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A weakly nonlincar analysis of one-dimensional viscous Faraday waves in two-
dimensional large-aspect-ratio containers 1s presented. 'The surface wave is coupled
to a viscous long-wave mean flow that is slaved to the free-surface deformation. The
relevant Ginzburg-Landau-like amplitude cquations arc derived [rom first principles,
and can be of three different types, depending on the ratio between wavelength, depth
and the viscous length. These three equations arc new in the context of Faraday
waves, The cocllicients of these cquations are calculated for arbitrary viscosily and
compared with their counterparts in the literature tor small viscosity; a discrepancy
in the cubic cocllicient 18 duc 1o a dramatic sensitivity of this coellicient on a
small wavenumber shift due to interplay between viscous effects and parametric
forcing.

1. Introduction

Faraday waves (Faraday 1831; Raylcigh 1%83) arc paramctrically cxciled on the
fluid surface upon vertical vibration of the container when the forcing amplitude
exceeds 4 frequency-dependent threshold value (Fauve 1995). Beyond this threshold,
these waves cxhibit a Tairly intcresting spatio-tcmporal behaviour (Miles & Henderson
1990; Cross & Tlohenberg 1993), especially at large aspect ratio (Douady, Tauve &
Thual 1989; Kudrolli & Gollub 1997; Wesira, Binks & van dc Waler 2003).
Unfortunately, several issues remain unsolved, especially (but not only) in coannection
with the associated mean flow, which appears when either (i) viscous effects are
wcak, or (11) the aspeet ratio is large. Casc (i) involves a streaming flow produccd
by averaged viscous stresses in oscillatory boundary layers, which requires a fairly
involved analysis, already performed in various hmiting cases, at both moderate
(ITiguera, Vega & Knobloch 2002: Martin, Martel & Vega 2002) and large aspect
ratio (Vega, Knobloch & Martel 2001; Lapuerta, Martel & Vega 2002; Vega &
Knobloch 2003). "This papcr 1s concerned with casc (1) [or arbilrary viscosily and
can be considered as the weakly nonlinear extension of the linear analysis by Kumar
& Tuckerman (1994). The mean flow in case (ii) is associated with the long wave
deformational modes (see below) and is slaved to the free-surface deformation. This is
in contrast with other mean flows that appear in, for example, strictly inviscid water
waves (Davey & Stewartson 1974), Poiscuille fow (Davey, Hocking & Sicwarlson
1974), and Rayleigh—-Benard convection (Zippelius & Siggia 1982). Most theoretical
studies in the viscous limit (Bever & Friedrich 1995; Miiller et al. 1997; Cerda &
Tirapegui 1998; Mancebo & Vepa 2002) are linear. Nonlingar terms have been
considered in the viscous limit only by Chen & Vifials (1999), who in fact considered
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three-dimensional deep containers, but ignored both spatial modulation and the mean
How,

The main objective of this papcr is (o include these two clfects and calculate the
relevant amplitude equations, including the quantitative calculation of the coeflicients
in the limits of hoth shallow (in §3) and deep (in §4) containers, which lead to
qualitatively dilferent equations, These cquations are new and we claim that they are
the correct amplitude equations. In addition, we shall consider the small-viscosity limit
(in $3.1 and $4.1), 1o comparc the values of the coellicients calculaied in this paper
with previous results in the literature, which had been controversial {ITansen &
Alstrom 1997). The results compare quite well with asymptotic caleulations by
Manccbo & Vega (2004), who included some subtle cllects at small viscosity that lead
to O(1)-corrections in the coefficients and have not been considered before. This will
complctely close a long-standing ¢controversy concerning the calculation of the cubic
coefficient in deep containers; a similar analysis in shallow containers remains to be
done. Section 3 gives some concluding remarks concerning the scope and consequences
of the main results. For illustration, the cocMicients of the amplitude cquations will be
calculated in some experimental conditions taken from some experiments on Faraday
waves in the literature o conclude that all the limits considered in this paper arc
experimentally accessible.

2. Formulation

In order (o clanly the rolc of the mcan Oow, we consider the restricled (wo-
dimensional case: a laterally unbounded fluid layer with periodic boundary conditions.
This is a model of a three-dimensional annular containcr whosc width is small
compared to length, but large compared to both depth and the wavelength of the
excited surface waves. In this case, radial modulations and the effects of both the
curvaturc of the annulus and the inner and outer walls (Benjamin & Scott 1979;
Benjamin & Graham-Tiagle 1985) are expected to be small,

We consider a horizontal Quid layer (figure 1) of unperturbed depth 47 and length
L”, which is vibrating vertically with an amplitude & and a frequency 2o", We use
a Cartesian coordinate system with the y =0 axis at the unperturbed free surface,
and non-dimensionalizc length and time with (v/w®)'? and 1/@*, respectively, where
v is the kinematic viscosity. The governing equations and boundary conditions are
obtained from the standard vclocity—pressure formulation (Batchclor 1967) using
the streamfunction ¢ defined such that the velocity (i, v) = (=, ¥,). the vorticity
§2, and the free-surfuace elevation f. The definition of vorticity and the momentum
cqualions lcad to

Yoty =2, 2,2+ 2, =2,+82, m-—d<y<f (2.1)



The boundary conditions at the free surface,
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account for the equilibrium of normal stresses, kinematic compatibility and free
tangential stress, respectively. No slip at the bottom, hornizontal periodicity and
volume conscrvation vicld
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o=y, =0 aly=d, (2.3)

(dr, QW x4+ L,y () ={r, 2Wx,y,0), flx+L. 0= f(x. 1), /fdx-() (2.4)

The resulting problem depends on the depth 4, the length L, the forcing amplitude «,
the gravitational paramcicr %, and the surface iension parameier &7, delined as
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where g 18 the acceleration due to gravity, ¢ is the surface tension, and p is the
density, We shall perform a long-wave weakly nonlincar analysis, which requires that
the aspect ratio be large and the forcing amplitude be appropriately close to its
threshold value ., namely

L>d kL>1, |o—al<a. (2.6)

where a, and k. are calculated from the problem obtained upon lingarization in (2.1}
(2.4} around the quiescent flat state 2 = =0, f = O If we seek normal modes of
the form (v, §2, Fy={(to(». 1), $26(y. 1), fo(tHc™, with £ L7, then we oblain

‘l,ff'ow —quﬂf(] = Q(], QQ, = ‘QUW — kzﬂo in —d < ¥ < 0, (27)
k(G + Sk [y — throy — Hak fy cos 20 — 3k, + oy = D,} (28)
Jor — 1kt = oy, + kg =0 at y =0, o

'(/J‘U == ({i"U}; = D at ¥y = —d. (2.9)
The marginal modes {non-trivial periodic solutions) are calculated by a numerically
chcap method (Kumar & Tuckcrman 1994), These solutions exist only along somce
marginal instability curves, « vs. k, such as those plotted in figure 2{a), which
correspond to a Flogquet multiplier equal to either 1 (labelled harmonic, H) or —1
(subharmonic, 5). Since instability scts i above the marginal instability curves, the
absolute minimum of these curves vields the amplitude instability threshold in infinite
domains, a,, allained al a wavenumber k.. A plot of 4. ¢s. 42 [or the indicated valucs of
%d* and #d (which are independent of the forcing frequency) is given in figure 2(%).
Assuming that d is not too small, which would require a large forcing amplitude
(ligurc 2b, sce also Manccbo & Vega 2002), the lirst instability is subharmonic and
the eigenfunctions of (2.7) (2.9) are such that

(o, $20) (¥, 1 + ®) = —{(tho, 200y, 1), folr + 1) = — filt); (2.10)
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Figure 2. Linear stability of the flat state in shallow containers for subharmonic (8) and
harmonic {H) modes, as calculated by Mancebo & Vega (2002). («) Marginal instability
curves of [2.7) (2.9) lor ¥=%=d=1. (b} The instability threshold, a, = al{o"/v)'7 s
d* = d"w' fv lor Lthe [ollowing values of 9d? = gd™ /v and 7d = 5d" /(pv?): Gd3=7d =1
(—=): (Ed?, #di=(1,0) (——=); (%4>, #d)=(0, 1} {- ).

thus (‘,"fo, QO) (y’ !+ 21-('] = (tn’,’rO’ QO) (}’, I).~ fO(I + 27[) = fO(r]b and
(o) = ($20)" = {fo) =0, (2.11)

where the (emporal mean value {)* is delined as

1 iz
(g} = — g(1)dr. 2,12
0 =50 [ e (212)
Also, the eigenfunctions can be selected such that
ivg, 182y, fy are real, (2.13)

which means that the mode is a standing wave (SW).

In addition to these SWs, we have a mean tlow that is associated with the long-wave
deformational modes. These exhibit the dispersion relation A = — %4’k /3 4+ O(k*), as
k — O, Thus, they are nearly marginal in large domains (4 is small for small &), and
must be also considered.

3. Low-frequency or shallow layer: k.d ~ 1

Here, we consider the distinguished limit ke~d ~%~F ~ 1, |la —a:| ~L77 <1, in
which we are anticipating the convenient relation between ¢ — . and F. in order that
as many lerms as possible arc of the same order in (3.3) below. We introduce the
rescaled bifurcation parameter 2 and the slow space and time variables £ and 7',

Y=Ia—ua) Ei=L"x, T=L", (3.1)

and seek the following expansions in powers of the small parameter 7.~
(. 22, F) =L A& TV, 20, o)™ +ee ..

(L Y E T, L PR E v T L A FE T ... (32)

where ¢.c. stands hereinafter for the complex conjugate and only the leading-order
terms associated with the surface waves and the mean flow are displayed (cf. (A 3) in



Appendix A). It turns out that the mean tflow is slaved to the free-surface elevation it
produces. (v, $20, fo) and k. are as defined in §2 and the complex amplitude of the
surface waves, A, and the mecan flow varables, W™, 2™ and f™, ar¢ independent of
the short space and time variables x and ¢ (which means that they are slowly varying
in both space and time), and governed by the following coupled amplitude—mean (low
(CAMT) equations, which are derived in Appendix A,

Gd’ 3
AT = (X]Ag_g_ —|—O‘32A + (I3A|A‘2 + a4.fmA‘ . _“”ﬂ” — ij:‘;:?é +ﬂl(‘A|u]éé {33(’1, b)

The various lerms on the right-hand side of (3.32) account lor sideband dilTusion,
departure from the threshold, standard cubic nonlinearity and coupling to the mean
flow; additional terms depending on the derivatives of ¢ are higher order if d
is boundcd (but scc Appendix B), The two crms on the right-hand side of (3.35)
account for the restoring effect of gravity and coupling to the surface waves. The
boundary conditions,

1
AEFLT)=e"AET). f7(6 + L.T) = f(E,T), / Fode =0 (3.4)
1]

result from (2.4) and the spatial detuning § is the mismatch between the basic
wavclength and the length of the domain, namely

8 =k L{mod 2r) with — 7 < § < x. (3.5)

The cocllicients o, ..., a4, and 8, arc all rcal (as could have been anticipated [rom
invariance under the action A — A =complex conjugate of A, which results from
horizontal reflection), and are plotted vs. £° in figure 3 for the indicated values of %d°
and %d. No comparison is possible with previous analyses in the literature because
these coefficients (in particular, o3 and £1) have not been calculated before. Note that
o, and wy are both pasitive; e exhibits both signs, and is negative for large ; when
it is positive (roughly, for 4° < 7 in figure 3), the dynamics are subcritical, namely
the solution cither converges (o the trivial stale A = 7 =0 (when this 1s stablc and
initial conditions are sufficiently small), or diverges for large time. Thus, interesting
dynamics can only occur if ¢z < 0, as we assume hereinafter. The term oy also exhibits
both signs and A, 1s ncgalive.

Considering the generic case in which all coeflicients in (3.3} are non-zero, we
introduce the new variables delined as

172
ed) ’ )

to rewrite {3.3) and (3.4) as

B: = Bys + uB — BIB" —¢:B. ¢ = vidhee — 12(|B ). (3.7a, b)

1
BE+1.7)=¢"BE 7). Gl +1,1)=@E, 1), /q‘)(_é,r)dé’—ﬂ, (3.8)
¢

where the last integral condition is impased only to avoid the spurious symmetry
¢ — ¢ + constant, § is still as defined in (3.5), and

032 %’d’ waf
H = ) Y= : Y2 = 4fl- (3.9)
oy 3oy Gy
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Fraurk 3. The cocllicients e, . .., «y and 8 appearing in (3.3) in lerms ol 42 [or the values of
#d? and %d indicated in the capticn of figure 2; in the semilogarithmic plot (d), ¢, changes
sign at d-~32.3 and is positive on the left-hand side.

Note (figure 4) that 3, > 0, but 3» is negative and fairly large for 4° ~ 1, and positive
and small [or large 4°; the change of sign al @’ ~32.3 is duc Lo the change of sign
of .

The rescaled CAME equations (3.7) have been obtained using symmetry arguments
by Coullet & Tooss (1990) in their analysis of spatially periodic patterns, and by
Matthews & Cox (2000) in their study of a system with a conservation law that
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Ficurl 4. The coefficients of (3.7), 3 and 3| (3» vanishes at ¢~ 32.3, and is positive to the
righl-hand side of this value) in terms of ¢2 lor the values of %4° and #d indicaled in the
caption of figure 2. Only the part of these curves corresponding to negative values of a; is
considered.

is invariant under the @(2) group generated by retlection and translations. We also
have invanance under O(2) and the free-surface elevation is a conserved quantity
because of volume conscrvation (the sccond boundary condition (2.2) can be wrillen
as f, = [y (x, f(x. 1), 1)), ). For this reason (3.7) (3.8) are also obtained in large-aspect-
ratio viscous Mud sysicms with a [ree surface, when a stationary {(or a SW) maode
with a non-zero wavenumber is destabilized, as in Bénard-Marangoni convection
(Golovin, Necpomnyashchy & Pismen 1994),
Nguations (3.7)-(3.8) are invariant under the four actions

§o—f b —h; BB Eobta; BB

for arbitrary constants ¢; and ¢;, which result from the invariance of the original
problem (2.1)-(2.4) undcr O(2), bul gencraic a larger symmcetry group. 'T'he additional
symmetriecs are an artefact of truncation and need not be present at higher order.
Thus they must be interpreted with care (Knobloch 1995).

The simplest stcady states of (3.7)-(3.8) (|B|=conslant) correspond Lo spatially
uniform SWs, which are in branches that bifurcate from the trivial state at g =42,
with §, =4 + 2nm for n =0, 1, £2,.... The hnear stahility of these 1s analysed in
Appendix C and illustrated in figure 5. At the secondary instability points, which can
be either stationary or oscillatory (Appendix C), new branches of steady or periodic
solutions appcar that arc no longer spatially uniform. Further stability propertics of
non-uniform steady states have been analysed by Norbury, Wei & Winter (2002) (in
the limit || 1 and the restricted case § =0, B =real) and by Vega (2005) in the
general case. Summarizing these results, the system exhibits a Lyapunov function if
1 % (0, which means that all bounded solutions converge to steady states for large
time. In fact, all solutions arc boundced i ¥, +9» = 0. I mstead p + 9 < 0, then some
solutions diverge at finite time and most steady states with non-constant amplitude
are unstable (Vega 2005), but the system also exhibits non-uniform steady states that
are exponentially stable (Norbury ef al. 2002). Note (figure 4) that all these cases
aceur in practice.
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FiGure 5. Stable ( ) and unstable | 1 unilorm steady states ol (3.7) (3.8), which

correspond to SWs with spatially constant amplitude (called spatially uniform SWs along
the paper) of the system, for: (a) 1, +12 > 0 and (b) ¥, +y» < 0; all instabilities are stationary if
32 < 0, but some of them can be oscillatory if y» = 0. («) also applies to the amplitude equation
(3.12) with "> — 1.
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Freure 6. The coeflicient 17 appearing in (3.12) vs, 42 =d"w o for Gld = gfid w'?)=3.5

and ¢ /d° = oflpd e ) =0 ( yand 0.5 ( ). As in figure 4, we are only plotting that
parl of the curve corresponding Lo negalive values ol .

3.1. The limit of small viscosity: ¥ > 1, # 1, kd~1

Using the estimates (A 36), (A38), (A39) and (A40) in Appendix A, we obtain
that as cither %3 1 or & 3> 1 viscous cflcels arc weak and & =47 < 1; il in addition
d ~k7' 1, then depth is comparable to wavelength, and the container is not deep (cf.
§4.1). Using the definition (3.9), we obtain readily thal y; ~ ||~ & 23 1. 'Thus, the
two terms on the right-hand side of (3.7%) are both large and two time scales appear
in (3.7) (3.9). In a short time scale T ~d °, the free-surface elevation approaches the
pscudo-sicady-stalc

¢e = (18> — {|B]")), (3.10)

where the spatial mean value ()% and the parameter I” (plotted in figure 6) are



defined as

1
2y E 1 ol —3 :
(1817 —/c Brdz, =2 = oifh (3.11)

W wGdd
Substituting (3.10) into (3.7a), we obtain the following non-local Ginzburg-Landau
(NLGL) equation for the evolution of B in the time scale 7 ~ 1

B, =B +uB—(1 + MIB*B+T{BI"SB, Bt+1,1)=e"BE 1) (3.12)

The non-local term is due to the mean flow and thus has never appeared in previous
analyses of Faraday waves. This is a particular case of a more general NLGL equation
that ¢xhibits complex cocllicicnts and applics in a varicly ol contexts (Martel & Vega
1996 and references therein). The NLGL equation (3.12) also appears with real
coefficients from the outset in the analysis of steady bifurcations of systems involving
non-local terms {e.g. ferromagnetic resonance or current instability, I'lmer 1988),

The simplest steady states of (3.12) with constant |B| (SWs) and their lincar
stability have been analysed (Elmer 1988); sce also Appendix €, where 1t 18 seen
that the bifurcation diagram in figure 5(«) applies. More general SWs have been
considered by Norbury er al. (2002) (restricted case § =0, B = reul, and |x| % 1} and
Vega (2005) {general case). Vega, in particular, shows that all SWs with non-constant
|B| are unstable if I 2 0, which is precisely the case for viscous Faraday waves (see
figure 6), Singe, in addition, the NLGL ¢quation (4.4) ¢xhibits a Lyapunov [unclion,
the large-time dynamics are dominated by the stable spatially uniform SWs,

4. High-frequency or deep layer: k.d > |
We now assume that k. ~1 and 4 3 1. As explaied in Appendix A,

as — 0 exponentially as  k.d — oo (4.1)

Thus, in principle, the surface waves become decoupled from the mean flow in deep
conlaincrs, Howcver, as cxplaincd in Appendix B, the mcan [ow produces a now
term {which is negligible for bounded £.d) in the amplitude equation, which becomes
a non-potential Ginzburg Landau (NPGL) equation, namely (B 6) in Appendix B,
which i3

AT:()'1.4;’:;’:+(132A+U‘3A|A|2+i%}8d(‘fqll)§A, (42)
where @), o and w; are as calculated in Appendix A (with d =22) and o, and
are as calculated in Appendix B. All these are plotted in figure 7 after convenient
rescaling (invoking (A 36) and (A 39)) o oblain O(1)-quanlitics as viscosily gocs Lo
7era,

In the distinguished limit

d

ady
L < (43)

@ —a, ~ L %

gy
{(4.2) can bc rescaled in (crms of the variable B delined in (3.0), as
B, =B, +uB— BB +ivD(B):B. B+ 1,7)=c"8E, 1), (4.4)

where the boundary condition results from the periodicity of the domain, ¥y D ~ 1,

and
Gy .
= ) 4.5
¥ 20s (4.5)
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FIGURE 7. 'I'he various coeflicients in {4.2) and (4.4) rescaled with % and & {according to {4.8),
. and (B8)) as follows: (a) (% + %) Hay, (b) (% + 55 o, {e) (% + G g,
V2o, () (% 4 51 Ny, and () (F + 5 V3, in terms of 7% = ptvie” jo- for

(A39)-1A40
() (& + 5V

fixed values of %,5°% = pPgulfa?. 0 ), 10730, 1072 (- ) 1070 Joand 1 ( ).

The coetlicient y is plotted in figure 7( /). Note that it is always negative and that
lv| 3 1 as assumcd provided that % + &% 1s (cven modcralely) large; sce §4.1. The
NPGL equation (4.4) differs from the standard Ginzburg-TLandau (GL) equation
with real coefficients only in the last term appearing in the right-hand side. This
term docs allcct qualitatively the dynamics becausc it (i) prevents the cxistence of a
Lyapunov function (thus the bounded solutions need not converge to steady states
for large time), and (ii) brcaks a spurious rellection symmetry because the cquation
is only invariant under the actions

£ — —&,

BB, &—k+ce; B—evB, (4.6)
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HGURE 8. Stable {

) and unstable (— — —) spatially uniform SWs of (4.4) for («) 2y D = 1
and (B) 2y Dé < 1.

whilc the real GL cquation is invariant under £ — —£ and B — B scparatcly. Ong of
these symmetries is spurious because the original problem exhibits only one reflection
symmetry, namely v — —x. Also, all solutions of the NI’GL equation are bounded
as T — a0, as seen from the exact relation

1d

s B = =B+ BP) — (B,

where £)% 1s defined in (3.11). This relation is obtained multiplying (4.4) by B, taking
the real part, and proceeding as usual. The vniform steady states of (4.4) correspond
again to spatially uniform SWs and are of the form B =B, =./u — 32 expis,&,
with 8, =48 + 2rn, for n=0,41, 2, .. .. The linear stability of these is analysed in
Appendix C and illustrated in figure 8. Note that:

(i) If 29 0§ = 1, then the wholg [irst branch (n=0) is stablc and thc remaining
branches are stable if 2y D4, < 1 and R, > 2y, {82 — /(1 — 2y D4, and are unstable
otherwise.

(it) T 2y D4 = 1, then the first branch is stable if 0 < Ry < 24/(n° — 87}/ 2y D§ — 1)
and unstable otherwise. The remaining solutions are unstable if either # =0 or if
i< 0 and R, < 24/(m> —§2)/(2y D§ — 1) and stable otherwise. Note that if 0 <8 <=
and y D is sulliciently large, then the first branch is stable only in the close vicinity of
the threshold and there are values of 12 such that no gpatially unitorm SW is stable,
meaning that the large-time dynamics must involve more complex states (at least,
spatially modulatcd SWs).

4.1, Small-viscosity limit: %21, F 3 1, kd > 1
As explained in Appendix A, either % or #!/3 is large in this limit. Since we have
now a deep layer, &.d > 1, the inviscid dispersion (A 37) rclation simplifics (o
koo (% + ki) = 1. (4.7)

Thus, k. ~ky. ~ (% + 1Y) L <1, In order Lo compare with nearly inviscid analyscs
in the literature, we use the parameters defined in (A 38), namely

K. |
[T ek~ ——
(% + 13)°

— T3 . L™ 1, < 1. 4.8
ky S+ & « (48)



According to the estimates {A 39) and (B 8) in Appendixes A and B,

L weogel? . d
=" =L (4.9)
4 g’
which means that the coefficients ¥ and D can be replaced by
B . D
] &=

in (4.5), which is rewritten here for convenience,
B. = By + 1B — BB +ip DB B, B(E +1,1)=c"B(t. 7). (4.11)

Notc that # accounts for the c¢flcet of the mean (low, but f, is just a rescaled
version of the cubic coefficient os;. Now we check the asymptotic values of these two
quantitics calculated in the literature.

The mean low has been considered only by Mancebo & Vega (2004), who calculated
the following asymptotic expression

By~ =2 (4.12)

This approximation is compared with its exact value calculated above in figure 9(a).
Note that the agreement is quite goad for g < 0.003.

Comparison of the rescaled cubic coefficient 8, shows quite good agreement with
the cxact caleulation by Chen & Vidals (1999) for £ =107%, but (1) discrepancics
with all asymptotic results in the literature (figure 9%) because (i) f» shows a extreme
sensitivity on wavenumber at low viscosity, and (ii) all asymptotic caleulations of fa
in the hicrature have been made at the inviscid value of k., k.. These two points
havc been cxplained in a carclul asymplotic analysis by Manccbo & Vega (2004),
who showed that the above-mentioned wavenumber shift, k. — k., has an &(1) effect
on B. In order to illustrate that, we calculate the cubic coefficient B, using the exact
cxpression (A 23) (with j=3 and d =o0) al (a) k=4, and {#) al k=k.; the latler
is denoted as fw. The difference between both is labelled Ay and is plotted ss. S
in figurc %c) for the indicated valucs of &, together with the [ollowing asymplotic
approximation as £ — 0 calculated by Mancebo & Vega (2004)

5 4 2 s 98
—fn = - =1 413
P 1+zs(1+3s 1—35+4) (413)

Note that the agreement is quite good. These results open the question of whether the
former approximalions in the literature (which ignored the wavenumber shift) could
approximate well the cubic coefficient calculated at k.. The answer is again no, as
shown in figure 9{d). Thus there must be additional mistakes in former calculations,
which cannot be safcly used, and we do not have an asymptotic rcsull available [or
Bao. Tlowever, the exact calculation plotted in figure (%) for quite small & can be
taken as a safc mark for any asvmplotic calculation; note that the associated valuc
of & has been checked against independent calculations by Chen & Vinals {1999),
For completeness, we have obtained (by mean squares fit with the exact solution for
& =107, with a maximum rclative crror of 1072) the following cmpirical asymplotic
expression for the rescaled cubic coefiicient

P 1 Lo 6s 4-98 LS4 (4.14)
PTUR0(1—38P 101 —38P T 3(1+28(1-95%) 10 ' 9 '




(@) . (&)
1.5
- S ‘ L
A 10 \V ) ¥
AN
o
}?ﬁ : 1‘,{:/’
0.5 o
0 0.3 1.0
(@ \ @) 10°
20 "\\ .
10 L/
e / /wﬁimm‘ 102
for Y RN - e
-10 v -
! 10} 4
-20 \ - 4
| .
0 0.3 1.0 0 0.3 1.0

hy

Ficure 9. The nonlinear coeflicients (a) By and (5] —p; deflined in (4.9); (¢) the cileel of the

viscous wavenumber shill, —ﬁ'g] ;and (d) —ngU = the valuc ol —Bg calevlated al k=ka. [ )
as given by Lhe asymplolic expressions (4.12), (4.14), (4.13) and (4.15), respeelively; (———) us

calculated in this paper for & =1.25 % 107, 3 % 1073, 5% 1077, and 10~* (the arrows indicate
decreasing values of £); { - ) as calculated by Zhang & Viilals (1997) for & =0, and ()
as caleulated by Hansen & Almstrom (1997) for ¢ — 0 and $ =1, The result for £ =10 * in
(/) is indistinguishable (rom Lhe exact caleulation by Chen & Viflals (1999) (V), which has been
kindly provided Lo us by Peilong Chen. Tn lacl, the cubic cocllicient caleulaled in this paper
is eight times that calculated by Zhang & Vifals (1997), Ilansen & Almstrom (1997), and
Chen & Vifials (1999) owing to differences in the scaling of the eigenfunctions.

This expression has been plotted with a solid line in figure 9(F), and combined with
{(4.13) yields the following expression, which is plotted with a solid ling in figure ),

B =P+ P (4.15)

5. Concluding remarks

The amplitude equations derived above are all new in the context of Taraday waves.
They have been obtained in various limiting cases:

1. For shallow containcrs, the rclevant cquations arc the CAMF cqualions (3.3),
whose coefficients are plotted in figure 3 in terms of the non-dimensional depth in the
interval where the cubic cocilicient «; 18 negative. For smaller valucs of &, a is positive
and the dynamicgs are subcritical. Tn the supercritical case, the amplitude equations
are rewritten in the form (3.7) (3.8), with the coefticients 1+, and 14 as plotted in
figure 4. 'The simplest spatially uniform SWs arc illustrated in the bilurcation diagrams
in figure 5. As explained in § 3, depending on the signs of y; and 3 +34, the solutions of



the amplitude equations can either be bounded for large time or not, either converge
to spatially uniform SWs for large time or not, and either possess asymptotically
stable spatially modulatcd SWs or notl. Note that i v+ 34 > O (which occurs [or large
values of d° in figure 4), all spatially uniform SWs are unstable for large . (figure 35)
and the system ¢xhibits spatially modulated SWs that are stable; but in this casc,
the system also shows solutions that diverge for finite time. It 3, + 34 < 0, the system
always exhibits spatially uniform SWs that are stable (figure 5b) and thus are a priori
the best candidates lor being obscrved at large time.,

2. At small viscosity, the system (3.7) reduces to the NLGL equation {3.12), with
the non-local cocllicient 7 = 0 plotted in figure 6. As cxplamed in § 3.1, the bifurcation
diagram is as that in figure 5{a) and all solutions converge to spatially uniform SWs
for large time.

3. In deep containers and significant viscous cllcets, the cocllicient y» {accounting
for coupling to the mean tlow) in {3.7) converges to zero. [Towever, since depth is
large, the mean flow is stronger and a new coupling effect comes into play that leads
to the NPGL equation (4.2) (or its rescaled version {4.4)). This equation contains a
non-potential term (namely, the last term in (4.2) or (44)) that is small (recall that
D=d/L < 1) unless |y 3 1, which occurs [or (cven moderately) small viscosity, This
term breaks a spurious symmetry and prevents the existence of a Lyapunov function.
Thus, the dynamics are expected to be richer in this case. The spatially uniform SWs
and their linear stability are analysed in Appendix C, and illustrated in figure 8. As
explained in §4, if 0« § < m and D is large (which is casily attained if viscosity is
rcally small, sce §4.1), then there are valugs of g such that no spatially uniform SW 1s
stable, suggesting that the large-time dynamics must include more complex attractors
that spatially uniform SWs.

4. At quite small viscosity, the coefficient y is large and a new scaling applies (see
(4.11)). According (0 (4.9)-(4.10), the rescaled cocllicient # depends on the cocllicients
o and oy (which are associated with the mean flow) and on the ¢ubic coefficient os.
The product of ¢g and ws (in fact, its rescaled version, 5. see (4.9)) is compared (with
satisfactory results) in ligure %(a) with its rescaled asvmptotic value for small viscosity
calculated by Mancebo & Vega (2004); this is the only work in the literature where
mcan lows have been considered in connection with standing Faraday waves. The
cubic coefficient «r; instead has been calculated in various works, with controversial
results, as noted by Hangen & Almstrom (1997), always for small viscosity and deep
containcrs. Comparison with the cxact results by Chen & Vidlals (1999) is quile
good, which was to be expected. Comparison with any other asymptotic results
1s bad bccausc, as cxplained lurther by Manccbo & Vega (2004), all these results
are incorrect. This is because all these analyses have ignored the effect of a shift
of the wavenumber at the threshold owing to the interplay between viscous effects
and paramctric [orcing; this shaft has a @(1) cllect on the numcrical value of the
cubic coefficient. Comparison with the asymptotic expression for this wavenumber
shift in Mancebo & Vega (2004) in figurc 9{¢), is quilc good. Unlortunatcly, the
correct calculation of the cubic coefficient at small viscosity is quite involved and
outside the scope of this paper. In order to check any asymptotic calculation of
this cocilicicnt in the [uture, we give an cxpression (equation (4.14)), obtained by
empirical fit with the exact results for e = 1077, which is exact within O(107%)-relative
SrTOrS.

5. At small viscosity, the equations obtained above are correct immediately after
the threshold. Further departure from the threshold leads to more general equations,
which arc derived and discusscd by Manccbo & Vega (2004),



Experi- 7 v g dar 20" 9 k4 d ke

menl gem ? oom?s ' dynom ' oem Hz

HW 0.9 4.3 10 6 50-110 0.233-0.072 0.096-0.095 36.5-54.1 0.64-0.65
L 1.22 1.02 67.6 029 51-100 0476-0.174 4.06-3.05 3.67-5.12 0.56-0.62
B 0.84 0.25 26.2 1.0 54-137 08450220 [882-12.02 26.4-41.3 0.34-043
K 0835 0.5 27 0.3 42 57 0.90 0.58 784 6.74 491 370 043 047
L 0.8 0.41 30 0.25 532 102 074 020 11.2 797 499 701 041 048
W 089 0.036 18.3 2 20 100 10.33 0.927 374 167 832 18 0.10 017

TariE 1. The values ol the non-dimensional paramelers %, 7 and 4, and the non-dimensional
wavenumber al the threshold [or various experimenlal condilions in the literature:
ITW (Ileffmann & Wolf 1974); L(Udwards 1994; unpublished results that can be found
in, e.g Cerda & lirapegui 1998); B{Bechhoefer ef al. 1993); KG (Kudrolli & Gollub 1997):
L (Lioubashevski, Fineberg & Tuckerman 1997); and W (Westra et al. 2003).

Experiment ¥ —3 —y & R) —% AL
HW = 107 <10 % 3.06-3.02 3.3-431 - - (44)
D 1.44-1.92 925-3.39 - - - - (3.7)
B = 100 <107 18.2-13.9  0.11-0.18 - - (44)
KG 2.90-3.60 283-2.13 - - - - (3.7)
L L.67-2.51 144071 - - - - (3.7)
W = 107 «107*° 194-255  0.0062-0.03 0.184-084 0.0061-0038  (4.11})

TarLE 2. The various cocellicients appearing in the amplitude equations (3.7), (3.7) and (4.11)
lor the experiments deseribed in table 1. AF indicales the amplitude cquation that applics 1o
the experiment.

0. In order to have an idca of the scope of the cquations derived above, we consider
the values of the parameters %, % and 4, and the wavenumber at the threshold in
the experimental conditions quoted in tables 1 and 2, which are discussed below.

(@) The container is shallow (k.d ~ 1) and viscosily is signilicant (% + &# ~ 1} in
the experiments T, KGr and L, in which the CAMI equations (3.7) apply. Note
that v, ~ 32 ~ 1in KG and L, meaning, that the mecan [low and the cubic nonlinga-
rity play similar roles in these cases, whereas y, ~1 but » 31 in T, meaning
that the fundamental nonhinearty is provided by the mean flow in this case.
(#) The container is deep (k. 3 1) and viscous cllects arc signilicant (% + & ~ 1)
in ITW and B, in which the NPGL equation (4.4) applies, with the coefficient y
as given in table 2. Note that —» is (at least somewhat) large in both cases, as
assumed,
(¢} The container is deep and viscosity is small in the experiment W. Thus, (4.11)
applics, with # as indicated in table 2.
(d) As explained at the beginning of §2, it the two-dimensional model above is
to be used as an approximation of an annular container, width must be small
(say, one tenth) compared to length, but large (say, ten times) compared to depth.
This imposes that d/L =4"/L” be of the order of 0.01, which means that:
(1) L™ must be quite large, say 600¢m, in the cxperimental conditions HW.
(i) D=d/L is quite small in the experiments ITW and B, meaning that the
non-potential term in (4.4) is quite small. Thus this equation reduces to the
standard Ginzburg-Landau equation with real coeflicients in these two cases,
which shows trivial dynamics.



(iii) In the experiment W instead #D = ¥y D ~1 and the role of the non-
potential term is significant provided that L7 ~ 200 ¢m.

(iv) In the remaining experiments, in which (3.7) applies, L ~ 100d" takes
rcasonable valucs (ranging [rom 25 (0 30¢m), and 5 18 never small compared
to 3. Thus the mean flow plavs a significant role in these cases.

7. The cubic coefficient «5 appearing in the unscaled amplitude equations (3.3) and
(4.2} is ncgative mn all ¢xperimental conditions in (able 2 and also in the remaining
experiments (which have also heen checked but are not included in table 2 for the
sake of brevily) by Holfman & Woll (1974), Bechhoeler ef al. (1993), Kudrolli &
Gollub (1997), Lioubashevski er al. (1997) and Westra er al. (2003). Positive values of
w3, which lead to a subcntical primary bifurcation never encountered experimentally,
would require ¢ither a more viscous (uid, or a smaller depth (or a lower vibrating
frequency). Some care must be taken when doing this because the primary instability
nced not be subharmonic as cither v is oo large, or d° 1s oo small, or »” is 100 small
(Mancebo & Vega 2002). Note that this subcritical transition appears when viscosity
and depth effects are both significant; detuning instcad plays no role. Thus this 1s of
a completely different nature to the subcritical transition cncounicred at low viscosily
for appropriate signs of detuning (Miles & [lenderson 1390

8. A physical ¢xplanation ol this subcritical (ransition as the lor¢ing [requency
w” — 0 (which vields d — 0, see {2.5)) follows noting that in this limit (¢} time-
denvatives are small (thus the solution follows a pseudo-steady state) and (b) effective
‘pravity’, 2(f" ) =g + 4a’ ™ cos 20", poinls upwards in a part of the period, in
which the Rayleigh-Tavlor instability (Chandrasekhar 1961) comes into play. The
simplest (non-Mat) SWs of the system should approach a non-lal pscudo-sicady state
(associated with the Rayleigh-Taylor instability) in a part of the period and the Hat
state in the remaining part of the period. Thus, existence of non-tlat SWs of the
IFaraday system should require existence of non-flat steady states of the Rayleigh-
Taylor system with an effective gravity . But the primary bifurcation from the flat
stalc Lo non-flat sicady stales in the Rayleigh—"Taylor sysicm is subcritical (Lapucrta,
Mancebo & Vega 2001 and references therein).

9. As indicated al the beginning ol §2, the two-dimensional problem laterally
unbounded layer considered in this paper should describe well, even quantitatively,
Faraday waves in a three-dimensional annular container whose width is small
comparcd to length, but large compared to depth. OF course, the onc-dimensional
Faraday waves considered above can only describe two-dimensional patterns in the
three-dimensional container consisting of rolls oricnted in the radial dircction. Neither
azimuthal rolls nor more complex patterns (e.g. squares, hexagons, quasi-patterns)
can be described by the theory above. Note, that as shown by Zhang & Vifials (1997)
and Chen & Vifials (1999), rolls (instcad of squarcs, hexagons, cic.) are preciscly the
patterns that must be expected at large aspect ratio near the threshold provided that
cither viscosity is nol too small {(without [urther restrictions) or viscosity is small but
capillary effects are sufficiently small compared to gravitational eflects (namely, the
parameter S defined in (4.8) is sufficiently small), and radial rolls are (perpendicular
to the latcral boundarics and thus) the cxpecled oncs lor gencric initial conditions
(see the various pictures involving rolls given by Kudrolli & Gollub 1997).

The analysis in this paper intends o provide a complete quantitative theory of onc-
dimensional standing IFaraday waves in two-dimensional large-aspect-ratio containers,
This 1s a first step to the analysis of three-dimensional large-aspect-ratio containers,
which 1s lacking today. Current three-dimensional theory has always ignored both the
mean flow (the only exception is the phenomenological model in Vega, Riidiger &



Vifials 2003) and finite-depth effects (a toy model has been introduced for shallow
containers by Westra et al. 2003) and thus this theory has been successful only in
cxplaming the first bilurcation at threshold in deep containers (Westra et al. 2003), We
hope that the analysis in this paper will stimmulate further theoretical and experimental
analyscs of Faraday waves in large-aspect-ralio conlaingrs, with special emphasis on
the mean fow, which is necessary to build a correct theory on the wave dynamics
beyond threshold.

This work was partially supported by the National Acronautics and Spacc
Administration Grant NNC04GA47G and the Spanish Ministry of Education Grant
M'TM2004-03808.

Appendix A. Derivation of the CAMF equations (3.3}
Here, we derive the CAMPF equaltions (3.3) that apply m shallow containcrs, namely

Gd’ 4
AT = (X]Ag_g_ —|—O‘32A —|—(1'3A|A‘2 _|_Of4.fmA‘ . _“”ﬂ” — ij:‘;:?é —|—ﬂl(‘/1|”\];5g, (A 1(1, b)

where X, £ and T are as defined in (3.1), namely
Y=1Ya—a) &=1L1"'x, T=L"7%. (A2)
To this end, we expand the solution in powers of the small parameter 7.7, as

(Yr, 2. ) = L Alyrg. 0. fo)e* +coc

+ LA, 200 fin)e® + A2, Quae fra)e™ Fec (0.0, 1™)]

L7 Al 521, i)+ ZAGE. 20, £} + AP A, 25, F)

+ M Ay, 24, jg)]eikc.x-+c.c.+L‘3[(W“. 2", M +NRT] +..., (A3)
where NR1 denoles non-resonant terms, which cither () depend on v as ¢, with
m %= 11, or (b) are independent of x and exhibit a zero temporal mean. Here, we
arc anticipaling the dependence of the various terms on the complex amplitude A
and the variables associated with the mean Hlow, The analysis proceeds in a standard
way, substituting (A 1) (A 3) into (2.1} (2.3), setting to zero the coeflicients of L !,

L. ..., and applying solvability conditions Lo the various cquations that provide
resonant terms, which are either oscillatory (namely, proportional to e=**)} or slowly

varying in x; the latler are associaled with the mean [ow. These two contributlions
are considered in §§ A.1 and A.2 below.,
AL Oscillatory terms: first amplitude equation (3.3)
For convenience, we select the eigenfunction of (2.7) (2.10). (v, £20, fo). such that
1 /EC irfu(f) dr
T |Jy '
In order to apply solvability conditions, we consider the adjoint problem

't,b‘g” — k=20, 82, = 24, — k220 in —d <y <0, (Ada, b)

=1

i
ko (% + Jf’kf) Jo + g, — derck, / Jotyeos2rdr — 3k:f'(/f§y + Yoy = O,

for Hikey = oy, kb =0 aty =0, (A5)



hlfJ — t,r'f(’;y =0 ai y = _d, (‘,\ 6)

where the operator { is defined as

/g(r)dr —/ g(r)dr—</ g(r)dr> . (A7)

with {3 as defined in (2.12). The general solution to (A 4)-(A 6) is

(W (y. ), S20(v. ), f5(O) = (?/ (o, =), $20(y, —1), fo(—T1)) dz, (A 8)

as 1s rcadily seen. For convenience, we seleet the constant ¢ such that

{1 21 Dtd
/ / W 2y dr — / [ikt_ ! (t,r'fr':vw U — 3K2UC) ot l,ffoy] di=1. (A9)
1 b 1 y ) y=0
As a consequence of (2.100—{2.11) and (A 8), we have

(drg. 200y 1+ 1) = —{gg. 250y, 1), fy(F+ 1) =—£1), (A 10)
which implies, in particular, that (v, 25)y. (+21) = (G5, 200y, 1), [ +2n) =
Fo(, and (ygy' = () = Lf5) =0

The O(L™) cocllicients (v2, 215, fi2) and (v, £2)1, f1;) arc given by
Vrioyy — My = 219, 213 = Riope — 28200 + k(Yoo 20 — Y0200 (A11)
in —d < y < 0, with boundary conditions
2ik (G + 47°k)) fio — Yrizw — Blasks fi2 008 20 — 1262410y + Wingyy
=ik (4, + K205) — (Yogsyy + 3KW0) Fo  frz — 2ikoib
= ik oy foWriny + 4oy = — (Vo + SK240,) fo at y =0, (A 12)
frip =z, =0 al y = —d, (A 13)
(Yo, 22} (v, 0 +20) = (dnz. 20y, 0), St +2n) = S0,
which has a unigue solution, and
Yringy — kit = 20 — 2kolo, 201, = 2014y — ko 201 + 2k, 52 (A 14)
in —d < y <0, with boundary conditions
ik, (% 4+ FK2) o — Wiy — Akea frr 08 20 — 3Ky + Yy
= (% + 3kF) fo — Ha, fo cos 2 — k.o,
S — ik = =i, gy, kU = 2kgy aty =0, {A15)
Vi =, =0 at y =—d, (A 16)

(1. 82000 (v, £+ 20) = (gyy, 2000w, 1), Sl +27) = fule), {A17)
which is singular because its homogencous counterpart is (2.7)-(2.9). Tlowever, this
problem is solvable because it exhibits the following particular solution
(A 882 o)

dk. Ok, dk. )’

(W1, 2010 1) = —(drow, . 2ox, for,) (A 18)



which is consistent with the fact that 4. corresponds to the minimum of the marginal

instability curve, @ vs. k (figure 2a). The (L *) coeflicients in (A 3) are given by
Yiv —kotr; =2, — Hij. 2, =82, — k12, — ;2 + Hy; (A 194, b)

in —d < v < 0, with boundary conditions

ikc (rjj + ank(z) fj — I,f'ijz — 4](’1thf\j Ccos 21 — 3},{211',ij + t,f'ijyy = t['f()y + f’n‘3j(f),

T —ikt; = —a; o+ hij gy —|—k:fl,ffj =hy; oAt y =10, {A20)
W=y, =0 aty=—d, (A21)
(W, 82; 0y, ¢+ 21) = (r;, 82,0y, 1) fi(t +2m) = fil1). (A 22)
for j=1,...,4, where the functions H,;, Hy;, hy;, ha; and hs; arc given by
Hyy = =2k e + o, Hoyy = —2k.82 + S0,y = Wy, By = —2kn + .
By = i{4a,co82t — G —35k) fi1 + 31Fk fy + 6kfriny — 3¢y,
Hi:=H»=0. hpy=hn=0, hy =4k, fycos2ts.
Hi: =0,  Hyz =1k(ifri2, 820 + 24128200 — 240,8212 — 08212, ),
Iy = ke (Y120 Jo — oy 12 — K0 S 12).
hyy = —(lewy - 4k3'¢"12y) Jo+ ('WU):):): - 7]&% ‘l."ny)fu - ('Wuwpy - 9kf'¢ﬁ)) fol/z..
ke [V (£210 + 6k 9r12) + oy Wiy | + (3K droe 4 Vrayyyy + 3k500) fi
— (2012 — Yrizeey + Yriagens — 8kiYri2g + 10k]2) fo + 317K f7 /2
ik (Woyey + Sk, 0o fo -+ [(Wor — oy + K200) /2 F K, — SKX0, ] 7,
Hiyy= Hyy =0, hyg = ikeroy, o = — (Vg + kW, )
by = —(k?j Yoy Yoy T 3kflff0).
Hcre, we have laken into account (2.13). The problem (A 19, 5)-(A22) is again
singular for j = 1,...,4 and thus has solution(s) only if an appropriate solvability
condition holds. This consists of requiring that the right-hand sides of (A 19) {A20) be

arthogonal, with an apprapriate inner product, to a nan-trivial solution of the adjoint
homogeneous problem (A 4) (A 6). The coefficients «, ... . and o, are given by

=
P
s

4

iy W] iy
o = /0 / 0+ 20+ B dy i+ /0 B0 o — B ]

+/ [ - lk;1 ('(/TI‘(;};};}; + J’r(;yl - 3;{3(/]5},);11] _— ()ngyhzf + (,Z"(;]Z_;J,} v=0) d[, (A 23)
0 >

as obtained by multiplying (A 195) by ¢, multiplying the complex conjugate of (A 4b)
by ;. subtracting the resulting cquations, integraling in —d <y <0, O<r < 2m,
integrating by parts repeatedly, substituting the remaining equations and boundary
conditions in (A 19-(A22) and (A4)-(A0), and using (A9). Applying (A23) to
(A 1TNH—{A22) we obtain the coefficients «,. .., a4, which are as plotted in figure 3.
For the sake of brevity, we give here only the explicit expression for «,, which is

2
g = / [(l.zrt:}n + l.Z’CT\,r - chl QZFJ’) ()LrOY + J’rljg glif(]y);y + kcz J,rJ (,lif(]r] y 0 dt
o :

= _/ [lZfJ” Yowly adf, (A24)
4]



where the second equality follows after some algebra using {2.7)-(2.9) and (A 4}-{A 6).
Thus, since ., (—d) — 0 exponentially as d — co, (A 24) shows that «s — 0 exponen-
tially as  — <o, Note that % and &7 arc assumed 1o be bounded here; sce § A3 below,

A2 Slowly varying lerms: second amplitude equation (3.3)

The mean flow equation is now derived from the following equations, which are
obtaingd by substituting (A 2) and (A 3) into (2.1)—(2.4), taking the spatial mean value
in the short spatial variable x, and retaining only leading-order terms,

Y =2", QF =HWAP): in —d=<y=<0, (A25)
Py = —as(AP ), Wl = ael|AP)e U, +FS = —ar(lAP): aty =0,
{A 26a—)
| i1
/ QUdE =¢" =9 =0 aty=—d, / frde = 0. (A27)
Jooo 40

(™, 2ME +1, v, T)= (", 2")e,y, T, JS"E+1.T)=f"(E.T) (A2R)
where

H(v) = % I/U.h[l,"foyﬂo — Yo $2, + k(1120 — 0 $211), | dr, (A 29)
oy = zl—n /Ohl'%ffuvfu — v foly odl, {A 30)
s = ﬁ | 03.,1 (ko + 3Ky — rinwm ) So + (Yroyy — 3ki¥sy ) /0], dt, (A31)
o = ;—E 03.1 [ [ = K2l + 12K, + Yy — et + 3K3000) fo

(2K W0 - oy, 3KIWR) fn] L dr (A32)

as obtained (after some algebra) using (2.8), (2.13), (A 15) and (A 18). Note that H,
a7, a5 and o arc all real. Integration of {A 25), (A 26) and {A 27) viclds

o {my +dP  Kiy+a)

"
+é / (¥ Z)FH(Z)dz} (JAP )

2 6
2d — vy +dY
g ~”6(-"+ )fg". (A33)
where
A() gt
Kl = (g +Cﬁd+ / (Z, *d)H(Z) dZ’., Kg = 7 — / H(Z,)df, (A 34)
Jdod Jod

And substitution of (A 33} into the boundary condition (A 204) Icads to (A 1a), where
£ is given by

2 L t E 2 2
pr= ot 2T Oy é f (d%2 =28 — W1z dz, (A 39)
- —d

and is plotted in figure 3e vs. 4°, for the indicated values of ¥4° and .#d.



A3 Small viscosity

As viscosity goes Lo zero, either ¥ 1 or % 3% 1 (see (2.5)), and the wavenumber at
threshold is

ke ko ~ (64 7Y <1, (A 36)
where k. is the inviscid approximation of k.. which obevs the inviscid dispersion
relation

ke (% + ko, ) tanh kyod = 1. {A37)
T'or convenience we use the gravity—capillary balance parameter § and the non-
dimensional measure of viscous effects ¢, defined as

G

S = A e
ki + %

~1, e=k. <1 (A38)
Also, ingpcction of the cxpressions derived above (which s [airly iedious and 1s
omitted) shows that

(A39)

—1 — e =1 A2 (102 =2k
G~ Oy e g v EC -‘(z. +¢ )}

i3
a2,

ar ~ay ~ yII(y) ~ ¢ g ~ ge Kl

These asymplotic estimales have been thoroughly checked numerically (sce, ¢z
figures 7 and 9). Thus (see (A 35)),

Br~e M ase—0 {A40)

Appendix B. Derivation of the NPGL equation (B 6)
In the limit

kod — oo, {B1)
the coefficient s becomes negligible (see (4.1)) and the first amplitude equation (3.3)
beecomes decoupled [rom the frec-surface clevation. This 1s true for modcrately large
. but not for sufficiently large 4, when the horizontal velocity v ~d is large (see
(B2)) and somc tcrms that, arc higher order when d ~ 1 become non-negligible in
{A1). In order to see that, we note that, in the limit (B 1),

m

. -~ (.Y(,d
by~ —
where the spatial mean value {-) is defined in (B 3) and

(AP, 7~ =047 = A7), (B2a. 1)

P
as obtaincd using (A 33), inlcgrating in (A 1#), and taking into account that ws,
og, o7 and vIf(v) remain bounded as d — <o if both % and % remain finite, while
these behave as indicated in (A 39) at small viscosity in decp conlaingrs, namcly in
the combined limit & — 20, e — 0. Substituting (B 2) into (A 3), a new term must be
included in the right-hand side of (A 3) that is of the order of /L% The new term is
proportional (o 7' A and can bc wrillen as

0
,82 = 3'51 o ) —/ H(Z.)dz, (B 3)

i o |
é(\m-)gmwﬁ, 20, fo)el, (B 4)



This gives a new term in the right-hand side of (A 1), which is rewritten as
Ar = o Ay + 0 DA+ caAJA] +i{os/ L) A (BS5)
or, invoking (B 2«), as

Ay = 01 Ay + @ XA + azA| AP +i %i(m\ (B6)

Here, (s, 25, fo) and o are given by (A 19) (A 22), with (j =8, d =), and
Ihg == O_, I}gg == chUa hlS == k(.fu, ;""28 == O, ;138 == —kﬁlf!@v. (B 7)

We nced only apply a solvability condition {the counterpart of (A 23), with j =8 and
d =ao0), to this latter problem, to obtain

2;

ag = kC / |:/ (/TIE:: QU d_"’ - [ik;1 (‘Jfﬂj).’).’)ﬁ + ‘(/TIE;:}:{ - 3](3]1}(:1!) jo + ]If(: ‘(/lf(Jy] v O dz = kc.\
0 —n '

where the last equality comes from invariance under Galilean transformations: x — xv—
ct, E =& —=T/L, ¥r, = r, — ¢ (namely, replacing these (ransformations mto (A 3) and
(B5). we obtain a new term on the right-hand side of (B3), icL. (g — k.)A, which
must vanish). The coefficient «y 18 plotted in figure 7. Note that according to the
assumptions above, (2.6). the new non-potential term is small compared to cubic
nonlinearity in principle, except when |ageg| 1s large compared to |o;), which occurs
in particular as viscosily gogs Lo #¢ro, as scen mnvoking (A 39) and

gy ~ 77 ase o 0. (B8

Appendix C. Linear stability of the spatially uniform SWs of the amplitude
cquations

The simplest steady states of the amplitude equations (3.7) (3.8), (3.12) and (4.4),
and their lincar stability propertics can be oblained in closed form.,

C.1. CAMF equations (3.7) (3.8)
The uniform steady states ol (3.7)-(3.8) arc given by

B=B,=+/n—%™, =0 if u=8 withs, =8+ 2nn., (C1)

for n=0,4+1, 42, .., and are in branches that bifurcate from the trivial solution
B=f"=0 at u=242. The linear stability of these is analysed replacing B — B, =
B, | Xe 7t 4 YerrTkaE | and S = | B, Zet Tt L cg, with k,, = 2mm for m =0, +1,
+2, ..., and linearizing, to obtain a hnear system of equations that has non-trivial
solutions provided that

A [ D+ 20Ba P27 4 [+ W+ 201 + v + DB —46; k2
+ 200 + y) B> + 7 (k5 — 482) [k: = 0. (C2)

This dispcrsion relation rcadily shows that;

{a) If 1 4+ 32 = O (figure 3a), then the solutions in the first branch (n =0} are all
stable, while those in the remaining branches (n < 0) are stable only if |B,|” > 24(82 —
) /{y +2). the instability being stationary (2 =0) provided that y,(y, +2 W8 + 1) =
w1+ 82, and oscillatory (4 = purely imaginary) otherwise.



{h) If y 4+ 35 < O (figure 5%), then the solutions in the first branch {x =0) are stable
provided that |By|* < — 2y1(w® — §%)/(3, + ), and unstable otherwise; the solutions
in the remaining branches arc all unstable.

C.2. NILGI. equation (3.12)
The uniform steady states are again given by (C 1), namely

B=B,=u— %% forp =58 with 4, =5+ 2nn. (C3)
The linear stability of these is analysed as above, substituting
B— B, = B,|Xe" bt 4 Pelr—lak| (C4)
into (3.12) and lincarizing, It follows that the dispersion relation is given by
AR =0 ifm=0, (C5)
(A+E2Y +201 + DR (A +K2) =428 it m <0, (C6)

and implics that the first branch (nz = 0} is uxpomntiallv stable, while the remaining
branches (n &£ 0) are exponentla]h stable if (1 4+ MR2 > Q(k’ — %), and unstable
otherwisc. This gives the plot in figure Sa) il 1+ 17 > ().

C.3. NPGL eguation (4.4)

The uniform steady states of (4.4) are given once more by (C3) and their linear
stability is analysed replacing (C4) into (4.4) and linearizing. The dispersion relation
is

Gt k) +2{A+ kLR — 4y D8kl R — 481k, = 0, (C7)
and shows that (figure 8):

{1} The whole first branch (s = 0) i1s exponentially stable if 2y D§ < 1. Tt instead
2y D8 1, then this branch is exponentially stable for R} < 4(x* — §° )/(2;/ Ds —1) and
unsiable otherwise, the instability being stationary (4 = 0).

{iiy The remaining branches with » # 0 are stable i’ 2y D§, < 1 and R? > 4(57 —
72)/(1 — 2y D$,) and are unstable otherwise, the instability being stationary (4 = ).

{(ii) Note in particular that if 0 <8 < x and y I} i3 sufficiently large, then the first
branch is stable only in a vicinity quite close to threshold, 87 < g < pf = 8% + 4(n®> —
82y DS — 1)« (2n — 8F = p_i. In this casc, no steady stalc with a constant
amplitude is stable in the interval g < < p_;
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