. 

To the linear approximation relevant here, the complex amplitudes B± are given 
by the following amplitude equations and boundary conditions, obtained in Appen-
dices A.2 and B (cf. (4.5), (4.12)), 

Bf + Bf =(-d + i8/A)B±+ag(;)B+ in-A<$<A, (5.3) 

B± = B+ ati;=±A, (5.4) 

in terms of the scaled time variable T = t/(vgd), the scaled space coordinate f, and 
the aspect ratio A defined in (3.2). The scaled damping rate d, group velocity vg, 
forcing amplitude a, and spatial detuning 8, and the function g are 

vg = m'{k) = 1 — S + 3Sk2, d=2k2ed/vg, a = akd/vg, (5.5) 

kL - a(2SP)(mod2K), g(f) = - V 
sinh[(2n + 1)71 /̂2] 

(2n + 1) cosh[(2n + Í)KA/2] ' 
(5.6) 

where d has been calculated using (2.12), the quantity a is again as plotted vs. S in 
figure 3, and the function g is as plotted in figure 11. Equation (5.3) is a balance 
between inertia, propagation at the group velocity, viscous dissipation, spatial detuning 
and parametric forcing. As always happens with parametrically excited waves (Fauve 
1995), these waves appear upon destabilization of the trivial solution of (5.3)—(5.4), 
B+ = B = 0. The instability threshold is obtained seeking non-trivial marginal 
modes of the form 

Bú j<sr -iwT 

where B^1 and Bf are given by 

\5>B$ + 50± = (-d + i8/A)B± + ag(X)B+ 

icóBf + B 
n 

-(d + i8/A)B± + ag(X)B¡ 

B¿ B¿ 5? B at f 

in — A < t, < A, 

in — A < £ < A, 

--+A. 

(5.7) 

(5.8) 

(5.9) 

(5.10) 



FIGURE 11. The real function g defined in (5.6) for A = 0.5 ( ), 1 ( ), and 5 (• • •), and 
its asymptotic form G ( ) as A —> oo, in the lateral región near £ = A, given by (5.11). 
Note that at A = 5, g is almost indistinguishable from its asymptotic valué. 

(b) 

-n/2 n/2 

FIGURE 12. Rescaled instability threshold a = akd/vg vs. <5 for d = 2k2ed/vg = 0.1, 0.5, 1, 2, 5 
(as d increases, the instability curve moves upwards). The curves are (7i/2)-periodic in <5. 
(a) A =0.5, (b) 2. 

Since the function g is odd (see (5.6)), this problem is invariant under the actions 
Ü,B±,B±) - (-í,B+,-B+), Ü,B±,B±) - (-i;,-B+,B+), and {&,B±,B±) -+ 
{—&, Bf, BQ). The solutions must be also invariant under these actions, which 
invoking (5.1) and (5.7) means that the associated patterns are reflection symmetric 
(namely, fssw(X> 0 = fssw(—£, — 0)- The problem (5.8)—(5.10) is solved numerically, to 
obtain the marginal instability curves a vs. 8, plotted in figure 12 and the shapes of | i?^ | 
and \Bf\ plotted in figure 13, for various valúes of d and A. Note that the instability 
curve is reflection symmetric around both 5 = 0 and 8 = K/4, which results from the 
symmetries (S, B±, 5±) - • (-8, Bf, B±) and (S, B±, 5±) - • (TI/2 - 8, +5 1

±e± k f / ( 2 A ) , 
+B^e+m^(-2Á>) and also implies that it is (7i/2)-periodic. In fact, the curve is a sequence 
of tongues as usual in (Floquet problems appearing in) parametrically excited systems 
(Fauve 1995), whose minima for varying 8 is attained at 8 = K/4 (mod n/2). As 
expected, either decreasing the damping ratio d or increasing the aspect ratio A 
has a destabilizing effect. In fact, the analysis above can be simplified in the limit 
A —>• oo, but this requires us to consider two distinguished regimes, d ~ 1 and 
d ~ A~{ <€ 1, which is done in the next two subsections; note that if d ~ 1, then 
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FIGURE 13. The amplitudes |B¿f(¿;)l and \B^(t;)\ vs. i;/A for the harmonio waves given by 
(5.8)-(5.10) for 5 = 0 and (d, A) = (1, 1) ( ), (1, 10) ( ) and (0.1, 10) (-•-). Because of 
the symmetries of the problem, (i) only the región £ > 0 need be plotted, (ii) (BQ, B^) and 
(BQ, Sf) are interchangeable, and (iii) because 5=0 and & = 0, B^ and Bf are all real. 

activity is concentrated near the lateral walls, whereas the waves penétrate into the 
bulkif A~ d-1 > 1 . 

5.1. The limit A —>• oo, d ~ 1 
In this limit, the effect of the detuning 8 vanishes at leading order and (5.8) and (5.9) 
coincide, which implies that Bf ~ BQ. Also, these vanish exponentially except in 
two <9(l)-lateral regions near f = +A, which become decoupled and show a similar 
structure. In these regions, the function g appearing in (5.9)—(5.10) behaves as 

g(0 = +G(f) mth¡;=±S-A, G E 
n=0 

exp[(2n +1)71^/2] 
2n + l 

(5.11) 

(the function G is plotted in figure 11), and Bf ~ B^ are given by 

i&B^ + B±~ = -dB^ + aG(X)B0+ in - oo < ¡ < 0, 

B¿ 0 as f -oo, 5nH Bn at f = 0. 

The following asymptotic behaviour results noting that G(£) ~ (4/7i)euf/2 as l 

B¿ Ce' (i&+d)¡ Bñ 
n(2d + K/2) 

as t, -oo, 

(5.12) 

(5.13) 

-̂  —oo 

(5.14) 

where C is an arbitrary constant. Using this, we can intégrate numerically (5.12)— 
(5.13), to obtain that this problem possesses non-trivial solutions along the marginal 
instability curve (associated with a steady instability, a> = 0), a vs. d, plotted with a 
solid line in figure 14. In order to check the approximation in this section, we also 
plot the exact marginal instability curves, as calculated from (5.8)—(5.10), rescaled in 
terms of a = akd/vg. Note that the approximation is quite good even for A =2, and 
that a —>• 7i/4 as d —>• 0. However, the limit d -^ 0 is singular because (see (5.14)) if 
d = 0, then B0

+ does not vanish at the edge of the lateral regions. This leads us to the 
following limit. 

5.2. The limit A —> oo, dA = O(l) 
Now, the solution at the edge of the lateral regions no longer vanishes, and thus the 
solution outside these regions, in a región called the bulk región is generally non-zero. 
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FIGURE 14. Rescaled instability threshold amplitude for subharmonic waves a = akd/vg vs. 
the rescaled damping ratio d = 2k2ed/vg in the limit A —> oo, d ~ 1. As calculated from (5.12), 
(5.13) and (5.14) ( ); and as calculated from (5.8)-(5.10) (with X = ico) for A = 2 and 8 = 0 
( ), TI/8 ( — ) and TI/4 (• • •)• 

5.2.1. The lateral regions: +£ — A ~ 1 

In these regions ¡ = +f - A ~ 1 and (5.8)-(5.10) lead to (cf. (5.12)-(5.13)) 

+Bo¡ -aG(X)B+, +B± = -aG(X)B+ 

B¿ B B at l 

in -oo < l < O, 

O, 1^1, \B±\ boundedas ¡ 

(5.15) 

-oo, (5.16) 

where we have taken into account that d ~ & > ~ l / y l < l . This problem is readily 
solved in closed form in terms of two arbitrary constants, C0 and C b as 

B^ = C0 eos ( a í G(z) áz) + Cx sin la í G(z) áz 

Bf = d eos ( a í G(z) áz) + C0 sin (a í G(z) áz 

(5.17) 

(5.18) 

Since J_m G(z) áz = (8/7t2) Yl7=o(^n + 1 ) 2 = 1, we have BQ = CQ eos a + C\ sin a and 
Bf = C\ cosa + C0 sin a as \ —>• —oo or, eliminating the constants C0 and C b 

Bl 50
+ + t a n a ^ f + Bf), Bf = B^ + Uná{B^ + 50+)as t, -oo, (5.19) 

which gives the boundary condition at f = +A in (5.21) below. 

5.2.2. The bulk región: f ~ A 

Here, the function g vanishes exponentially, and (5.8) and (5.10) become 

icoB^ + B¿¡. = {-el + i8/A)B¿L, icoB± + B^ = -{d + i8/A)Bf, 

in — A < f < A, with boundary conditions 

(5.20) 

B¿ B+ + t<ina(B± + B+), B± = B+ + ima{B± + B+) at f = +A, (5.21) 

which result from matching conditions with the solutions in the lateral regions, 
calculated above. Integration of (5.20) yields B^ = D0 exp[±(ico+d—i8/A)l;] and Bf = 
DiQxp[+{im + d + il/A)í;}. Substituting these into (5.21), we obtain the following 



FIGURE 15. Rescaled instability threshold amplitude for subharmonic waves a = akd/vg vs. 
the spatial detuning 5 for 2dA = 0.1, 0.5, 1 and 2 (the curves move upwards as 2dA increases) 
in the limit A —> oo, dA ~ 1. As calculated from (5.24) ( ); as calculated from (5.8)—(5.10) 
for A = 4 ( ) and A = 10 (—•—). Because of the symmetries indicated in connection with 
figure 12, we plot only that part of the curve for 0 < 5 < TI/4. 

homogeneous system of linear equations for the integration constants D0 and A 

sinh(aVl + ico A — iS)D0 — t ana sinh(aVl + ico A + iS)Di = 0, 

tana cosh(aVl + ico A — i5)Do — cosh(aVl + ico A + iS)Di = 0. 
(5.22) 

This exhibits a non-zero solution provided that the following pair of real equations 
hold 

(1 — tan a)eos25)71 sinhldA = 0, 

(1 — tan2 a) sin 2&A cosh2ÓVl = (1 + tan2 a) sin25, 

which yields the following instability threshold 

eos 2a 
sin 25 

cosh 2cÍA 
at ¿o 

2mn + 1 

2A 
(m = 0 , + l , + 2 , . . . ) . 

(5.23) 

(5.24) 

This provides, for varying m, infinitely many tongues (completely similar to those 
obtained in the Faraday system at quite small viscosity, Miles & Henderson 1990), 
which exhibit the symmetries indicated in the caption of figure 15, where the instability 
threshold is plotted with a solid line. In order to check the approximation in this 
section, we also plot the exact marginal instability curves (calculated from (5.8)-
(5.10), with X = ico) for A = 4 and 10. Note that the approximation is quite good for 
2dA = 0.1 (even for A = 4) and worsens as 2dA increases. 

For quite small damping, as dA —>• 0, (5.24) exhibits the asymptotic form 2a ~ 
TI/2 - 25 if \S - 7i/4| ~ 1 or a ~ \/(dA)2 + (5 - TI/4)2 if \S - 7t/4| < 1. This latter 
expression gives, in particular, the following asymptotic expression for the minimum 
of the curve in figure 15 (attained at 5 = TC/4) 

dA. (5.25) 

5.3. Effects of the harmonio surface waves and the mean flow 

Harmonic surface waves and the mean flow considered in §4 have been ignored in 
the analysis of subharmonic surface waves. They add new terms to the amplitude 
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FIGURE 16. Regimes for competition of harmonic and subharmonic instabilities in the plañe 
eL vs. ed: C\ (ed <C eL <C 1), H (either ed <C eL ~ 1 or eL >̂ 1 and *Jed exp(2eL/vg) <C 1)), 
C2 (eL >̂ 1 and *Jedexp(2eL/vg) ~ 1)), and S (eL >̂ 1 and *Jedexp(2eL/vg) >̂ 1)). In región 
NA (either ed ~ eL or e<¿ ̂ > eL) the analysis of harmonic instabilities above is not applicable. 

equations (5.3) which must be rewritten as (cf. (4.5)) 

B$ + Bf=(-d + iS/A)B± + ag(; )B+ 

+ i ( a 3 | A ± | 2 + a 4 | A + | 2 ) J S ± + i — / e2ky^dyB±, (5.26) 
e« J-d 

where (A+, A~, ^rm) is a reflection symmetric steady state of (4.5)-(4.9), (4.12)-(4.14), 
calculated in §4.1, and the coeíficients a3 ~ 1 and a4 ~ 1 are both real. Now, as 
happens in Faraday waves (Higuera et al. 2002), the last term is eliminated replacing 

2k2 ft í° 
- i — / / e ^ ^ d y d f , 

vg Jo J-d y 

which leaves the boundary conditions (5.4) invariant. A similar variable change of 
the form B± - • B±exp[±ih±(()], with dhH^/dt, = -(ai\A

±\2 + a4\A+\2), eliminates 
the effect of the harmonic surface waves from (5.26), but does affect the boundary 
conditions. We note that because A+(f) = A~{—f) we have h+{í;) = h~{—¡;), and 
replacing B± -+ B± exp[+i/?±(f) + iáf/A], with 8 = -[h+{A) + h~(A)]/2) leaves the 
boundary conditions (5.4) invariant, but corrects the spatial detuning as 8 —>• 8 — S. 
This correction depends on the coefficients «3 and «4, whose calculation is outside the 
scope of this paper, and only produces a horizontal shift in the marginal instability 
curves obtained in §§5 and 5.2 and plotted in figures 12 and 15; those in §5.1 instead 
are independent of detuning. 

6. Competition between harmonic and subharmonic instabilities 

Let us now compare the harmonic and subharmonic instabilities considered above, 
in §§4.2 and 5, to elucidate which one is to appear first for each set of valúes of 
the parameters e, d and L (satisfying (2.10), which leads to four different regimes, 
depending only on the parameters eL and ed, as schematically plotted in figure 16. 
These are illustrated with four possible experiments (figure 17) in an Earth laboratory 
(g = 103cms~2) using either a silicone oil such as that used by Kudrolli & Gollub 
(1997), with v = 0.1cm2s_ 1 , a =21 dyn c n r 1 and p=0 .85gcm~ 3 , or water, with 
v =0.01 cm2 s_1, a =72.4 dyn cm_ 1 and p = 1 g cm~3. The plots in figure 17 give only 
the most dangerous instability (namely, the basic reflection-symmetric harmonic pair 

Bú B±exp 



FIGURE 17. Marginal instability curves a* (in cm) vs. a>* (in rads -1) for water in a 
container with (a) depth d* = 1.78 cm and horizontal length 2V = 10.7 cm, and (b) d* =7cm 
and 2L*=2.3 x 104cm; and silicone oil with (c) á*=0.534cm and 2L*=5.34cm, and 
(d) d* = 1.78 cm and 2V = 10.7 cm. Thick solid lines correspond to the subharmonic instability 
and the remaining lines to the various harmonic instabilities, as indicated in the caption of 
figure 7. These experimental conditions are such that all assumptions in the paper are fulfilled. 
In particular, the slenderness of the system 2L* /d* is always larger than 6, and the number of 
surface wave wavelengths, 2L'¡(2TÍÍ') is at least 6. The plotted curves are associated with those 
instabilities with the smallest forcing amplitude; when the response curve exhibits multiplicity, 
associated with the LWSS instability (cusped curve with thick dashed line), the remaining 
plotted curves correspond to instabilities along the lowest branch on the response curve. 

of surface waves is unstable above the curve in figure 17) and are obtained using 
the non-dimensionalization defined at the beginning of § 2 and the stability results 
§§4.2 and 5. Because of the effect of harmonic surface waves on the subharmonic 
instability mentioned in §5.3, a horizontal shift of the curve plotted with a solid line 
is possible that has not been calculated above and must be taken into account when 
trying quantitative comparison with experiments. 

We must distinguish three cases. 
(i) If ed <C eL <C 1 (región C\ in figure 16), then both harmonic and subharmonic 

instabilities do appear for quite small valúes of a, along some resonance tongues 
whose minima correspond to different forcing frequencies. As explained at the end 
of §4, harmonic instabilities generally occur as a ~ 1, except near the minima of the 
LWSS tongues, where a ~ L <€ 1, and as explained in § 5, subharmonic instabilities 
generally require that a ~ ad ~ 1, except near the minima, where a ~ ad ~ L = eL. 
Thus, either harmonic or subharmonic instabilities can appear first, depending on 
the forcing frequency. An example of a marginal instability curve {a vs. a>*) in 
this región is ploted in figure 17(a), which does give a point in región Cx because 
(ed,eL) ~ (0.011,0.034); this is obtained (for co" ~ SOrads"1) using (2.1) and (2.8), 
which gives t ~ 0.27cm, S ~ 0.5, e ~ 0.0017, d = d*/t ~ 6.6, L = V¡V ~ 19.8. 
Note that the most dangerous instability is a harmonic long-wave symmetric steady 
instability (which corresponds to the first instability limit, see §4.2), except in the 
interval 81.5 < m* < 84.8, where it is a harmonic short-wave instability, and in two 



intervals (which are 75.2 < co < 78.5 and 86.4 < co* < 88.8 but can be shifted 
horizontally, recall our comment above) where it is subharmonic. 

(ii) If ed <€ eL ~ 1 (región H in figure 16) then harmonic instabilities appear as 
a = e~1/2a ~ d~1/2 (see (4.33) and figures 7 and 9a), and subharmonic instabilities 
are triggered as a ~ ad ~ 1 (see (5.6) and figures 12, 14 and 15). Thus, harmonic 
instabilities appear first in this región. The marginal instability curves a vs. co* for a 
case in this región is ploted in figure \l{b) (now co* ~ 20.8 rad s_1, and using (2.1) and 
(2.8), £* ~ 2.3 cm, S ~ 0.014, e ~ 9.1 x 10~5, d = d*/t ~ 3.04, L = L*/l* ~ 5 x 103; 
thus (eá, eL) = (2.8 x 10~4, 0.45) and we are in fact in región H). Note that the 
length of the system is unrealistically large (2L* = 2.3 x 104cm) in this experiment, 
which has been included here only to illustrate that points in región H do exist. This 
is because in order to obtain points in región H, an extremely small valué of e is 
necessary, which according to (2.8)-(2.10) means that the length of the system must 
be extremely large (or viscosity extremely small). For not so small valúes of e, regions 
C\ and C2 overlap and región H disappears. In order to illustrate this, we consider 
the response curve in figure 17(c), in which co* ~ 95 rad s-1. Using (2.1) and (2.8), 
we obtain l* ~ 0.18 cm, S ~ 0.5, e ~ 0.03, and d = d*/l* ~ 3, L = L*/l* ~ 15. 
Thus (ed, eL) = (0.09, 0.45), which formally corresponds to región H. In this response 
curve instead harmonic and subharmonic instabilities compete, which corresponds to 
región C2 and formally requires that eL be large (see below). Note that the response 
of the system in this experiment is qualitatively similar to that in figure 17(a), the 
main difference being that the resonance tongues are not so steep. 

(iii) If eL >• 1, then harmonic instabilities require that a ~ d~1/2 exp(2eL/vg). 
Subharmonic instabilities instead do appear as soon as a ~ ad ~ 1, as explained in 
§5.1. Thus, we must distinguish three cases. 

(i) If »Jedexp(2eL/vg)<€il, then harmonic instabilities dominate, which corres­
ponds to región H. As above, we have been unable to obtain experimental 
conditions in this limit, except for unrealistically large lengths of the container, 
(ii) If »Jedexp(2eL/vg) ~ 1 (región C2) then both harmonic and subharmonic 
instabilities compete. For the sake of brevity, we do not give an experimental 
point in this región, where response curves are similar to that in figure 17(c). 
(iii) If *Jedexp(2eL/vg) > 1 (región S) then subharmonic instabilities do appear 
first. See figure 17(á) for a marginal instability curve in this región, in which since 
co* ~ 100 rads -1 , we obtain that t ~ 0.18 cm, S ~ 0.5, e ~ 0.03, d = d*/t ~ 10, 
L = V¡t ~ 29.7. Thus (ed, eL) = (0.3, 0.9) and eL is not large. In fact, the 
experimental conditions in figure I7(d) have been chosen to illustrate that eL 
need not be too large in order to be in this región, provided that ed is not too 
small. This is again because, as indicated above, regions C\ and C2 overlap (and 
región H disappears) unless e is extremely small. 

Summarizing the results: 
1. The regimes indicated in figure 16 were obtained from asymptotic considerations 

that apply as e —>• 0 and must be reconsidered for small but fixed e. In fact, in 
realistic experimental conditions, región H disappears and we have only two regions. 
Namely, for fixed d/L <€ 1, if eL is smaller that a critical valué, then a competition 
between harmonic and subharmonic instabilities occurs, while for larger valúes of eL 
subharmonic instabilities dominate for all frequencies. 

2. The experimental conditions in figure \l(a,c,d) (figure \lb has only an academic 
valué) have been chosen such that the only difference between figures 17(a) and \l(d) 
is the liquid (same container, similar vibrating frequencies) and the only difference 
between figure 17(c) and \l(d) (same liquid, similar vibrating frequencies) is the size 



of the container, and show that increasing either viscosity or the size of the container 
favours subharmonic instabilities in their competition with harmonic instabilities; of 
course, increasing viscosity requires larger vibrating amplitudes (compare figures 17(a) 
and 17(c)), but increasing the size of the container has only a slight effect on the 
vibrating amplitude threshold. 

3. Increasing the vibrating frequency increases both ed = d*/(cwT3) and eL = 
V/(cwT3), which means that the point moves in the diagram in figure 16 towards 
región S. Thus, increasing m favours subharmonic instabilities. This can be seen in 
figures 17(c) and 17(á), but is not further illustrated with a much larger increase of 
the forcing frequency because the capillary-gravity balance parameter S (see (2.8)) 
approaches 1 quite quickly as m* is increased, and S must not be too cióse to 1 for 
the analysis above of harmonic waves to be valid (surface tensión effects have been 
neglected in the description of the mean flow). The forcing frequency must not, also, 
be too small, to avoid t being too large, which would viólate the assumption that 
both L = V¡V > 1 and d = d*/t > 1. 

7. Concluding remarks 
We have analysed the modulated harmonic and subharmonic surface waves that 

appear in a large nearly inviscid two-dimensional container subject to horizontal 
vibration. This has required us to consider an oscillatory bulk flow (OBF, never 
considered before to our knowledge) and a viscous mean flow (VMF, already 
considered for Faraday waves). 

As expected, the system always exhibits a pair of reflection-symmetric 
counterpropagating harmonic surface waves that are produced by the vibrating lateral 
walls. The outgoing wave produced at each wall propagates (and decreases by viscous 
dissipation as it travels) towards the other wall, where it is reflected. Harmonic waves 
were analysed in §4, where a system of CAMF equations were derived that includes 
the effects of both the VMF produced by the waves and (implicitly) that of the 
OBF. The former exhibits its own dynamics, which are coupled to the dynamics of 
the surface waves; the latter is decoupled and produces that term proportional to 
G\ in (4.16), which is in fact dominant when d is large. The CAMF equations are 
not simple, but we claim that they provide the correct weakly nonlinear evolution of 
harmonic waves, which are steady states of these equations. The primary branch of 
reflection-symmetric steady states (such as those plotted in figure 6) shows multiplicity 
(figures 5 and 8) as soon as nonlinear effects come into play. In fact, many (infinitely 
many, asymptotically) overlapping multiplicity intervals are possible, but only the first 
few are relevant because these steady states generally become unstable as the forcing 
amplitude is increased. Linear stability against harmonic perturbations has been 
analysed in §4.2, where we encountered both long-wave and short-wave instabilities 
(figures 7 and 9), depending on whether the associated length scale is of the order 
of the viscous length or the dispersive length. Short-wave instabilities are always 
oscillatory and reflection symmetric, but long-wave instabilities can be either steady 
or oscillatory, and either reflection symmetric or antisymmetric. 

Subharmonic waves are the relevant ones in vertically vibrated containers, but 
are not so obviously expected at low amplitude under horizontal vibrations (both 
subharmonic and superharmonic modes are to be expected in the fully nonlinear 
regime, for large vibrating amplitude, but this is a different story). We have uncovered 
the mechanism for the generation of these waves at high frequency, which should 
also explain the appearance in related systems. Let us remark that subharmonic 



waves have been experimentally observed in vibrated sessile drops (Vukasinovic, 
Smith & Glezer 2007) at high vibrating frequency (as compared to the first natural 
eigenfrequency of the system), where they have been seen to be dominant except for 
quite small vibrating amplitudes, in accordance with our results. The key ingredient 
in the generation of subharmonic waves is the OBF, which produces an oscillatory 
normal pressure gradient on the free surface, which is much higher than that produced 
by the harmonic surface waves. Once the mechanism to excite these waves was clear, 
we took into account that they are excited by a parametric instability, if the forcing 
amplitude exceeds a threshold valué. This has been calculated in §5 in the various 
different regimes that must be considered, depending on the comparative valúes of 
the container length and depth, and the viscous length (see figures 12,14 and 15). This 
required only a linear analysis; the associated weakly nonlinear description would be 
the counterpart of that in § 4, but is well beyond the scope of the paper. In order to 
clarify the essential part of the analysis, we ignored the effects of both the harmonic 
waves and the mean flow in the calculation of the subharmonic instability threshold. 
As explained in §5.3, the former produces only a shift in detuning and the latter has 
no effect. 

The results in §§4 and 5 have been used in §6 to elucidate whether harmonic 
or subharmonic instabilities appear first, depending on the comparative valúes of 
the length and width of the container. The four theoretically possible different 
regimes for sufficiently small viscosity (figure 16) have been reduced to two in 
realistic experimental conditions: if both a tremendously high horizontal length of 
the container and an unrealistically small viscosity (for ordinary liquids, not for 
example, 4He or liquid-vapour CO2, see González-Viñas & Salam 1994) are to be 
avoided. We have seen that either harmonic and subharmonic instabilities compete 
or subharmonic instabilities dominate, the latter being always the case (somewhat 
surprisingly) as either the container size or the vibrating frequency are increased. 

The results in this paper help to understand the basic issues concerning the initial 
development of harmonic and subharmonic waves excited by horizontal vibrations 
in large containers, but leave open several points. In particular, the weakly nonlinear 
response of subharmonic waves would give more insights into the dynamics of these 
waves beyond threshold. The various resonances that have been avoided (see (4.11), 
(4.18) and (4.31)) assuming generic conditions could give interesting results too. We 
hope that the analysis in this paper will stimulate experimental work on this system, 
which is lacking today, in spite of the fact that it constitutes a basic fluid configuration 
that exhibits quite rich dynamics. 

This research was partially supported by the National Aeronautics and Space 
Administration (Grant NNC04GA47G) and the Spanish Ministry of Education 
(Grants MTM2004-03808 and MTM2004-05796-C02). 

Appendix A. Wave reflection and forcing in región (c) 
We consider harmonic and subharmonic waves separately. 

A.l. Reflection and forcing of harmonic waves 
In región (c) (see figure 1) we use the variables 

x = A— x, y = —y, tf/= íj/e1'+ c.c, / = / e " + c . c , (Al) 



to rewrite (2.2a), (2.3a,c) and (2.5b) as 

feí + ''kyy in 0 < x < oo, 0 < y < oo, 

if + h = (í-S)h-Sfm-ify=0 a t y = 

tj/y = —a/2, / = O at x = O, 

/ diverges at most logarithmically as x —> oo, 

O, 

(A 2) 

(A 3) 

(A 4) 

(A 5) 

where the last condition results from matching conditions with the solution in región 
(b). As in Nicolás et al. (1998), this problem is solved via sine- and cosine-Fourier 
transforms as 

t¡/ = c + C\x + C2 sinxe 
a*. Cx + C2 

2y HX(S) 

CO e k'y sin(£x) d£ 

o 1 - (1 - S)£ - 5£3 

e~*̂  [sin(lx) — kx] ák 

f = C\ + C2 eos x + 

Jt Jo ¿ 2 [ l - ( l - 5 ) ¿ - 5 ¿ : 3 ] 

C1 + C2 f00 £cos(£x)d£ 

'o 1 - (1 - S)k - Sk3 

[cos(kx) — 1] ák 

(A 6) 

Hi(S) 

TI Jo k[í - (í - S)k - Sk3] 

where C\ and C2 are arbitrary constants and 

kák 

(A 7) 

#i(5) 
o 1 - (1 - S)k - Sk3 

(2 + 5 ) c o r 1 [ 5 / V 4 5 - 5 2 ] l n 5 
0. 

(l + 2 5 ) V 4 5 - 5 2 2(1 + 25) 

Here, we have taken into account that O < 5 < 1. As x —> 00, (A 7) becomes 

f = C\ + C2 eos x + 
C\ + C2 Ttsinx 

+ HX(S) 1 + 2 5 71 

where y ~ 0.577 is the Euler constant and 

H2(S) • • l 

ln; 71 sin x 
1 + 2 5 

1 

k[í - (í - S)k - Sk3] k(\ + k) 

51n5 2(1 - S)«JScor1 ^ 5 / ( 4 - 5) 

+ y + #2(5) 

dJk 

(A 8) 

(A 9) 

1 + 25 + (l + 2 5 ) V 4 - 5 
0. (A 10) 

We need only apply matching conditions with the outer solution, given by (2.13) 
(setting /ssw = / f f l F = 0), (3.6), (3.7) and (4.1) to obtain (4.12), with 

a(S) 

Gi(5) 

G2(S) 

tan 
45 

( 1 + 2 5 ) ^ ( 5 ) 
25 

(1 + 5)V1652 + (1+25) 27Í 1(5) 2 ' 

(1 + 2S)ffi(S)7i + 25(y - H2(S)) 

TC(1 + 5)V1652 + (1+25) 27Í 1(5) 2 ' 

( A l i a ) 

(A Ufo) 

( A l i e ) 



where we have taken into account that Hi(S) > 0. These three functions are plotted 
in figure 4. Water wave reflection at a lateral wall was considered by Hocking (1987). 

A.2. Reflection of subharmonic waves 
The only differences with the analysis above are that now a = 0 and e1' must be 
replaced by elí/2 in (Al), which requires replacing i by i/2 in (A3) and a by 0 in 
(A 4). Alternatively, we can use the new variables and parameters 

x=kx, y=ky, f=2kf, S = 2pS, (A 12) 

to obtain (A 2)-(A 5) up to notation. Then, the counterpart of (A 9) with a = 0 yields 
the boundary condition (5.4), with the detuning 8 as defined in (5.6). 

Appendix B. Derivation of the amplitude equation (5.3) 
The derivation of those terms (proportional to B^ and 5 1 ) accounting for transport 

at the group velocity and viscous damping is standard, as explained in connection 
with (4.5). Thus, we concéntrate in the derivation of the last term on the right-hand 
side (in particular, of the function g) that accounts for parametric forcing. To this 
end, we use the fast and slow time variables t and T = td, replace x = di;, replace 
(cf. (5.1) and note that the spatial detuning 8 can be set to zero) 

fssw = (B+ + aFiB- + • • -)el(í/2+íx) + (B~ + aF1B+ + • • -)e
l(í/2-*x) + c e , 

fssw = (fr0B
+ + a&iB- + • • -)el(í/2+íx) - (#05~ + a^B+ + • • -)e

l(í/2-*x)] + c e , 

into (2.2a) (with Í2 = 0), (2.3a) and (2.4), and equate to zero the coefficients of 
a¿+ei(í/2±fa0 -j^g following equations and boundary conditions result 

&lyy - Ptfi = 0 i n - o o < y < 0, (Bl) 

^iF1-M1=-kg(i)-\k<P((í>0), (B2) 

i^(l _ s + SF)F! - l-Wly = l-lg + 7-~kn(í;, 0), (B 3) 

t £ 1 = 0 a ty = -oo. (B4) 

Here, we have taken into account that ^(0) = í/(2k) (see (5.2)) and the boundary 
condition (2.4), which to the approximation relevant here can also be written as 

(1 - S)fx - Sfxxx - i/v + irxxtf + i/rxtfx - iixiixx + iry\frxy = 0, (B 5) 

as obtained by substituting (2.2)-(2.3) into (2.4) and neglecting cubic terms. Note that 
this boundary condition must be imposed at the boundary, while (B 3) applies at the 
edge of the viscous boundary layer (región (d) in figure 1), but that the left-hand side 
of (B 5) is continuous across región (d), and thus can be calculated using the solution 
in región (b). Also, since we are ignoring both viscous damping and the effect of the 
group velocity, we have set 35±/3f = 0 and e = 0. The boundary condition (B4) 
results from matching with the solution in región (a). 

Now, the function g is obtained imposing that this problem is solvable. Integrating 
(B1) and imposing (B4), we obtain <̂ i = eky up to a constant factor. Replacing this 
and the dispersión relation (5.2a) into (B 3), we obtain 

g(?) = 0>f(?.O), (B6) 

and we need only invoke (3.5), to obtain the expression for g quoted in (5.6). 



Appendix C. Linear stability of the reflection symmetric steady states 

Perturbing around a reflection-symmetric steady state of (4.5)-(4.9) and (4.12)-(4.14) 
as indicated in (4.34), and linearizing, we obtain the following linear problem 

Xa- + vgaf = isaQbft, (C 1) 

r° 
Xb± + vgbf = ieaoa±+2i(a1\A±\2a±-a2\Aj\2a+)±2i / e2yVydy, (C2) 

J-d 
yy yyyy 

d < y < 0, (C3) 
%y = 16(|A+|2a+ - |A ; | 2 a - ) , ^ - XF = 4(\A;\2

a- - |A+|2a+)?, 
%yy - X% + (1 - S)F% = 0 at y = 0, (C4) 

y = \py = 0 at y = -d, (C 5) 

A±(a± + ¿±) - A+(a+ + ¿+) = A^(a± - ¿±) - A+(a+ - ¿+) = 0, 

/

co 

e 2 ^ d y , 

/

CO 

e ^ d y 
-d 

V(y = 0) = 4( |A; | 2 a- - |A s+|V)at £ = +L , (C6) 

F ( £ ) d £ = 0 , (C7) 
1 

where the complex functions Kj = Kj(í¡) need not be calculated. 

C.l. Long-wave instabilities 

We set e = 0 in (C1)-(C2) and ignore the last two boundary conditions in (C6). 
Steady instabilities (X = 0) allow us to solve (C 1)-(C7) in closed form, to obtain the 
following marginal instability curves 

R2 = 4[cos(@Q+ - ®0- + 25) - cosh4L/vg] 
0 («! - a2)[í - exp( -8L/uJ ] sin(0o+ - ©Q- + 25)' 

R2 = 4[cos(@0+ - ®0- + 25) + cosh4L/i;g] 
0 (ai + a2 + Ad - 8 + 3/á3)[l - exp(-8L/ug)] sin(0o+ - ©Q- + 25)' 

for reflection symmetric and antisymmetric modes, respectively. 
For oscillatory instabilities (X ^ 0), (C 1) can be readily solved to obtain 

fl± = r±e±m±L)/v,. (CÍO) 

Substituting this into (C 3)-(C 5), we obtain a linear problem that is solved as 

(#,F) = R2
0r+CF0, JF0)exp((4 + A)(£ + L ) / ^ ) 

+ / ? 0 V ( - ^ o , F 0 )exp( - (4 + 2)(f - L ) / ^ ) 

+ r 1
+ ( ^ , F 1 ) e x p ( / ¿ f ) + r f ( - ^ , F 1 ) e x p ( - M ) , ( C U ) 

where ^o, ^i (which depend on y), FQ, and í \ (which are constant) are calculated in 
closed form, but their fairly involved expressions are omitted here. We just point out 
that those terms proportional to r f represent slowly varying internal waves associated 
with the mean flow, and exhibit a dispersión relation 

(1 - S)¡x2 [*JId - tanh(VAá)] = X2 Jl. (C 12) 



Substituting ( C U ) into (C2) (with e = 0), and integrating this latter equation, we 
obtain 

b± = r± exp(+2(f + L)/vg) + H3rfe exp(+(4 + A)(£ + L)/vg) 

+ HAr+ exp(+(4 + A)(£ + L)/vg) + H^ exp(+/4) + tf+r+ exp(+/4) , (C13) 

where the closed-form expressions for the coefficients H3,..., H6 are again omitted. 
Substituting (C13), (CIO) and ( C U ) into the boundary conditions (C6) and (Cía) 
gives a homogeneous system of six linear equations in the six unknowns, r^, rf 
and rf. Imposing that this system possesses non-trivial solutions provides a complex 
equation that determines the growth rate X for each set of valúes of the parameters. 
Imposing that X be purely imaginary, we obtain the marginal instability curves plotted 
in figures 7 and 9. 

C.2. Short-wave instabilities 

Now we look for slowly modulated waves whose frequency and wavenumber are both 
large. Thus, the quotient of these two quantities (the phase velocity) must coincide 
with the group velocity at leading order. It turns out that these waves and the 
eigenvalue X can be written as 

(a±, ¿±) = (o*, b±)e±lK^^s + O(fí), (C14) 

(V, F) = (V0
+, F0+)eiJCf/^ + (tf0-, F0-)e-iJCf/e 

+ r+(V1, l ) e i J C f / ^ r : 3 ) 3 í + r f ( - ^ i ) i ^ - ^ M 1 - ^ , (C15) 

A = iu íA'/>/e + Ai + 0 ( > / i ) , (C16) 

where those terms proportional to r f represent the slowly varying internal waves that 
also appeared in (CU) , and we have taken into account that according to (C12), 
¡x ~ X/*J{\ — S)d as X —>• oo. Note that these internal waves do not affect the surface 
waves at leading order (namely, no <9(l)-terms proportional to rf appear on the 
right-hand side of (C 14)). As a consequence, the internal waves will not play any role 
in the stability analysis below; they would be needed only to impose the boundary 
condition (C6c). Substituting these into (C1)-(C3), {CAb, c), (C5a) and (C6a, b), we 
obtain 

and 

^ = y/(l-S)d(y+d), (C17) 

XIÜQ + VgÜQt = —ic¿oK2bQ, (C18) 

Xxb± + vgb% = -mK24 + lia, | A ± \ 2 4 + 2i / e2y *b± áy, (C19) 
J-d 

^ = 0 m-d<y<0, (C20) 

< + i;,F0
± = +4 |A s

± | 2 4 , -vg%
±

y±(í-S)F0
±=0 at y = 0, (C21) 

t^± = 0 &ty = -d, (C22) 

A±(4 + ¿±) = As+(a0+ + ¿ 0 + ) e ™ / ^ , | 

A±(a± - ¿±) = Áf(4 - b+)z+2*1'^ at £ = +L. J 

Here, we are ignoring two oscillatory boundary layers, of <9(e1/4)-thicknesses, attached 
to the free surface and the bottom píate, and two lateral regions attached to the lateral 
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FIGURE 18. The quantity ao«i that governs the short-wave instability for d = 3 ( ), 
5 (-•-), 10 (•••) and oo ( ). 

walls, and only impose inviscid boundary conditions. Also, we are not imposing the 
boundary condition (C6c), which would be needed only to determine the complex 
constants r p The spatial detuning 2KL/^fe can be eliminated upon replacing a^ —• 
ÜQQ^1^1^ and X\ —>• X\ + iKL/Je, which does not change the stability properties; 

also, antisymmetric modes turn into symmetric ones replacing CIQ 
X\ —>• X\ + Í7i/(2L). Thus, we can replace (C23) by 

hei^/(2L) a n d 

AH4 + bf) = A+(a+ + b+), ÁH4 ~ b±) = Á+(a+ - b+) at £ = +L, (C 24) 

and consider only symmetric modes. Now, integration of (C20)-(C22) yields 

-Avg\A¡ 

(1 - S)d ,2 ' «tf + 
4(1 - S)\A±\2(y + d)a¡ 

(1 _ S)d - v2 (C25) 

Substituting this into (C 19) and using the expression of Aj in (4.20) (with R^ given 
by (4.24)), we obtain 

lib^ + Vgbt = i{-a0K
2 + laiRi exp[+4(f + L)/vg]}a¡ 

where 

« i = « i 
2(1 - S) 

(1 -S)d-, ,2" 

(C26) 

(C27) 

Note that F0p <f0- and a\ diverge as (1 — S)d = v2, but this point has been excluded 
from the analysis, see (4.18). Equation (C27) in conjunction with (C18) and the 
boundary conditions (C24) determines the eigenvalue X\. Since (C26) has variable 
coefficients, this problem must be solved numerically, to obtain the results plotted in 
figures 7 and 9. These numerical results show that if the product ao«i (which is plotted 
in figure 18 for several representative valúes of d) is positive, then the instability sets 
in as RQ increases. 

C.2.1. The limit RQ —>• oo 

Let us rewrite the problem as follows. Since we are only considering symmetric 
modes, we set 

a(£) = a+&) = a0-(-f) , b($) = b+($) = M ~ £ ) = a ( £ M £ ) , (C28) 



to rewrite (C18) and (C26) as 

vga' = (li + ia0K
2V)a, (C29) 

VgV' = -i[a0K
2(V2 - 1) + 2a1/?0

2exp(4(f -L)/vg)]. (C30) 

Also, the boundary conditions (C 24) yield, after some algebra, 

± ± ^ > = e x p ( - 2 l ( 0 o - - 0 o + - 2 á ) ) i ± ^ ) , (C31) 
Í-V(L) ° Í-V(-L) 

1 + y ( L ) exp(-i(©0- - 0O
+ " 25) - 4L/vg)^^-, (C32) 

1 + V(-L) a(L) 

where &Q and 0^ are given by (4.28). The second condition invoking (C29) leads to 
the following expression for the eigenvalue X\ 

Xx=-2-^ 
2L 

l ( É , - - É ,+ -2S> + í^/\,í)df+l„-1 + l ' m (C33) 
-t 1 + V(-L)_ 

where V is calculated numerically from (C30)-(C31). Now, we take the limit 

| V | ~ / ? o » l , K~l (C34) 

in (C 30), in which 

v ^ y-2aoai/?o exp(2(L - g )/t>g) 

This expression applies except in two boundary layers near £ = +L, which are 
required to satisfy the boundary condition (C31). Substituting this into (C33), we 
obtain 

x = VgKRo^aoaiil - exp(-4L/ug)) 
1 4L 

which shows that these small scales are destabilizing for sufficiently large Ro if 
aoai > 0. Thus, if aoai > 0, then the steady state is unstable for sufficiently large Ro, 
for arbitrary valúes of the remaining parameters. If instead ao^i exhibits the opposite 
sign, then the right-hand side of (C 36) is purely imaginary and we do not come to 
any conclusión from the analysis above; the calculation of the real part of X\ would 
require us to consider higher-order terms. Note that the instability is enhanced by 
increasing either ao^i or RQ. 
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