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Abstract

Parametrically driven surface gravity-capillary waves in an clliptically distorted circular eylinder are studied. In the nearly
inviscid regime. the waves couple to a streaming flow driven in oscillatory viscous boundary layers. In a eylindrical container,
the streaming flow couples to the spatial phase of the waves. but in a distorted cylinder, it couples to their amplitudes as well.
This coupling may destakilize pure standing oscillations, and lead (o complex time-dependent dynamics al onsel, Among the
new dynamical belavior that resulls are relaxation oscillalions involving abrupl transifions between slanding and quasiperiodic
oscillations, and exhibiting “canards’.
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1. Introduction

Surface gravity-capillary waves exhibit a wide variety of pattermn-forming phenomena, depending both on the
mode of excitation and on the size of the domain relative to the wavelength selected by the driving frequency. In
large domains recent work has focused on two-frequency forcing [1], in which the two frequency components select
distincl wavenumbers, These experiments, generally carried out in quile viscous liquids, ave revealed various
superlattice patterns, as well as nonperiodic states resembling quasipatterns [12.27.28,1]. In these experiments, the
frequencies used arc in (low order) resonance, so thal the Torcing acceleration remains periodic in time, with (he



frequency ratio, their relative phase, and their relative contribution to the forcing providing parameters to be tuned
in the experiment. Existing theory has been successlul in explaining a number of the expenimental observations
[42,37.39], but for reasons explained below such theory is generally restricted to highly viscons liquids. This is
because in nearly inviscid liquids the behavior is complicated by the presence of a mean flow, also known as a
streaming flow, driven by time-averaged Reynolds siresses in oscillatory viscous boundary lavers near rigid walls
and the free surface [40,31,43]. These mean flows in tum interact with the waves that produce them, leading to a
description of the Faraday sysicm in terms ol amplitude cquations coupled 1o a Navier—Stokes-like cquation for the
mean flow with boundary conditions obtained by matching to the oscillatory boundary [avers [43]. These equations
represent a new class of patiem-forming dynamical svsiems.

The new terms in the amplitude equations are formally of cubic order, indicating that the effects of the mean flow
cannot be neglected, even in the limit of vanishing viscosity. The resulting equations have thus far been studied only
in the simplest cases: with single frequency forcing, periodic boundary conditions and one horizontal dimension.
When the spatial period is comparable to the wavelength selected by the parametric forcing the coupled amplitude-
mean flow cquations simplily: all solutions arc allracled 1o standing waves of constant amplitude, and the sircaming
flow only advects the spatial phase of these waves; this phase in turn appears in the boundary conditions for the
streaming flow, giving rise to a pair of simpler coupled phase-mean flow equations. Analysis of these equations
reveals that the coupling to the streaming flow is significant. and can lead to a number of new instabilities, which are
absent if the streaming flow is neglected [33]. These include parity-breaking instabilities that lead to pattern drift,
and oscillatory instabilitics ihat producc oscillations in (he spatial phasc of the paticrm, In larger domains amplitude
inhomogeneities cait develop and these also couple to the mean flow [30].

In the present paper we examine this type of dynamical system in three dimensions. The structure of the resulting
equations in various small aspect ratio domains has recently been determined [22]. Of the domains considered a
circular domain is of particular interest. If the domain is precisely circular the ampiitude of the standing waves
produced by the paramctric driving decouples from the mean flow, and the streaming {low couples o the spatial
phase of the pattern only, as in ref. [33]. However, as pointed out in [22], the situation changes dramatically when
the shape of the container is perturbed. In the case of a slightly elliptical container two types of standing waves,
oriented along the major and minor axcs ol the ellipse, come in inclosc succession as the amplitude of the parametric
excitation increases, and these may interact already at small amplitude, producing mixed modes which are much
more clficicnt at driving a streaming low. In this casc, the strcaming flow couples 1o the two amplitudes, as well as
to the spatial phase of the resnlting pattern. This interaction with the streaming flow is responsible for a new class
of dynamical behavior that now involves the amplitudes as well. In particular, we demonstraie in this paper that it
can lead to relaxation oscillations of a particularly interesting type: oscillations that switch from single [requency
standing waves to two-frequency waves and back. Under appropriate conditions these relaxation oscillations can
cxhibit the so-called “canard” phenomenon in which (he sysicm follows nominally unstable solutions in the slow
phase. Various giobal bifurcations are located as well. of which perhaps the most interesting is responsible for the
appearance of chaotic dynamics right at threshold of the primary instability,

QOwur calculations arc bascd on the assumplion that the effective Reynolds number of the streaming How, suitably
defined, remains small, This assumption permits us to project the Navier-Stokes-like equation for the stream-
ing low onto the dominani spatial cigenfunclion, replacing il by a single ordinary differeniial cquation [or the
evolution of the amplitude of this eigenfunction. The coupling of this viscous mode to the amplitude of the
compceling slanding wavcs is retained as a [ree paramcter; the remaining nonlincar cocflicieni valucs arc taken
(mostly) from a paper by Miles [34] for an inviscid fluid in a circular cylinder of aspect ratio R == 0.66 with a free
contact line.

The paper is organized as follows. In Section 2, we summarize the derivation of the coupled amplitude-streaming
flow equations for this system, and the conditions for their validity. In Section 3, we discuss the basic properties
of these cquations, and identily four regions in paramcicr space where these cquations arc valid bul new tvpes of
dynamical behavior may be expected. In Section 4, we explore numerically the behavior of the coupled amplitude-
streaming flow equations in these regions and offer, in each case. a dynamical systems explanation of the observed



dvnamics. The paper concludes with a discussion of the implication of our results, both for dynamical systems
theory and lor future experiments on the Faraday sysiem.

2. Coupled amplitude-streaming flow cquations

We consider nonaxisymimetric Faraday waves in a slightly clliptical container. The cllipticity breaks the O(2)
symunetry of the container and picks out standing oscillations with nodes along either the major or the minor axis of
the cllipse. A convenient way of understanding this selection is 1o formulate the problem {irst in a circular conlainer,
treating the ellipticity as a small perturbation, comparable to the small damping from the viscous boundary layers
(and the Mow in (he bulk) and (he small forcing amplitude required to overcome it. In the unforced casc, the e
oscillations of the fluid in such a container are most easily described in terms of clockwise and counterclockwise
rolating waves, and we therclore use the amplitudes Ay of these waves 1o describe the dynamics of the sysiem.
In a circular container, the parametric forcing couples these waves, resulting in a reflection-symimetric standing
oscillation with arbitrary orientation. Because of this symmetry only the phase of the standing wave couples to
the strcaming flow, However, as soon as the shape of the container is perturbed rom circular boih the phasc and
the amplitudes couple to the streaming How. This coupling takes place via the difference in frequency between the
oscillations along the two principal axes [22] and has a dramatic impact on the dynanics.

Since we are treating departures from circular symmetry as a perturbation we can use cylindrical coordinates
(r, 0, ). and consider a circnlar cyclinder of height # and radius Rh. In these coordinates, the coupled amplitude-
strcaming flow cquations derived by Higucra el al. |22], suitably scaled, take the [onn
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with V.u = 0, Inthese equations, # denotes the streaming flow, £2 is a known constant, and the quantities I, g and A
arc proportional 1o the detuning, forcing amplitude and cllipticity of the container, respectively. The detuning takes
into account the mismatch between half the forcing frequency and the natural frequency of inviscid oscillations, and
includcs the frequency shifi duc to viscosity, while A is proportional 1o the [requency dilference 21 — £22 between
inviscid oscillations along the two principal axes of the container. The time has been scaled by the viscous damping
time § = C;/ 2y y2Cq, where Cy = v(gh? + Th/p) ™17 <« 1, and 1 and y, are known constants that depend on
the excited mode. This scaling is responsible for the appearance of the Revnolds number
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in the Navier-Stokes-like Eq. (2) for the streaming flow. This Reynolds number is formally of order one [32.43], but
can in [act be both large and simall, For example, il the container is not deep the damping of the waves is dominated
by the Stokes boundary lavers and Re ~ /\/Q while in a deep container both terms (ie., yl(f.‘é/ Ty y2Cs)
contribute to the damping. Calculations show that for the first few modes y2/11 ~ 10% [32] so that systems with
Cy = 10~*, such as watcr or silicon cils in centimeter-deep conlainers, have Reynolds numbers Re = O(1 /.\/Q).
In these systems, therefore. the streaming is only weakly damped and hence is easily driven by time-averaged
Reynolds stresses.



Eq. (2) also contains a Stokes drift term & given by
G = (1A — [A+)g(r O)es, )

and is to be solved subject 10 the boundary conditions

= e Ar A oo +pa(lALE + 1A Do X es + [ign A A_e®™
+oc +pallA- P — Ay D]es (5)
ongithcrr = Rorz = —1, and
du dut 2 g
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dz dz
onz = 0. Here ny denotes ihe outward unit normal. and the scalar functions ¢. . . . . s and g areall real, independent

of @ and compultable in terms of the components of the exciled inviscid lincar mode of the sysicm |22]. For a pinned
contact line the coefficients y; and -, in (3) and the corresponding inviscid eigenfunctions have been calculated in
[32]. while Miles [34] has calculated the coefficients «; and w; of the nonlinear terms for a particular case with a
free contact ling (scc Fig, 1), In the following we gencerally use Miles” results for £ = 14. T cmand R = 9.24 ¢,
viz. a1 = 0.4, a3 = —2.58 (Cases I-1II). These values correspond to an experiment of Funakoshi and Inoue [14].
although in this casc the waves were exciled dirgctly by lateral vibration, rather than paramctrically. The resulls in
Case IV are obtained for o; = 0.48, a3z = —0.38.

It is important to observe that in these equations all coefficients are formally of order ome. In particular, the forcing
of the streaming flow remains fimitc even in the limil of vanishing viscosily, as originally noted by Schlichting [40] and
Longuet-Higgins [31]. The boundary conditions (3,6) show that its magnitude is in general of order (|AL|*, |A_|?).
and hence of order g — peg, where pg is the threshold flor the onset of the Faraday instability. Notc also that a
nonvanishing streaining flow is associated even with standing waves (| A4 | = |A_|). although for such waves u-¢;
changes sign under reflection ¥ — —0 and the last term in Eq. (1) vanishes. Thus for standing waves the streamming
flow decouples [rom the amplitudes, although it mway be involved in (riggering instabilitics of such waves,

2. 1. The circular container

As already mentioned, when A = 0 the streaming flow decouples from the equations for the amplitudes. To see
this we consider waves with azimnthal wavenumber m, and write

AL — le:c—i.'ﬂ.()g(r)7 (7)
to obtain
Biy(r) = —(L+iIBx +i(n |BLl* + 02| BB + ip By ®)
and
0 p2m PR
06(1:) = (§2/m) / f f g(r, Du-eprdrdods. (9
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These equations provide the simplest description of nearly inviscid Faraday waves in O(2)-symmetric systems and
all their solutions corverge to reflection-symmetric steady states of the form

By = Roe"™, (10)



Fig. 1. The coefficients w1, w2 for a m = | inviseid mode with a free contact line as a function of the aspect ratio R. Here o) = —A — B,
oy = —A 4+ B, where 4 and R arc computed by Miles [34].

1.c., 1o slanding wavcs, and only the spatial phasc &y couples 1o the streaming {low, as described by Eq. (%) and

z—:—ux(qu):—Vp+Re_lAu, Vu=0, (11)
subject to
# = 2R3[p1 cos[2m(t) — 90)] + glrg x eg — 2Raqs sin[2m (6 — Oy)]es (12)
oneitherr = Rorz = —1, and
u au
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onz = 0. The (constant) arbitrary phase 98 appearing in (10} has been eliminated by an appropriate rotation. Egs. (9).
(11)—(13) posscss, forall Rﬁ, reflcction-symimelric stcady states of the lorma = u®(r. 4 — 8y, z), 6o = constanl, with
a(r, 8, 7)-e5 = —u¥(r, —0, 2)-ey; note that there is a whole family of such states, obtained by an arbitrary rotation.
For small RS the cxistence and (orbitaly asymplolic stabilily of these states canbe ascertained analytically, It turns oul
that these states can lose stability at finite Ry either through a parity-breaking bifurcation giving rise to uniformly
drifting spatially unifonm standing waves (such as those observed in Faraday expenments in annnlar containers
[10]). or via a syminetry-breaking Hopf bifurcation that produces so-called direction-reversing waves [29]. In the
latter case. the standing waves drift alternately clockwise and counterclockwise but their mean location remains
fixcd. Solutions of this (ype have been found in a two-dimensional Carlesian gecometry with periodic boundary
conditions. and represent the instability that sets in at smallest amplitude [33]. Neither instability is present if the
coupling to the streaming flow is ignored.



2.2 Nearly circular cylinder

Assoonas A # 0 the symmetry of the problem is reduced to the group D), generated by
Ay — —Ay, 0—=0+m and AL <A, 00— -0, we — —u-ey, (14

and the streaming fiow couples to the amplitudes as well. The description of this coupling becomes simpler when
the effective Reynolds nmmumber of the streaming flow is small (i.e. p — ¢ 1s small) for then the non-potential
term —u x (V x u) in Eq. (2) is negligible, In fact this approximation remains qualitatively useful even for larger
Reynolds numbers. The absence of nonlinear (erims allows us Lo isolale the part of the sircaming flow velocity that
contributes to the nonlocal term in Eq. (1), by decomposing the streaming flow variables as

2
(u, )= (u(r, z, T)es. O) + (i, p), wheref fteydd =0. (15
0

Thus,
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v=g4(|A_|> = |A;[®) oneitherr = Rorz = —1. {19)
v; = gs(A_[* = |4, [%) onz =0, (20)

and the axisymmetric pari of the streaming flow vanishes for standing waves (|A+| = |A_]).

Although the above model can be integraled numerically by relatively inexpensive methods we simplify it
further by expanding the axisvmmetric component of the streaming flow velocity. v, in terms of purely azimuthal
hydrodynamic modes. These satisly the cigenvaluc cquation

W=Ve+r WV r V4V, il Ocr«<R —1<z=0, 20
V=0asr—0, V=gqoneitherr = Rorz=-1, V,=¢so0nz=0. 22

The eigenvalues A are all real and negative. If only the first such mode is retained, we obtain

AL(D) = (1 + i) A +iAAg + ] AxP + ool Ag DAz + ipAg F iyo Ax, (3)
W) = e(—u + |A_|> — AL, (24)
where ¢ = —i Re~! = 0, and A < 0 is the first purcly azimuthal hydrodynamic cigenvaluc. In the following we

define new vanables
X=i(Ar — A2, ¥ =(Ap + A2, v= /2, (25)
and rewrite Eqs. (23)—(24) in the more useful form
X = —(1 4+ I+ ADX + iy + )| X> 4+ 21|V [IX —ifey — o)XY +ipX = 2p0¥, (26)
Y = —(1+ i — ADY +i((e1 + )| Y2+ 201X P — iy — a2)V X2 +ipY + 20X, 27



v = a(—v+ (XY — XY)). (28)

This form of the cquations makes it clear not only that the (axisymmetric part of the) strcaming {low vanishes iff
either X = 0or ¥ = 0, ie.. for pure standing waves. but also that both modes must be present in order to drive such
a flow, i.e., all instabilities of standing waves within Eqs. (20)-(28) will be due to made inferaction, at least when
AF£0

Eqs. (26)—(28) constitute the basic system studied in the remainder of this paper, and we investigate its propertics
lor small values of «. I £ s 100 large the mean [ow becomes slaved 1o the amplitudes, and Eqs. (26)—(28) become
instead

X' = (1 4+ i+ ADX +i((er + o) X+ 2ar + WYX — ile) — a0+ 29)XY2 +ipX, (29)
Y = —(1+i(F = ADY +il(e) + a2)|Y 7 + 2 + )XY — iy — on + 290V X + ipY. (30)

i.e.. amplitude equations for the Faraday svstem of the usual kind, but with coefficients modified by the presence of
the mcan flow according (0 oy — a1 + ¥, ¢y — oy — . The resulling equations [orm a special case of the sysiem
studied by Dangelmayr and Knobloch [9]. When £ is sufficiently small the streaming flow v participates actively in
the dynamics and permits behavior that would not otherwise occur. This occurs when the mean flow is sufficiently
weakly damped, i.c., when |4] is sufficicntly small or Re sulficiently large.

3. Analytical results

Eqs. (26)—(28) are equivaniant with respect to the group D, generated by the two reflections
Ryt (X Y u)— (=X, ¥ —v), Ry (X, Y u) — (X, - Y —v) (31

These symmnetries will prove {o be of crucial importance in the analysis that follows.

We begin by examining ihe steady stales and their stability properties. The stcady staics are of two Lypes,
hercafter pure modes associated with vanishing streaming flow, and mixed modes which are accompanied by a
nonzcro strcaming {low. These are distinguished by (heir syminctries,

3. 1. Pure modes (Py)

The two possible pure modes are givenby P = (0, ¥, 0) = (0. R+ei¢+, Mand P_ = (X,0,0) = (R_e%,0,0),
with P} imvariant under Ry and P_ under R». The amplitudes of these modes satisfy

Pr il 4 (T A — (o1 + ax)RL) = p. (32)

The Py are both pure parity standing waves, one with a nodal line along the major axis of the container and the
other along the minor axis, When A = 0 and the container is perfectly circular the pure modes are part of a whole
circle of standing oscillations,

The Py and P_ solutions bifurcate from the trivial state at

e =L+ ("= APYE and  poo = A+ + AW, (33)

respectively. The bifurcation to Py is supercritical if (I F AXw + «2) < 0.

Linearization about the pure modes identifies the stability properties of these states. These fall into one of two
classcs: the cigenveclor may respect the symmetry of the solution, or il may break it, A stcady sialc bilurcation of
the former tvpe corresponds 1o saddle-node bifurcations (SN), while a steady state bifurcation of the latter type is a
pitchfork that produces a pair of mixed modes, 1.e., steady states that do not have any synunetry. In the following we



refer to this bifurcation as a symmetry-breaking bifurcation (SB). A simple calculation shows that these bifurcations
occur at

SN K} = (34)
o1+ w2

SB:Ri:L, if I'A#0, (39
2(er + )

respectively, We emphasize that SB produces sfeady solutions of the form (X, ¥, v, XYv 3£ 0, in contrast (o the
parity-breaking bilurcation that occurs when A = 0 and produces a drifiing pure mode.
The pure modes P4 may also experience Hopf bifurcation. Only one type. a symmetry-breaking Hopf bifurcation,
is possiblc and takes place al
. AIAE2e 42

L7 TAQu —ap) (36)

provided that yA # 0. This requirement follows immediately from the expression for the oscillation frequency oy .
wh = —&> T 4yAeRY = 0. (37)

Thus, al most ong purc mode can lose stabilily at a symmelry-breaking Hopl bilurcation, Py il yA <« 0, and P_ il
4 > 0. Note that this instability involves the excitation of the streaming flow (y % 0) and requires a finite ellipticity
of the container. The oscillations that resull rescmble (rapped dircclion-reversing waves, oscillaiing about the major
or minor axes, but exhibit no drift. Such states correspond to two-frequency Faraday oscillations.

3.2 Mixed modes (M)

The mixed modes M = (X, ¥, v) = (R_¢"", Rye'®+, v) satisfy

EERz—l—RZ:L (38)
T 2o 4y
(E{er +@2) — TP 4 (1 + A%+ Az — 1 — 29L)F = (1 + ADp?, (39)
(Elen +az) — 1)?

fan(py —p-y=A.  cos gy +po) = (40)

w1l + A%,
where [ = R?,_ — R? Since these modes have no symmetry, the linearization about them does not block-diagonalize,
and ihe stability analysis must in general be done numerically. However, it is possible to show that the mixed modes
lose stability at a saddle-node biforcation when

P24+ Ao 4+ ) = THuy —az + 297 =0, (41)

a result that also follows from Eqgs. (38.39). These modes can also undergo a Hopf bifurcation. In contrast to the
purc modes such a bilurcation is possible cven when y» = (), bul then occurs only i P4 and £_ bilurcale in opposite
directions. However, if ¥ # 0, a Hopf bifurcation may occur along the mixed mode branch even when it connects
two supercritical pure modes.

The stability results for the Py and A{ solutions described above are illustrated in Fig. 2 for four representa-
tive sets of parameter values. In Fig. 2a, both pure mode branches bifurcate supercritically, with the P_ branch
bilurcating before the Py branch. The P_ siales are therelore stable at small amplitude and remain so until a
symmetry-breaking bifuscation at SB, where stability is transferred to the mixed modes A4, These in turn lose
stability at a Hopf bifurcation prior to the end of the Af branch on the P branch. The P} solutions above



SB have two unstable ¢igenvalues and acquire stability only at larger amplitude, at another Hopf bifurcation.
A slability gap, where time-dependent solutions may be cxpecied, is therefore present between the two Hoplh
bifurcations A.

Fig. 2b shows a case in which a symmmetry-breaking Hopf bifurcation occurs below the symmetry-breaking
stcady state bifurcation on the P— branch. Since the latler is suberitical the resulting mixed modcs have initially
three unstable cigenvalues but acquire stability after a saddle-node bifurcation, followed by a Hopf bifurcation.
Once stable they remain so until their iermination point on the £+ branch, where they transier stability 1o the P4
branch. Once again time-dependent behavior is expected in the region between the two Hopf bifurcations H.

In Fig. 2¢, both pure mode branches bifurcate subcritically, The _ branch bifurcates first and acquires stability at
a saddle-node bifurcation before losing it again at larger amplitude at a symmetry-breaking steady state bifurcation
SB. The Py branch is never stable, and neither are the mixed modes connecting the pure mode branches. Here
time-dependent states set in bevond the symmetry-breaking bifurcation on the P_ branch

Finally. in Fig. 2d the parameters I and A are small. and the pure modes 74 come in in close succession and
bifurcate almost vertically {scc Eq. (32)). The figure shows that this time it is (he £ branch thai comes in firsi, and
that it bifurcates slightly subcritically with all three of the possible secondary instabilities present. Since the Hopf
bifurcation occurs below the saddle-node bifurcation the Py state has two unstable eigenvalues above the saddle-
node, one of which passes through zero at 5B. It follows that the mixed mode states created at 8B have initially
two unstable eigenvalues, 1.¢., that the bifurcation is subcritical. In contrast, the P_ state bifurcates supercritically,
and has onc unsiable cigenvaluc ncar onsct, [ acquires stabilily at SB, indicating that (he bifurcation from P_ (o
the mixed modes is supercritical, and hence that the mixed modes are stable near P__ It follows that there must be
a Hopf bifurcation along the mixed mode branch, at . = g ﬁ say, and indeed our calculations confinm that this is
s0. The presence of this bifurcation is important in what follows since it implies that Eqs. (26)—(28) have no stable
nontrivial fixed points for 4 < ‘u.% . Consequently, the first state observed once . exceeds the threshold value p0
must be a time-dependent stale. We return Lo (his point below.

The dynamical behavior in the regions identified by the linear stability theory is the subject of the following
section.

4, Numerical resulis

In this section we study the dynamics of Eqs. (26)-(28) in the intervals of x identified in the preceding section.
We consider only the four cases shown in Fig. 2, herealler relcrred 1o as Cascs [ through 1V,

4.1. Case I: Periodic asciliations

Case I is the simiplest and exhibits periodic oscillations only. albeit of two distinct types. In the region of interest
identified in Section 3 we find stable Ry-symmetric periodic orbits, labeled Ry in Fig. 3a. These disappear with
increasing g at a Hopf bifurcation on the £ branch, and annihilate with unstable R;-svmmetric solutions (labeled
Ry, atasaddle-node bifurcation SN as p decreases (see Fig. 3a). The latter are created in a gluing bifurcationat 4 =
pg & 1,926 involving anunstable £y state and a pair of unstable asymmetric periodic orbits (labeled Ay ) produced in
a (subcritical) Hopf bifurcation on the branch of mixed modes Af. Thus. the asymmetric periodic orbits are unstable
throughout their range of existence, pr, < p < pg ~ 1.932. The gluing bifurcation is shown in two different
projections in Fig. 3b. The eigenvalues of the fixed point P at 1 = g are 0.16, —0.004, —1.1 & 1.99and —2.16:
the gigenvectors of (hic first two ol these are (Re( X)), Im(X), Re(Y), Im(¥), ») = (0.8093, 0.5869, 0, 0, 0.0237) and
(0.6392, 0.4902, 0, 0, 0.592). Thus, both eigenveciors are odd with respect to R, and the homoclinic bifurcation
at i = iy 15 of type @ inthe terminology of Glendinning [15]. with no stable periodic orbits or complex dynamics
near (t,. The saddle-node bilurcation on the Ry -symmetric branch is nonlocal and consistent with this classification,
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4.2, Case {I: Relaxation oscillations and canards

Casc Il is very inicresting Irom g theoretical point of view, even though no chaotic dynamics appear (o be preseni.
As shown in Fig. 4a, the periodic orbits in the system undergo two distinct types of transition as g increases. In
the first. near j« = 2.7, a pair of Rp-symumetric periodic orbits, created in a Hopf bifurcation on the P_ branch,
forms a pair of heteroclinic connections between P, and — P, . Fig. 5a shows one of the Rp-symmetric periodic
orbits, in two different projections, just before this transition. while Fig. 5b shows one of the two periodic orbits
that resull from it. Each of these orbits has Ry Ko-syminctry, Such symmetry-swiiching bilurcations arc (ypical
of Do-symmetric systems [38.21] and occur as a result of the formation and breakup of a pair of heteroclinic
comnections. Since the eigenvalues of Py at the bifurcation are 0.2770, —0.0182, —2.2687 and —1 £ 3.3415i1
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Fig. 3. Case L, corresponding to Fig. 2a. (a) Branches of steady states and periodic orbits in terms of the Euclidean nomm [|(X, ¥, v)|| and the
L2 norm [[{X, ¥, v)||1,, respectively, as a function of jr. Thick solid (dashcd) lines indicate stable (unstable} periodic orbiis generated in Hopt
bifurcations () on Py and A4, Thin sohd (dashed) lines indicate stable (unstable) steady states. (b) Two prajections of the unstable periodic
orbits close Lo the gluing bifurcation at j¢ = gt an unstable asymmetric periodic orbit Ay and an unstable K -symmetric periodic orbil Riy.
The symbol — indicates the location on Py of the global bifurcation.

with (Re(X), Im(X), Re(Y), Im(Y), v) = (—0.7808, —0.6243. 0.0, 0.0242) and (0.5416, 0.4885, 0, 0, 0.6842) as
the first two eigenvectors the heteroclinic cyvcle 4 <> — Py is asymptotically planar, with no stable periodic orbits
or complex dynamics nearby. Consequently the two slable orbits must go through saddle-node bifurcations before
the switching bifurcation can take place. cf. [13].
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periodic orbits, and thin solid (dashed) lines correspond 1o stable (instable) steady states. (b) Enlargement of the framed region in (a) centered
at yt, = 3.9210403, indicating the location of the Ry Ry-symmetric and asvmmetric (A) orbits. Remaining parameters are as in Fig. 2h.
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The second transition, near p 7= 3.9210403, is of much greater interest. Here each of the stable R| R;-symmeiric
periodic orbits created in the first transition (Fig, 4a) appears to “break up” inwhat looks like a saddle-node bifurcation
inlo a pair ol unstable periodic orbits with no symunctry, which in turn disappear in a subcritical Hop( bilurcation
on the branch of mixed modes at ;2 = 3.92073433 (Fig. 4b). Fig. 6 shows these two orbits near this transition. and
illustrates the abrupt change in the oscillation amplitude that results from it, Numerically, we find that the period of

-065F ' ' ' \ ' T
! i
]
1 r r
1 T T !
0.7 I ____--—-"'q--..____ I )
I S b !
|
- | ! )
Q,_‘i !
-0.75 e ———
]
-0.8
—0a5+ |
-1 -0.5 0 a5 1 a7 tE 08 1 1.1 12 14
(@) Re (X} (b Re {X)

Fig. 6. Case [I. Periodic orbits close te the codimension-two global biturcation at ¢ = 0, & = j4¢. superposed on the mllcline X (a) A stable
R Rp-symmetric periodic orbit at 10 = 3.921039743, = = 0.01. (b) An unstable asymmetric periodic orbit at ;¢ = 3921040287, = = 0.01. The
remaining parameters arc as in Fig. 2h.



both types of oscillation appears to diverge at a common value of j« near £ = 3.9210403, hereafter .. However,
the nature of this divergence is highly unusual, and docs not conform with the logarithmic divergence associated
with an approach to a global bifurcation, even though Fig. 4a suggests that the transition between the small and large
amplitude oscillations is somehow related to the proximity to an unstable mixed mode. 1t is clear, moreover, that
the transition cannot be a glung bifurcation of (he type encountered in Case I, since any gluing bilurcation between
4 pair of asyminetric orbits and an Ry Ra-symmetric periodic otbit at an asymmetric mixed mode is necessarily of
codimension two, and hence nongencric in onc parameler lamilics of vector ficlds.

Withe = 0.01 itis exceedingly difficult to unravel the details of this unusual transition by numerical computation
alone, We have therefore adopted a dual approach, by examining first the limit £ — 0, and then performing detailed
computations for somewhat larger values of ¢ to confirm the predictions of the & — 0 analysis. We begin by writing
Eqgs. (26)—(28) in the form

X=F (X, ¥V.mp), Y=FxAX,Y, vip), v =eGX.Y, v), 42)

where X = (Re(X), Im(X)), ¥ = (Re(Y), Im(¥)) and suppose that 0 < ¢ < 1. In this regime. Eqs. (42) exhibit
relaxation oscillations, and we can understand the properties of these oscillations by examining first the case ¢ = 0.
In this case, v becomes a paramcier, and Egs. (42) become

X = Fi(X.Y:v. ), Y =FxX,Y: v, ). (43)

This pair of equations can have both steady state solutions and periodic solutions. Of particular significance is
the one-dimensional nullcline X' : Fi(X, ¥, v. u) = Fo(X. Y. v; x) = 0 that contains the steady states whens > 0
and consists of them when & = 0. These may be stable or unstable. When 0 < £ < 1 the solutions of Eqs. (42)
can be thought of as drifting slowly along the attracting part of X', Typically this slow drift ends near folds on &
where the solution is forced away Irom X and the slow drifl is replaced by a fast transition thai takes the sysicm
to another branch of . This is the essence of all relaxation oscillations. However, in certain circnmstances the
periodic oscillations may follow the unsiable part of X after the fold. This is the hallmark of the so-called canard
phenomenon, and related behavior has been scen, [or example, in model equations describing chemical sysicins
[8.35]. Like the present system these systems also exhibit abrupt transitions from small amplitude oscillations to
large amplitude relaxation-ty pe oscillations, a behavior that has been called a canard explosion |8,18,35].

To understand this behavior in the present context we show in Fig. 7a, a projection of X' on the (Re(X), v)-
plane when ¢ = ge77, This projection shows four branches, S* (solid lines) and I/t (dashed lines), corresponding
respectively 10 stable and unstable steady states of Eqgs. (43); the points ¢4+ denote saddle-node bifurcations where
these steady states change their stability. Note that the branches ST and U771 as well as the point g1 are related
through Ry Ra-symmetry to S~ ¢/~ and g~. Away [rom (he [old points T the manifolds S and £/* arc normally
hyperbolic. As a consequence when 00 < £ < 1 they perturb to normally hiyperbolic invariant manifolds Mg: and
Mﬁ lying within (X{g) of $* and ¢/ | 13]. The lormer is atiracting, while the latter is of saddle-type. propertics that
are inherited from those of ST and /*, Together these manifolds define the slow manifold of the system (42). To
find the flow on this manifold due to the slow cvolution of v we solve (43) lor X, Y as functions of v and compulc
G(X(v), ¥(v), v). The fixed points of this reduced flow with v # 0 approximate the mixed modes M+ of (42) for
0 < & « | and lie within ¥, Fig, 7b shows these fixed points superposed on X when ¢ = 0.01, There are two pairs of
such points, labeled M and M3, of which M3 = ¢ undergo a subcritical Hopf bifurcation at p gy = 3.92073453.
Numerically we find (hat the resulling unsiable asy mmetric oscillations grow in amplitude as ;¢ incrcascs bul remain
unstable all the way to ¢ = g, where the transition to the stable large amplitude R R>-symmetric oscillations takes
place.

Fig. 8(a—d) describes geometrically what happens in a typical canard explosion, The figurc isdrawn forQ) < & <« 1
but does not distinguish between the slow unstable manifolds M?ﬁ and the stable manifolds W* of the fixed points
Mzi. This permits us 10 cxiend M? past the lolds ¢ Fig. 8a shows the relative position of these manifolds prior (o
the explosion. The fixed point M f eM ;“ is attracting, while ij eM ;? isa saddle. If ;¢ is now increased M f“ moves
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past g and falls in M ;j resulting in a Hopf bifurcation. Fig. 8b shows the relative onentation of M ;f the resulting
small amplitude periodic solution y, and W*® (M; ) when this bifurcation is supercritical. As p increases further
Mg“ and W"*(Mi" ) approach one another, and at a critical value g = . they may coalesce (see Fig. 8c). As this
happens the small amplitude oscillation grows and at j¢ = ¢, it collides with Mzr . forming a homoclinic connection.
Beyond this critical parameter value the homoclinic connection breaks, forming a large amplitude periodic orbit 47
lying outside of W""(M;'," )} (Fig. 8d). Here the formation ol a canard therelore corresponds to the appearance ol a
homoclinic connection and hence is associated with a global bifurcation [35].

In our case, however, the Hopf bifurcation is subcritical, Ml+ is stable, and the details of the transition differ
[2.3]. Fig. 8e and f shows the analogues of Fig. 8b and d for this case. Prior to the canard the small amplitunde
periodic solution y; is unstable (Fig, 8¢) and coexists with a stable large amplitude periodic otbit ¢ lving outside of
W"(M;' ). As 1o approaches i, these orbits both approach M;’ along W""(M;' Yand at ¢ = o (Fig. 8¢) v, appears Lo
coincide with a part of y,. Once g > g, the slow manilold M ;’ lics on the inside ol W"(M;' yand no oscillations arc
present (Fig. &f). Thus, the small amplitude unstable oscillation annihilates the large amplitude stable oscillation,
a transition that must take place via the formation of a connection o M; since the two oscillations have different
symietry propertics. Thus, the canard al 1 = i looks like a saddle-node bifurcation of periodic orbits (¢l [8])
but is in fact also associated with a global bifurcation.

When ¢ is finite but sufliciently small (¢ = 0.01 is sullicicntly small in this scnsc) the behavior of the syslem
(26)—(28) is indistinguishable from the qualitative predictions based on the above picture. Fig. 6 shows an unstable
asymmetric small amplitude oscillation at ¢ = 3.921040287 and a stable R R>-symmetric relaxation oscillation at
o= 3.921039743 each projected on the (Re(X), v) variables and superposed on the nullcline X, for £ = 0.01. In
cach casc, the arrows indicate the dircction of motion [or comparison with Fig, 8¢ and £, The figure confirms that (he
slow manifold for ¢ = 0.01 does indeed follow the locus of fixed points computed with ¢ = 0 (Fig. 7a), and that as x
increases a pair of unstable small amplitude asymmetric periodic orbits is born in a (subcritical) Hopf bifurcation of
Mft R q:':, As pincreases further the amplitude of cach of (hese grows, initially slowly but {hen more rapidly, prior
1o the canard transition af g¢ = 1. Al p1g the unstable periodic orbil 3™ follows ME';, the unstable part of the slow
manifold between A7 1+ and ihe saddle-ty pe fixed point M,j (Fig. 6b), forming a saddle-loop connection. Fig. 9 shows
that during this process the period of both the asymmetric and the R; R -symumetric oscillations diverges, confirming
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Fig. & Case I Projection of the nullelines ¥ and 7 on the (Re(X), v)-plane, showing the relative orientation of the slow manifold MT‘-" and
the stable and unstable manifelds W5 of the fixed point M;r . (a) M| is stable. (b) MlJr undergoes a supercritical Hopf bifurcation at 20 = g
producing a stable small amplitude asvmmetric orbil ;. (¢) The canard manifold W"'(M?‘ ) al o = i, conmecting MJ wilh Mr‘,. showing Lhe
homoclinie connection py. {d) The formation of a stable large amplitude relaxation oscillation yr when je = pe. (€) M]L undergoes a suberilical
Hopt bifurcation at 4 = g producing an unstable small amplitude asymmetric orbit y; within a stable large amplitude relaxation escillation
ye. (£) The formation of a canard at . = p¢¢ is responsible for the absence of both periodic orbits when p = g,
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the presence of a global bifurcation involving M;“ . and that for both oscillations this occurs from the sane side.
However, despite much effort (see Fig. 9) we have been unable to confirm the expected result ihat the oscillation
period 7 of both the small and large amplimde oscillations should diverge logarithmically, as T ~ —A_ UIn | — peol,
where Ay is the unstable cigenvaluc of M;’ )

These and other conflicts with expectation are all reconciled when one recognizes that the location of the
detachment of the trajectory from the unstable slow manifold is exponentially sensitive to the value of = and that the
range of j around j, during which canards are present is proportional 1o exp —¢ /&, where ¢ is a posilive conslant
[11,18]. This fact suggesis in turn that there is an exponentially small neighborhood of ¢, in which the finite value of
¢ restores the expected behavior, such as the logarithmic divergence. Infact, we lind that the finiie value of ¢ "unfolds’
the saddle-node/global bifwrcation present at £ = 0 {cf. [16]), with the result that the global bifurcation splits into
mwo successive codimension-one global bifurcations, one involving the small amplitude asvimmetric oscillations
and the other the large amplitude &y R2-symmetric oscillations, with the saddlc-node bilurcation now occurring on
one or other of these oscillation branches. The behavior near each of these global bifurcations is determined by
the cigenvaluc ratio § = |Ag /|, where iy /2 —{1.00031 is the Icast stable cigenvaluc of M;' and Ay = 0.4889 isils
unstable eigenvalue, both computed at ;2 = p for £ = 0.01. Thus, § < 1. Under these conditions classical theory
[45] shows that neither type of periodic orbit will be stable near i = 4. Tt follows therefore that once 0 < & € 1
the saddle-node bilurcation must move away [rom g = p., and that it is the stable Ry Rz-symmeiric orbil that must
undergo a saddle-node bifurcation prior to the formation of the canard at p = . If this is so g, = 3.921040287,
and the two periodic orbits approach their individual global bifurcations ffom opposite sides after all.

In order to confirm these conclusions we have recomputed our results with & = 0.2. With this larger value
of & the qualilative picture remains unchanged (Fig, 10a) but ihe nature of the transition becomes much clearer.
Fig. 10b shows that the asymmetric oscillations continue to be subcritical and unstable, and that these approach
monotonically a global bifurcation at y¢, = 3.881857 imvolving the mixed modes !':/12i as y¢ increases. Moreover, this
bifurcation is now distinct from the corresponding global bifurcation on the branch of By Ro-symmetric relaxation
oscillations which takes place at a larger value of 1. 1y = 3.882094. In addition, one can now follow the oscillation
period closc to cach global bifurcation, and finds that in both cascs il diverges logarithimically, as expecled [rom
global bifurcations. Note also that the Ry R;-sy mmetric oscillations remain sfable almost until the end of the branch,
but that right before the end they go through a saddle-node bifurcation at which they lose stability. Thus, on both
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Fig. 10. (a) Bifurcation diagram for the same paramecters as Case [1 bt with & = 0.2 for comparison with Fig. 4a. (b) Detail of the bifurcation
diagram in (a) for comparison with Fig. 4h, showing the ‘unfolding” of the canard trangition at finits e,

branches the oscillations are unstable near their respective global bifurcations. as expected from the fact that here too
d < 1. We conclude (hat the strange behavior of the canard (ransilion is a consequence of the exponentially small
region in which the two global bifurcations and the accompanying saddle-node bifurcation occur. As a result the
logarithmic divergence of the period 1s postponed (o very high periods, the two familics of periodic orbits undergo
global bifurcations almost simultaneously, and the relaxation oscillations involved appear to approach the global
bifurcation from the wrong direction and with the wrong stability assigmnent, It is reasonable to expect that for any
[inilc valuc of ¢ these ‘paradoxcs’ arc resolved in this exponentially small region around 2 = g in the same way
as found here fore = 0.2,

Finally, the theoretical prediction [18] thal canards will form once ¢ — gy = (Xe) is also broadly consistent
with the numerical results. We believe, therefore, that except for the effects of symmetry the transition observed in
Fig. 6 is essentially the result of a classical canard associated with a subcritical Hopf bifurcation.

4.3. Case IIi: Svmmetric and asymmeltvic bursting

This case displays very interesting dynamics over a large {semi-infinite) range of the forcing amplitude ;¢ where
no stable steady states exist. As shown in Fig. 11, when the pure mode P_ loses stability in a symmmetry-breaking
bifurcation at & = pgp & 2.8, small perturbations drive the system to a stable branch of R Rz-synunetric periodic
orbits. If this pedodic branch is continned backwards (i.e., for ¢ = pgp) one finds that it uliimately temminates in a
heteroclinic bifurcation involving the nonsy mmetric fixed points M*. The cigenvalucs of M at this bifurcation arc
0.001940, —0.42229, —0.998 £ 4.8191 and —1.58926 and hence no chaotic dvnhamics result. An entirely different
scenario unfolds when this periodic branch is continued lor . > pgp. First, the 8y Rz-symmctric branch undergocs
a pitchfork bifurcation that generates stable asy mmetric periodic orbits {see Fig. 11, inset). With fusther increase in
these asymmetric orbits undergo a period doubling bifurcation PD and. as shown in the bifurcation diagram of Fig. 12,
chaotic dyvnamics are found not long after. The chaotic behavior is marked by a crisis in which two asymmeiric
chaotic attractors collide at ;+ 7 4.903 and merge, forming a symmetric chaotic attractor (a symmetry-increasing
bifurcation). The inicrval over which chaos is obscrved is relatively short (4.902 < 0 < 4.92), however, and (he
system is soon attracted to a new branch of R} Rp-symumetric periodic orbits created in a saddle-node bifurcation.
When, in turn, this Ry Ry-symmetric branch loses stability. we observe a new branch of stable asymmetric periodic
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Fig. 11. Case IIL, corresponding to Fig. 2¢. Bifurcation diagram for steady states and periodic orbits. in terms of the Euclidean norm ||(X, ¥ v)||
and the £ norm [[(X, ¥, v}],, respectivaly, as a function of je. 'Thick solid (dashed) lines correspond to stable (unsiable) periodic orbits; thin
solid (dashed) lines carrespond to stable (unstable) steady states. 'T'he arrow indicates the location of a subcritical bifurcation on P_ to unstable Af.
This bifurcation produces a hysteretic transition to stable Ry Rz-symmetric oscillations that exist between the heteroclinic bilurcation indicaled
by the symbol O and & symmetry-breaking bilurcation labeled SI (inset).

orbits created in a nearby saddle-node bifurcation. This sort of alternating transition between R; Rp-symmetric
and asymmctric oscillations is repeaied again and again. Note also thal the chaotic windows associated with these
transitions become narrower and narrower as g increases. In Fig. 13, we show stable attractors associated with
three consecutive periodic windows in Fig, 12, These limit cycles are evidently relaxation oscillafions, but this
time involving slow drifls along branches ol both cquilibria and of periodic orbits, with fast juimps between them.
Because of their resemmblance to bursting in excitable membranes or spiking in neurons we refer to these oscillations
as hursting or spiking as wcll, In our case, however, the bursting oscillations may be symumetnc or asyimmctric,
with the symmetry alternately present and broken in successive periodic windows. In the following we suggest an
explanation for this remarkable behavior adapted from ref, [41].

As in Case I the behavior described above can be undersiood, at least in part, by considering the nullcline
Y oFX. Y, v, )= FxX, Y, v, 1) = 0. As indicated in Fig, 14, the projection of X onfo the (v, Re(X)) plane
consists of pairs of branches of stable ($%) and unsiable (£/F) staies, related by symmetry. However, in Casc 111 Eqgs.
(42) with & = 0 also contain a one parameter family of attracting /imir cvcles. These periodic solutions are created.
as v increases, in a heteroclinic bifurcation imvolving the two fixed points I/™ and 7, and are R Rz-symmetric.
Between this heteroclinic bilurcation and the fold points q:': the stable By Ro-symmetric limit cycles coexist with the
stable fixed points ST (see Fig, 14). When « is finite but small these states couple to the slow evolution of the variable
v, and the manilolds of steady stales and periodic orbils become part of the stow manifold of the sysiem (42), cl.
[41]. In the following we speak of the solutions as drifting along this manifold (the siow phase); this drift proceeds
until the system is forced away [rom (he slow manilold, heralding the onsct of (he last phase of the oscillation (hat
takes it back 1o the slow manifold. The plots in Figs. 13 can be interpreted in this light, with episodes of almost
constant Re(X) corresponding to drift along the manifold of steady states ST and the return trajectory consisting of
a drift along the branch of periodic orbits.

To understand the nature of the oscillations that result we begin by considering the drift along M? the part of
the slow manifold ncar (he stable sicady states ST, The drifl is in (he direction of incrcasing » and so lakes the
system towards 47 (see Fig. 14). Near this point this slow drift ends and the system jumps abroptly to the branch
of symmetric periodic states, labeled p. In Fig. 14, this transition is indicated by a vertical short-dashed line, and
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series Re(X(1)). (a) Asymmetric relaxation oscillations of Eqs. (42) when pr = 6 0 and # = 0.01. (b) R| Ry-symmetric relaxation escillations of
Eqs. (42) when ¢ = 6.5 and & = 0.01.

labeled with the number 2. The system then drifis towards the lefi along the cotresponding slow manifold M, until il
reaches the vicinity of the ¢ = 0 heteroclinic connection. where the oscillations disappear and so does the associated
slow manilold M, (0 < e << 1), With (he disappearance of M, the system is foreed to cither jump toward ST or
toward S—. Which of these two outcomes takes place is determined by the phase of the trajectory near U+ or U~
These states are saddles with one unstable direction and three stable directions; for example, the eigenvalues of I+
at ¢ = 6.5 are 0.6347, —0.9999 £ 14.2306i and —2.63405. Thus, the least stable eigenvalue is in fact complex, and
this is so in the other periodic windows as well. The time series show clearly that when the drift along M, ends the
svslem approaches cither {#+ or (/™ along ils stablc manilold; what happens thercalicr depends on which part ol
its unstable manifold is followed. If the unstable manifold of U7+ (say) takes the system to ST (as in Fig. 14a) the
fast phase (labeled 1) terninates on ST and the system thereafter drifts towards the right along M;.“. The resulting
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oscillation is an asymmetric relaxation oscillation, In contrast, il the unstable manifold of £/ ¥ takes (he syslen (0
S (cf. Fig. 15) the fast phase terminates on S~ and the system thereafter drifts towards the right along M . In
Fig. 14b, this transition is labcled 1; the accompanying pancl shows the corresponding signature in the (ime scrics.
When the slow phase terminaies the system jumps back to the large amplitude periodic state (transition 2) and drifts
along it to the left, but this time when it falls off M, in a transition labeled 3 it goes to I/ _ and by symunetry follows
ity unsiablc manifold lowards $7. The resulling (rajeclory is B Ra-svmmclric. Fig. 15 shows the oscillations of
Fig. 13 in a projection that highlights the role of the stable manifold of these unstable steady siaies as a separatrix
between the two slow phascs of the relaxation oscillation,

We now turn to the sequence of fransitions revealed in Fig. 12. The bifurcation diagrams in Fig. 16 shows what
happens in all transitions from an asymmetric oscillation to a symmetric one, and from a symmetric one o an
asymunetric onc, as g increases, while Fig, 17 shows the period of the corresponding solutions, also as a function of
1 (boxed regions}. Each transition is accompanied by a stability gap within which chaotic dvmamics (symmetric and
asymmetric) arc found, and cach new periodic solution cmerges oul of such a region in a saddle-nodce bifurcation.
Fig. 17 also shows that in each transition the period of the stable oscillation jumps by an approximately constant
amount, and subsequently decreases along both the stable and the unstable branches away from the saddle-node
bifurcation.

Fig. 18 focuses on a branch of asvmmetric relaxation oscillations that first appears in a saddle-node bifurcation
ncar o = 7.0, and shows that as onc follows the stable branch lrom the saddle-node towards larger 2 onc cncounters
an interval of 1« in which the period drops precipitously (Fig. 18a, inset). Just after this point the stable (asymmetric)
relaxation oscillation loses stability via period-doubling (not shown). Fig, 18b shows the time series at the point
marked 3 (g = 7.3118) just belore this loss of stability, and suggests that this loss of stability is a consequence of
the fact that the trajectory is beginning to follow the unstable manifold before peeling off towards S*. By point
3 (g = 7.5533) the trajectory follows the unstable manifold U/~ all the way to the saddle-node at ¢~ For vet
larger p+ the oscillation remains unstable but the trajectory departs from I7™ in the opposite direction (see point 6,
g = 10.0), These results indicate that with increasing g the trajectlory comes closcr and closer 1o the hyperbolic
steady states UF resulting in longer and longer drift along the unstable manifold Ay, . This fact also suggests an
increasing role for the leading eigenvalues of I/, In the present case the least stable eigenvalue A, is complex,
bul the unstable cigenvalue 4, < |Re(k)]. Thus no chaotic dynamics are expected. Note that in contrast 1o Casc 11
in the present case the drift along I/* is not triggered by a bifircation in the fast system, and so is not the result
of a canard.
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Stable bursting behavior of the type shown in Figs. 13, 14 and 18 becomes increasingly dramatic as p is
increased, revealing ever more clearly the two slow phases and the rapid transition between them. In Fig. 19a,
we show a stable oscillaiion for & = 0.01 and z = 9.0 projecied onto the (|[(X, ¥)[| = /[IX]I% + ||¥]], v) planc,
cf. Fig. 14, and superposed on the slow manifold computed with £ = 0. We see that during one part of the slow
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phase (labeled 1) the system drifts towards smaller » along the slow manifold 3, of stable periodic solutions p.,
Ncar the heteroclinic connection in the fast sysiem the oscillations end and the system undergoces a rapid transition
to the stable manifold My indicated by a vertical arrow. Thereafter it enters a new slow phase, labeled 2, and
drifts in the direction of increasing v, towards the fold point g, where the slow phase ends and the system makes
a rapid transition back 1o M. This transition is also indicated by a vertical arrow. The small cusp-like fcature
at the onset of phase 2 results from a brief visit of the trajectory near the unstable slow manifold M, before
being cjected towards the stable slow manifold Mg, As p increases and the next symmelry-swilching transition
is approached the solutions spend more and more time near M;,, and hence involve longer and longer episodes
of drift along M;;. Fig. 19b and ¢ show two examples of this behavior, differing only slightly in the value of p.
In the first of these the system drops to the unstable steady state at the end of the slow phase 1, and then drifts
along My towards larger v before a sudden jump to Ms. The slow drift continues along Mg towards the fold on
X where the system jumps to the oscillatory state p, and the slow phase 1 recommences. [n contrast, the solution
in Fig. 19¢ jumps from My to M, (instead of Mg) and so begins to drift towards sinaller v but the next time,
instcad of following My, il jumps {0 Mg and begins 1o Tollow the standard relaxation oscillation scenario. The
remarkable sensitivity to ihe value of 1 is evidently a consequence of the amplification of small differences in the
approach of the trajectory towards My by the unstable eigenvalue of U, and heralds the transition from asymmetric
oscillations to symunetric ones: in effect. with each half-turn around U¥ the trajectory changes the direction in
which it leaves I/*, and hence its symmetry. In addition its period jumps by a finite amount, a phenomenon we
have already neted. When (he number ol (urns increascs monotonically with g there will be an infinite scquence
of symmetry-changing transitions, and hence a sequence of periodic windows with alternating symmetric and
asymmetric relaxation oscillations. Thus each saddle-node bifurcation creates a pair of periodic orbits with an
extra half-turn. Moreover, since it takes a finite interval in e to change the frequency sufficiently to add a half-
turn these svmmetry-changing transitions cannot accumulate, in contrast to the cascades of symmetry-switching
gluing bifurcations that occur in other Dz-symmnetric systems [21]. As documenied above this is the case [or the
parameters of Case III; for other choices such as Case Il with0.33 < y « 0.4 (not shown} the number of transitions is
finite,

4.4, Case IV Delaved loss of stability and chaas

Case IV is quite complex because of the proximity to the saddle-node bifurcation on the P’} branch of two
other bifurcations, the symmetry-breaking Hopf and steady state bifurcations /7 and SB, respectively, The former
interaction, i.¢., saddle-node/Hopl, is responsible for the propertics of the oscillations created at the Hoplbifurcation.
This codimension-two bifurcation is much studied [19,46] and its unfolding corresponding to Fig. 2d confirms
nol only the presence of a branch of oscillatory solutions that bifurcates towards larger ;¢ but also shows (hat
this branch must be initially unstable before acquiring stability in a tertiary torus bifurcation. This theoretical
prediction is confirmed in Fig, 20a where the torus bifurcation is labeled TR (w0 &= 1.00136), The figore shows,
however, that the interval in which the periodic oscillations (thick ling) arc stable is quilc narrow, and that these
oscillations lose stability at larger p at a second torus bifurcation (¢ = 1.0083), We presume that this loss of
stabilily is a conscquence of the proximity of these parameter valucs 1o the sccond codimension-iwo interaction: the
saddle-node/pitchfork bifurcation. Indeed, Fig. 20a shows that the periodic oscillations eventally become stable
again (al a third torus bifurcation) before (ransferring stability, via a Hopl bilurcation, 1o (he mixed modes Af
created at SB. This Hopf bifurcation is in turn found in the appropriate unfolding of the saddle-node/pitchfork
interaction.

It is important to emphasize that the oscillations created in the Hopf bifurcations on the P and A branches have
distinct symmetry properties. The former are Ry -symmetric and disappear in a gluing bifurcation at & = e # 1.03
involving (he larger amplitude £y stale. The latler produces a pair of asvimmeltric oscillations, which gluc together
as 1 approaches j¢. from abeve (see Fig. 20a). There are therefore two possible sources of complex behavior in
this parameter regime, the first associated with the global bifurcation at 1« = 12, and the second associated with
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the termination of the torus branches. The former is not directly responsible for the observed chaotic dynamics
(see below) since the eigenvalues of Py at w, are real, and the leading unstable eigemvalue is smaller than the
(magnitude of thc) leading stable one. Analysis of the saddle-node/Hopl interaction shows that the associated torus
branch terminates in general in a global bifurcation as well. As shown by Guckenheimer [17] and in more detail by
Kirk [24,25] this bifurcation is generically associated with thin wedges of chaotic behavior. We expect this type of
behavior at the end of the first torus branch, and similar behavior may be associated with the torus branches created
when the various periodic oscillations identified below lose stability as well. Fig. 20b shows that when the coupling
1o the mean flow is omitled the behavior of the system simplifics dramatically. However, despite the dilferences in
behavior summarized in Fig. 20a and b there is clear correspondence between the two figures. This correspondence
is a consequence of both the small value of & which is responsible for replacing the steady siates A7 in Fig, 20b by
slowly drifting states thai form the slow phasc of the oscillations crealed in the Hopf bilurcation on Py (Fig. 20a),
and of the small value of the mean flow v associated with these oscillations, This correspondence is explored in
grealer depth below.

InFig. 21a. we show a two-frequency attractor obtained at 1« = 1.0003. that is. immediately after the trivial state
becomes unstable (20 = 1.00045), with the mean flow included (Fig. 20a). Fig. 22a shows the corresponding time
serics. This attracior appears (o describe oscillations about the small amplitude Ry -symimetric oscillation created
at the Hopf bifurcation on the 7, branch. The absence of exact R) symmetry suggests that this attractor is related
10 the symmetry-breaking iorus bilurcation at 4 =2 1.00136. This bifurcation appears to be supercritical, producing
stable two-frequency oscillations in p <5 1.00136. These are initially almost R;-svmimetric bt grow increasingly
asymimelric as 4 decrcascs, The Ry-symmetric oscillations undergo a second torus bifurcation al g = 1.0083 bul
this time the bifurcation is subcritical, i.e., the resulting two-frequency oscillations are present in . < 1.0083 but
are now unstable. However, Fig. 23 shows that this observation only scratches the surface of the complexity that is
present in this parameter regime. In addition to the R;-symumetric oscillations just mentioned (Fig. 20 and lowest
curve in Fig, 23) there is a large number of additional branches of R|-symmetric oscillations, four of which are
included in the {igure, These are labeled (a—d) and arc stable near minimum peried (solid lines) and unstable
elsewhere {dashed lines). Fig. 24 shows the projections of these stable oscillations in four cases, one from each
branch. It is clear that the oscillations corresponding to the different branches differ in the number of revolutions
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about the two mixed modes M+, and that multiple stable oscillations are present simultaneously. However, in all
cases the oscillation period is of order 1/¢ as expected of relaxation oscillations. The torus bifurcations at which
these oscillations acquire stability with increasing ¢ may be responsible for the presence of chaotic oscillations in
this regime, such as that shown in Figs. 21b and 22b, but the details of this process are beyond the scope of the
present paper.

The behavior reported in Fig. 24 is also a consequence of the two distinct slow time scales present in the
problem, i.e., of the small value of the parameter £. The set X of equilibria of Eqs. (42) with £ = 0, given by
F(X,Y;v, 1) = F3(X, Y:v, 1) = 0, consists of symmetry-related stable (S%) and unstable (/) steady states.
Of these the ST are created in pitchfork bifurcations from the trivial state as |v| decreases. The St states lose
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Fig. 22. Case¢ IV, Time scrics coreesponding to the attractors in Tig. 21.

stability via subcritical Hopf bifurcations at 2% and turn into U (see Fig. 25). The branches of periodic oscillations
p created in these Hopf bifurcations are always unstable and terminate in a homoclinic connection to an R,-
symmmetric fixed point Up. When o = 1.01185 Uy = (0,0, 1.025, 0.87303) and its eigenvalues are real: 0.458,
—0.054, —1.945 and —2.458. The cigenvectors of the two leading eigenvalues are V,;, = (0.8454, 0.5341, 0, 0} and
Ve = (0.7458, 0.4389, 0, 0). The global bifurcation at Uy is therefore a standard *figure eight” gluing bifurcation
with no associated chaos; its presence does not appear to be relevant for the dynamics shown in Fig. 24. Rather,
the observed behavior appears to be a consequence of the fact that all four eigenvalues of ST are complex. When
0 < ¢ « | the solutions of Eqs. (42) drift slowly along the attracting slow manifolds Mi associated with S*; this
drift is in the direction of increasing v for Mg and decreasing v for M+ As in Case 11, when & is sufficiently small
the fast motion undergoes a delayed loss of stablllty (ct [2]) although this time no global bifurcation is involved.
This behavior can be seen clearly in Fig. 26, computed for £ = 0.0001: the trajectory moves slowly along M,
passes through a Hopf bifurcation (in the fast system) at 4™, and continues along the unstable manifold M, for a
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time ol order 1/e. The trajectory then spirals away lrom M, and towards M;.'. Once it is sufficicntly closc 1o M;’.’
the same process repaats, but this time with v decreasing. As shown in Fig. 27 the drift along the slow manifolds
Mf and MLi, is faster at larger values of =, With less time to approach M§ the oscillations appear less and less
“damped” and the orbits begin (o rescmble those in Fig, 24,
The above point of view also permits us to understand the origin of the promingnt cusp-like feature that develops
on the higher branches of oscillatory states as g decrcases (Fig. 23). This structure is not duc 10 an incipicnl
global bifurcation. Instead what appears to be happening is the following. As p decreases the real part ). of the
unstable eigemvalue at the detachment point also decreases, implying a longer oscillation period. At the same
time the Hopl [requency « al A~ also decreases. For the transition from £/~ (o ST one musi make at least hall
a turn around 7~ before detachiment, otherwise the trajectory ends up on the large amplitude 17~ state (see Fig.
25). This change in the tvpe of oscillation becomes incvilable once e/ falls below L. Numenically we find that
this condition is quite accurately satisfied at the tip of the cusp. while before the cusp is reached (i.e., for larger
values of @) & < w/m. Aficr the cusp (he unstable iwo-dimensional manilold of £/~ starts (o veer away Irom (he
siable manifold of ST and bepins to approach the three-dimensional stable manifold of the large amplitude 7~
state. As this happens the period drops slightly but the oscillation amplitude starts to increase. Fig. 28 shows the
oscillations on either side of the (secondary) minimum in the period along branch (d) in Fig. 23. Thereafter the
period increases rapidly as the trajectory spends more and more time drifting along the slow manifold associated
with the large amplitude unstable state &/~ insicad ol the stable small amplitude staic 7, thercby acquiring an
altogether different appearance. On the left each branch eventually terminates in a homoclinic connection to the
pure mode P, contained n the slow manifold of U/~ (see Fig. 29, panel 1), while on the right it terminates
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in a homoclinic connection to the origin (see Fig. 29, panel 2). Except for the complications arising from the
presence of reflection symmetry much of the above phenomenology resembles that studied recently by Krauskopf
and Wieczorek [26] and attributed to a nearby saddle-node/Hopf bifurcation with no stable fixed points [47], cf.
Fig. 20a.

Fig. 23 also shows two branches of Rz-symmeiric oscillations labeled (¢ and [), These are also stable ncar
minimum period; a stable Rp-symmetric oscillation on branch (e} is illustrated in Figs. 21c and 22¢. This type of
solution can be described in an analogous manner to the R;-symmetric orbits on branches (a—d) discussed above.
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Fig. 28. Case IV. Unstable periodic solutions in the cusp region on branch (d) of Fig. 23, showing the continueus transition from relaxation
oscillations involving the states S* 1o oscillations involving the large amplitude states U~ (1) 0 = 1.008389, near minimum period, (b)
¢ = 1.004072, near the tip of the cusp, (¢) ¢ = 1.00733, near the secondary minimum, (d) ¢ = 1.00844, to the right ot the secondary minimum.

The divergence of the oscillation period with both increasing and decreasing e indicates that @ff of these branches
appear and disappear through global bifurcations (see Fig. 23). To identify these we show in Figs. 29 and 30 high
period unstable oscillations on the (d) and (f) branches, one near the initial appearance of each branch and one near
ils end. In contrast 1o the (d) branch the () branch originales and terminales in global bifurcations involving (he
origin and the steady states =+ Py . However, despite the appearance of Figs. 29 and 30, no heteroclinic connection to
a periodic orbit actually occurs. In lact the obscrved behavior appears (o be organized by codimension-two poinls
corresponding to connections between the steady states Py and the origin. The figures suggest. and computations
confirm, that all the cigenvalucs of the fixed points involved are rcal. However, a more detailed understanding of
this remarkable behavior along the lines of refs. [23.21], or indeed in terms of the theory of slow-fast systems, is
bevond the scope of this paper.

It is clear that in Case IV the system (26)—(28) exhibits multiple coexisting stable states, some periodic (see Fig.
23), others quasiperiodic or chaotic (see Fig. 21). The latter are readily located between the symmetry-breaking
bifurcation on branch (¢) and {the saddle-node bilurcation on branch (¢), and exist on cither side of 1 = 1.017, Since
we do not follow unstable tori we cannot identify the transitions that might lead from the various two-frequency
states to the observed stable chaotic oscillations. It is likely. however, that each of the periodic oscillations depicted
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Tig. 29. Case IV. Examples of large period unstable By -symmetric oscillations on branch (d) at the locations indicated in Fig. 23. (1) 1 = 1.0230,
(2) ;o = 1.0258.

in Fig. 24 bifurcates into chaos. and hence that the example in Fig. 21b is but one from a number of coexisting
intervals of chaos, ¢f, [26].

5. Discussion and conclusions

In this paper we have examined the dynamics of parametrically driven Faraday waves in slightly elliptical
containers on the assumption that (i) the viscosity of the liquid is small (as measured by the dimensionless quantity
€y < 1) and (ii) the cfleciive Reynolds number Ke ol the sircaming llow driven in oscillatory boundary layers
(defined in Eq. (3)) is also small. Under these conditions we were able (o replace the Navier-Stokes-like equation
for the mean llow by a single ordinary difTerential equation, and locused on the interesting case 0 < ¢ < 1. The
mean flow is then only weakly damped, and the resulting equations take the form of a singu/arly perturbed svstem.
Although the condition for thisto be thecase, 1 Re~! « 1, provides a compeling constraint on ihe Reynolds number,
the two requirements are not in contradiction. This is because the small hydrodynamic eigenvalue A1 depends on
the aspect ratio R of the cylinder and will be small when R is large. The approach we have taken focuses on the role
played by the coupling to the streaming flow, but does not attempt to make quantitative predictions for the Faraday
system under experimental conditions. Specific applications require the computation of the coupling coefficient
y as well as (he nonlincar coclficients oy, o2 for appropriaic meniscus boundary conditions, These remain (o be
done. For this reason we have chosen to treat Eqs. (26)—(28) as a model system that captures the dominant effects
of the coupling to the streaming flow, with y as a free parameter, for fixed detuning I and ellipticity A. We have
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Fig. 30. Case [V, Examples ol large period unstable Ro-symmetric oscillations on branch (£) at the locations indicated in Fig. 23. (3) ¢ = 1.02632,
(4) jo = 102680,

seen that the broken circular symunetry of the system (A £ 0) destroys the one-parameter family of standing waves
present in a circular containgr, sclecting two slanding waves rom this family, with slightly different lrequencics
and thresholds. As in other problems of this type [36] this results in the competition between two almost degenerate
modes, and such interaction oficn lcads 1o complex dynamics.

We have focused on four distinct cases, three of which were computed for the coefficients «, oy obtained by
Miles for a free contact line [34]. In each of these linear stability theory indicated the absence of any stable steady
slales, i.¢., the presence of regions in parameler space in which the pure and mixed modes are all unsiable. In (he
first case we found very simple dvnamics, organised by a gluing bifurcation of a standard kind, but no chaos, Cases
Il and III arc of greater inicrest. When ¢ is small both these cases exhibil relaxation oscillations with multiple
time scales. In Case II these oscillations involved fast transitions between slowly varying steadv states called
mixed modes, coresponding to periodic standing waves, In the original Faraday systein this iype of oscillation
corresponds to a quasiperiodic mode of oscillation ol the system with two quite distingt frequencics. In Casc 111
we located relaxation oscillations of a4 more complex kind, Here the slow manifold of the ampliinde equations is
composed of both cquilibria and (symmctric) periodic oscillations, and the resulting time scries (Fig. 19a) appear
indistinguishable from the type of (so-called parabolic) bursting behavior exhibited by neurons [44]. even though it
involyes visils lo saddlc-foci, In the Faraday sysiem, the periodic oscillations correspond (o mixed mode oscillations
in which the contribution of the two orthogonal standing waves oscillates periodically in time (as does their relative
phase), and the relaxation oscillations found are oscillations between this complex state and a pure mode standing
wave. However, in both cases the basic picture is simple: the system drifts along the slow manifold until it passes a
bifurcation. typically a saddle-node bifurcation, where it is forced away from the slow manifold. The resulting fast
phasc then takes it (o another part of the slow manilold and (he process repeats. In our sysicm we have seen that
oscillations of this type occur when the streaming flow is weakly damped. As a result the streaming flow behaves as
a slowly varying parameter, and the system drifts along the slow manifold computed by ‘freezing” the mean flow.



In our system we encountered two twists on this well-known picture. The first centered on the presence of
the two rellection symmneirics in Eqs. (26)—(28) which permil the presence of periodic oscillations with dilferent
types of symmetry; these can in turn undergo symmetry-breaking or symmetrv-switching bifurcations. The second
centered on the presence of canard explosions characterized by an abrupt change in the amplitude (and in our
casc symmclry as well)y of a periodic orbil, Fig. 6éa and b shows an example ol cach of these orbits in Case 11,
computed at almost the same value of the parameter p. The figure shows clearly the dramatic change in the
oscillation amplitude as @ passes through (he canard atl 1 = .. We were able (0 demonstraic that the canard in
Case Il is linked to a subcritical Hopf bifurcation, and established a link between canards and global bifurcations.
In particular we argued that there must exist an exponentially small neighborhood of the canard parameier value
1o in which the canard is ‘unfolded’ by any finite value of the small parameter &, thereby resioring the behavior
expected of a global bifurcation. It is this exponential sensitivity to the exact value of x that is responsible for
the explosive nature of the canard phenomenon [11.2]. In case III we found a whole variety of bursting solutions,
characterized by slow drifts along branches of both stable and unstable equilibria and of periodic states, separated
by fasl transitions between them, Here we located an apparently infinile scquence of Twsicretic {ransitions between
asymmetric and Ry Ro-symmetric oscillations occurring in ever narrower intervals in p as p increases. Much of
this behavior could be understood by studying the trajectory near the point of closest approach to the unstable
saddles U=, and the global behavior of their stable and unstable manifolds, which is in turn inherited from the
heteroclinic connection that destroys the oscillations in the fast systen1. In particular, we saw that the change of
symmelry beltween successive periodic windows is duc 1o an extra half-turn of the trajectory around the unstable
steady states as p increases. This point of view allowed us to understand why the intervening chaotic intervals
become narrower with increasing . but the ‘symmetry-switching’ transitions do not accumulate at a finite value
of u, in contrast to the cascades of symmetry-switching gluing bifurcations that occur in other D;-symmeiric
systems [21].

In Casc [V we saw that the primary pure modc branch bilurcates subcritically belore turming around towards
larger +. By moving the Hopf bifurcation to direction-reversing waves below this saddle-node bifurcation we made
sure that the branch of pure modes Py remains unstable above the saddle-node bifurcation, In this case the direction-
reversing waves crcated in the Hopl bilurcation must also be initially unstable, and only acquire stability al larger
w at a torus bifurcation. When this bifurcation is supercritical the resulting torus branch bifurcates towards smaller
valucs ol ¢« and is at lcast initially stable. The branch terminates in a global bilurcation involving the pure modes and
this bifurcation is tvpically associated with chaos [17.24,25]. Thus, in this instance the primarv bifurcation gives
rise to either chaotic or quasiperiodic oscillations even though it is a steady state bifurcation. The same mechanism
has been seen in other sysicms, and is responsible lor the presence ol chaos at onsct of natural doubly difTusive
comvection [7] and for the presence of a three-frequency state called a repeated fransient at onset of binary fluid
corvection [6]. However, a more detailed look at this casc revealed a plethora of additional branches of periodic
orbits, which start and end in global bifurcations, and acquire stability through torus bifurcations. These periodic
orbits have a highly umusual appearance which we have traced to the separation between the fime scales for the
cevolution of the waves and of the mean flow, specifically the requirement O < & < (1" — AY ~ 10~ In particular,
we found that the unusual appearance of the oscillations is the consequence of delaved loss of stability that occurs
as a result of a slow passage through a Hop! bifurcation in a system with symmetry. Theory {cl [2]) shows that the
delay lasts fora time of order | /£; during this time the solution drifts along the unstable manifold of equilibria, much
as in a canard, although the resulting behavior is not canard-like and in particular has quite different dependence on
the parameters 1« and £. Note that since the Hopf bifurcations are subcritical the unstable penodic otbits created at
the bifurcation are not irvolved in this behavior, ¢f. [20].

The present system differs in an important aspect from the most familiar svstems exhibiting canards in having a
pair of reflection symmetries. These symnetries have an important effect on the transitions, and in particular one can
have canards on branches of symmetric oscillations as well as nonsymmelric oncs. Relaled behavior s present when
two identical oscillators are symmetrically coupled. The resulting system can undergo relaxation oscillations with
both oscillators oscillating in phase (a symmetric oscillation) or exactly out of phase (an asymmetric oscillation).



Examnples include coupled ncurons [18] and coupled contimiously stirred tank reactors [4.5], but the transition
between these two oscillation tvpes has not hitherto been sysiematically investigated. This is an inlercsting lopic
for future irvestigation.

The results of this paper demonstrate that the inclusion of the streaming flow in the amplitude equations describing
Faraday wavcs ina ncarly circular domain has dramaltic conscquences lor the range ol available dynamical behavior:
In particular, its presence 1s responsible for relaxation oscillations, an urmisual phenomenon in fluid dynamics, and
onc that could be confirmed in experiments. Of the lour cascs considered, Case [V is closcst 1o the conditions
required for the validity of Eqs. (26)—(28) since both I and A are small. and the maguitude of the streaming flow
remains small as well, Yet despite this its effects remain dramatic (cf, Fig, 20). In forthcoming work, we shall
examine these transitions in greater detail, and shall explore the analogues of this behavior in the partial differential
Eqgs. (1)—(6) as well.
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