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We consider the cffcel of surface contamination, modelled by Marangoni clasticily
with insoluble surfactant and surface viscosity, in promoting drift instabilities in
spatially uniform standing Faraday waves. It is seen that contamination enhances
drifl instabilitics that lecad to various sicadily propagaling and (both standing and
propagating} oscillatory patterns. In particular, steadily propagating waves appear to
be quite robust, as a seminal cxperiment by Douady, Fauve & Thual (1989),

1. Introduction and formulation

Surface contamination is likely to be present in water unless care is taken
in the experimental set-up. This effect is usually modelled by phenomenological
formulac (Dorrestein 1951; Levich 1962; Miles 1967; Henderson 1998) based on
Marangoni elasticity with insoluble surfactant and has been seen to dramatically
increase the damping rate of gravity capillary waves, as first shown by Derrestein
{1951); an analysis intending to explain some surface wave damping measurements by
Henderson & Miles (1994) was made by Nicolas & Vega (2000), whe alse anticipated
that surface contamination would enhance the generation of the streaming flow
produced by the surface wave. The streaming flow, in turn, affects the dynamics of the
primary surface waves in Faraday systems (Vega, Knobloch & Martel 2001; TTiguera,
Vega & Knobloch 2002; Lapuerta, Martel & Vega 2002) and, in particular, plays a
fundamental role in promoting dnfi instabilitics of standing Faraday waves (Martin,
Martel & Vega 2002, hereinafier referred to as MMY). The latter instabilities were
experimentally observed by Douady, Fauve & Thual (1989) in an annular container.
‘The liquid was 1ap water, which is probably contaminated, while the analysis by MMV
assumed a clean free surface. The object of this paper 18 to extend the analysis in
MMV 1o the contaminated casc. This cxlension is nccessary because drilt instabilitics
were quite robust in the above mentioned experiment (T"auve, personal communication
2004), while they were sensitive to various parameters such as the aspect ratio in the
thcory for a clcan free surface.

As in MMV, and with the same notation, we consider a horizontal two-dimensional
liquid layer supported by a vertically vibrating plate (figure 1), and use the container’s
depth 4 and the gravitational time \/7/¢ [or non-dimensionalization. The governing
gquations are

e+ vy, =0, (1.
e+ vy —vy) = —gy + Claay + tyy). (1.2)
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HIGURE 1. Sketch of the fluid demain.

t, —uluy — ) = —gy + Clua +vyy), (1.3)

w=uv=0>0 at y=—1, (1.4)
v=fitufe, CP, +0 +xi) =—y{ + iy, (1.3a, b)

g — %(u2 + o)+ da’ef cos(Pant) — f+ Toe =200, aty = f. (1.5¢)
i, v, g and f are L-periodic in x, (1.0)

where . ,
5= / VIt f2de, k= 7flf Tk (1.7)
0 (1+ 2y
are an arc length parameter and the curvature of the free surtace (defined as y = f),
respectively, and # is a coordinale along the upward unil normal to the free surlace;
note that
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i# and © arc the tangential and normal velocily components, which are related to the
horizontal and vertical components by

-~ i + fr 2 A U — fx‘u
.

The only dillference with MMV 1s the boundary condition (1.56), whosc right-hand sidc
was zero and now accounts for the presence of contaminating surfactants, modelled n
the simplest way: the resulting tangential stress includes Marangoni clasticity cllcets
and surface viscosity. The latter is based on the Boussinesq—Scriven surface model.
Scriven (1960} generalized the mathematical description of the Boussinesq (1913)
trcatment for a ime-dependent interface for which, in addition te its dependence on
the surface tension gradients, the interfacial stress is a (lingar) function of two other
intrinsic propertics of the interface, namely the surface shear viscosity g and the
surface dilatational viscosity z+5, both assumed constants here. The (two-dimensional)
surface stress is written as

T=Vl" 4 () — p)Vs(Vsv®) b i Vs - [V +(T5v))T],

(1.9)



where Vg is the (two-dimensiomal) surface gradient operator, »¥ is the (two-
dimensional} surface velocity vector, and T denotes the transpose. The variation of
the surface tengion with the surfactant concentration ¢ is approximated by a linear
law of the lform 77(¢") =1y + (d17 /dgg W™ — &), where the derivative is caleulated
at the equilibrium valve of ¢*, denoted as ¢,. The boundary condition {1.55) results
from equating the surface stress to the viscous shear stress from the bulk at the
free surface, and non-dimensionalizing. Tt follows that the Marangoni elasticity and
the non-dimensional surface viscosity are given by ¥ = J(dT"/dig }C'? /(e Jeh) and
8 = (gl +443)/C /(). The non-dimensional surfactant concentration ¢ = (¢ —¢5)/¢;
is given by the conservation equation

1+, =0 in0<s <8, Lis4sp.t)=¢(s.1). {1.10a, b)

ITere, s, is the length of the free surface in one period and we are neglecting both
cubic terms and surface diffusion of the surfactant. Note that surface tension variation
duc to the presence of surfactant is of the order of i \;’ﬁ which is assumed small
compared with 7 (with ¢ and T defined below); thus this variation is ignored in the
normal stress balance (1.5¢).

The problem depends on the following non-dimensional parameters: the forcing
frequency 2w = 2", /hi/g and amplitude £ =& / A, the ratio of viscous to gravitational
cllccts € =g /(py/gh?), the Bond number 77" = pgh?/ 1y, and the horizontal aspeet
ratio L. = 1"/ h, where L is the horizontal length.

We shall consider small ncarly-resonant solutions al small viscosity and convenicntly
rescaled Marangoni elasticity, i.e.

el + [l + gl H1F1+ ] €1 e <L, Jw—a| <1, C<1, y~1 (L)

ITere, ay is a natural frequency in the inviscid limit, and the assumption that C <1 is
reasonable for fluids with a sufficiently small viscosity in not too thin layers (¢ ~ 107*
for water in 1 cm deep containers, as in the cxperiment by Douady et al. 1989). The
latter assumption (y ~ 1) is made for the Marangoni elasticity to have a significant
effect both in the damping ratio of the surface waves and in the streaming flow.
‘This assumption gives the best comparison with the damping ratio measurcments by
Henderson & Miles (1994), as explained by Nicolas & Vega (2000), and it is satisfied
for a 1 em deep layer and surfactants such as thosc in the cxperiment by Henderson
(1998), where ¢, d7"/dg; =14,21, and 7dyncm™" for lecithin, oleyl alcohol and
dyolein, respectively.

We do not have any a prieri knowledge concerning the valuc of surface viscosily in
contaminated water, except the guess that § should be somewhat small compared to
v. The results in this paper apply also (o (i) the cffeet of controlled surfactants when
using other liquids (TTenderson 1998) and (i) the case when a film of an immiscible
liquid is deposited above the free surface (Jenkins & Dysthe 1997); the effective
surface viscosily in this casc 18 g = ey d”, where oy is the volumetric viscosity of the
liquid, and " is the film thickness. Tn cases (i) and {ii), surface viscosity can exhibit
much higher valucs (Jenkins & Dysthe 1997; Hirsa, Lopez & Miraghaic 2002) than
in contaminated water. Tor instance, in case (1), we note that Newtonian ligquids (e.g.
Daow 200 Silicone oil} in the film can exhibit a viscosity as high as 1000 St, namely
10° times the viscosity of water, which viclds quite large cffective surlace viscosity for
moderately small film thickness. Thus, in potentially interesting cases, § varies in a
wide range, {rom guiic small Lo quite large valucs.



[or convenience, we note that the overall surfactant concentration and the overall
shear stress on the [ree surface are conscrved, Le.

/.L [fin(s, 1) + (s, Oit(s, )] ds = 0, /lL (s, 1)ds =0, (1.12a, b)
o 0

as obtained integrating (1.50) and (1.104) in one period and applying the periodicity
conditions, The former condition 15 a conscquence of the fact that the massless [ree
surface cannot absorb any overall shear stress from the tluid. This condition also
applies when the two-dimensional layer considered here models an annular container
whose non-dimensional width £ is large (bul small compared (0 the container radius,
to avoid curvature effects) provided that the surface viscosity is conveniently small.
In fact, since # =0 at the lateral walls, the two-dimensional version of (1.55) in the
annular container readily yields the following estimate

"3, S
.\/FE‘ / (i, + i) ds| ~ 8 / it ds|. (1.13)
S0 Ju
[‘or simplicity, we shall consider below only the extreme cases
8 JOE 53 JCH, (1.14)

which will be referred to as the small and large surface viscosity limits, respectively,
and lead to the additional condition (1.12a) and to

/ (s, ) ds = 0, (1.15)
SO

respectively. T'or consistency, in the latter case, the effect of the lateral walls should
bc added as a forcing term on the right-hand side of (1.56). Since surface diffusion is
neglected, (1.12F) stands also when modelling annular containers.

The remainder of the paper is organized as follows. Undcer the above assumplions,
the exact formulation (1.1)-(1.6), {1.10) can be simplified significantly, which will be
done in § 2. The simplified equations apply for contamination effects that are not too
small as cxplained in § 3, where the results for a clecan frec surface obtained in MMV
are also summarized. The simplified equations will be numerically analysed in §4,
where the relevant large-time paticrns resulling from the primary bifurcations will be
obtained; the above-mentioned low and high surface viscosity limits will be considered
separately. The paper ends with some remarks on the scope and consequences of the
main resulis,

2. Coupled spatial phase-streaming flow equations in two dimensions

We now extend the analysis in MMYV to the contaminated case. Thus, only the new
ingredicnts will be ecmphasized below, As in MMV, in order Lo iselate the cllcel of the
streaming flow n generating drift instabilities (which also can be due to symmetry
breaking of wave modulation, see Lapuerta et al. 2002}, we consider spatially uniform
surface waves. After a transient, these waves exhibit a constant amplitude and become
quasi-standing, namely standing in a slowly moving reference frame. Thus, the surface
wavces arc completely determined up o a spatial phasc. The aim of this scction is to
derive a set of equations describing the joint dynamics of the streaming flow and the
spatial phase of the surface waves.



Vibrations produce an oscillatory flow that consists in principle in two counter-
propagating surface waves, and 1s ncarly inviscid cxeept in two boundary layers
attached to the botiom plate and the free surface. The tlow variables outside these
boundary lavers, the free-surface clevation, and the surfactant concentration are
writlen as

u = Up(v)e |A(Ne™™ — B(i)e ™| +ce. +u(x, y, 1)+,

v =iVo(3)e“ [ANE* + B(r)e *] Fec + o x, v )+,

gy = Qg().')ei(“’[A(t)ei“ + B([)efik.lj +coe + qm(x‘ v, t) + - (21)
F=e¢“A(D* + B(the ™) +ce + Frx )+,

¢ = EoeimtlA([)eikx + B(J]efik.xj +cc + é—m(x’ 1) R

where we have displayed only the leading-order terms associated with the surface
waves (assumed to be spatially constant) and the streaming flow, which can be seen
as a temporal mean flow and is denoted hereinatter with the superscript m; c.c. stands
for the complex conjugate and

kQa oy _ wf cosh k(y + 1)
U, =— , V= =, Hy=——. 22
¢ g v g o ksinh k (22)
wp = k(14 Tk*) tanh k. (2.3)

Zy cannol be caleulated in the inviscid approximation that leads to (2.2)+(2.3), scc the
Appendix. The weakly nonlinear level of our description requires that the complex
amplitudes (and the remaining slowly varying quantities) be small and depend weakly
on time, ic. |A'| <€ [A| <1 and |B| <|B| < 1. The complex amplitudes A and 8 obey
the following amplitude equations,

Y S
A = [—d —idy +ias|A] —ios|B]F — i% f / g(¥)u dx dv|A +icwsB,  (24)
—1J0

Lop0 L
B' = [—dy — idy + ict3| B —icra| A" + l%f / gy dx dy|B +isasA,  (2.5)
—1J0
where the various coeflicients and the function g are given by
dl = C{lCl"Q, d2 = C{j(juz + Wy — W, (2())
oy iy — k. jien Viwg(dey — iy )k (2.7

- sinh2k © 2tanh koo i + (S — iy )k?] ’
apk (9 —a )1 —a )+ (7T =3 —a))Tk? 3T ek

3 = 2k - (2
Uy Tkt g oL+ (ol — 3)TE arrey &Y
mok® [{a? 4+ 17 14Tk 44+ 77K
—= \ X — k N 2.9
“= 3 o 14Tk T TyTRE) T (29)
k 2epk cosh[2k(y + 1
wg— KT gy = ek coshkly + D (2.10)
2oy sinh” k

and coincide with their counterparts in MMY except for ¢ and «,, which include
the cllcet of surface contamination, as calculated in the Appendix; here, o = tanh &,
A plot of the damping ratio, ¢y, in terms of k for the indicated values of &, y and T
is given in figure 2.



Fraure 2. The damping ratio ¢q i lerms of k for T=7.42510 *and Ay, 8y=1(1,1};
—— = (7.3 =(1.10 3 — — (7, 81=(10 Y, 1)y -+, (3. 8)=(10 7,10 ).

The non-local werm in (2.4)-(2.5) accounts [or the ¢lfect of the sircaming flow on
the surface wave dynamics. As in MMY, the change of variables

A= AUC iklﬂr’ B = Bocikw‘ (2'11)

- dir g Y /L
h _— = — ? ,":‘J-. LI - ' 2'12
R T %) /1 ; g(¥™(x, v, 1) dx da (212)

gliminates the non-local term from (2.4) (2.5). The resulting system of equations is
such that all solutions converge for large time to a steady state of the form

A() = BU = RQCi(’ﬁU. (213)
where ¢y s an arbitrary temporal phase and Ry > (0 is given by

By 9 1’,‘2
_hE (e —di) T (2.14)

Gy — g

R

LN

Ignoring an initial transicnt, we can substitute (2.11142.13) into {2.1), to obtain
0= 21R0l]0(.):)eilwt I ) Sin k(’\ _ 1‘(/) + Ce + Il'-m(.l', v, f) + vee,
v = 2iR Vo(y)e™ ) cosk(x — ¢r) +cc + v {x, y, i)+, (2.19)
f =2Rgel 1l cag k(s — )+ e+ fx )+,
and similar expressions for ¢ and ¢. Thus, the oscillatory part of the flow represents a
spatially constant wave that is standing in a slowly moving reference frame, x = (1),
where the spatial phase  is given by (2.12). As in MMY, this simplifies the streaming

flow equations, which become the usual continuity and Navier Stokes equations. The
boundary conditions at the lower plaic,

U = 2a; REsin2k(x — ), v" =0 aty=—1, (2.16)

arc again as in MMV, but the upper boundary conditions (which were «) =v" =01in
MMYV),

" = 2 RAsin2k(x — )+ uf (1), v =0 aty=0, (2.17)
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Figure 3. The contamination parameter 7, measuring the relative effect of contamination in
the generation of the streaming flow. (a) 1" vs. k for T=7.42 x 10 * and Ly 8 =1(1,1);
——— O A =(L10 M — - — (. 8 =110 * 1 -, (3, &) =(10 1, 10 ). (F) The maximum
value of I ws. k for T =7.42 x 10 * and varying » and 5.

include the effect of surface contamination, which completely changes the structure
of the oscillatory boundary layer attached to the free surface, as explained in the
Appendix, I invelves the unknown averall velocily wf, which is deiermined through
one of the following additional conditions resulting from (1.124) and (1.15): either

7.
/ u’; dex =0 aty=20 (2.18)
0

in the low surface viscosily case, as cxplained in the Appendix, afler (A L0)(A 17), or
ug =0 (2.19)

in the high surface viscosily casc, as oblained by substituting (2.17) into (1.15). The
coefficients «; and oy are (see the Appendix)

3w0k
0y = 0K 2,20
7 sinh” & ( )
k 4 i )k 3y’ + 8wl ) K
oy = — Hy vk oy ST o,
tanh® £ \ ax Jlwg + (8eog — iy )k? g 4 (Baxy — iy )k )?

Note that ¢y and gz are always positive. For convenience, 4 plot of the parameter
g

I'=rk 1 yvé)= ———
7 + oy

(2.22)
in tecrms of & for the indicated valucs of v, § and T is presented in fgure 3(a); the
selected value of T corresponds to water in a layer of A=10cm. I" must not be too
small (see §3) and is a priori bounded between 0 (for ¥ =6 =0) and 1, and, in fact,
is quite close to 1 1f neither ¥ nor & are small and k& 15 moderately large (say £ =2).
In fact, I' takes values that almost cover the range 0 < I' = 1 for realistic values of
the parameters, as scen in figure 3($), where the maximum valuc of the function
{(y.8)—= Ik, T,y,8) is given; note that the maximum value of I is guite close to 1
except for small £.



Now, for convenience, we introduce the streaming flow Reynolds number

2R (a7 + o)

Re = - (2.23)
C
and rescale time and the streaming flow variables as
. . L{F’H U!H . qlf}
T :R(f(;f, = —:, ﬁ:—_, o — —/—/—//—. 224
' ReC’ ReC' 17 (RO (2:24)

to rewrite the continuity and Navier Stokes equations, the boundary conditions (2.16)
(2.17), and the definition of the spatial phasc (2.12), as

iy + 0, =0, (2.29)
att . N - }
. + By — ) = —§, + Re Yy + fyy), (2.26)
an . .
0 — ity — ) = —Gy + Re (T + T55), (227
—(1 — I'ysin[2k({x — ¢7)]. T=0 aly=—1, (2.28)
i =—I"sm[2kix — )] +ilpiz), B=0 aty=0, (229
i, P and § are x-periodic, of period L = 2mn/k, (2.30)
1 0 L
= / / G{y)i(x, y, t)dxdy, (2.31)
L/t

where the [ree-surface horizontal velocity is determined from ong of the fellowing
additional conditions, (2.18) or (2.19), namely either

53
/ fi,dx =0 aty =0, (2.32)
o]

for small surface viscosity, or
iy =0, (2.33)
tor large surface viscosity. I' is as defined in (2.22), and
2k cash 2k(y + 1)
sinh 2k

Equations (2.25)-(2.31) will be called coupled spatial phasc-strcaming flow (CSPSE)
equations, and d¢-/dr can be seen as a drift velocity of the drifting standing waves.
Thosc cquations depend on the wavenumber k&, the spatial peried

Giy) = (2.34)

7 2mT

withm =1,2,..., (2.35)

the contamination parameter I', and the effective Reynolds number Re. The latter
is proportional to the square of the wave stcepness, Rok, which must be small. Since
C is also small, Re can vary in a wide range. Assuming that 7 is not large (which
is truc for gravity waves), (Rok)> < 0.1 and € =10 °, and using (2.3) and (2.34), wc
obtain the following accessible range for the streaming flow Reynolds number

0 < Re <2 % 10%Mog + ag)/ k2, (2.36)

which for, e.g. kK =2.37 gives the range 0< Re < 2000 (the same range as in MMYV)
if both ¥ and & are small, and at least the range 0 <C Re < 107 if either y or § are of



order unity. Note that surface contamination enhances the strength of the streaming
flow produced by a surface wave of a fixed (small) steepness and thus enlarges the
range of validity of the approximation. When using the two-dimensional formulation
to mimic an annular container, the integration cell corresponds to that part of the
conlamer below m wavelengths of the surface wave, which is not neeessanly the total
length of the container.

3. Clean free surface vs small contamination limit

As mentioned in the previous scction, the limit of small contamination ¢licets in the
CSPSIT equations derived above does not coincide with their counterparts considered
in MMYV. This is because the boundary conditions (2.28) (2.29) reduce to

o= —sin|2k(x — )], =0 aly=-1, (3.1)

L
fi = fio(r), /4mdx—a =0 aty=0, (3.2)
u]

in the small contamination limit I” =0, where for simplicity we have considered the
low surface viscosily hmit (2.32), These boundary conditions are (3.1) and

ity =0, B=0 aly=0, (3.3)

in the clean case considered in MMY, the remaining equations and boundary
conditions {2.25) (2.27), (2.30) (2.31) being exactly the same in both limits. This
apparent paradox comes from the fact that the validity of the boundary conditions
(2.28) (2.29) requires that I” be not too small, namely 7”3 /C. For smaller values of
Pias'(~y +8)~ \7 a different analysis Icads 1o a homogencous mixed boundary
condition at y =0 that reduces to {3.2) and (3.3) in the limits .V""E<<J/ 4+ 8«1 and
v + & < /C, respeciively, This narrow intermediate regime (17~ +/C) is not analysed
in this paper because it 1s not expected to give qualitatively new results, as we illustrate
now considering the limiting cascs.

(i) For a clean free surface (the limit considered in MM V), the simplified equations
are (2.25) (2.27), (2.30) (2.31), (3.1) and {3.3). The bifurcation diagram is given in
figurc 4(a), where the maximum valuc of the drift velocily dvr/dz for the various
attractors is plotted vs. the Reynolds number for the indicated fixed values of & and 1.
For small valucs of Re, the basic solution lor the strcaming flow is stationary, that is,
it exhibits no drift (¢ =constant) and corresponds to a standard standing wave (SW),
whose streamlines are gualitatively similar to those in figure 5(a), except that the
small upper vortices arc now absent. Al Re =270, these SWs cxhibit a supcreritical
ITopf bifurcation that gives limit cycles that correspond to new (drifting) SWs whose
nodes oscillate back and forth. This primary bifurcation seems to be present for all &
and to remain unchanged at large aspect ratio. The resulting osciliating SWs can be
unstable for larger Re (Re > 291.5 in figure 4), where a new branch of oscillating SWs
cxhibiting difficrent symmctry propertics bilurcates. The new branch in turn becomces
unstable for larger Re (Re =466 in figure 4), where the system jumps to a néw branch
of steadily travelling waves (TWs) that exist in the interval 410 < Re < 620; see MMV
for further details. The latter TWs resemble the steadily rotating structures found
experimentally by Douady et al. (1989), where they were quite robust (namely, they
were the most {requently non-strictly-standing paticrns), whilc in MMV they were
guite sensitive to the various parameters. More complex, chaotic oscillatory patterns
are obtained for other values of k and L, but are again not robust.
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HIGURE 4. Bifurcation diagram of (a) the clean free surface case and {&) the small
contamination limit for k=2.37 and £ =2.65 (m=1).
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Frcure 5. Streamlines ol some steady r-symmetric SWs of (2.25) (2.313, lor k=237,
L=265(m=1),and (Re, I"}: (a) (200. 0.1}, () (160, 0.5), () (60, 0.9} and (4) (200, 0.5).

(i1} Tn the small contamination limit case, and the same values of & and 7., the
simplified equations are (2.25) (2.27), (2.30) (2.31) and (3.1) (3.2}, and exhibit the
bifurcation diagram given in figure 4(%), where it is seen that the primary branch
of standing waves (with streamlines qualitatively similar to those for the clean case
considered above) suflcrs a Hopl bifurcation at Re=019.1, producing limit cycles
that remain stable for larger values of Re. Note that this diagram is qualitatively
stmilar to that described in figure 7 of MMV, although the wavenumber & and length
[ are different, Non-symmetric limit ¢ycles and more complex oscillatory patierns are
obtained for other values of ¥ and L, but these are again not robust.

Comparison of the results described above shows that the basic SWs () show
qualitatively similar streamlines and {») are more stable in the low contamination
case than in the clean case. This latter conclusion is due to the fact that the no-shp



boundary conditions (3.2) are more rigid than the free stress boundary con-
ditions (3.3).

4. Large-time dynamics of the coupled spatial phase-streaming flow eguations
The CSPSF cquations (2.25)—(2.31) arc invariant under the symmetrics

x—=x+4c, l‘/} — l/} + ., (4])
X — —x, b — =0, W ——y iig— —iig, (4.2)
x—x+L/2 (4.3)

The frst (wo symmetrics come from the invariance of the original problem (1.1)-
{1.6) under horizontal translation and reflection. The non-steady reflection-symmetric
{r-symmetric) attractors (invariant under (4.2) after a translation), will be referred to
as locally or globally r-symmetric depending on whether they are r-symmetric for all
© or they exhibit an r-symmetric orbit in phase space. Attractors that are invariant
under (4.3) will be called (L /2)-symmetric below,

The analysis of the attractors of the CSPSI' equations (2.25)-(2.31} must rely on
numerics. The equations have been discretized exactly as in MMV, The dynamics
of the CSPSFE equations depend on which additional condition, (2.32) or (2.33), is
applied. These two conditions become the same for locally r-symmetric solutions. as
is the basic steady state that 1s considered first,

We have four free parameters, k, m (which is an integer and defines the length I, see
{(2.35)), I and Re, which are too many to give a systematic description of the results.
Thus, we fix below k£ =2.37 (the value most completely analysed in MMV) and vary
I and Re. All results will be obtained first for m =1 and then we shall check whether
the result depends on me,

For small Re, the CSPSF equations become linear and exhibit a unigque attractor,
which is a (L /2)-symmctric and r-symmctric stcady state; thus it c¢xhibits no dnfl,
namely o = constant, according to (2.31), and corresponds to a standard SW. The
strcamlines arc as thosce plotted in figures 5(a)-5(¢) [or m =1 and the indicaicd valucs
of £, Re and I". Note that the flow consists of an array of pairs of counter-retating
vortices. The upper and lower vortices disappear as I — 0 and as I' — 1, respectively.
Also, the vortices arc more and morc localized ncar the boundarics as & increascs,
namely for increasing values of the forcing frequency; and for large Re, vorticity is
localized in two sccondary, lower and upper boundary layers, and mn some vertical
plumes born near the stagnation points of the forcing velocities. Tlowever, these two
{obvious) latter statements are not illustrated here to avoeid giving too many figures.
Since these SWs are locally r-symmetric, they satisfy both conditions, (2.32) and
{(2.33). Tor larger Re instead, the dynamics do depend on which additional condition,
{(2.32) or (2.33}, is imposed. and generally involve a complex variety of steady, steadily
travelling, periodic, guasi-periadic and chaotic attractors, whose complete description
is well beyond the scope of this paper, where the emphasis will be on the primary
instabilitics of the basic SWs in figurcs 5{a)-5(c).

In the remainder of the paper, any (steady, periadic, quasi-periodic or chaotic)
attractor exhibiting no overall drift, namely, such that the temporal mean value of
¢’ vanishes, which will frequently happen because such an attractor is globally r-
symmetric, will be called a standing wave (SW), while it will be referred to as a
travelling wave (I'W) il the overall drill is not «cro.

In order to avoid giving too many figures, the steady standing waves will be
described below plotting the associated streamlines (figure 5). Similarly, steady
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Ficure 6. The primary instabilily ol the basic SW of (2.25) (2.31),(2.32), labelled SW{L/2), for
k=237, L =2.65 {m=1). The bifurcation is ither a ITopf bifurcation (——)if 0 « I « 0,372,
an (L/2)-symmetry breaking bifurcation (— — —) if 0.372 <« I" < 0.384, or a parity breaking
bifurcation (——} if 0.584 < 17 < 1.

streamlines in moving axes will be plotted to describe steadily travelling waves
(figures 8 and 12), and the constant drift velocity ¥+ will be indicated in each case.
Oscillatory attractors cannot be described with this detail, but we give the plots of
both the wstantancous dnft velocity ' vs. time and the instantancous position of the
pattcrn ¢ ps. time (Ggures 9 and 13); thus the presence of both instantancous and
overall drifts will be appreciated. Some of the oscillatory attractors below are chaotic,
which is ascertained by calculating the associated Lyapunov exponents.

4.1, Low surface viscosily

We consider (2.25)—(2.31), with the additional condition (2.32). The bifurcation
diagram, I” vs. Re, giving the primary instability of the basic stcady slaic considered
above is given in figure 6, where can be seen that the critical Reynolds number ranges
from 46.5 to 619.1 for O < I < 1, and generally decreases as I' increases. The dot
in the axis 1" =0 corresponds to the instability limit for the clean [ree surface (§3)
and indicates a sharp transition from the ¢lean free surface case to the contaminated
casc, whose precise description would require us to consider the narrow regime (as
I~ JC < 1) mentioned in §3. The primary bifurcation from the basic steady state
gives the following.

(i) (L/2)-symmelric stcadily travelling waves, labelled TW(L/2), if 0.584 < 1" < 1,
which appear in a standard parity breaking bifurcation (Crawford & Knobloch 1991),
An example of such a TW is plotted in figure 8(a). In contrast with the clean case
(figure 4aj, these TWs appear in a primary bifurcation, and are quite robust. To
illustrate the latter statement, we plot in figure 7 the bifurcation diagram for fixed
I"'=0.9 and varying Re, where it is scen that the branch of (L/2)-symmetric 'TWs that
appears at Re=07.7 shows for increasing Re an (I /2)-symmetry breaking bifurcation,
at Re=3568.2 where a new branch of non-(L/2)}-symmetric TWs (two examples
are plotted in figure 85, c) is born. This remains stable except in a short interval
(760 < Re < 8207 of more complex dynamics consisting of oscillatory TWs; an example
is given in figurc 9(a), where the non-zcro overall dofl is clearly appreciated. This
bifurcation diagram corresponds to m =1, but it remains unchanged for increasing
values of m {we have checked the values m =2, 3, and 10).
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Fisure 7. The bifurcation diagram of the basic SW of (2.25)-(2.31), (2.32} for k =2.37,
L=265(m=1)and I'=0.9 [or varying values ol Re.
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Ficure 8 The streamlines for some representative steadily travelling-wave attractors of (2.25)-
(2.31), (2.32), for k=237, 1. =2.05 (m =1) and Lhe (ollowing values of (Re, I7): {a) (200, 0.9),
(£) (600,0.9), {c) {860,0.9) and (4) (620,0.65). The streamlines arc plotted in moving axcs
& =x — i't, with the constant drift velocity ' =0.32,0.27,0.12 and 0.0015, respectively (the
associated values of &g are 0.49, 0.53,0.17 and 0.15, respectively).

(it} r-symmetric but non-(L./2)-symmetric steady standing waves, labelled SW(L),
if 0.372 < I" < 0.584, which appear in an (L /2)-symmetry breaking steady bifurcation.
An example of such a SW is plotied in figure 3(d).

(i) {1./2)-symmeiric periodic standing waves, labelled PSW(7./2), it 0 < I" < 0.372,
which appear in a Hopf bifurcation. Near the threshold, these SWs are globally 1-
symmetric and thus they exhibit no overall drift; an example is plotted in figure 9(5).
This behaviour is qualitatively similar to that appearing in the non-contaminated case
{(MMYV), scc §3.

The bifurcation diagram in figure 6 shows two codimension-two points that deserve
some attention:
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Ficure 9. The plots of the drift velocity ' and the instantaneous position of the pattern v vs.
time for some representative oscillatory attractors of (2.25)+2.31), (2.32), for k =2.37, L. =2.65
(m=1) and the lollowing values ol (Re. ['): (a) (820,0.9), () (400,0.1}, {¢) (270,0.371),
() (274,0.371), (e) (276.4,0.371), (f) ( 1440,0.35), (g) (780,0.63). Plots {a} and (g) show a
non-zetro overall drift of the 1qqnc1ated pattern (namely, a non-zeto overall slope in the plot 4
£s. 1), while the remaining plots show no overall drift.

(1) Near (Re, ' =(260.5,0.372), the interaction of the steady and periodic SW
modes gives a three-dimensional dynamics. The horizontal velocity is written as

B=it(x — g, v, OV [ XDy — o, v, 0T fec ] FAO D (x —p v, )+, (44)

where #° is the basic steady solution, and T (complex) and £, (real) are the horizontal
velocity components of the linear eigenmodes associated with the two interacting
maodes, and are (F./2)-symmetric and r-symmetric, respectively; X (complex) and #
(real) are the small associated amplitudes. Symmetry arguments show that the joint
dynamics of X and b arc given by

X' =X+ (BUXI+ B+, b = b+ (BIXP+ B+, (45)
where ¢ and po are small unfolding parameters that measure departure from the
codimension-two point in the planc (Re, I7), and the dnft velocity is given by

W o= B Xe" oo+ (4.6)

The calculation of the complex coefficients 8, and A and the real coeﬁicients B and
£, is beyond the scope of this paper, but {(cf. (2.31)) gs=1L1 ! f Gy dx dy.
Noltc that the dynamics of & and b arc decoupled from the phaba, W, and that
¢’ %= 0 (which means that the pattern exhibits a drift) if X == 0; but the temporal
average of the right-hand side of (4.6) vanishes to leading order and thus the overall



drift is always zero, meaning that all solutions below are SWs. The system (4.5) has
been thoroughly analysed clsewhere (Guckenheimer & Holmes 1983 and references
therein). In particular, it is seen that the joint dynamics of « = |X| and }» are decoupled
to that of the phase of X. It follows that

@ =+ (Bt + 5 a+ . B = poh (B’ + B+, {47

where 8; and A; arc real (in act, the real parts of their complex counierparts in (4.5)),
and the phase of X, called , is such that #' ~ 4> +5* and thus has generally a constant
sign, meaning that, e.g. steady states with o =0 steady states with @ #£0 and periodic
solutions of (4.7) correspond Lo sicady states, periodic solutions and quasi-periodic
salutions of (4.5), respectively. Depending on the values of the cocfiicients, the system
(4.7) can ¢cxhibit the following solutions:

{(a) Steady states of the form (%, 0) and (0, »*), which correspond to the periodic
and steady SW interacting modes, and are like those already described, and plotted
in figurcs 9(h) and S(d).

(b) Steady states of the form (af, &°), with @® £ 0 and #° £ 0, which correspond to
periodic solutions of (4.5} giving non-(£/2)-symmgtric periodic SWs of the sysiem,
like that plotted in figure 9(¢).

(¢} Periodic solutions of the form (a(7), &(7)). which correspond to quasi-periodic
solutions of {4.5) giving non-(L/2)-symmelric quasi-periodic SWs of the system, like
that plotted in figure 9(d); this branch typically disappears at a homoclinic bifurcation
illusirated in figure 9(e), and conscquently no chaotic behaviour (resulting from
further bifurcations on the quasi-periodic branch) is found near this codimension-two
point. The system does exhibit chaotic behaviour for I” close to (.372, but for much
larger values of Re (sce figure 9F, where chaoticily is ascertained through Lyapunov
gxponents).

(ii) Near (Re, I') =(179.6, 0.584) the interaction of the steady standing waves and
the steadily travelling waves modes gives a two-dimensional dynamics. The horizontal
vclocity can be writien as

= — v, v) +aW(x — b v+ O (x — i, y) + (4.8

where, as above, #° is the basic steady solution, and 7, and {7, are the horizontal
velocity components of the linear marginal eigenmodes associated with the two
intcracling modges, and arc r-symmetric and (L/2)-symmeclric, respectively; @ and &
are the small, real amplitudes of these modes. Symmetry arguments show that the
joint dynamics of @ and & are described by the system (4.7) above, where oy and po
are again small unfolding parameters and the drift velocity is given by

W = f=b (4.9)
As a.b0ve. WeE do not calculate the coefficients £y, ..., B4, but point out that {cf. (2.31))
fs= !OL i, 6o v)U, dx dy. Note that the dyndmlu of @ and b are decoupled from

the phasc W, dlld that +* == 0 (which mcans that the paticrn ¢xhibits a dofi) il b & 0.
Singe the joint dvnamics 01‘ a and b is as described above, we need only explain the
nature of the associated solutions of the system:

{(a) The sieady staies of the form {a, b= (a*, 0) and (a, b) = (0, b*) are now called
pure modes and correspond to the two interacting modes. These are gualitatively
similar to thosc ploticd mn ligurcs 8(a) and 5(d).

{B) The steady states of the form (a, #)=(a, »*) are now called mixed modes and
correspond to non-(L/2)-symmetric steadily travelling modes. We have not found
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FiGUure 10. The primary instability of the basic SW of (2.25)+(2.31), (2.33), labelled SW(L/2)
for k=237, L=2.65 (m=1) 'I'he bifurcation is either a Ilopf bifurcation (——) if
0= 1" <0371, an (£/2)-symmetry breaking bifurcation {(— — —) if 0.371 < "< 0.5388, or a
parity breaking bifurcation ( Jif 0.588 < 17 = 1.

these mixed modes near the codimension-two point, bul the system docs posscss
solutions of this type for larger values of Re (see figure 84).

(¢) The limit ¢yeles of the form (a, by ={a{t), b(1)) arc now periodic solutions and
correspond to non-(1./2)-symmetric periodic TWs. Again, we have not found these
near the codimension-two point, even though they do exist for larger Re (figure 9g).

42, Iigh surface viscosity
Now we consider (2.25) (2.31), with the additional condition {2.33). The counterpart
of figure 6 is now plotted in figure 10, where it s scen that the critical Reynolds
number ranges from 95 to 440 for O < I < 1, and again generally decreases as I
increascs, In lact, the intermediale curve plotled with a dashed ling 1s identical to
that in figure 7; this is because this instability involves locally r-symmetric SWs,
which are such that fo idy = [ ii,dx =0 and thus satisfy both {2.32) and (2.33);
the upper and lower marginal instability curves (plotted with solid and dash-dotted
lines, respectively) move to the right and to the left, respectively, Thus, for fixed I, the
cffcet of surface viscosity is destabilizing at small 17 and stabilizing as I” approaches 1.
As in figure 6, the dot in the axis I' =0 corresponds to the instability limit for ¢lean
free surface (§3) and, as in §4.1 indicates again a sharp transition at small values
of 1",
The primary bifurcation ig again as in §4.1 and gives:

(i} (L/2)-symmetric steadily travelling waves if 0.588 < I' < 1 (an example of such
a 'TW is plotted in figure 124). The bifurcation diagram for " =0.9 and varying Re
(figure 11} 18 qualitatively similar to that in figure 6, except that the short interval
of complex dynamics is now abscent; the (L/2)-symmctry breaking occurs now al
Re=433.2, and gives non-{I./2)-symmetric steadily travelling waves like that plotted
in figure 12%. Note that the drift velocity ' of these TWs (see the caption of figure 12)
is much lower than in the low surface viscosity limit. The bifurcation diagram remains
unchanged tor higher values of m (see (2.33)), which means that these TWs are again
quilc robust,

(ity r-symmetric but non-(I./2)-symmetric steady standing waves, if 0.371 <
I < (.588. The associated streamlines are similar to those plotted in figure 5(d).
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Figure 11. The bifurcation diagram of the basic SW of (2.25)+2.31), (2.33) for £ =2.37,
L. =2.65(m=1), and " =0.9 for varying values of Re.
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Ficure 12, The streamlines for some representative steady and steadily travelling attractors
of (2.25) (231}, {2.33), for £=2.37, 1. =265 (m=1) and the following values of (Re, I'):
{a) (200,09}, (&) (600,0.9), and () (500, 0.65). The streamlines correspond Lo moving axes
& =x —'r, with the constant drift velocity ' =—0.072, —=0.097 and —0.049, respectively.

(iit) {L/2)-symmetric periodic standing waves. The plots of the drift velocity and
the instantancous position of the wave arc qualitatively similar to thosc in figurc 9(b).

The bifurcation diagram in figure 10 shows again two codimension-two points that
are similar to those in figure 6:

(1) Near (Re, I'y=(316.2,0.371), the interaction of the steady and periodic SW
maodes is again governed by (4.3) (4.6), and leads to similar dynamics. In particular,
a non-(L/2}-symmetric periodic SW gives plots similar to that in ligure 9{(¢); and
a non-(L/2j-syminetric quasi-periodic SW is as plotted in figure 13{a). TTowever, in
contrast with the low surface viscosity case, the branch of quasi-periodic solutions
does not disappear near the codimension-two point, but does also exist for much
higher values of Re. As we depart from the codimension-two point, this branch of
quasi-periodic solutions loscs global r-symmetry and ¢xhibits a non-zero overall drifl
(an example is plotted in figure 135) and for still larger Re leads to chaotic dynamics
{figure 134).
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Frcure 13. The plots of the drilt velocity " and the instantancous position ol the patlern
ps. time lor some representalive oscillalory altraclors ol (2.25) (2.31), {2.32), lor k=237,
L=265 (m=1) and the [ollowing values ol (Re, I'): {a) (350,0.365), (&) (520, 0.305),
() (760,0.35), (d) (1000, 0.63) and (e) (1200, 0.65). Plots (b), () and (e} show a non-zero
overall drift of the associated pattern {(namely, a non-zero overall slope of the plot W vs. 7).
while the remaining plots show no overall drift.

(il Near (Re, I'y=(182.5,0.588), the dynamics are again given by the amplitude
equation (4.7), which yields: («) pure modes that are qualitatively similar to those
plotted in figures 12(z} and 5id). Again we have found ncither mixed modcs, nor
periodic TWs near the codimension-two point. These do exist for 17 close to 0,588,
but require much larger values of Re (see figures 12¢ and 134); the latter does become
chaoltic for still larger Re (scc Lgurc 13¢).

5. Conclusions

We have denived in §2 a system of CSPSE cquations that give the joint dynamics
of the spatial phase of a spatially uniform quasi-standing (namely, standing in
a slowly moving reference frame), one-dimensional wave and the two-dimensional
strcaming {low produced by the wave itsclll 'This sysiem includes the effcet of surface
contamination modelled in the simplest possible way. The order of magnitude of the
(unknown in contaminated water) Marangoni elasticity has been taken as that already
obtained by Nicolas & Vega (2000) to fit the experimentally measured damping rate
for contaminated water. Surface viscosity 15 expected to be small in contaminated
walcr, but it can also be large in other systems. ‘Thus, we have considered the limiting
cases of small and large surface viscosity, see (1.14). TTowever, in order to compare
with the experiment by Douady et al. (1989), we may consider § <y ~ 1, which
means that (1 the limit of low surface viscosity is likely to apply (provided that \/’?ﬁ
is not too small). and (i) except for small £ gives a value of I" that is close to 1 (see
ligurc 3&).

We ﬂave assumed that P>>\/E thus ignoring an intermediate narrow regime
'~ J/C, discussed in §3, in which the transition from the clean free-surface case



considered in MMYV to the limit " — 0 of the results in this paper occurs. It is
worlth noting that surface contamination stabiliz¢s the basic standing waves in this
intermediate regime (I" ~ ,\,r’f). This is because the only effect of contamination in
this regime on the mean flow is to replace the free stress boundary condition at the
free surface by a no-shp boundary condition, which reduces the strength of the mean
tlow. The effect of contamination for larger values of I" ~ 1 is destabilizing (figures 6
and 10). This is because now conlamination produces a non-zro forcing lerm for
the horizontal velocity of the mean flow, which makes the mean tflow stronger as I
increases.

At low surface viscosily, we have found that for increasing valucs of the
contamination parameter I”, the basic r-symmetric steady state loses stability either
in a Hopf bilurcation, a sicady symmctlry breaking bilurcation, or int a parily braking
bifurcation. The latter bifurcation vields new stable steadily travelling waves that
are quite robust, as in the experiment by Douady et al. (1989). The interaction of
these three sccondary modes yiclds more complex dynamics, which include periodic,
quasi-periodic and chaotic attractors, some of them exhibiting a non-zero overall
drift. In order t¢ save computational time, we took m =1 in (2.35), which means that
the computational domain was the fluid under just one wavelength of the surface
wave, with periodic boundary conditions in the horizontal direction. The calculated
solutions are also solutions for larger mz, but solutions that arc stabic for m =1 ¢ould
well be unstable in larger domains due to, e.g. spatial period-doubling instabilities.
We have checked that this is not the case, namely that most results stand for larger
m, as indicated in each checked case. Also, in order to compare with MMV, we took
k=2.37 in all calculations. This value is lower than the non-dimensional wavenumber
in the cxperiment by Dovady et al. (1989), which ranged from 3.3 1o 5.1, We did not
presented results for these larger values of & because it is not clear that in order to
simulate the three-dimensional annular containcr with our (wo-dimensional modcl
we should take the same k. Instead, the effect of the Stokes boundary layers attached
to the lateral walls {(which arc absent in (wo dimensions) of the annular domain in
gencrating a mean flow can be somewhat taken into account by decreasing &, which
increases the relative effect of the Stokes boundary layer attached to the bottom of
the container; this ¢llect is qualitatively similar to that of the lateral walls,

In addition, we have considered the limit of high surface viscosity, to obtain results
that arc qualitatively similar to those described above; the main difference 1s that
the drift velocity of sieadily drifting patterns is much lower at high surface viscosity.
Thus we expect that for intermediate values of the surface viscosity, the results will
be also qualitatively similar,

Iinally, we point out that the drift of the patterns encountered above occurs in
spatially constant surlacc waves, which arc rcllection-symmetric (¢ leading order,
Thus, the encountered drift is not due to any reflection-symmetry breaking of the
surface waves themselves, but to a retflection symmetry breaking of the associated
strcaming How. This is in contrast with other sources of drift that are duc to a
reflection-symmetry breaking of the surface wave envelope. and requires in particular,
that the surface waves be not spatially constant (Lapuerta et al. 2002).

We hope that the results in this paper will stimulate further experimental work in
the Faraday system in annular containers, with a special attention to the streaming
flow, which has been largely ignored so far,

This work was partially supported by the National Aeronautics and Space
Administration (Grant NNC0O4GA47G) and the Spanish Ministry of Education
{(Grant MTM2004-03808). We are indebted to Professor rancisco J. Tiguera for



illuminating discussions, and to an anonymous referee for suggestions that helped to
improve the presentation of the results,

Appendix. Asymptotic derivation of the coeflicients o, @, and oy

The derivation of the coefficients o, «; and wy requires us to analyse the upper
boundary layer attached to the free surface. In fact, oy and @, also include the effect
of the lower boundary layer, which is known and will be added a posteriori 1o the
expressions derived below. In the upper boundary layer, attached to the free surface,
we use the stretched normal coordinate

n

VO

and introduce the counterparts of the expansions (2.13), namely

fr = 2iR Upel et gink{x — yr) + o + A" + ...,

b= 21(0} + V,"E‘A/O)Roci(mr—ﬁ‘)o) CcOs k(:,c _ "t/f) YR B LR ,

g =21 +Tk + \,»’FQO)Roei':“’f"""" coskix — ) tee +§"+ -, (A2)

F = 2Rpei@t 0 coskix — ) +ec+ 4,

¢ = 2Ry Ege i cosk(x — ) Fec 4+ 0" 4,
where &# and © are defined as in (1.9), and the leading-order constant values of v
and ¢ are anticipaied. Substituting these and (1.7)-(1.9) into (1.1)-(1.5) and (1.10),
we obtain the following system of equations and boundary conditions to determine
those terms labelled with the subscript 0, which are

KOy + Vo, =00 gy = —ik(1 + Tk + Uypye Qop=@} in 0= y<0, (A3)
Vo=0, Uy =—iykE —k*00, 0v=0, wBo+klo=0 aty=0 (A4
Uy = bounded as n — —x, (A3)

where we have set @ = ay and for convenience we are anticipating in (A 3) a part of
the matching conditions with (he outer Dow. Intcgration of (A 3)-(A 5) viclds

d(1 — exp( lgn))

Uy = a(l + dexp( Jiwon)). Vo = ka Lk —nl, (A6)
\XI(J.)U
N 3 . 1+ 4%k
Oy =w'n, Eg= —M, (A7)
(b))
where
o= 7(1 + TkE)k‘ 4 ﬁwo\;"ia)o ~ Y (AS)
oy @yl + (Bowg — 1y Jk?

Notc that (cf. (2.2)) lA;’O(nz—w)zUu(yz()) and thus the solution in the boundary
layer matches with that in the outer flow.
Now, we derive separately the strcaming (ow cocfficient ¢g and the lincar cocflicicnts
54 and o,
AL, Derivation of o

Substituting (1.8)-(1.9) and (A 1)(A 2) into the momentum cquations (1.2)-(1.3), and
taking the mean value in the short timescale 1 ~ 1, we obtain, at leading order

=" 4 2RA T, Vo + c.c.) sin 2k(x — ), (A 9a)



a1 = 4R (Uol, + ccsin2k(x — ). (A 9h)
Integrating (A9 ») and substituting into (A9 «), we obtain
i =AUl + 45 (A10)

where g 1s independent of 5 and is determined by imposing that the right-hand side
of (A9a) be bounded as n — —x when taking into account (A 10), Tt follows that
i = 2R~ Uy Vo + 6.0+ 2k(| P — [Eg(—20)[*)] sin 26(x — ). (A11)
[ntegration of this equation, invoking (A 6) and imposing that #" be bounded at
n = —o0 yiclds
0" (—o0) = —2ug RS sin 2k (x — ) + upy, (A12)
where
ng = " (n = Q). (A13)
ny depends only on ¢ and
k| —{4id + c.c) + 3|d|]
— - .
which invoking (A 8) lcads to (2.21), Here, 2 and 4 arc as delined in {A8); the
imaginary part of 4 is positive and thus oz 18 also positive.
The asymptotic value (A 15) must be maiched with the tangential component of
the outer streaming tlow velocity at y = f, which invoking (1.9) is related with the
horizontal component of the streaming How velocity (again in the cuter fow) by

wy=0)=ualy =/ 1= {fiv+ Su, +...}, (A15)

where {-) stands for the temporal mean in the short time scale, ¢ ~1 and only the
leading-order terms are considered. Substilution of (2.15) yiclds {fiv+ fu, +-+ 3 =0
at leading order, and thus the appropriate boundary condition of the outer streaming
flow is as given in (2.17).

Applying matching conditions with the outer strcaming flow velocity, we oblain
w'y=f)~u"{y =01+ {u,(y =01+ ..., and taking into account that the temporal
mean value of u,(v =0}f is zero at leading order, we obtain the boundary con-
dition (2.17). Also, according to {A13), since |5, — LI/l €1 and kL =1 (mod 2x)
condition (1.15) is leads to (2.19).

Finally, we show that (1.12a) lcads to (2.18). 'To this cnd, we first notc that the
leading-order {O{R7)) part of the stress u” in the outer flow matches the O(R3./C)-
correction of &7, Thus, we must also consider this correction, replacing «” with
uf + JCul in (A 2a). Replacing this in (1.2) and invoking (1.7) (1.9), we obtain an
cquation of the form

wi, = Roh(n)sin2k(x —¢) in—ox < <0, (A 16)
iy, = Ryhosin2k(x —4r) at =0, (A17)

(A14)
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where the function # and the constant Ay are both (1) and need not be determined.
The form in the right-hand sides of (A 16} and {A 17) follow, just noticing that these
terms come from products of O(R3) and O( RS.V’f), linear terms that depend on x,
as do the O(Ry)-tcrms in (A 2), because both convective 1erms in (1.2) and nonlincar
terms in (1,55} are reflection-symmetric; thus, terms proportional to sin® k(x — ¢) and
cos” k(x — ) are excluded and ! does not contribute to the left-hand side of (1.12«).



Integration of {A 16)-(A 17) and applying matching conditions with the solution in
the outer low, taking into account that the spatial mean value {in the short time
scale (t ~1) of both uy f/ + v, /fy and f.,u vanish at leading order, readily implies
that conditien (2.18) holds.

A2, Derivation of « and
Since these cocMcients are associated with a lingcar approximation, we need not usc a
coordinate attached to the boundary in the upper boundary layer. For convenience,
we begin with the following linear, viscous equations

kU +V, =0, (A18)
liwg — /Clay + ioa)|U = —ikQ + C(U,, — K1), (A 19)
lieog — Clay +i)]V =iQ, + C(V,, — k°V), (A 20)

in —1 < y= 0, with boundary conditions
U=V=0 aty=—1, (A21)
V =y +1JClay +ie), JOU, —kV) = —iykE — sk, (A22)
Q — (1 + TE) = 2CV,, [y — Clo +ica)]E +ikU =0 at y =0,
which arc obtained sctting £ =0 m the lincarized version of (1.1)-(1.5) and sceking
normal modes of the form
u = R ¥ gin k(x — ) + ¢,

. . A23
(v, q, f,¢0) = 2Ro(iV, Q. 1, 2@ cosk(x — ) +cc.; ( )

also, we have neglected higher-order (erms in the complex damping rate, Noie that [or
small €', this problem exhibits two viscous boundary layers attached to the boundaries,
and that

U=U, V=V, =0, (A 24)

the inviscid approximations (2.2), outside these boundary layers, while in the upper
boundary layer, we have (cf. (A2))

U=1T, V=iwy+JCVy, ©=14Tk+.JC0q, (A 25)

where Uy, Vs and Qn are given by (A7), in terms of the stretched coordinate (cf. (A 1))

N = 3—_ (A 20)
JC
The terms ¢ and o, are readily calculated using the following global selvability

condition, first introduced by Nicolas & Vega (1996) in a related context,
0
(Ch + Idg) l:[ (UQU + V(\V) dy +14+ Tk2
-1
U= (1) 4 22 W e (), (A 27)
&)

where Uy and V; are the inviscid approximations {2.2) and we have neglected O{,/C)-
terms anticipating that |U]~ |y ~ V]|~ |Va| ~ |V, | ~ |[Us| ~ 1. This solvability
condition is rcadily obtaincd by multiplying (A 19) and (A20) by U, and Vg,
respectively, adding the resulting equations, integrating in —1 < y < {), integrating
by parts and substituting (A 3) and {A22) (A 22). Now, ignoring at the moment the



lower boundary layer, and denoting as &, and &: the corresponding values of o« and
@y, we can use the approximations (A 24) and (A 25), 1o rewrite (A 27) as

. 7 1 8 —1i 2 -
(@) + id) U (U + Vi) dy + 1+ 1k = “’0(7)”%110(0)(/(0)
Sl 1))

R+ TR+ d) ey — iy)
N ayg lanh k

., (A28)

where @ and d are as defined in (A 8), and we have taken into account that the first
term on the right-hand side of (A 27) 1s O(/C} at the upper boundary layer. We need
only caleulate the integral on the lefi-hand side, j'” (U] +ViHdy=1+Tk 1o obtain
K8y — iy W1 +d)

2ap lanh & )

Adding in the right-hand side the well-known (MMY) contribution of the lower
boundary layer (which is k \/ieo/ sinh 2k), and replacing (A §), we obtain the expression
of oy + 1oz appearing in (2.7).

(A29)

& +iay =
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