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We consider the harmonic and subharmonic modulated surface waves that appear
upon horizontal vibration along the surface of the liquid in a two-dimensional
large-aspect-ratio (length large compared to depth) container, whaose depth is large
compared to the wavelength of the surface waves. The analysis requires us also
Lo consider an oscillatory bulk Jow and a viscous mean flow. A wcakly nonlincar
description of the harmonic waves is made which provides the threshold forcing
amplitude to trigger harmonic instabilitics, which are of various qualitatively ditterent
kinds. A linear analysis provides the threshold amplitude for the appearance of
subharmonic waves through a subharmonic instability. The results obtained are used
1o make scveral specific gqualitative and quantitative predictions,

1. Introduction

Surface waves in vibrated containers have received much attention in the literature,
largely focused on Faraday waves (Faraday 1831; Rayleigh 1883; Miles & Henderson
1990; Cross & Hohcenberg 1993; Fauve 1995), which are cxcited upon vertical vibra-
tions. TTorizontally excited waves have received less attention and workers have con-
ceniraled on the casc of containgrs with a modceraic width (Miles 1984; Funakoshi &
Tnoue 1988; Nobili ef al. 1988; Teng 1997; Billingham 2002; THill 2003; Taltinsen,
Rognebakke & Timokha 2006), whose hornizontal size is comparable to the surface
waves wavelength, In this case, only a few (depending on symmectrics) sloshing modcs
are excited:; note that depth plays no role in this discussion, and only affects the
eigenmodes quantitatively. If mean flows are ignored, then the system 1s governed by
a set of ONTs. Mean flows are due to time-averaged guadratic nonlinearities that
produce both a global circulation and a deformation on the free-surface elevation. The
former in turn can be associaled cither o viscous clfects (viscous mean [lows) or Lo
mass conservation (inviscid mean flows) and has been largely ignored in the analysis
of surface waves in moderate containers. Surface waves have been analysed usually
from a TTamiltonian formulation, with viscous effects added a posteriori through a
linear viscous damping, ignoring some more subtle, but equally important, nonlinear
viscous cllcets. Viscous mean [lows (also called streaming Oows, Schlichting 1968 ; Rilcy
2001), in particular, are produced by time-averaged Revnolds stresses in the oscillatory
boundary layers, and have been mistakenly assumed to be only a byproduct of surface
waves; instead, viscous mean flows have been proved to couple dynamically with the
evolution of the primary surface waves (see Higuera, Vega & Knobloch 2002 and



reterences therein). The mean free-surface deformation instead has been considered
in connection with the so-called vibroequilibria (Gavrlyuk, Lukovsky & Timokha
2004 and rcelerences therein) and also in connection with dynamic stabilization of, for
example, Rayleigh-Taylor instability {Wolf 1969; Lapuerta, Mancebo & Vega 2001
and relerences therein),

For wider containers (namely, containers whose width is large compared to
wavelength), we must consider a large number of surface modes and interaction
with ncarby modcs, which lcads to spatial modulation, This can be analysed invoking
separation of scales using a description of the modulating amplitude in terms of
(Schridinger-like cquations with convective (grms resulting rom group velocily)
PI3lis. Spatially modulated surface waves have received much less attention (two
exceptions, with mean flows ignored are Ockendon & Ockendon 1973; Faltinsen &
Timokha 2002) ¢ven though some related cxperiments (Wunenburger et al. 1999)
sugeest that they exhibit rich dvnamics. Let us remark that Wunenburger ¢ al. deals
with a C(»-system near the critical point. It is somewhat surprising that the simpler
ordinary liquid problem has been analysed neither theoretically nor experimentally;
efforts have concentrated in both two-phase (Kozlov 1991, Ivanova, Kozlov & Evesque
1996) and granular Dows (Jacger & Nagel 1996; Ristow 2000; Aranson & ‘I'simring
2006). Spatially modulated surface waves are also interesting from the theorical point
of view because the flow field has a fairly rich structure. As is to be expected,
vibrations praduce surface waves near the free surface, but alse an oscillatory flow in
the bulk and a mean flow. The analysis of these is non-trivial for several reasons.

(i) Surface waves arc spatially modulated, counicrpropagating waves thal are
described by two coupled Shridinger-like amplitude equations. In addition to the
usual effects of dispersion and conservative nonlinearity, these equations exhibit new
tlerms accountling for (g) viscous dissipation, (b) lorcing, (¢) advection at the group
velocity, and (d) coupling o the mean How. The advection term is always much larger
than the dispersive term, and (because both counterpropagating waves are present)
cannot be eliminated by using 4 moving frame, as 18 done when only one-sided waves
ar¢ considered, (or ¢cxample, in watcr wave theory (Newcll 1983), 1T dispersion is
neglected, then the equations become hyperbolic, as in related dissipative systems
(first considered by Danicls 1978, sce also Martcl & Vega 1998), where small difTusive
terms lead to subtle effects (Martel & Vega 1996). Similarly, dispersion cannot be
ignored a priori in counterpropagating surfuce waves {Lapuerta, Martel & Vega 2002;
Maricl, Vega & Knobloch 2003) because dispersive scales can be destabilized. 'T'here
are two kinds of surface waves, namely harmonic and subharmonic, whose frequency
18 the lorcing frequency and hall of the forcing [requency, respectively,

{ii) The horizontally vibrating lateral walls act as wavemakers, and directly excite
a pair of harmonic surface waves (HSW), analysed in $4, which travel along the free
surfacc from the latcral walls inwards and dccay (rom surface dissipation. Forcing at
the lateral walls is not standard. This is because the walls extend down to the bottom
of the container (which makes a difference with standard wavemakers in water waves)
and thus they also excite an internal oscillatory flow in the bulk (OBT, analysed in
$3), which aftects a region whose size is of the order of the container’s depth and
contributes to the cxcitation of the surface waves in a subtlc manncr. Namely, it
produces:

{a) A contribution (namely, that term proportional to Ind in (4.16) below) to
direct excitation of harmonic waves at the lateral walls that is logarithmically
large if the container depth is large compared to wavelength. This contribution
has not been considered belore in this context.
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FiGurie 1. Sketch of the fluid domain, with the various asymptotic regions. The contact line
is pinned to the upper edge of the lateral walls.

(b) An oscillatory pressure gradient on the free surlace that is able 1o cxcite
parametrically (IFauve 1993) new subharmonic surface waves (S8W), analysed in
§5.

{(111) Surlace waves cxcile a secondary viscous mean [low (VMF), which allccts the
weakly nonlinear dynamics of the primary waves, as repeatedly shown in related
vibrating (uid systems (Higuera et ol 2002; Lapucrta et al. 2002, and rclerences
therein), and is at least as strong as the inviscid mean flow usually considered in
large-aspect-ratio surface waves (Davey & Stewartson 1974). The effect of the VMF
on the harmonic surface waves will be considered i §4, where 1t will be scen that
this effect cannot be ignored when considering the stahility of the primary waves.
Similarly, the VMF allccts the weakly nonlingar dynamics of subharmonic surlace
waves, but the analysis of this is beyond the scope of this paper.

Against this background, the object of this paper 1s to analyse the dynamics of
the spatially modulated nearly inviscid surface waves in a long container subject 10
horizontal vibration. In order to avoid additional difficulties and to clarify the analysis,
we congider the restricted case of one-dimensional waves in a two-dimensional
container, which models waves in 4 three-dimensional rectangular container whose
width is small comparcd Lo length, but large comparcd to depth. Also, we assume
a fixed contact ling to avoid additional effects due to contact ling hysieresis; see
Henderson & Miles 1994; Bechhoefer er al. 1995 for the experimental realization of
this condition.

2, Formulation
We consider a two-dimensional horizontal container (figure 1) of depth 4" and
length 21", which is vibrating horizontally with an amplitude " and a frequency
w*. We usc for non-dimensionalization the characteristic ime o' and characteristic
length ¢*, defined by the inviscid capillary gravity waves dispersion relation in deep
layer
W =g/ o/(pt™), 2.1)
in tecrms of the acccleration due o gravily g, surface (ension o, and densily p, all
assumed constant. The resulting non-dimensional governing equations are
]J,lfJ(A + 1.!1}’}’ = Q‘ Ql‘ - 1.[!}‘ Q.l + 1.!1,1 Qy = {"‘(Ql.l + ny)) (2-2)
in—IL «x« IL,—d <y <« f. The boundary conditions at the free surface are

fo—te = fe =00 (e — v d(1 — f2) —4f i, =0, (2.3)
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at y = f, while those at the bottom and lateral walls are
=0, o, =acost al y=—d, (2.5)
o =0, Yy =acost, (=0 at x =+L —asint. (2.6)
Here, 4 is the streamfunction, defined such that the velocity
(1. 0) = (—thy. ) 27

§£2 = vy —u, 18 the vorticily, and f is the free-surface clevation, required Lo satisly
volumeg conservatlion j‘LL fdx = Q. Equations (2.2)-(2.6) arc obtained in a standard
way, replacing (2.8) and £ into the usual continuity and Navier—Stokes equations,
and the usuwal boundary conditions (accounting [or kingmatic compatibility and
equilibrium of tangential and normal stresses at the free surface, and no slip at the
bottom).

The problem depends on the [ollowing non-dimensional parameiers: the containgr’s
length 27, and depth #, the forcing amplitude «, the capillary—gravity balance
parameter S, and the non-dimensional viscosity £, defined as

(L, d", a”) T "
—— SE T3 £T 3
{ g+ pgl: w e

where v is the kinematic viscosity. Note that § = 1/(14 B), where B = pg¢™ fo is the
Bond number based on the wavelength of the surface waves, #*, defined in (2.1). S is
such that 0 < 5 < 1, and the extreme values § = 0 and 1 correspond to the purely
gravilational (¢ = 0) and thc purcly capillary (g = 0) limils, respectively.

The problem (2.2)+2.6) is invariant under the action

(L., d,a)= (2.8)

X —x, W 252, t-it+r (2.9)

which results from reflection symmetry, and will play an important role below.
The assumptions in this paper arc

e, 1<€d <L, a<l, (2.10)

which means that (i) viscous effects are weak, (ii) the horizontal length is large
compared to depth, which in turn is large compared to the wavelength of the surface
waves, 'The assumptions that & <€ 1, 2 < 1 and L >» 1 arc cssenlial in the analysis
below, but the remaining assumptions are made only to simplify presentation, and
could be relaxed. In fact, the assumption that L > 1 15 only required in §4, where
it is made in order that the viscous mean flow be almost parallel. The analysis in
$%3 5 will be made in specific distinguished limits, which involve relations between
the small paramcters and will be defined such that as many terms as possible in
the resulting asymptotic equations be of the same order. TTowever, the analysis will
be valid for arbitrary values of the small parameters satisfving (2.10); the only
additional restrictions (validity limits of the analysis) will be that the coefficients of
the asymptotic equations be bounded, which will exclude some resonances, see below.
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In principle, we should consider several regions in the container {see figure 1).
(a) The bulk, which is that part of the container outside the several boundary layers
described next, (5) a ncarly inviscid rec surface boundary layer, with a (1) thickngess,
which is the region affected by the surface waves, (¢) two nearly inviscid corner regions
ncar the contact point, with (1) stz¢, where the surface waves arc dircetly [oreed and
reflected, (d) a viscous free-surface boundary layer. with an €{g!/?) thickness, and {¢) a
viscous boundary layer near the lateral walls and the bottom of the container, whose
thickness is also O(e'/?), Because 4 and £ arc both large, region (¢) has a negligiblc
effect in the analysis below. The assumption that 4 < L will only be required in
§4 and rclaxed in the remainder of the paper. All calculations below will be ncarly
inviscid. Viscous effects come into play only through the VMI™ mentioned above and
the damping ratio of the various wavetrains. In order to calculate the latter, we recall
the well-known result (Miles & Henderson 1990) that a resonant surface wave whose
free-surface elevation is given by f = Ael™*¥ L cc where w and k satisty the
dispersion relation (cf. (2.1))

o = wlk) = /{1 — 3k + 5k, (2.11)
exhibits a damping ratio
263 (2.12)

As explained in § 1, we must consider an oscillatory bulk How (OBI%), the harmaonic
and subharmonic surface waves (HSW and S8W), and a viscous mean tlow (VMF).
Thus

W = Yropr + Yrasw + Wssw + e, f = forr + frsw + Fssw 4 fiagr. (2.13)

where (Yo, fosr), (Cusw, Susw), and (Gsgue. fgsw) are given by (3.1), (3.6), (4.1)—(4.3)
and (5.1) below. To the approximation relevant in this paper, the VMF can be ignored
cxcept in the analysis of the HSW.

Note that the problem exhibits four well-separated spatial scales, or orders (He!/?),
a{1), O{d) and (L), and the associatcd time scales. Since, in addition, this is a
free-boundary problem, direct numerical simulation is difficult. The analysis below
instead filters out all spatial and temporal scales except for the largest ones.

The remainder of the paper is organized as follows. The OBF 1s calculated in §3,
as we need to obtain its effect in promoting harmonic and subharmonic waves, The
HSW are analysed in §4, where a system of weakly nonlinear amplitude equations
coupled to the VMTI is derived which is used in §4.1 to calculate the simplest reflection
symmetric modulated waves and in §4.2 to analyse the linear stability of these. The
latier analysis provides the threshold amplitude [or the appearance of harmonic
instabilities of the system. The S8W are considered in §5. where a linear stability
analysis is made that provides the amplitude threshold for the parametric excitation
of these waves, through a subharmaonic instability, This is made in three distinguished
regimes, depending on the relation between the container’s depth and length and the
viscous length; a more gencral, weakly nonlincar analysis of this Oow is outside the
scape of this paper. TTarmonic and subharmonic instabilities are compared in §6, to
elucidate which instability dominates for each set of parameter values; some specific
predictions are made and some experiments are suggested. TMinally, the results are
summarized and discussed in §7.



3. Oscillatory bulk flow

The oscillatory bulk flow is produced by the lateral walls oscillations, and has not
been considered belore in this context. This Jow allects both reflection at the lateral
walls (considered in Appendix A) and excitation of subharmonic waves {considered in
§5). To the approximation relevant in this paper, only the leading-order approximation
(strictly inviscid and linear) in region (a) is necessary, note that the solution in the
smaller regions (&) (¢) is slaved to the solution in region (a), which is always the case
in ncarly inviscid oscillatory Hows when only leading-order terms are considered. The
streamfunction in this region is given by

Yropr = adg(t, n)cosi, (3.1)

where the rescaled spatial variables and the aspect ratio are defined as

X, \) L
(. )f( A=—. (3.2)
d
Substituting these into (2.24), (2.4), (Z.Sa), (2.6b,¢), and scliing £2 = ¢ =0, we oblain
oot @y =0 Mm—A<i<A —1lang<, (3.3)
o, =0 aln =0, p=0 aln=—1, pp=1 al{==A, (3.4)

where the kingmatic boundary condition (2.34) has not been used. The boundary
condition at n = 0 results from (2.4) {anticipating that [/ ~ «, see (3.6) below)
and imposcs a value of zcro on the horizontal velocity there, This is because no
term in (2.4) can balance ¢, {accounting for pressure perturbations associated with
free-surface deformation), which makes a difterence between the oscillatory bulk flow
considered here {(which cxhibits an O(4) characteristic Iength) and surlface waves,
where pressure perturbations are balanced by capillary gravity effects. The boundary
conditions (2.3b) and (2.50) cannot be imposed in this inviscid approximation, but
could be accounted for considering two oscillatory boundary lavers.

The (uniquc) solution of (3.3)-(3.4) is such that ¢ is an ¢ven [unction of ¢. Equa-
tions (3.3)—(3.4) are readily solved upon separation of variables, as

B . cosh(2,¢) P .
g = Z; O ol A sin[Z,(n + 1], (3.5)

where 2, = (2n + 1)1/2 and a, = 2(=1)"/72 are such that 3 a, sin|(A(n+1)| =+ 1
in —1 < n < (. The free-surface elevation follows using (2.3a),

forr = apg (¢, 0)sint, (3.6)

and exhibits a logarithmic singularity at ¢ = +A. This is seen noting that the vertical
velocity at the frec surface (which in (urn is proportional to the vertical pressure
gradient)

_~- 2sinh(i,¢) 2 o
W:(f;o)—gzm—ﬁ-{glﬂ(ﬂ—%é’) H(A)} as & — +A, (3.7)

where the function I (plotted in figure 2) is given by

exp(—A,A) .
H(A) = —ln— 22/,160811(:1” (3.8)



FiGurt 2. The function f/{A) defined in (3.8).

and is such that
2. 4
H(A)—>H(oo):£1|1E:O.154 as A — o (3.9)

Because of this singularity, the solution above breaks down as ¢ — +A, which leads
us Lo region (¢), analysed in Appendix A,

Note that the analysis above does not require that the aspect ratio A be large. As
A — oo, p vanishes exponentially except in two lateral regions, where (| £¢ — Al ~ 1
and ¢ = 3 a, expl(A{+¢ — A)| sin[l,(n + 1)].

4. Harmonic surface waves at large aspect ratio: L 3 d

These are a pair of counterpropagating waves that are forced (and reflected) in
region (¢) and propagate along region () (figure 1). The description below 1s weakly
nonlingar, and must include the effect of the viscous mean flow, whose analysis is
greatly simplificd at large aspect ratio. 'Thus, the assumplion that L 3 4 will be uscd
below. We shall consider the limit (2.10), with & only logarithmically large, such that
¢ * < 1. In this case, d can be treated as O(1).

According to the non-dimensionalization defined in § 2, the non-dimcensional forcing
frequency is 1. Then, the inviscid dispersion relation {2.11) shows that the non-
dimensional wavenumbcer is also (closc Lo} 1. In fact, in order to include the cflfcct of
the spatial detuning (5, given by (4.16) below) resulting from the phase shift produced
by reflection at the lateral walls, we shall correct this value of & by an amount
&/L < 1. T'hus, the (ree-surface clevation and the strcamlunction associated with the
harmonic surface waves in region (b} are written as

Susw = \:"gei' [A*ei“ BRARAN Afefi“*'sf’r'“l +ce+-, {4.1)
Yrgsw = \;’EC” W, [/1 |Ci(l IS/l 4 c il |5/L).x] Lec o, (4.2)

where Wy = ¢, These waves arc coupled to the viscous mean [low, whose associated
free-surface elevation and streamfunction are

Fomp =ef" Ay = ey, (4.3)

The complex amplitudes A+ have been rescaled (with /&) imposing that the viscous
damping term and the cubic nonlinearity be comparable in the amplitude equa-
tioms (4.5) below; /™ has been rescaled (with ¢) anticipating that the mean flow is
guadratic in the complex amplitudes. Both A= and /™ depend only on the following
slow space and time variables, defined such that the time derivative and that term



accounting for advection at the group velocity be both comparable to the viscous
damping term in the amplitude equations (4.5) below,

E=cx, T =¢l, (4.4)

while ™ is also allowed o depend on y,
The complex amplitudes A%, and the mean flow variables, ¥* and [, evolve
according to the following system of coupled amplitude-mean flow equations
AL T v AT = ieag AL, + (ind/L — 2)A°
0
+ il |AT — o | ATHAT + 21/ eyl dy A7, (4.5)
—d
r o=yl oin—d <y <0, (4.6)

rvr ¥¥¥¥ -

with boundary conditions
W =20IATF AT g =8(AT) AT aty =0, (4.7)

¥y
(L= SIf" =+, =0 aly =0, (4.8)
Y=t =0 aty =—d. (4.9)

These cquations and boundary conditions are oblaincd substituting (3.1)-(3.2), (3.5)-
(3.6), (4.1)—{4.4) and {Vreew, fesw) = (0.0) into (2.13), and the resulting expressions
mto (2.2) (2.4), and applying solvability conditions associated with those resonant
terms that cither depend on the short time variable as ¢/-* (harmonic surface waves)
or are independent of the short time variable (mean flow). This is involved and
requires us also to consider the solution in regions (a) and (d), as done for modulated
I"araday waves (which also involve parametric forcing) by Lapuerta et al. (2002); see
also Vega, Knobloch & Martel (2001} for a more detailed denivation of (4.5) (4.9) in
a more general setting. It follows that the group velocity and the coeflicients wy, o
and o, are

_@'(1) (14257 38

v, =w (1) =(1+28)/2, w= > g ER {4.10a, )
38 % —38 2 4+ 38

= 4y = . 410c,d

S T R i YO (410c. )

These are plotted vs. & in figure 3. Note that o, diverges at 5§ = 1/3, where a second-
order internal resonance takes place, and the coefficient of & vanishes at S5 = 1,
where capillarily can no longer be ignored. We avoid these resonances assuming thal

S£L, S4£L (4.11)

The boundary conditions at the lateral walls are
Al =A' +da ate =41, (4.12)

i5 2 2i Y,
At + A =F (11:) - / Wl dy (A A )
e ] s
f|A+\2(_a1A++a3A’)+L|A7|l(_a3A++a1A’) at%':ii, {(4.13)

Uy Uy

L
Wm =204 P |A'P) aly =06 = +L, /A.f’"(:s.r)dis=0, (4.14a.b)
JoL
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where the re-scaled lorcing amplitude & and container length £ arc defined as

o A

L =¢k. (4.15)

i =
‘T'he spatial detuning § and the cocllicient &y arc

§ =L —u(S) {mod2m), &S, d)= G () FHTd - %ﬂ} + G4 S), (4.16)
where the quantity H(wc) is given in (3.9} and the quantities «, G and G, are given
in (A 11) in Appendix A and ar¢ plotted vs, §1n figurc 4.

The boundary condition (4.12) at & = L (that at & = —I follows by reflection
symmetry) results from matching conditions with the solution in region (¢), caleulated
in Appendix A. This boundary condition accounts for wave reflection (the term AL
on the right-hand side) and forcing at the lateral walls (the term @,4). The boundary
condition (4.13) must be imposcd because sinee we arc including dispersion, (4.5)
is second order in £, As explained by Martel e al. (2003) (see also Martel & Vega
1996), the appropriate additional boundary condition 15 the compatibility condition
for the hyperbolic equations obtained when dispersion is ignored, which in our case
is precisely (4.13). Hquation (4.14a) at & = +1 imposes no net mass flux across the



lateral sidewalls. To explain this, we must take into account that mass is transported
by the mean flow with the so-called mass-transport (or Lagrangian) velocity, whose
horizontal component, #™, is obtaincd by adding the Stokes drill (o the Eulerian
velocity considered above, —y?". Using standard formulae (Batchelor 1967), we obtain

u™ = _t,’f;'l _ 4(‘/1\ |Z _ |A |1)CZY- (417)

Equation (4.14q¢) is obtained by simply imposing j‘dd widy = 0 at £ = +L (and
neglecting e ¢, which 1s small). Equation (4.14h) results from volume conservation.

The remainder of this scction is devotled 1o the analysis of (4.5)-(4.9) and (4.12)-
(4.14). TTowever, some remarks on these are now in order.

(i) We are including a higher-order term in (4.5), namely that term proportional
to Age, which is due to dispersion and is responsible for short-wave instabilities, see
below.

{(ii) There 1s an additional requirement for the validity of the ¢xpansion above,
namely that v, # /(1 — S} (= the phase velocity of some slowly varying internal
waves associated with the mean fow, see Appendix C) or, using (4.10), that

VAT o6d 1 d
5 .

(iii) Equations (4.5) (4.9) and (4.12) (4.14) are invariant under the following action,
which rcsults from the refllection symmetry (2.9),

S+ (4.18)

&- 5 7&;, A* > A*, ,l'b,m 5 7&,”!. (4.19)

{(iv) The counterpart of the amplitude cquation (4.5) lor the liquid bridge geometry
in the lincar approximation |AZ| ~ & < 1 (the mean flow can be neglected in this
limit} was considered by Nicolas, Rivas & Vega (1998), with quite good comparison
with exact solutions.

4.1. Reflection-symmelric steady stales

The reflection-symmetric (invariant under (4.19) steady states of (4.5) (4.9) and
(4.12)-(4.14) build thc primary branch of solutions, and can be writlen as

AT = RTe?  with R™(&) = RT(=£), 07{(&) =0T(=£). (4.20a )

Non-symmetric steady states can be calculated in a similar manner, but they appear
only in bifurcations from the primary branch, see below.
Integration of (4.6)—(4.14) yields

B (22 + 1)y —2d

" d3 (v +dPI(RTY = (R, (4.21)
o 6(2d° + D[(R ¥ —(R')?]
o d(l—9) (4.22)

Note that the surface waves produce a non-zcro steady-surface deflection (which could
be obtained integrating {4.22) and imposing that f =0 at & = +1L). Thig is related
to the so-called vibroequilibria (Gavrilyuk et af. 2004),but in a more general setting
(the viscous mean flow is usuvally ignored in vibroequilibria analyses, but affects the
quantitative value of f* here). Substituting (4.20) (4.22) into (4.5), and neglecting



both ¢){e)-terms and (e 2%)-terms, we obtain
$UEREL = _2Ri~

Fot = L 4R =R P £ AliRT — RV

Rt = R7e® 4 @i atE =41,

where
Ad* — 8d* + 3
gy — 7 4.2
o 53 (4.23)
Intcgration of these ¢cquations mvoking (4.20b, ¢) yiclds
R- = Ryexp(£2(¢ F L)/u,). (4.24)
oo _ g, 06 _ ot AOREXDIEHE T L)/uy) + oo + ART exp(FA(E £ 1)/v)
) 4 ’
(4.25)

where Ry and & are given by the following equations, which are obtained upon
substitution of (4.22) (4.25) into (4.12),

sin(ty, — &7 — 8) — exp(—4L/u,) sinfty — & +8) = 0, (4.26)
cos(ty — @7 —8) —exp(—4L /v ) cos(ty — @7 + 8) = ‘pR—‘j’, (4.27)
with
O — kig i (o, + Pojexp(£4L/v,) : (e + Bo) eXp($4i/vg]_ (4.28)
Multiplying (4.26) by itself and replacing (4.27), we eliminate 0. It follows that
i\’ \ o s .
(R—u) =1—2exp(—4L/v,)cos(@] — @5 + 28} + exp(—8L /v, ). (4.29)

where @ — @, is readily oblained invoking (4.28),

. J U] — U2
8y — 6y =R 7

Substituting (4.30) into {4.29), we obtain the curves plotied in figure 5, which yield the
size of the steady state, measured by Ry = |A=(+L)| (see (4.20) and (4.24)) in terms
of the (rescaled) forcing amplitude. The shape of AL is given by (4.24) and depends
only on S (through v,) and L (see figure 6). Note that:

(i) These curves arc gencrally multiply S-shaped, showing infinilcly many
multiplicity intervals for increasing & (in fact, & = a/ /e < 1/ /¢ is bounded and
only a finite number of these multiplicity intervals apply for a given value of & < 1).
This is not surprising since multiplicity must be expected in horizontally vibrated
containers owing to the interplay between detuning and nonlinearity (see the simpler
ODE dcscription by Milecs 1984 of horizontlal vibrations in a shorl container). Here,
in our large container, as & increases (Ry is also increased) the effective detuning
&y — &, varies repeatedly on the interval [0, 2x], owing to mismatch between the
container length and the wavelength of the effective surface waves (which depends
on Ry, see (4.30)). Each such excursion gives a new multiplicity interval.

(1 —cxp(—8L/v,)). (4.30)
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HGURE 6. Amplitudes, |A (&) /|A+(_f,)\ =expl+2(& + i)/vg), of the reflection symmetric
steady states of (4.5)-(4.9) for § =05 (v, =1l)and L =0.1 (- ), 1 {(——) and 10 (——-).

(ii) Cubic nonlingarity appears in (4.53) only if

@y F

(431)

as we assumc hercinafler; if ¢y = o2, then higher (quintic-)order tcrms must be

considered.

(iii) The results depend quantitatively on the detuning 8, which changes by a4 O(1)-
amount under small relative variations of ¢ither I, 4 or § (see (2.1), (2.8) and (4.16)

above and recall that L = 1).



(iv} As a general comment, multiplicity is enhanced by decreasing L =eL 111 fact:
(a) If Iis large, the response curve in figure 5 becomes the straight line Rg ~ @i,
and the solution is unique unless Ry ~ exp(2L/ v, ) or larger. Also (see (4.24_)_),

cach counterpropagating wave vanishes exponentially cxcept in a boundary layer,
of O(1)- ]ength near the lateral wall v\here this wave is created (see figure 6).
(b If 1 is small, (4.30) yields & ~ 2o — u1)LRU/b3 Replacing this into
(4.29), we obtain

CIJI&

— ~2
Ry

({Xl —(.{'g]iRé

v ¢

sin + 4 (4.32)

il (o) — ag)IAJR(;/Ug +4 #= 0, (mod 2x), while il (e — Q‘g)iRé/[Jg + 5 ~mn [or
some integer s, then we have

&4 161.2 ML RE
a (1607 (e maalRE o (4.33)
kg Ug Uy

These cxpressions show that the response curve ¢xhibils ifinitcly many, lairly
wide, multiplicity intervals in this limit. The first multlplmlty interval (m = 0)
15 obtained as (¢, — uq)LR + dlju, ~ L <« 1, and gives & ~ L. The steady
state in this limit is such that the amplitudes of the counterpropagating waves
vary only slightly with the horizontal coordinate (see figure 6). Thus |[A' |~ |A |
cverywhere and the harmonic wave is almost a standing wave.
{v} The response curves in figure 5 are independent of the parameter £, which
bears the effect of the mean tflow. This parameter does affect stability, which is
considered next.

4.2. Linear stability: harmonic instahilities

Lot (AL ™, ™)y = (A= ¢™, £™) be a reflection symmetric steady state of (4.5)-(4.9)
and (4.12)—(4.14), given by {(4.20)—(4.22), (4.24) and (4.25). We st

AT A:L - A:L[(ai +b:]ci‘.r +(a” *bi]czf], }

‘ ‘ 4.34
Pt =T e, M- = FT o 39

and linearize, to obtain the linear problem (C1) (C7) in Appendix C, which is
invariant undcr the [ollowing actions, resulting from (4.19),

Eo &, aeoat, bVreobt ¥ Y (4.35)
Eo—E a e —a ., bPre—bt, Fo-F (4.36)

Figenmaodes invariant under (4.35) and (4.36) will be called reflection symmetric and
antisymmetric, respectively. Also, we must distinguish between long- and short-wave
instabilitics, which cxhibit wavclengths of orders O(1) and O{s~'/2), 1espectively.
The diflerence between both is that dispersion (namely, the term iswgAge 0 (4.3))
can be neglected for long-wave instabilities, but plays an essential role in short-
wave instabilities. Distinction between symmetric and antisymmetric modes is not
essential for short-wave instabilities. Both instabilities are numerically analysed in
Appendix C.

In arder to present the results in a simple way, and to attempt to classify the possible
situations, we first note that the llnednzed stability equations (C 1) (C7) depend on
the steady state through A7 (1) = R*(I) = Ry (a good measure of the basic steady
stuate since for each Ry there is only one steady state as 4 is varied, see figure 5) and
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Fraure 7. Marginal inslabilily curves Ry vs. @D‘ —& 28 lord =3, i= 058 =0,and (a) S =
0,(b) 0.2, () 0.5, {d) 0.8, (¢, /) 0.9. (cf. figure 5), associated with SW (), LWSS (———), LWAS
(——-), LWSO {(—=), and LWAQI(— ). 'T'he diagram is 2rn-pericdic. 'T'he straight thick solid
line (—) corresponds to the basic reflection-symmetric steady state obtained for § = 0, and
must be translated to the left by an amount 28 if 8§ & 0.

ANDA (Ly=0'(Ly—0 (L) = & —®, +26 (given by (4.30)). Thus, for fixed values
of L, d and S, the marginal instability curves (real part of 2 = 0) can be plotted in the
plane Ry vs. @ — &5 +24, and are 27-periodic in &) — &5 +28. Some representative
examples are given in figure 7, where the straight thick line corresponds to the steady
statc obtaincd for § = O and must be translated (o the left by an amount 26 as the
detuning & is varied. According to (4.29)—(4.30), the slope of this straight line depends
on @ — oy (plotted in figure 3), and is positive except in the interval 0.21 < § < 1/3.
The remaining lines in figure 7 correspond to the most dangerous instabilities of the
various kinds, as indicated in the caption. The long-wave symmetric stationary {LWSS)
mstability (thick dashed ling) corresponds (o the (urning points of the response curves
in figure 5, which yield the end-points of the multiplicity intervals. The remaining
instabilities are either short wave (SW), which are always oscillatory, or long wave,
which in turn can be either antisymmetric—stationary (LWARS), symmetric—ascillatory
(LWS0), or antisymmetric oscillatory (LWACQ). LWAS instability vields bifurcation



(@) 5 (55
4 4
3 3
RS
2 2
1 1
0 1 2 3 4 5 ] 1 2 3 4 5
a i

FIGURE 8. Responsc curves R7 vs. & for I.=05.d=235=05and (a) § =0.25, (h) 04,

1o non-rellection symmetric steady states, which, invoking (4.1), corrgspond (o non-
symmetric pairs of periodic counterpropagating waves of the system. SW, LWSO
and LWAQ instabilities instead lead to more complex patterns consisting of pairs of
counterpropagating quasi-periodic waves, which can be either reflection symmetric or
not. With all these in mind, figure 7 yields the marginal instability points indicated in
the response curves in figure 5.

{i) The stability diagram for & = 0.5 in figure 7 exhibits all the five instabilities
mentioned above. The thick straight line intersects first the SW instability line, which
is thus the relevant instability, as indicated in ligure 5, As § 18 incrcascd, the straight
line moves to the left and the nature of the instability changes. For instance, if
0.20 < & « 0.36, the first instability is TWAQ, whereas 10 18 LWSO 1n the interval
0.36 = § = 1.11. In the interval 0.20 < § « 0.475, there are three instability points,
which give two disjoint instability intervals, bounded by two LW and one SW
instability points; two examples are plotted in figure 8 that differ only in the nature of
the lowcest instability point, which is cithcr LWSO or LWAO, the remaining (wo being
LWAQ and SW. At § = (.36, a competition between LWS0O and LWAQ instabilities
occurs that should give rich dynamics, as are to be expected near § = 2.11, where a
competition belween two SW instabilitics (with dilferent wavenumbers) occurs. Nole
that there are two additional codimension-two points, at 5 = 1.11 and 2.72, where
SW-LWS0 and SW-LWAS inlcractions occur,

{ii} T'or the remaining four values of § in figure 7, the stability propertics of the
steady states in figure 3 are obtained in a similar manner. Again, the nature of the in-
stability changes [or varying 8. Lot us just point outl that for § = 0.2 and 0.8 the
response curve exhibits infinitely many digjoint stability intervals, which for § = 0.8
are interspersed with the multiplicity intervals (¢f. figure 5).

I'rom the results described above, we may outling the following conclusions.

1. As Ry increases, the first instability can be either short wave or long wave, and
in the Iatter casc, it can be cither steady or oscillatory, and can cither prescrve or
break reflection symmetry, depending on the values of the various parameters (i_. d,
S and §).

2. The stability properties depend on the detuning § {compare the two plots in
figure 8), which (as indicated in remark (iii) in §4.1) is quite sensitive to L, d and S.

3. As cxaplained in Appendix C.2, the appearance of SW instabilitics depend on the
sign of wedy. I ogry > 0 and is not numerically small (which occurs in the interval
1/3 < 8 <« 3\;@/ 2—2, see figure 18 with 4 = 3), the SW instability sets in for moderate
values of RE ~ 1 and thus competes with the long-wave instabilities, This is the case
for 8§ = 0.5 figure 7. If ooy > 0 is numerically small (which oceurs in the intervals
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HIGURE 9. Asin figure 7 for S=0.3,8 =0. (a) L =0.5,d = 10; () 0.01, 3.

D85 «1-— ‘\,"3/2 and 0.82 « § < 1 it d = 3, see figure 18), then SW instabilities
do appear for large R, This occurs in figure 7 for § = 0 and 0.9. If wpd; < 0 (in the
intervals 1 — \/3/2 < § « 1/3 and 3./2/2 —2 < § < 0.82 (see figure 18 with d = 3),
then SW instability curves are either above other long-wave instability curves or are
abscnt, as in the plots for $ = 0.2 and 0.8 in figurc 7.

4. Although we have assumed that # is only logarithmically large, the results above
remain valid also for larger values of d provided that < L;if d ~ L or larger, then
the amplitude equations {4.5) stand, but the viscous mean flow is no longer parallel
and & -denivatives must be added in (4.7) (4.9). If 1 <« 4 < L, then LWAS instability
appears as B3 ~ d~' (or invoking (4.29) as & ~ d~'/%); this is because sinee || ~ 4,
that term accounting for coupling to the mean flow becomes of the same order as
viscous damping in this limit. This 15 illustrated in figure 9(a). Short-wave instabilities
can appear too (depending on the sign of v, see figure 18}, but require much larger
valucs of the forcing amplitude.

3. As L < 1, the marginal instability curves in figure 7 are such that R; ~ 1, which
means that & ~ 1 (see (4.32)), except near some minima, at & — &, +28 ~ 0, T (mod
2n). where & ~ L (sec (4.33)). Thus, the instability curves (figurc 94) shows quilc steep
tongues near certain resonance values of the detuning 4, where resonant sloshing
modes are excited. In fact, near these resonant values of detuning, the amplitude
cqualions above reduce Lo a cubic complex QDE, which is similar (o that derived by
Miles (1984) for horizontally vibrated containers.

5. Subharmonic instability; subharmonic surface waves

Asin §3, the analysis below does not require the assumption that . 3 4. The OBI'
considered in §3 produces an oscillatory normal pressure gradient (see (3.7)) at the
frce surface, which is appropriate (through nonlincar intcraction with the rec-surlace
glevation) to parametrically excite subharmonic waves near the free surface. This
parametric excitation is standard; the only difference with the Faraday system (Miles
& TTenderson 1990; Trauve 1995) is that now the oscillatory pressure gradient at the
free surface is not uniform and thus produces a non-uniform forcing term in the ampli-
tude cquation (namcly, the last tcrm in (5.3)). In this scction, we obtain the threshold
value of the forcing amplitude « for the excitation of these waves, which affect region
(b) (figure 1), producing an oscillatory tlow such that (cf. (4.1) (4.2))

fSSH" — Cu/Z I:BAC\(I}'+5/I.:\1 + chfwlﬁﬁsff.),r} doc ,

- llz‘uci"” [B+Ci(IE+3/I.)r o chfi[f'AS,U,]x] NI

(3.1
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Figure 10. The wavenumber lor subharmonic waves & in terms ol the
capillary—gravity balance parameter S.

where the spatLal detuning § is defined below, in (5.6), and the wavenumber & and the

eigenfunction ¥ are given by (Vega et al. 2001 and references therein)

. ~q o gk
(1-Sk+Sk=5 ¥="+. (5.2)
2k '
A plot of k ss. S is given in figure 10. Tor simplicity, we ignore at the moment both
the harmonic surface waves and the mean flow, whose effect is not essential and will
be discussed m § 3.3,

To the linear approximation relevant here, the complex amplitudes BT are given

by the following amplitude equations and boundary conditions, obtained in Appen-
dices A.2 and B (cf. (4.3), (4.12)),

Bf ¥ BY =(—d +i5/A)B- + ag({)B in—A < < A, (5.3)
Bf=B% al{=+A4, (5.4)
in terms of the scaled time variable T = t/(%,4), the scaled space coordinate ¢, and
the aspect ratio A defined in (3.2). The scaled damping rate d, group velocity ,,
forcing amplitude 4, and spatial detuning 8, and the function ¢ are
b, =aw'(k)=1—S+35k, d=2&%%d/8,. d=akd/v,. (5.5)
sinh[(2n + 1)rg /2]
+ TYcosh|(2n + 1mA /2]’

S 7ol A
= kL —a(2SE ) (mod2m),  g(g) = - Z:; o (5.6)

where 4 has been calculated using (2.12), the quantity « is again as plotted vs. § in
figure 3, and the function g is as plotted in figure 11. Equation {(5.3) is a balance
bctween incriia, propagation at the group velocitly, viscous dissipation, spatial deluning
and parametric forcing, As always happens with parametrically excited waves (Tauve
1995), these waves appear upon destabilization of the trivial solution of (5.3)-(5.4),
B~ = B~ = 0. The instability threshold is obtained seeking non-trivial marginal
maodes of the form

B= = Bc™  Byo ¥, (5.7)

where BF and B[ are given by
i@BT F By = (—d +18/A)BT +ag(()BT in—A < < A, (5.8)
BB F B, = —(d +18/A)B] + ag(0)B] in—A < < A, (5.9)

Bf =B, Bf =B ati{=+A. (5.10)
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Figure 11. The real function g defined in (5.6) for A =05 (———), 1 (- -)},and 5 (), and

its asymptotic form & ( Jas A — o, in the lateral region near & = A, given by (5.11).
Mole thal al A = 5, g is almost indistinguishable [rom ils asymplotic value.
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Fisure 12, Rescaled instability threshold & = akd /%, vs. § for d = 2k%ed /5, =0.1,0.5,1,2,3
(as d inereases, the instabilily curve maoves upwards). The curves are (n/2)-periodic in 8.
(a) A =0.5,(bh) 2.

g is odd (see (5.6)), this problem is invariant under the actions
(¢. Bf, BY) — (¢, Bj.—BT), (¢. Bf, BY) — (—¢,—BF.BY), and (&, Bf. BY) —
(—é&, BY. BT). 'The solutions must be also invariant under these actions, which
invoking (5.1} and (5.7) means that the associated patterns are retlection symmetric
(namcly, foswi(C, 1) = fesw(—¢, —1)). The problem (5.8)-(5.10) 18 solved numcrically, to
obtain the marginal instability curves & us. 3, plotted in figure 12 and the shapes of | Boi|
and | B plotied in figurc 13, for various valucs ofd and A. Note that the mstability
curve is reflection symmetric around bath & = 0 and & = n/4, which results from the
symmetries (5, By, Bi") — (=4, B{", By) and (8, By, B{-) — (n/2 — &, + Byedint/CA)
T BFfe =My and also implies that it is (n/2)-periodic. In fact, the curve is a sequence
of tongues as usual in ( H()quet problems dppﬁdrmg in) pdl‘dmt‘.tl‘l(.d]l} excited systems
(Fauve 1995), whosc minima for varying 4 is attained at § = n/4 (mod n/2). As
expected, either decreasing the damping ratio o or mcreasmg the aspect ratio A
has a destabilizing effect. In fact, the analysis above can be simplified in the limit
A — oo, but this requires us to consider two distinguished regimes, 4 ~ 1 and
d ~ A ' < 1, which is done in the next two subsections; note that if 4 ~ 1, then

Since the function g
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Fisure 13, The amplitudes #5(¢)| and |B]i(§) uvs. £ /A for the harmonic waves given by
(5.8) (5.10) for § =0 and (d, A) = (1. 1) | 1 (1100 ( Jand (0.1, 10y ( + ). Because of
the symmetries of the problem, (i) only the region ¢ = 0 need be plotted. (i) (B]. B/ ) and
(B, . B, ) are interchangeable, and (iii) because § =0 and @ =0, B; and B[ are all real.

activity is concentrated ncar the lateral walls, whercas the waves penctrate into the
bulk if A ~d ! 1.

51. The limit A — o, d ~ 1
In this limit, the effect of the detuning § vanishes at leading order and (5.8) and (5.9}
coincide, which implics that BT =~ BF. Also, these vanish cxponeniially cxcept in
two (1)-lateral regions near ¢ = + A, which become decoupled and show a similar
structure. In these regions, the Nunction g appearing in {5.9)-(5.10) behaves as

(e

4 Z exp[(2n + Dini /2]

) =+G({) with{ =+ A, G=— 5.11
g(6) =+G() with ¢ =4¢ : P 1 (5.11)
(the function G is plotted in figure 11), and B, ~ B arc given by
i@y F By = —dBy +aG()B) in— o< <0, (5.12)
Bf =0 as¢{ — —x, By =B; ati=0. (5.13)

The following asvmplotic behaviour results noting that G(7) ~ (4/m)e™/ as  — —oo
. 45 Ce.ﬁ—io:;+J+n/3}E

B ~ ot pro~

224 + 1/2)

where € is an arbitrary constant. Using this, we can integrate numerically (5.12)-
(5.13), to obtain that this problem possesses non-trivial solutions along the marginal
instability curve (associated with a stcady instabilily, & = 0), @ vs. 4. ploticd with a
solid line in figure 14. In order to check the approximation in this section, we also
plot the cxact marginal instability curves, as calculated from (35.8)—(5.10), rescaled in
terms of 4 = a’l?d/ﬁg. Note that the approximation is quite good even for A = 2, and
that & — /4 as d — 0. However, the limit d — 0 is singular because (sce (5.14)) if
d =0, then B does not vanish at the edge of the lateral regions. This leads us to the
[ollowing limil.

as & — —uo, (5.14)

5.2. The limit A — oo, dA = O(1)

Now, the solution at the edge of the lateral regions na longer vanishes, and thus the
solution outside these regions, in a region called the bulk region is generally non-zero.
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Fraurg 14, Rescaled instability threshold amplitude [or subharmonic waves & = akd /T, vs.
the rescaled damping ratio d = 2k°ed /¥, in the limit A — o, d ~ 1. As calculated from (3.12),
(5.13) and (5.14) (—): and as calculated from (5.8)~(5.10) (with A = im) for A =2 and § =0
(———) n/8 (——)und =/4 ().

3.2, The lateral regions: £ — A ~ 1
In these regions ¢ = +¢ — A ~ 1 and (5.8)-(5.10) lead to (cf. (5.12)(5.13))

:LB(-’L; B _aG(E)B(T’ jrB]:: = _ﬁG(E)BT in —o < E < ), (5.15)
By =B;. B =8' al{=0, |8 |8|bounded as { — —=. (5.16)

where we have taken into account that d ~ & ~ 1/A < 1. This problem is readily
solved in closed form in terms of two arbitrary constants, €, and €, as

B = Cycos (ﬁfl(_?(z)dz) + ) sin (&fl(_}(z)dz) , (5.17)
{ {

B = C cos (ﬁ f | G(Z)dz) + g sin (ﬁ f | (_}(Z)dz) . (5.18)
{ {

Since jf{ Glz)dz = (8/”*)Y._o(2n + 1) > =1, we have By = Cycosd + € sind and
B = Cicosd + Cysind as { — —oo or, eliminating the constants € and €|,

By = B +ana(B; + B)), Bf=BtiandB; + BHasi > —o,  (519)
which gives the boundary condition at ¢ = +A in (5.21) below.
3.2.2. The bulk vegion: £ ~ A
[Tere, the function g vanishes exponentially, and (3.8) and (3.10) become
By F By, =(—d +i8/A)By, iwB! ¥ B, = —~(d+i8/A)B], (3.20)
n —A < ¢ < A, with boundary conditions
- =B8] tanalBt +B'). B =B twndlBy +B)) al¢=+4, (521)

which result from matching conditions with the solutions in the lateral regions,
calculated above. Integration of (5.20) yields By = Dyexp|iio+d—id/A)| and B% =
Dy exp|Hiw+d +i5/A)¢]. Substituting these into (5.21), we obtain the following
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FiGuri 15. Rescaled instability threshold amplitude for subharmenic waves & = akd /7, vs.
the spalial detuning & for 2dA =0.1,0.5,1 and 2 (the curves move upwards as 2d A increasces)
in the limit A — %, dA ~ 1. As calculated from (5.24) (—): as calculated from (5.81-(3.10)
for A =4(———)and A =10 (——). Because of the symmetries indicated in connection with
figure 12, we plot only that part of the curve for 0 < § < n/4.

homaogencous system of lincar cquations [or the micgration constants £ and £y
sinh(d A 4 iwA —i8) Dy — tand sinh{d A + 1w A + 151D, = 0, (5.22)
T v ¥ . . .
tand cosh(d A + 1A — 18} — cosh{d A + 1A +18)0, = (.

This exhibits a non-zere solution provided that the following pair of real equations
hold

(1 —tan’d)cos 2@Asinh2dA = 0.

. . . (5.23)
{1 —tan” d)sin 2 A cosh2d A = (1 4 lan” &) sin 28,
which yields the following instability threshold
sin28 2 1 _
cos2i — M0 e P 0 4142, ). (5.24)
cosh 2d A 2A

This provides, for varving m, infinitely many tongues (completely similar to those
obtained in the Taraday system at quite small viscosity, Miles & Tlenderson 1990),
which exhibit the symmetries indicated in the caption of figure 15, where the instability
threshold 1s plotied with a solid line. In order to check the approximaltion in this
section, we also plot the exact marginal instability curves (calculated from (5.8)-
(5.10), with 2 = iew) for A = 4 and 10. Note that the approximation is quite good for
2dA = 0.1 {cven for A = 4) and worsens as 2dA increascs.

For quite small damping, as dA — 0, (5.24) exhibits the asymptotic form 24 ~
/2 =25 if |8 —m/d| ~ 1 or d ~ (dAP +(5 — /4?2 if |§ — n/4| < 1. This latter
cxpression gives, in particular, the following asymplotic cxpression [or the minimum
of the curve in figure 15 (attained at § = m/4)

a~dA. (5.25)

5.3. Effects of the harmonic surface waves and the mean flow

ITarmonic¢ surface waves and the mean flow considered in §4 have been ignored in
the analysis of subharmonic surface waves. They add new terms to the amplitude
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FIGURE 16. Regimes for competition of harmonic and subharmonic instabilities in the plane
sL vs. ed: Oy (6d <€ ¢L < 1), 11 (either ed < ¢L ~ 1 or ¢L “» | and Jed exp(2¢L fv,) < 1)),
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NA (either ed ~ ¢L or ¢d 3 ¢L) the analysis of harmonic instabilities above is nol applicable.

cquations (5.3) which must be rewritien as (cl. (4.5))

B T BE = (—d +i8/A)B + ag(0)B'

. — T - . 21':2 v jam
itelATF b adaTEEE 1 [ et 520
v, S
where (A', A , ™) is a reflection symmetric steady state of (4.5) (4.9), (4.12) (4.14),
calculated in §4.1, and the coefficients o3 ~ 1 and vy ~ 1 are both real. Now, as
happens in Faraday waves (Higuera et al. 2002), the last term is eliminated replacing

2;(‘:2 ¢ el .
- / / 027;-"1!1;?‘ dvde],
b, Jo S g

which lcaves the boundary conditions (3.4) invariant., A similar variable change of
the form B+ — Brexp|f£ikt(c)], with di=(¢)/di = —(w3|AT? 4 ws|AT|?), eliminates
the effect of the harmonic surface waves from (5.26), but does affect the boundary
conditions. We note that because A~(¢) = A (=) we have (¢} = h (—¢), and
replacing B= — B= exp[+iht(¢) T ide/A], with § = —[h'(A) + ]k (A)]/2) leaves the
boundary conditions {5.4) invariant, but corrects the spatial detuning as § — § — 8.
This correction depends on the coefficients ¢y and w4, whose calculation is outside the
scope of this paper, and only produces a4 horizontal shift in the marginal mstability
curves obtained in §§5 and 5.2 and plotted in figures 12 and 15; those in §5.1 instead
are independent of detuning.

B — BZexp {1’

6. Competition between harmonic and subharmonic instabilities

Let us now compare the harmonic and subharmonic instahilities considered above,
in §84.2 and 5, to elucidate which one is to appear first for each set of values of
the parameters &, d and I (satistying {2.10), which leads to four different regimes,
depending only on the parameters ¢L and ed, as schematically plotted in figure 16.
These are illustrated with four possible cxperiments (figurc 17) in an Earth laboratory
(g =108 ecms2) using either a silicone oil such as that used by Kudrolli & Gollub
(1997), with v=0.1cm’s !, o =27 dyn ecm ! and p=0.85gcm °, or water, with
v=0.01cm’s !, o =72.4dvnem~" and p =1 g em=. The plots in figure 17 give only
the most dangerous instability (namely, the basic reflection-symmetric harmonic pair
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Ficurt 17. Marginal instability curves o' {in c¢m) vs. ' (in rads ') for water in a
container with (a) depth ¢ =1.78cm und horizontal length 21" =10.7cm, and (b) d* =7em
and 2L'=2.3 x 10%em; and silicone oil with {¢) & =0.534cm and 2L'=5.34em, and
(d)d'=1.78cm and 2L" = 10.7 ¢ 'Thick solid lines correspond to the subharmonic mstability
and the remaining lines to the various harmonic instabilities, as indicated in the caption of
figure 7. These experimental conditions are such that all assumptions in the paper are fulfilled.
In particular, the slenderness of the system 2L /o' is always larger than 6, and the number of
surface wave wavelengths, 2L" /(2rn¢7) is at least 6. The plotted curves are associated with those
instabilitics with the smallest [orcing amplitude; when the response curve exhibits mulliplicity,
associaled wilth the LWSS instabilily (cusped curve with thick dashed line), the remaining
plotted curves correspond to instabilities along the lowest branch on the response curve,

of surface waves 18 unstable above the curve in figure 17) and are obtained using
the non-dimensionalization delined at the beginning of §2 and (he stability results
§84.2 and 3. Because of the effect of harmonic surface waves on the subharmonic
instability mentionced in § 5.3, a horizontal shilt of the curve plotted with a solid line
is possible that has not been calculated above and must be taken into account when
trying quantitative comparison with experiments.

Wc must distinguish three cascs.

(i) Wed < el €1 (region €y in figure 16), then both harmonic and subharmanic
instabilities do appear for quite small values of a, along some resonance tongues
whose minima correspond to different forcing frequencies. As explained at the end
of §4, harmonic instabilities generally oceur as 4 ~ 1, except near the minima of the
LWSS tongucs, where & ~ L < 1, and as cxplained n § 5, subharmonic instabilitics
generally require that & ~ ad ~ 1, except near the minima, where & ~ ad ~ I.=cl.
Thus, either harmonic or subharmonic instabilities can appear first, depending on
the forcing frequency. An example of a marginal instability curve (4" vs. @") in
this regiom is ploted in figure 17(a), which does give a point in region ¢ because
{ed. eL) ~ (0.011,0.034); this 15 obtaincd (for @' ~ 80rads™") using (2.1} and (2.8),
which gives #° ~ 0.27cm, § ~ 0.5, e ~ 000017, d = d47/8 ~ 6.6, L = L7/ ~ 198,
Note that the most dangerous instability is 2 harmonic long-wave symmetric steady
instability {which corresponds to the first instability limit, see §4.2), except in the
interval 81.5 = «" < 84.8, where it is 4 harmonic short-wave instability, and in two



intervals (which are 75.2 < " < 78.5 and 864 < " < 888 but can be shifted
horizontally, recall our comment above) where it is subharmonic.

(ii) If ed € ¢l ~ | (region H in figure 16) then harmonic instabilities appear as
a=e""a ~d"" (sec (4.33) and figures 7 and 9a), and subharmonic instabilitics
are triggered as @ ~ ad ~ 1 (see (5.6) and figures 12, 14 and 15). Thus, harmonic
mstabilities appear first in this region. The marginal instability curves a” os. @" for a
case in this region is ploted in figure 17(F) (now " ~ 20.8 rads~', and using {2.1) and
(28), " ~23em, S~ 0.014, e ~ 91 x 10 >, d=d"/8" ~3.04, L = L' /" ~ 5 x 10;
thus (ed.eL) = (2.8 % 107, 0.45) and we arc in fact in rcgion H), Note that the
length of the system is unrealistically large (2. = 2.3 10*cm) in this experiment,
which has been included here only to illustrate that points in region H do exist. This
is because in order to obtain points in region I1, an extremely small value of ¢ is
necessary, which according to (2.8) (2.10) means that the length of the system must
be exiremely large (or viscosily extremely small), For not so small values of £, regions
Cy and C; overlap and region Il disappears. In order to illustrate this, we consider
the response curve in figure 17(c), in which @" ~ 95rads '. Using (2.1) and (2.8),
we oblain £° ~ 0.18¢m, § ~ (0.5, & ~0.03, and d =d"/¢" ~ 3, L = L"/¢" ~ 15,
Thus (ed, L) = (0.09, 0.45), which formally corresponds to region H. In this response
curve mnstead harmonic and subharmonic instabalitics compete, which corresponds 1o
region C» and formally requires that 7 be large (see below). Note that the response
of the system in this experiment is qualitatively similar to that in figure 17(a), the
main diflcrence being that the resonance (ongucs are not so sleep.,

(iii) If L > 1, then harmonic instabilitics require that & ~ d Y2exp(2eL/v,).
Subharmonic instabilitics instcad do appear as soon as & ~ ad ~ 1, as ¢cxplained in
§5.1. Thus, we must distinguish three cases.

(i) If V’Hexp(z(@L /vg) < 1, then harmonic instabilities dominate, which corres-
ponds to region 1. As above, we have been unable to obtain experimental
conditions in this limit, cxcepl for unrcalistically large lengths of the containcr.
{iiy Tf \,»"Qexp(lel,/ug) ~ 1 (region ) then both harmonic and subharmonic
instabilities compete. For the sake of brevity, we do not give an experimental
pomt in this region, where responsce curves are similar (o that in figure 17(c).
(iii) T6 \Jed exp(2el./v,) 3 1 (region 8) then subharmonic instabilities do appear
first. See figure 17(d) for a marginal instability curve in this region, in which since
@ ~ 100 rad s, we obtain that #" ~ 0.18em, § ~ 0.5, 6 ~ 0.03, d =" /8" ~ 10,
L =L/ ~ 297 Thus {¢d, L) = (0.3,0.9) and ¢L is not large. In fact, the
cxperimental conditions in fligure 17{d) havc been chosen Lo illustrate that L
need not be too large in order to be in this region, provided that ed i3 not too
small. This is again because, as indicated above, regions € and €5 overlap (and
region IT disappears) unless & is extremely small.

Summarizing the results:

1. "T'he regimes indicaled in figure 16 were oblained [rom asymplotic considerations
that apply as ¢ — 0 and must be reconsidered for small but fixed . In fact, in
realistic experimental conditions, region H disappears and we have only two regions.
Namcly, for lixed d/L < 1, il ¢L is smaller thal a critical valuc, then a competition
between harmonic and subharmonic instabilities occurs, while for larger values of e L
subharmonic instabilitics dominaltc for all frequencics.

2. The experimental conditions in figure 17(a, o, ) (figure 175 has only an academic
value) have been chosen such that the only difference between figures 17(a) and 17{d)
1s Lthe liquid (same containcr, similar vibrating [requencics) and the only dillerence
between figure 17(c) and 17(d) (same liquid, similar vibrating frequencies) is the size



of the container, and show that increasing either viscosity or the size of the container
favours subharmonic instahbilitics in their competition with harmonic instabilities; of
COUTSC, ICreasing viscosily requires larger vibrating amplitudes (compare lgures 17(a)
and 17(c)), but increasing the size of the container has only a slight effect on the
vibrating amplitude threshold.

3. Increasing the vibrating frequency increases both ed = d* /(e 27*) and ¢l =
L /{w"£"), which means that the point moves in the diagram in figure 16 towards
region 8. Thus, mereasing o lavours subharmonic instabilitics. 'This ¢can be seen in
figures 17(¢) and 17(d), but is not further illustrated with a much larger increase of
the lorcing [requency because the capillary—gravity balance paramcter S (sce (2.8))
approaches 1 quite quickly as »" is increased, and & must not be too close to 1 for
the analysis above of harmonic waves to be valid (surface tension etfects have been
neglected in the description of the mean (low), ‘The lor¢ing lrequency must not, also,
be too small, to avoid £* being too large, which would vielate the assumption that
both L=L"/" > 1landd =d"/¢ > 1.

7. Concluding remarks

We have analyscd (the modulated harmonic and subharmonic surface waves thal
appear in a large nearly inviscid two-dimensional container subject to horizontal
vibration. This has required us to consider an oscillatory bulk flow (QOBE, never
considered bhefore to our knowledge) and a viscous mean tlow (VMTI, already
considered for Faraday waves).

As cxpected, the system  always cxhibits a pair of  refllection-symmeltric
counterpropagating harmonic surface waves that are produced by the vibrating lateral
walls. The outgoing wave produced at cach wall propagates (and decreases by viscous
dissipation as it travels) towards the other wall, where it is reflected. TTarmonic waves
were analysed in §4, where a system of CAMF cquations were derived that includes
the effects of both the VMIT produced by the waves and (implicitly) that of the
OBE. The former exhibits its own dynamics, which are coupled to the dynamics of
the surfacc waves; the latier 18 decoupled and produces that (crm proportional to
;i in {4.16), which is in fact dominant when # is large. The CAMT equations are
not simple, but we claim that they provide the correet weakly nonlingar cvolution of
harmonic waves, which are steady states of these equations, The primary branch of
reflection-symmetric steady states (such as those plotted in figure 6) shows multiplicity
([igures 5 and 8) as soon as nonlincar cllcets come into play, In fact, many {inlinitcly
many, asymptotically) overlapping multiplicity intervals are possible, but only the first
few are relevant hecause these steady states generally become unstable as the forcing
amplitude is increased. Linear stability against harmonic perturbations has been
analysed in 4.2, where we encountered both long-wave and short-wave instabilities
(figurcs 7 and 9), depending on whether the associated length scale is of the order
of the viscous length or the dispersive length. Short-wave instabilities are always
oscillatory and reflection symmetric, but long-wave instabilities can be either steady
or oscillatory, and either reflection symmetric or antisymmetric,

Subharmonic waves are the relevant ones in vertically vibrated containers, but
arc nol so obviously cxpected at low amplitude under horizontal vibrations (both
subharmonic and superharmonic modes are to be expected in the fully nonlinear
regime, for large vibrating amplitude, but this is a different story). We have uncovered
the mechanism for the generation of these waves at high frequency, which should
also explain the appearance in related systems. Let us remark that subharmonic



waves have been experimentally observed in vibrated sessile drops (Vukasinovic,
Smith & Glezer 2007) at high vibrating frequency (as compared to the first natural
cigenlrequency of the sysiem), where they have been seen 1o be dominant cxcept [or
quite small vibrating amplitudes, in accordance with our results. The key ingredient
in the generation of subharmonic waves 1s the OBF, which produces an oscillatory
normal pressure gradient on the free surface, which is much higher than that produced
by the harmonic surface waves. Once the mechanism to excite these waves was clear,
we ook into account that they are exciied by a paramciric nstability, il the lorging
amplitude exceeds a threshold value. This has been calculated in §5 in the various
dilferent regimes that must be considered, depending on the comparative valucs of
the container length and depth, and the viscous length (see figures 12, 14 and 15). This
required only a linear analysis; the associated weakly nonlinear description would be
the counterpart of that in §4, but is well beyond the scope of the paper. In order to
clarify the essential part of the analysis, we ignored the effects of both the harmonic
waves and the mean flow in the calculation of the subharmonic instability threshold.
As explained in § 3.3, the former produces only a shift in detuning and the latter has
no effect.

The results m §84 and 3 have been wsed 1in §6 10 clucidale whether harmonic
or subharmonic instabilities appear first, depending on the comparative values of
the length and width of the container. The four theoretically possible different
regimes for sufficiently small viscosity (figure 16) have been reduced to two in
realistic experimental conditions: if both a tremendously high horizontal length of
the container and an unrcalistically small viscosity (for ordimary liquids, not flor
example, 11Te or liquid-vapour CQO,, see Gonzalez-Vidas & Salam 1994) are to be
avoided. We have seen that cither harmonic and subharmonic instabilitics compete
or subharmonic instabilities dominate, the latter being always the case (somewhat
surprisingly) as cither the container size or the vibraling (requency are increascd.

The results in this paper help to understand the basic issues concerning the initial
development of harmonic and subharmonic waves excited by horizontal vibrations
in large containers, but lcave open several points, In particular, the weakly nonlincar
response of subharmonic waves would give more insights into the dyvnamics of these
waves beyond threshold. The various resonances thal have been avoided (sce (4.11),
(4.18) and (4.31}) assuming generic conditions could give interesting results too. We
hope that the analysis in this paper will stimulate experimental work on this system,
which is lacking today, in spilc of the fact that it constitulces a basic uid configuration
that exhibits quite rich dynamics.

This rcscarch was partially supportcd by the National Acronautics and Space
Administration {Grant NNC04GA47G) and the Spanish Ministry of Tducation
(Grants MTM2004-03808 and MTM2004-05796-C02).

Appendix A. Wave reflection and forcing in region (¢)
We consider harmonic and subharmonic waves separately.

AL Reflection and forcing of harmonic waves
In region (¢) (see figure 1) we use the variables

A

$=A—x. P=—vyv. ¢ =ve"+ecc, f=Ffe+ce. (A1)



to rewrite {2.2a), (2.3a.c) and (2.5b) as

1,?{,;‘;. + t?f}@;, mo«<x<ow 0ai<aw, (A2)
if + i = (1= )i = Shes —ity =0 at§ =0, (A3)
by =—af2, F=0 ati=0 (A4)
7 diverges at most logarithmically as & — o, (A5)

where the last condition results [rom matching conditions with the solution in region
(h). As in Nicolas er al. (1998), this problem is solved via sine- and cosine-Fourier
transforms as

L O Gy [ e Sin(ki)db
b+

4 - e G
=4+ Cli + Casinfe? — o - - ;
o 1 2 HI(SY o 1 — (1 — S — S&3

a /“ :.J—f'i* |sin(k%) - ks J_(}i‘c A6)
o B —{1 =5k — 8SK3
N Cr+C [ keos(kx)dk
fF=C+ Cieosk + i / < =
Hi(S) Jy 1-(1—S)k— Sk
a /* _leostkd) — 11k A7)
Tto k[l —(1— 8k — Sk
where ) and €3 are arbitrary constants and
= hdk
HL(S) = — / e s
Jo 1 —{1—5% — 5&°
S S § — 52 5
(2+ Yool ' [8//4S — 87 In — (AS)
(112545 5 21+28)
Here, we have taken into account that 0 < § =< 1. As ¥ — oo, (A7) becomes
N R O = TCSiI'lh T s8in %
=+ Creosd  — 2= Hy(S AS
f |+ Cacos i+ HS) 1+2% { 1+2%+y+ (S (A9)
where ¢ ~ 0.577 is the Euler constant and
" 1 1 N
Hg(\) = / (A ~ . T =& ~ ) dk
Jo k[l—(l—.fs‘)k—._%‘kﬂ k(1 + k)
—SIns 201 —8)/Scot™! /S/Ed = s*j _
n n ( )/ Scot™ /57 . 0. (A10)

T 1423 (1+25)\4 5

We need only apply maltching conditions with the outer solution, given by (2.13)
(setting foew = fime = O) (3.6). (3.7} and (4.1) to obtain (4.12), with

48
S —tan ! | Alla
a{S) = tan L] +2:;)nl(sJ ’ (Alla)

s
G(S) = _ _ 2 _ , (A 11h)

(1 + 5)/165% + (1 + 281 Hy(SY?
(1 + 2YL ()R + 25(y — I15(S))

(L + 8)4/1682 + (1 + 2S5V H (5)*

G5 = (A ll¢)




where we have taken into account that 77,{8) = (0. These three functions are plotted
in figure 4. Water wave reflection at a lateral wall was comsidered by Hocking (1987).
A2, Reflection of subharmonic waves
The only differences with the analysis above are that now a = 0 and e’ must be
replaced by ¢ in (A 1), which requires replacing i by i/2 in (A 3) and a by 0 in
(A 4). Alternatively, we can use the new variables and parameters
F=Fi, Y=k} ¢ =2kp. I=20S, (A12)

to obtain (A 2)-(A 5) up to notation. Then, the counterpart of (A 9) with o = 0 yields
the boundary condition (5.4), with the detuning 3 as defined in (5.6).

Appendix B. Derivation of the amplitude equation (5.3)

The derivation of those terms {proportional to B;—r and B%) accounting for transport
al the group velocity and viscous damping is standard, as cxplained in connection
with {4.5). Thus, we concentrate in the derivation of the last term on the right-hand
side (in particular, of the function ¢) that accounts for parametric forcing. To this
end, we use the fast and slow time variables 1 and 1 = td, replace x = di, eplace
(cf. (5.1} and note that the spatial detuning § can be set to zero)

fosw =(B +ab B + PR (B LaBB 46 B e,
Urgsy = (Q)UB' + a@i’lf_ﬂ +-- _)Ciw‘z-f?xy _ (‘}:'L)B + a@’lB - _)Ci(r,‘z E,\-y] +c.

into (2.2a) (with £2 = (), (2.3a) and (2.4), and equate to zero the coeflicients of
aB 249 The following cquations and boundary conditions result

'fﬂ”—Elefl =0 m—oo < y<0, (B1)
S — kB = —Kelt) — SRyrlc.0), (B2)
ik(1 — 8+ SEXHF, — %i@ly = %Eg + —;i(ﬂg(@', 0). (B3)
g =0 aty = —an. (B 4)

Here, we have taken into account that 'ffo(()) =1/ 2k) {(see (5.2)) and the boundary
condition {2.4), which to the approximation relevant here can also be written as

(1 - S)fl - Sj;mx - ‘lijl + ‘w.\xff + 11%(!]2 - ‘l/f.\ 710'1.\ + wy‘wxy - 0. (B 5)

as obtained by substituting (2.2)—(2.3) into (2.4} and neglecting cubic terms. Note that
this boundary condition must be imposed at the boundary, while (B 3) applies at the
cdge of the viscous boundary layer (region (4) in figurc 1), bul that the lelt-hand side
of (B 5) 1s continuous across region (d), and thus can be calculated using the solution
in rcgion (b). Also, since we arc ignoring both viscous damping and the cflcct of the
group velocity, we have set 3B-/3¢ = 0 and & = 0. The houndary condition {3 4)
results from matching with the solution in region (a).

Now, the function g is obtained imposing that this problem is solvable. Integrating
(B 1) and imposing {B4), we oblain ¥ = ¢** up (o a constant [actor. Replacing this
and the dispersion relation (5.2a) into (B 3), we obtain

2lt) = (4.0, (B6)

and we need only invoke (3.5), to obtain the expression for ¢ quoted in (5.6).



Appendix C. Linear stability of the reflection symmetric steady states

Perturbing around a reflection-symmetric steady state of (4.5) (4.9) and (4.12) (4.14)
as indicated in (4.34), and lincarizing, we obtain the following lincar problem

Aat F v = ieogb, (Cn
0

b= Fubp = leagag + 21(or|A et —oalA] e ) £ Zi/ e, dy, (C2)
. —d

AWy, =Wy m—d <y <0 (C3)

W, = 16(|ATPa™ — AT Pa™), W —AF =4(|ATFa™ — AT a7,
W, — AW, +{(1 =S)Fe =0 aty =0, (C4)
W=w, =0 aty=-d, (C3)

A(a=+b) =A@ +b") = A= —b) = A (a” —b') =0,
[AF(a= +07)]e + (AT (a7 + 8TV = Kia' + Kob™ + Ksa™ + Kib~ + K f W dy,

7!1’

[;\;(a* —b-)]e -I—AS' {a' =B} = Kot —KobhT+ Ko™ — Kb + K5/ .ezylfly dv
W(y =0) = 4|A Pa™ — |ATPat)at & = +1, (C6)
i
/ P(E)dg =0, 7
J—L

where the complex [unctions K; = K;(&) nced not be caleulated.

C.1. Long-wave instahilities
We set & = 0 in (C1) (C2) and ignore the last two boundary conditions in (C 6).
Steady instabilities (4 = 0) allow us to solve (C 1)—(C 7) in ¢losed form, to obtain the
following marginal instability curves

R dlcos(@y — &, + 28) —cosh 43/1&,] (©8)
"7 oy — e[l —exp(—8L/v ] sin(@7 — @, + 25) )
R Heos(®F — @, + 28) + coshalfv,] (©9)

- (o 4+ oa +4d — 8+ 3/d3)[1 —exp(—8i/‘ug)] sin(@ — €, +28)

[or reflection symmetric and antisymmetric modces, respectively.
Tior oscillatory instabilities (2. % 0), (C 1) can be readily solved to abtain

- = r&e:»‘:f,e’:i}/vg_ (C 10)
Substituting this into (C3)C 5), we obtlain a lincar problem that is solved as
(W, F) = Riry (W, Fo)oxp (4 + A + L)/vg)
+ Rérg (—Wy, Fy)exp (—(4+ A& — L)/v,)
+r (W Foexp(pE) +r, (8, Fiyexp (—pé), (C11)

where ¥, ¥, (which depend on y), £, and #; (which arc consiant) arc calculated in
closed form, but their fairly involved expressions are omitted here. We just point out
that thosc tcrms proportional o - represent slowly varying internal waves associated
with the mean flow, and exhibit a dispersion relation

(1 — S}’ [ Ad — tanh(/ad)] = 227 (C12)



Substituting (C 11} into {C2) (with & = 0), and integrating this latter equation, we
obtain

bt = r expla( + L)/v,) + Thri& exp((4+ A)E + L)/v,)
+ Hard exp(T{4+ D(E + L)/ vg)+ HorT oxp(dpd) + H r exp(Tpg), (C13)

where the closed-form expressions for the coefficients Hj, ..., Hs are again omitted.
Substituting (C 13), (C10) and (C 11} into the boundary conditions (C6) and (C7a)
gives a2 homogeneous system of six linear equations in the six unknowns, r(;—r, ;qi
and r;-. Imposing that this system possesses non-trivial solutions provides a complex
equation that determines the growth rate /7 for each set of values of the parameters.
Imposing that X be purely imaginary, we obtain the marginal instability curves plotted
in figurcs 7 and 9.
C.2. Short-wave instabilities

Now we look for slowly modulated waves whose [requency and wavenumber arc both
large. Thus, the quotient of these two quantities (the phase velocity) must coincide

with the group velocity at leading order. It turns out that these waves and the
cigenvalue 4 can be writlen as

(a®, b%) = (ag, b eTEEE + 0 Je). (C14)
(Qp‘ F) — ((p0+‘ FOV)CiKé"’I\rE#» (lpui, FCTlefin;'/'s

) (g, D EENE S (g 1)e VI Sle (C15)

A=iu K/ e+ 1+ 0(J8) (C16)

where those terms proportional to ;- represent the slowly varying internal waves that
also appeared in (C11), and we have taken into account that according to ((C12),
=il A1 — 8)d as A — oo, Note that these miernal waves do not aflect the surlace
waves at leading order (namely, no O{1)-terms proportional to r1i appear on the
right-hand side of (C 14}). As a consequence, the internal waves will not play any role
in the stability analysis below; they would be nceded only o impose the boundary
condition {C 6¢). Substituting these into (C1) {(C3), (C4b, ¢), (CSa) and (C 6a. b), we
oblain

W= /(1 = 8)d(y +d). (C17)
and
21@5{ + l)gaé = —ia@KEE%. (C18)
0
by F ughty = <ok ay + 2ey|AF Fay L 2i f g dy, (C19)
Vi =0 In—d <y <0, (C20)
i F oo Fy = F4|AT a5 oW (1= =0 aty =0, (C21)
WE=0 aty=d (C22)
A(ag +b7) = AT{a, +b; JeTHKLSE
A N S . (C23)
At(ad —bH) = Al(af — b )KL atE = 41

ITere, we are ignoring two oscillatory boundary layers, of O{e'/*)-thicknesses, attached
to the free surface and the bottom plate, and two lateral regions attached to the lateral
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walls, and only impose inviscid boundary conditions. Also, we are not imposing the
boundary wnditiun (C6c), which would be needed only o determine the gomplt.,x
constants r. The spatial detuning 2K 1 £/ z can be eliminated upon replacing af —

ay LK EE 7 ynd Al ALt 1KL/\€ which does not change the ’stdblllt} pmpertles
also, antisymmetric modes (um into symmetric ones replacing af — aFc™/N) and
A — A+ 111/(21,)_ Thus, we can replace (C 23) by

Allar + 85 = Ala] +0), AMaF —b3Y= Al{a] —hy) at& =+, (C24)
and consider only symmetric modes. Now, integration of (C20)-{C22) vields

_ —du A et A1 - AL (v + dag
F= = gle%s .Y = S N 025
T ey 3 s (C25)

Substituting this into (C'19) and using the cxpression of AL in (4.20) (with Ry given
by (4.24)), we obtain

A bo F ugbog —en K7+ 28 Ru exp|EdE T I ]/ug]}rzo {C26)

where
2(1 —5)
b= — — 7. 27
! - Syd — 2 ( )
Note that F7, &t and &, diverge as (1 — S)d = vé, but this point has heen excluded
from the analysis, see (4.18). Equation {C27) in conjunction with (C18) and the
boundary conditions (C 24) delecrmines the cigenvalue A;. Since (C 26) has variablce
coefficients, this problem must be solved numerically, to obtain the results plotted in
figurcs 7 and 9. 'These numerical results show that if the product aqéy (which is plotied
in figure 18 for several representative values of ) is positive, then the instability sets
in as Ry increases.

C2.1, The limit Ry — =

Let us rewrile the problem as lollows. Since we arc only considering symmelric
maodes, we set

al§) = ag (&) = ag(=§). blE) = bi(E) = by (—£) = ald)V(E), (C23)



to rewrite (C 18} and {C 26} as

vea’ = (A +iegK?V)a. (C29)
0,V = A KUV — 1)+ 28  RE exp(dE — L)/v,)]. (C30)
Also, the boundary conditions (C24) vicld, aller some algcbra,
1+ V(L 1+ V(=L
+—(A) :exp(—Qi(@g—@J—zrﬁ'))L), (C31)
1—-Vv(I) 1—V(-L)
1+ V(L . i i
;() =exp(—i@; — 0y —28) —4L/‘ug)a( = '). (C32)
1+ V(—L) a(l)

where @7 and @, arc given by (4.28), The sccond condition invoking (C 29) leads (o
the following expression for the eigenvalue 7,

v | T C 1+ Vil L
h=-2— % ey —6f —25)+ / ViEYde +In—— 1|, (C33
1 5 o o ) e (&)d& L1 viD) )

where V is calculated numerically from (C30)-(C 31). Now, we take the limit
[VIi~Ry>» 1. K~1 (C34)
in (C 30), in which
=20k Reexp(2(L — &) /o). (C39)
oK

This expression applics cxcepl in two boundary layers near & = +1, which arc
required to satisfy the houndary condition (C 31). Substituting this into (C33), we
obtain

Vo~ —

0K Ry fan@(1 — exp(—4L fv,))

4.
which shows that these small scales are destabilizing for sufficiently large Ry if
apéty = (L Thus, il @gd@; > 0, then the steady stale is unstable for sullicicntly large R,
for arbitrary values of the remaining parameters. If instead andy exhibits the opposite
sign, then the right-hand side of (C36) is purcly imaginary and we do not come Lo
any conglusion from the analysis above; the calculation of the real part of 4; would
require us to consider higher-order terms. Note that the mstahility is enhanced by
mncreasing cither opdy o1 R,

. (C36)

A =
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