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Abstract 

Parametrically driven surface gravity-capillary waves in an elliptically distorted circular cylinder are studied. In the nearly 
inviscid regime, the waves couple to a streaming flow driven in oscillatory viscous boundary layers. In a cylindrical container, 
the streaming flow couples to the spatial phase of the waves, but in a distorted cylinder, it couples to their amplitudes as well. 
This coupling may destabilize puré standing oscillations, and lead to complex time-dependent dynamics at onset. Among the 
new dynamical behavior that results are relaxation oscillations involving abrupt transitions between standing and quasiperiodic 
oscillations, and exhibiting 'canards'. 
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1. Introduction 

Surface gravity-capillary waves exhibit a wide variety of pattern-forming phenomena, depending both on the 
mode of excitation and on the size of the domain relative to the wavelength selected by the driving frequency. In 
large domains recent work has focused ontwo-frequency forcing [1], in whichthe two frequency components select 
distinct wavenumbers. These experiments, generally carried out in quite viscous liquids, have revealed various 
superlattice patterns, as well as nonperiodic states resembling quasipatterns [12,27,28,1]. In these experiments, the 
frequencies used are in (low order) resonance, so that the forcing acceleration remains periodic in time, with the 



frequency ratio, their relative phase, and their relative contribution to the forcing providing parameters to be tuned 
in the experiment. Existing theory has been successful in explaining a number of the experimental observations 
[42,37,39], but for reasons explained below such theory is generally restricted to highly viscous liquids. This is 
because in nearly inviscid liquids the behavior is complicated by the presence of a mean flow, also known as a 
streaming flow, driven by time-averaged Reynolds stresses in oscillatory viscous boundary layers near rigid walls 
and the free surface [40,31,43]. These mean flows in turn interact with the waves that produce them, leading to a 
description of the Faraday system in terms of amplitude equations coupled to a Navier–Stokes-like equation for the 
mean flow with boundary conditions obtained by matching to the oscillatory boundary layers [43]. These equations 
represent a new class of pattern-forming dynamical systems. 

The new terms in the amplitude equations are formally of cubic order, indicating that the effects of the mean flow 
cannot be neglected, even in the limit of vanishing viscosity. The resulting equations have thus far been studied only 
in the simplest cases: with single frequency forcing, periodic boundary conditions and one horizontal dimension. 
When the spatial period is comparable to the wavelength selected by the parametric forcing the coupled amplitude-
mean flow equations simplify: all solutions are attracted to standing waves of constant amplitude, and the streaming 
flow only advects the spatial phase of these waves; this phase in turn appears in the boundary conditions for the 
streaming flow, giving rise to a pair of simpler coupled phase-mean flow equations. Analysis of these equations 
reveals that the coupling to the streaming flow is significant, and can lead to a number of new instabilities, which are 
absent if the streaming flow is neglected [33]. These include parity-breaking instabilities that lead to pattern drift, 
and oscillatory instabilities that produce oscillations in the spatial phase of the pattern. In larger domains amplitude 
inhomogeneities can develop and these also couple to the mean flow [30]. 

In the present paper we examine this type of dynamical system in three dimensions. The structure of the resulting 
equations in various small aspect ratio domains has recently been determined [22]. Of the domains considered a 
circular domain is of particular interest. If the domain is precisely circular the amplitude of the standing waves 
produced by the parametric driving decouples from the mean flow, and the streaming flow couples to the spatial 
phase of the pattern only, as in ref. [33]. However, as pointed out in [22], the situation changes dramatically when 
the shape of the container is perturbed. In the case of a slightly elliptical container two types of standing waves, 
oriented along the major and minor axes of the ellipse, come in in close succession as the amplitude of the parametric 
excitation increases, and these may interact already at small amplitude, producing mixed modes which are much 
more efficient at driving a streaming flow. In this case, the streaming flow couples to the two amplitudes, as well as 
to the spatial phase of the resulting pattern. This interaction with the streaming flow is responsible for a new class 
of dynamical behavior that now involves the amplitudes as well. In particular, we demonstrate in this paper that it 
can lead to relaxation oscillations of a particularly interesting type: oscillations that switch from single frequency 
standing waves to two-frequency waves and back. Under appropriate conditions these relaxation oscillations can 
exhibit the so-called ‘canard’ phenomenon in which the system follows nominally unstable solutions in the slow 
phase. Various global bifurcations are located as well, of which perhaps the most interesting is responsible for the 
appearance of chaotic dynamics right at threshold of the primary instability. 

Our calculations are based on the assumption that the effective Reynolds number of the streaming flow, suitably 
defined, remains small. This assumption permits us to project the Navier–Stokes-like equation for the stream-
ing flow onto the dominant spatial eigenfunction, replacing it by a single ordinary differential equation for the 
evolution of the amplitude of this eigenfunction. The coupling of this viscous mode to the amplitude of the 
competing standing waves is retained as a free parameter; the remaining nonlinear coefficient values are taken 
(mostly) from a paper by Miles [34] for an inviscid fluid in a circular cylinder of aspect ratio R 0.66 with a free 
contact line. 

The paper is organized as follows. In Section 2, we summarize the derivation of the coupled amplitude-streaming 
flow equations for this system, and the conditions for their validity. In Section 3, we discuss the basic properties 
of these equations, and identify four regions in parameter space where these equations are valid but new types of 
dynamical behavior may be expected. In Section 4, we explore numerically the behavior of the coupled amplitude-
streaming flow equations in these regions and offer, in each case, a dynamical systems explanation of the observed 



dynamics. The paper concludes with a discussion of the implication of our results, both for dynamical systems 
theory and for future experiments on the Faraday system. 

2. Coupled amplitude-streaming flow equations 

We consider nonaxisymmetric Faraday waves in a slightly elliptical container. The ellipticity breaks the 0(2) 
symmetry of the container and picks out standing oscillations with nodes along either the major or the minor axis of 
the ellipse. A convenient way of understanding this selection is to formúlate the problem first in a circular container, 
treating the ellipticity as a small perturbation, comparable to the small damping from the viscous boundary layers 
(and the flow in the bulk) and the small forcing amplitude required to overeóme it. In the unforced case, the free 
oscillations of the fluid in such a container are most easily described in terms of clockwise and counterclockwise 
rotating waves, and we therefore use the amplitudes A± of these waves to describe the dynamics of the system. 
In a circular container, the parametric forcing couples these waves, resulting in a reflection-symmetric standing 
oscillation with arbitrary orientation. Because of this symmetry only the phase of the standing wave couples to 
the streaming flow. However, as soon as the shape of the container is perturbed from circular both the phase and 
the amplitudes couple to the streaming flow. This coupling takes place via the difference in frequeney between the 
oscillations along the two principal axes [22] and has a dramatic impact on the dynamics. 

Since we are treating departures from circular symmetry as a perturbation we can use cylindrical coordinates 
(r, 9, z), and consider a circular eyelinder of height h and radius Rh. In these coordinates, the coupled amplitude-
streaming flow equations derived by Higuera et al. [22], suitably scaled, take the form 

A'jr) = - (1 + ir)A± + iAAT + i(ai \A±\2 + a2\AT\2)A± 

O p2it pR 
+ i/xAzp =p ií2 / / / g(r, z)u-eerdrd0dzA±, (1) 

—i o o 

— - [u + G(A+,A_)l x (V x «) = - V p + Re^Au, (2) 

withVw = 0. In these equations, u denotes the streaming flow, Í2 is a known constató, and the quantities r, ¡x and A 
are proportional to the detuning, forcing amplitude and ellipticity of the container, respectively. The detuning takes 
into account the mismatch between half the forcing frequeney and the natural frequeney of inviscid oscillations, and 
includes the frequeney shift due to viscosity, while A is proportional to the frequeney difference Í2\ — Í22 between 
inviscid oscillations along the two principal axes of the container. The time has been scaled by the viscous damping 
time 5 = Y\ Cg + y2Cg, where Cg = v(gh3 + Th/p)~1^2 <C 1, and y\ and y2 are known constants that depend on 
the excited mode. This scaling is responsible forthe appearance of the Reynolds number 

YiCl/2 + y2Cg 
Re = (3) 

Cg 

intheNavier-Stokes-likeEq. (2) forthe streaming flow. This Reynolds number isformally of orderone [32,43], but 
can in fact be both large and small. For example, if the container is not deep the damping of the waves is dominated 
by the Stokes boundary layers and Re ~ y\¡JC%, while in a deep container both terms (i.e., yiCg + y^Cg) 
contribute to the damping. Calculations show that for the first few modes yz/yi ~ 102 [32] so that systems with 
Cg < 10~4, such as water or silicon oils in centimeter-deep containers, have Reynolds numbers Re = 0(l/^Cg). 
In these systems, therefore, the streaming is only weakly damped and henee is easily driven by time-averaged 
Reynolds stresses. 



Eq. (2) also contains a Stokes drift term G given by 

G = (\A-\2-\A+\2)g(r,e)ee, (4) 

and is to be solved subject to the boundary conditions 

u = [nA+A-e2ime + c.c.+(p2(\A+\2+ |A_|2)]n0 x ee + [mA+A.e2im0 

+ c.c. + (p4(\A-\2-\A+\2)]ee (5) 

on either r = R or z = — 1, and 

uez = — er = 0, —•ee = (p5(\A-\2 -\A+\2 ) (6) 
dz dz 

onz = O.Hereno denotes the outwardunit normal, and the scalarfunctions<pi,... ,<p¡ andg are all real, independent 
of 9 and computable in terms of the components of the excited inviscid linear mode of the system [22]. Forapinned 
contact line the coefficients y\ and Y2 in (3) and the corresponding inviscid eigenfunctions have been calculated in 
[32], while Miles [34] has calculated the coefficients «i and «2 of the nonlinear terms for a particular case with a 
free contact line (see Fig. 1). In the following we generally use Miles’ results for h = 14.1 cm and Rh = 9.24 cm, 
viz. «i = 0.4, «2 = —2.58 (Cases I—III). These valúes correspond to an experiment of Funakoshi and Inoue [14], 
although in this case the waves were excited directly by lateral vibration, rather than parametrically. The results in 
Case IV are obtained for «i = 0.48, «2 = —0.58. 

It is important to observe that in these equations all coefficients are formally of order one. In particular, the forcing 
of the streaming flow remains finite even in the limit of vanishing viscosity, as originally noted by Schlichting [40] and 
Longuet-Higgins [31]. The boundary conditions (5,6) show that its magnitude is in general of order (|A+|2, |A_|2) , 
and henee of order ¡x — ¡XQ, where /¿o is the threshold for the onset of the Faraday instability. Note also that a 
nonvanishing streaming flow is associated even with standing waves (| A+ \ = \ A_ |), although for such waves u-eg 
changes sign under reflection 6^—6 and the last term in Eq. (1) vanishes. Thus for standing waves the streaming 
flow decouples from the amplitudes, although it may be involved in triggering instabilities of such waves. 

2.1. The circular container 

As already mentioned, when A = 0 the streaming flow decouples from the equations for the amplitudes. To see 
this we consider waves with azimuthal wavenumber m, and write 

A± = B±e-im0o(r\ (7) 

to obtain 

B'±(r) = - ( 1 + ir)B± + i(ai \B±\2 + a2\BT\2)B± + i/xfiT (8) 

and 

O p2ir pR 

6'0(r) = (ü/m) / / g(r,z)u-eerdrd0dz. (9) 
—i o o 

These equations provide the simplest description of nearly inviscid Faraday waves in 0(2)-symmetric systems and 
all their solutions converge to reflection-symmetric steady states of the form 

B± = Roe °, (10) 



Fig. 1. The coefficients a\, ai for a m = 1 inviscid mode with a free contact line as a function of the aspect ratio R. Here ai = —A — B, 
ai = —A + B, where^4 andB are computed by Miles [34]. 

i.e., to standing waves, and only the spatial phase 9Q couples to the streaming flow, as described by Eq. (9) and 

—-uxCV xu) =-Vp + Re^Au, V « = 0, (11) 

subject to 

u = 2RQ\¡P\ cos[2m(6 — 6Q)] + (p2]no x ee — 2R0(p3 sm[2m(6 — 0o)]ee (12) 

on either r = R or z = —1, and 

du du 
uez = er = ee = 0 (13) 

dz dz 

onz = 0. The (constató) arbitrary phase 9Q appearing in (10) hasbeeneliminatedby anappropriate rotation. Eqs. (9), 
(ll)-(13)possess,forall/ÍQ,reflection-symnietricsteady states of the forma = «s(r, 9 — 9Q, Z),9Q = constató, with 
Ms(r, 9, z)-ee = —us(r, —9, z)e#; note that there is a whole family of such states, obtained by an arbitrary rotation. 
For small RQ the existence and (orbital) asymptotic stability of these states can be ascertained analytically. It turns out 
that these states can lose stability at finite Ro either through a parity-breaking bifurcation giving rise to uniformly 
drifting spatially uniform standing waves (such as those observed in Faraday experiments in annular containers 
[10]), or via a symmetry-breaking Hopf bifurcation that produces so-called direction-reversing waves [29]. In the 
latter case, the standing waves drift alternately clockwise and counterclockwise but their mean location remains 
fixed. Solutions of this type have been found in a two-dimensional Cartesian geometry with periodic boundary 
conditions, and represent the instability that sets in at smallest amplitude [33]. Neither instability is present if the 
coupling to the streaming flow is ignored. 



2.2. Nearly circular cylinder 

As soon as A ^ 0 the symmetry of the problem is reduced to the group D2 generated by 

A± -> —A±, 9 -> 9 + n, and A+ <->- A_, 0 -> —0, w-eg -> —u-eg, (14) 

and the streaming flow couples to the amplitudes as well. The description of this coupling becomes simpler when 
the effective Reynolds number of the streaming flow is small (i.e., /J, — /¿o is small) for then the non-potential 
term — u x (V x u) in Eq. (2) is negligible. In fact this approximation remains qualitatively useful even for larger 
Reynolds numbers. The absence of nonlinear terms allows us to isolate the part of the streaming flow velocity that 
contributes to the nonlocal term in Eq. (1), by decomposing the streaming flow variables as 

2JT 

(H, p) = (v(r, z, r)eo, 0) + (« ,p), where / ü-eo áB = 0. (15) 
o 

Thus, 

A'±(r) = - ( 1 + i r ) A ± + iAAT + i(ai |A ± |2 + a2\AT\2)A± 

+ i/xAzp =p 2TTÍÍ2 / / g(r, z)v(r, z, x) r ár ázA±, (16) 
- i o 

Wr = / ? e - 1 ( ^ + r-1
Wr-r-2

W+W«) if 0<r<R, - 1 < Z < 0, (17) 

u = 0 asr —>- 0, (18) 

v = cpA(\A-\2- \A+\2) oneitherr = Rorz= - 1 , (19) 

uz =^ 5 ( |A_ | 2 - | A + | 2 ) onz = 0, (20) 

and the axisymmetric part of the streaming flow vanishes for standing waves (|A+| = |A_|). 
Although the above model can be integrated numerically by relatively inexpensive methods we simplify it 

further by expanding the axisymmetric component of the streaming flow velocity, v, in terms of purely azimuthal 
hydrodynamic modes. These satisfy the eigenvalue equation 

XV =Vrr + r-1Vr-r-2V+Vzz if 0<r<R, - 1 <z< 0, (21) 

V = 0 a s r ^ 0 , V = ^onei therr = Rorz = — 1, Vz = cpsonz = 0. (22) 

The eigenvalues A. are all real and negative. If only the first such mode is retained, we obtain 

A'±(x) =-(1 + ir)A± + iAAT + i (ai |A± | 2 + a2\AT\2)A± + ifzAT =F iyviA±, (23) 

^ ( r ) = £ ( - « ! + | A _ | 2 - | A + | 2 ) , (24) 

where e = —X\Re~l > 0, and A.i < 0 is the first purely azimuthal hydrodynamic eigenvalue. In the following we 
define new variables 

X = i(A+ - A_)/2, Y = (A+ + A_)/2, v =-vi/2, (25) 

and rewrite Eqs. (23)-(24) in the more useful form 

X' = - ( 1 + i ( r + A))X + i((ai + a2)\X\2 + 2ax \Y\2)X - i(ai - a2)XY2 + iyix - 2yvY, (26) 

Y' = - ( 1 + i ( r - A))Y + i((ai +a2)\Y\2 + 2ai\X\2)Y -i(ai - a2)YX2+ifiY+ 2yvX, (27) 



v' = e(-v + i(XY - XY)). (28) 

This form of the equations makes it clear not only that the (axisymmetric part of the) streaming flow vanishes if 
either X = 0 orY = 0,i.e., for puré standing waves, but also that both modes must be present in order to drive such 
a flow, i.e., all instabilities of standing waves within Eqs. (26)-(28) will be due to mocle interaction, at least when 

Eqs. (26)-(28) constitute the basic system studied in the remainder of this paper, and we investígate its properties 
for small valúes of e. If e is too large the mean flow becomes slaved to the amplitudes, and Eqs. (26)-(28) become 
instead 

X' = - (1 + i(r + A))X + i((oti + a2)\X\2 + 2(ce\ + y)\Y\2)X - i(ce\ -a2 + 2y)XY2 + ifiX, (29) 

Y' = - ( 1 + i ( r - A))Y + i((ai + a2)\Y\2 + 2(CÜI + y)\X\2)Y - i(«i - a2 + 2y)YX2 + ifiY, (30) 

i.e., amplitude equations for the Faraday system of the usual kind, but with coefficients modified by the presence of 
the mean flow according to «i -> «i + y, a2 -> a2 — y. The resulting equations form a special case of the system 
studied by Dangelmayr and Knobloch [9]. When e is sufficiently small the streaming flow v participates actively in 
the dynamics and permits behavior that would not otherwise occur. This occurs when the mean flow is sufficiently 
weakly damped, i.e., when |A.i | is sufficiently small or Re sufficiently large. 

3. Analytical results 

Eqs. (26)-(28) are equivariant with respect to the group D2 generated by the two reflections 

Ri : (X, Y, v) -> (-X, Y, -v), R2 : (X, Y,v)^ (X, -Y, -v). (31) 

These symmetries will prove to be of crucial importance in the analysis that follows. 
We begin by examining the steady states and their stability properties. The steady states are of two types, 

hereafter puré modes associated with vanishing streaming flow, and mixecl modes which are accompanied by a 
nonzero streaming flow. These are distinguished by their symmetries. 

3.1. Puré modes (P±) 

The two possible puré modes are givenby P+ = (0, Y, 0) = (0, / ^ e 1 ' ^ , 0) and P- = (X, 0, 0) = (R-e1^-, 0, 0), 
with f+ invariant under R\ and P- under R2. The amplitudes of these modes satisfy 

P± :1 + ( r =F A - (ai + a2)R
2
±)2 = yu2. (32) 

The P± are both puré parity standing waves, one with a nodal line along the major axis of the container and the 
other along the minor axis. When A = 0 and the container is perfectly circular the puré modes are part of a whole 
circle of standing oscillations. 

The P+ and P- solutions bifúrcate from the trivial state at 

M + = (l + ( r - A)2)112 and yo- = (1 + ( r + A)2)1'2, (33) 

respectively. The bifurcation to P± is supercritical if (r =p A)(a\ + a2) < 0. 
Linearization about the puré modes identifies the stability properties of these states. These fall into one of two 

classes: the eigenvector may respect the symmetry of the solution, or it may break it. A steady state bifurcation of 
the formertype corresponds to saddle-node bifurcations (SN), while a steady state bifurcation of the lattertype is a 
pitchfork that produces a pair of mixed modes, i.e., steady states that do not have any symmetry. In the following we 



refer to this bifurcation as a symmetry-breaking bifurcation (SB). A simple calculation shows that these bifurcations 
occur at 

2 r^A 
SN : R± = , (34) 

a\ + «2 
? r 

SB : R± = , íf rA T¿ O, (35) 
2{a\ + y) 

respectively. We emphasize that SB produces steady solutions of the form (X, Y, v), XYv ^ 0, in contrast to the 
parity-breaking bifurcation that occurs when A = 0 and produces a drifting puré mode. 

The puré modes P± may also experience Hopf bifurcation. Only one type, a symmetry-breakingHopf bifurcation, 
is possible and takes place at 

7 4PA ±2e±e2 

R± = , (36) 
4A(2ai — ey) 

provided that y A ^ 0. This requirement follows immediately from the expression for the oscillation frequency a>±, 

co± = —e =p 4yAeR± > 0. (37) 

Thus, at most one puré mode can lose stability at a symmetry-breaking Hopf bifurcation, P+ if y A < 0, and P- if 
y A > 0. Note that this instability involves the excitation of the streaming flow (y ^ 0) and requires a finite ellipticity 
of the container. The oscillations that result resemble trapped direction-reversing waves, oscillating about the major 
or minor axes, but exhibit no drift. Such states correspond to two-frequency Faraday oscillations. 

3.2. Mixed modes (M) 

The mixed modes M = (X, Y, v) = (R-e1^,R+e1^,v) satisfy 

7 7 r 

E = Ri_ + R_ = , (38) 

2{a\ + y) 

(E(ai + a2) - rf + (1 + A2 + A(a2 - ai - 2y)L)2 = (1 + Á2)^2, (39) 

7 (£(ai + a2) - rf 
tan(¿>_(_ — é_) = A, eos (é+ + </>_) = ^ ^ (40) 

M (1 + A2), 
whereL = R+ — R2_. Sincethesemodeshavenosymmetry,thelinearizationaboutthemdoesnotblock-diagonalize, 
and the stability analysis must in general be done numerically. However, it is possible to show that the mixed modes 
lose stability at a saddle-node bifurcation when 

/x2(l + A2){ai + y)2 - r2(ai 

— «2 + 2y) = 0, (41) 
a result that also follows from Eqs. (38,39). These modes can also undergo a Hopf bifurcation. In contrast to the 
puré modes such a bifurcation is possible even when y = 0, but then occurs only if P+ and P_ bifúrcate in opposite 
directions. However, if y ^ 0, a Hopf bifurcation may oceur along the mixed mode branch even when it conneets 
two supercritical puré modes. 

The stability results for the P± and M solutions described above are illustrated in Fig. 2 for four representa-
tive sets of parameter valúes. In Fig. 2a, both puré mode branches bifúrcate supercritically, with the P_ branch 
bifurcating before the P+ branch. The P_ states are therefore stable at small amplitude and remain so until a 
symmetry-breaking bifurcation at SB, where stability is transferred to the mixed modes M. These in turn lose 
stability at a Hopf bifurcation prior to the end of the M branch on the P+ branch. The P+ solutions above 



SB have two unstable eigenvalues and acquire stability only at larger amplitude, at another Hopf bifurcation. 
A stability gap, where time-dependent solutions may be expected, is therefore present between the two Hopf 
bifurcations H. 

Fig. 2b shows a case in which a symmetry-breaking Hopf bifurcation occurs below the symmetry-breaking 
steady state bifurcation on the P_ branch. Since the latter is subcritical the resulting mixed modes have initially 
three unstable eigenvalues but acquire stability after a saddle-node bifurcation, followed by a Hopf bifurcation. 
Once stable they remain so until their termination point on the P+ branch, where they transfer stability to the P+ 
branch. Once again time-dependent behavior is expected in the región between the two Hopf bifurcations H. 

In Fig. 2c, both puré mode branches bifúrcate subcritically. The P- branch bifurcates first and acquires stability at 
a saddle-node bifurcation before losing it again at larger amplitude at a symmetry-breaking steady state bifurcation 
SB. The P+ branch is never stable, and neither are the mixed modes connecting the puré mode branches. Here 
time-dependent states set in beyond the symmetry-breaking bifurcation on the P_ branch. 

Finally, in Fig. 2d the parameters P and A are small, and the puré modes P± come in in cióse succession and 
bifúrcate almost vertically (see Eq. (32)). The figure shows that this time it is the P+ branch that comes in first, and 
that it bifurcates slightly subcritically with all three of the possible secondary instabilities present. Since the Hopf 
bifurcation occurs below the saddle-node bifurcation the P+ state has two unstable eigenvalues above the saddle-
node, one of which passes through zero at SB. It follows that the mixed mode states created at SB have initially 
two unstable eigenvalues, i.e., that the bifurcation is subcritical. In contrast, the P_ state bifurcates supercritically, 
and has one unstable eigenvalue near onset. It acquires stability at SB, indicating that the bifurcation from P_ to 
the mixed modes is supercritical, and henee that the mixed modes are stable near P_. It follows that there must be 
a Hopf bifurcation along the mixed mode branch, at ¡x = yJ^ say, and indeed our calculations confirm that this is 
so. The presence of this bifurcation is important in what follows since it implies that Eqs. (26)-(28) have no stable 
nontrivial fixed points for \x < \JJ^. Consequently, the first state observed once \x exceeds the threshold valué /¿o 
must be a time-dependent state. We return to this point below. 

The dynamical behavior in the regions identified by the linear stability theory is the subject of the following 
section. 

4. Numerical results 

In this section we study the dynamics of Eqs. (26)-(28) in the intervals of ¡x identified in the preceding section. 
We consider only the four cases shown in Fig. 2, hereafter referred to as Cases I through IV. 

4.1. Case I: Periodic oscillations 

Case I is the simplest and exhibits periodic oscillations only, albeit of two distinct types. In the región of interest 
identified in Section 3 we find stable Pi-symmetric periodic orbits, labeled Pis in Fig. 3a. These disappear with 
increasing /J, at a Hopf bifurcation on the P+ branch and annihilate with unstable Pi -symmetric solutions (labeled 
Piu) at a saddle-node bifurcation SN as /J, decreases (see Fig. 3a). The latter are created in a gluing bifurcation at /J, = 
/xg «a 1.926 involvingan unstable P+ state and a pairof unstable asymmetric periodic orbits (labeled Au)producedin 
a (subcritical) Hopf bifurcation onthe branch of mixed modes M. Thus, the asymmetric periodic orbits are unstable 
throughout their range of existence, /xg < /J, < /z# «a 1.932. The gluing bifurcation is shown in two different 
projections inFig. 3b. The eigenvalues of the fixed point P+ at ¡x = ¡JL„ are 0.16, —0.004, —1.1 ± 1.9iand —2.16; 
the eigenvectors of the first two of these are (Re(X), Im(X), Re(F), Im(F), v) = (0.8093, 0.5869, 0, 0, 0.0237) and 
(0.6392, 0.4902, 0, 0, 0.592). Thus, both eigenvectors are odd with respect to Pi, and the homoclinic bifurcation 
at n = ¡Jig is of type a in the terminology of Glendinning [15], with no stable periodic orbits or complex dynamics 
near /xg. The saddle-node bifurcation on the R\ -symmetric branch is nonlocal and consistent with this classification 



Fig. 2. Bifurcation diagrams for the puré modes P± and mixed modesM showing the Euclidean norm ||(X, Y, v)\\ = \X\2 + \Y\2 + v2 as a 
function of/A. Solid (broken) lines indícate stable (unstable) steady states. Saddle-node (A), symmetry-breaking and Hopf (o) bifurcations are 
labeled by SN, SB and//, respectively. The parameters are: (a) r = 0.5, A = —0.4, u\ = 0.4, ai = —2.58, y = 0.2, e = 0.01; (b) r = 0.7, 
A = —0.6, ai = 0.4, a?2 = —2.58, y = —0.2, e = 0.01; (c) r = —0.5, A = 0.4, ai = 0.4, ai = —2.58, y = —0.6, e = 0.01; (d) r = 0.15, 
A = 0.18, ai = 0.48, ai = —0.58, y = —0.35, e = 0.001. 

4.2. Case II: Relaxation oscillations and cañarás 

Case II is very interesting from a theoretical point of view, even though no chaotic dynamics appear to be present. 
As shown in Fig. 4a, the periodic orbits in the system undergo two distinct types of transition as ¡x increases. In 
the first, near /J, = 2.7, a pair of /Í2-symmetric periodic orbits, created in a Hopf bifurcation on the P- branch, 
forms a pair of heteroclinic connections between P+ and —P+. Fig. 5a shows one of the /Í2_symmetric periodic 
orbits, in two different projections, just before this transition, while Fig. 5b shows one of the two periodic orbits 
that result from it. Each of these orbits has /íi^-symmetry. Such symmetry-switching bifurcations are typical 
of Z>2-symmetric systems [38,21] and occur as a result of the formation and breakup of a pair of heteroclinic 
connections. Since the eigenvalues of P+ at the bifurcation are 0.2770, —0.0182, —2.2687 and — 1 ± 3.3415Í 



Fig. 3. Case I, corresponding to Fig. 2a. (a) Branches of steady states and periodic orbits in terms of the Euclidean norm ||(X, Y, v)\\ and the 
Li norm ||(X, Y, v)\\¿2, respectively, as afunction of ¡J,. Thick solid (dashed) lines indícate stable (unstable) periodic orbits generated in Hopf 
bifurcations (H) on P+ andM. Thin solid (dashed) lines indícate stable (unstable) steady states. (b) Two projections of the unstable periodic 
orbits cióse to the gluing bifurcation at ¡J, = iJ,g: an unstable asymmetric periodic orbit Au and an unstable Ki-symmetric periodic orbit Ri„. 
The symbol D indicates the location on P+ of the global bifurcation. 

with (Re(X), lm(X), Re(Y), Im(Y), v) = (—0.7808, —0.6243, 0, 0, 0.0242) and (0.5416, 0.4885, 0, 0, 0.6842) as 
the first two eigenvectors the heteroclinic cycle P+ o —P+ is asymptotically planar, with no stable periodic orbits 
or complex dynamics nearby. Consequently the two stable orbits must go through saddle-node bifurcations before 
the switching bifurcation can take place, cf [15]. 

Fig. 4. Case II. (a) Branches of steady states and periodic orbits, in terms of the Euclidean norm ||(X, Y, v)\\ and the Li norm ||(X, Y, v)\\¿2, 
respectively, as a function OÍ/J,. Global bifurcations are indicated by open squares, while thick solid (dashed) lines correspond to stable (unstable) 
periodic orbits, and thin solid (dashed) lines correspond to stable (unstable) steady states. (b) Enlargement of the framed región in (a) centered 
at /u,c = 3.9210403, indicating the location of the Ri ¿Í2-symmetric and asymmetric (A) orbits. Remaining parameters are as in Fig. 2b. 



Fig. 5. Case II. A symmetry-switching transition involving the puré modes ±P+, in terms of projections onto the (Re(X), v) and (Re(7), v) 
variables. (a) A periodic ¿Í2-symmetric orbit at ¡J, = 2.704115. (b) A periodic Ri ¿Í2-symmetric orbit at ¡J, = 2.704122. The symbol D indicates 
the location of the unstable fixed points ±P+. The parameters correspond to those of Fig. 2b. 

The second transition, near /J, «a 3.9210403, is of much greater interest. Here each of the stable Ri ^-symmetric 
periodic orbits created in the first transition (Fig. 4a) appears to ‘break up’ in what looks like a saddle-node bifurcation 
into a pair of unstable periodic orbits with no symmetry, which in turn disappear in a subcritical Hopf bifurcation 
on the branch of mixed modes at/j-n = 3.92073453 (Fig. 4b). Fig. 6 shows thesetwo orbits near this transition, and 
illustrates the abrupt change in the oscillation amplitude that results from it. Numerically, we find that the period of 

Fig. 6. Case II. Periodic orbits cióse to the codimension-two global bifurcation at e = 0, ¡i = ¡j,c, superposed on the nullcline E. (a) A stable 
R\ ¿Í2-symmetric periodic orbit at ¡J, = 3.921039743, e = 0.01. (b) An unstable asymmetric periodic orbit at ¡J, = 3.921040287, e = 0.01. The 
remaining parameters are as in Fig. 2b. 



both types of oscillation appears to diverge at a common valué of ¡x near \x = 3.9210403, hereafter /xc. However, 
trie nature of this divergence is highly unusual, and does not conform with the logarithmic divergence associated 
with an approach to a global bifurcation, even though Fig. 4a suggests that the transitionbetween the small and large 
amplitude oscillations is somehow related to the proximity to an unstable mixed mode. It is clear, moreover, that 
the transition cannot be a gluing bifurcation of the type encountered in Case I, since any gluing bifurcation between 
a pair of asymmetric orbits and an R\ ^-symmetric periodic orbit at an asymmetric mixed mode is necessarily of 
codimension two, and henee nongeneric in one parameter families of vector fields. 

With s = 0.01 it is exceedingly difficult to unravel the details of this unusual transitionby numerical computation 
alone. We have therefore adopted a dual approach, by examining first the limit e -> 0, and thenperforming detailed 
computations for somewhat larger valúes of e to confirm the predictions of the e -> 0 analysis. We beginby writing 
Eqs. (26)-(28) in the form 

X' = Fi(X, Y,v; f¿), Y' = F2(X, Y,v; ¡x), v' = eG(X, Y,v), (42) 

where X = (Re(X), lm(X)), Y = (Re(Y), Im(l')) and suppose that 0 < e <C 1. In this regime, Eqs. (42) exhibit 
relaxation oscillations, andwe canunderstandthe properties of these oscillations by examining first the case e = 0. 
In this case, v becomes a parameter, and Eqs. (42) become 

X'= Fi(X, Y;v, ¡x), Y' = F2(X,Y;v,f¿). (43) 

This pair of equations can have both steady state solutions and periodic solutions. Of particular significance is 
the one-dimensional nullcline U : F\ (X, Y, v; ¡x) = F2(X, Y, v; ¡x) = 0 that contains the steady states when e > 0 
and consists of them when e = 0. These may be stable or unstable. When 0 < e <C 1 the solutions of Eqs. (42) 
can be thought of as drifting slowly along the attracting part of U. Typically this slow drift ends near folds on U 
where the solution is forced away from U and the slow drift is replaced by a fast transition that takes the system 
to another branch of U. This is the essence of all relaxation oscillations. However, in certain circumstances the 
periodic oscillations may follow the unstable part of U after the fold. This is the hallmark of the so-called canard 
phenomenon, and related behavior has been seen, for example, in model equations describing chemical systems 
[8,35]. Like the present system these systems also exhibit abrupt transitions from small amplitude oscillations to 
large amplitude relaxation-type oscillations, a behavior that has been called a canard explosión [8,18,35]. 

To understand this behavior in the present context we show in Fig. 7a, a projection of U on the (Re(X), ta­
piarte when \x «a ¡J.H- This projection shows four branches, S± (solid lines) and U± (dashed lines), corresponding 
respectively to stable and unstable steady states of Eqs. (43); the points q± denote saddle-node bifurcations where 
these steady states change their stability. Note that the branches S+ and U+ as well as the point q+ are related 
through Ri 7Í2-symmetry to S~, U~ and q~. Away from the fold points q± the manifolds S± and U± are normally 
hyperbolic. As a consequence when 0 < e <C 1 they perturb to normally hyperbolic invariant manifolds Ms and 
MJJ lying within 0{s) of S± and U± [13]. The former is attracting, while the latter is of saddle-type, properties that 
are inherited from those of S± and U±. Together these manifolds define the slow manifold of the system (42). To 
find iheflow on this manifold due to the slow evolution of v we solve (43) for X, Y as functions of v and compute 
G(X(v), Y(v), v). The fixed points of this reduced flow with v = 0 approximate the mixed modes M± of (42) for 
0 < s <C 1 and lie within U. Fig. 7b shows these fixed points superposed on .£ when e = 0.01. There are two pairsof 
such points, labeled M1 and M2 , of which M1 «a q^- undergo a subcritical Hopf bifurcation at yuu = 3.92073453. 
Numerically we find that the resulting unstable asymmetric oscillations grow in amplitude as /J, increases but remain 
unstable all the way to /J, = fi0, where the transition to the stable large amplitude R i ̂ -symmetric oscillations takes 
place. 

Fig. 8(a-d) describes geometricallywhathappensinatypical canard explosión The figure isdrawnforO <«« 1 
but does not distinguish between the slow unstable manifolds Mv and the stable manifolds W of the fixed points 
Mj . This permits us to extend Mjj past the folds q±. Fig. 8a shows the relative position of these manifolds prior to 
the explosión The fixed point M¡*~ e M~£ is attracting, while M2 e M^ is a saddle. If ¡x is now increased M¡*~ moves 



Fig. 7. Case II. Projection of the nullcline E on (Re(X), u)-plane for ¡J, = 3.9213453 ss /J,¡] and the indicated valúes of e. The remaining 
parameters are as in Fig. 2b. Solid (dashed) line corresponds to stable (unstable) steady states of Eqs. (42) for e = 0. 

past q+ and falls in M J , resulting in a Hopf bifurcation. Fig. 8b shows the relative orientation of Af¡¡~, the resulting 
small amplitude periodic solution ys and iys(M^~) when this bifurcation is supercritical. As ¡x increases further 
M~^ and iys(M^~) approach one another, and at a critical valué ¡x = ¡xc they may coalesce (see Fig. 8c). As this 
happens the small amplitude oscillation grows and at ¡x = ¡xc it collides with M^~, forming a homoclinic connection. 
Beyond this critical parameter valué the homoclinic connection breaks, forming a large amplitude periodic orbit ye 
lying outside of iys(M^~) (Fig. 8d). Here the formation of a canard therefore corresponds to the appearance of a 
homoclinic connection and henee is associated with a global bifurcation [35]. 

In our case, however, the Hopf bifurcation is subcritical, MJ1" is stable, and the details of the transition differ 
[2,3]. Fig. 8e and f shows the analogues of Fig. 8b and d for this case. Prior to the canard the small amplitude 
periodic solution y¡¡ is unstable (Fig. 8e) and coexists with a stable large amplitude periodic orbit ye lying outside of 
iys(M^~). As ¡x approaches ¡xc these orbits both approach M^~ along iys(M^~) and at ¡x = ¡xc (Fig. 8c) ys appears to 
coincide with apart of ye. Once ¡x > ¡xc the slow manifold M~£ lies onthe inside of iys(M^~) and no oscillations are 
present (Fig. 8f). Thus, the small amplitude unstable oscillation annihilates the large amplitude stable oscillation, 
a transition that must take place via the formation of a connection to M^~ since the two oscillations have different 
symmetry properties. Thus, the canard at ¡x = ¡xa looks like a saddle-node bifurcation of periodic orbits (cf [8]) 
but is in fact also associated with a global bifurcation. 

When s is finite but sufficiently small (e = 0.01 is sufficiently small in this sense) the behavior of the system 
(26)-(28) is indistinguishable from the qualitative predictions based on the above picture. Fig. 6 shows an unstable 
asymmetric small amplitude oscillation at ¡x = 3.921040287 and a stable /íi^-symmetric relaxation oscillation at 
¡x = 3.921039743, each projected on the (Re(X), v) variables and superposed on the nullcline U, for e = 0.01. In 
each case, the arrows indicate the direction of motion for comparison with Fig. 8e and f. The figure confirms that the 
slow manifold for e = 0.01 does indeed follow the locus of fixed points computed with e = 0 (Fig. 7a), and that as ¡x 
increases a pair of unstable small amplitude asymmetric periodic orbits is born in a (subcritical) Hopf bifurcation of 
Mj «a q^-. As ¡x increases further the amplitude of each of these grows, initially slowly but then more rapidly, prior 
to the canard transition at ¡x = ¡xc. At ¡xc the unstable periodic orbit ys

+ follows My, the unstable part of the slow 
manifold between M^~ and the saddle-type fixed point M^~ (Fig. 6b), forming a saddle-loop connection. Fig. 9 shows 
that during this process the period of both the asymmetric and the Ri /Í2-symmetric oscillations diverges, confirming 



Fig. 8. Case II. Projection of the nullclines S and V on the (Re(X), u)-plane, showing the relative orientation of the slow manifold Mj and 
the stable and unstable manifolds Ws,u of the fixed point M^ • (a) M^ is stable. (b) Mj+ undergoes a supercritical Hopf bifurcation at /u, = /J,H 
producing a stable small amplitude asymmetric orbit ys. (c) The canard manifold VKs(M2

h) at /u, = fic, connecting Mj with My, showing the 
homoclinic connection yh- (d) The formation of a stable large amplitude relaxation oscillation yt when /u, > /u,c. (e) M¡ undergoes a subcritical 
Hopf bifurcation at ¡JL = /ÁJJ producing an unstable small amplitude asymmetric orbit ys within a stable large amplitude relaxation oscillation 
yt. (f) The formation of a canard at ¡J, = /u,c is responsible for the absence of both periodic orbits when ¡J, > /u,c. 



Fig. 9. Case II. The period T of asymmetric and R\ ¿Í2-symmetric oscillations nearthe canard at/u, = /u,c ss 3.9210403. The symbolL indicates 
the natural logarithm. Solid (broken) lines indícate stable (unstable) oscillations. Both periods diverge as ¡J, —>• / ¿ c - , indicating proximity to a 
global bifurcation. 

the presence of a global bifurcation involving M^~, and that for both oscillations this occurs from the same side. 
However, despite much effort (see Fig. 9) we have been unable to confirm the expected result that the oscillation 
period T of both the small and large amplitude oscillations should diverge logarithmically, as T ~ -A.-1 ln|/x - fia|, 
where A.u is the unstable eigenvalue of M^~. 

These and other confücts with expectation are all reconciled when one recognizes that the location of the 
detachment of the trajectory from the unstable slow manifold is exponentially sensitive to the valué of e and that the 
range of fi around fi0 during which canards are present is proportional to exp - c/e, where c is a positive constant 
[11,18]. This fact suggests in turn that there is an exponentially small neighborhood of fia in which the finite valué of 
s restores the expectedbehavior, such as the logarithmic divergence. Infact, we find that the finite valué of e ‘unfolds’ 
the saddle-node/global bifurcation present at e = 0 (cf [16]), with the result that the global bifurcation splits into 
two successive codimension-one global bifurcations, one involving the small amplitude asymmetric oscillations 
and the other the large amplitude R\ /Í2-symmetric oscillations, with the saddle-node bifurcation now occurring on 
one or other of these oscillation branches. The behavior near each of these global bifurcations is determined by 
the eigenvalue ratio 5 = |A.S/A.U|, where A.s «» -0.00051 is the least stable eigenvalue of M^~ and A.u «» 0.4889 is its 
unstable eigenvalue, both computed at ¡x = ¡xc for e = 0.01. Thus, 5 <<C 1. Under these conditions classical theory 
[45] shows that neither type of periodic orbit will be stable near ¡x = ¡xa. It follows therefore that once 0 < e <C 1 
the saddle-node bifurcation must move away from ¡x = ¡xa, and that it is the stable R\ /Í2-symmetric orbit that must 
undergo a saddle-node bifurcation prior to the formation of the canard at /x = /xc. If this is so /xc > 3.921040287, 
and the two periodic orbits approach their individual global bifurcations from opposite sides after all. 

In order to confirm these conclusions we have recomputed our results with e = 0.2. With this larger valué 
of s the qualitative picture remains unchanged (Fig. 10a) but the nature of the transition becomes much clearer. 
Fig. 10b shows that the asymmetric oscillations continué to be subcritical and unstable, and that these approach 
monotonically a global bifurcation at/xa = 3.881857 involving the mixedmodesM2 as ¡x increases. Moreover, this 
bifurcation is now distinct from the corresponding global bifurcation on the branch of Ri /Í2_symmetric relaxation 
oscillations which takes place at a larger valué of fi, fis = 3.882094. In addition, one can now follow the oscillation 
period cióse to each global bifurcation, and finds that in both cases it diverges logarithmically, as expected from 
global bifurcations. Note also that the Ri /Í2-symmetric oscillations remain stable almost until the end of the branch, 
but that right before the end they go through a saddle-node bifurcation at which they lose stability. Thus, on both 



Fig. 10. (a) Bifurcation diagram for the same parameters as Case II but with e = 0.2 for comparison with Fig. 4a. (b) Detail of the bifurcation 
diagram in (a) for comparison with Fig. 4b, showing the ‘unfolding’ of the canard transition at finite e. 

branches the oscillations are unstable near their respective global bifurcations, as expected from the fact that here too 
5 <c 1. We conclude that the strange behavior of the canard transition is a consequence of the exponentially small 
región in which the two global bifurcations and the accompanying saddle-node bifurcation occur. As a result the 
logarithmic divergence of the period is postponed to very high periods, the two families of periodic orbits undergo 
global bifurcations almost simultaneously, and the relaxation oscillations involved appear to approach the global 
bifurcation from the wrong direction and with the wrong stability assignment. It is reasonable to expect that for any 
finite valué of e these ‘paradoxes’ are resolved in this exponentially small región around /J, = /xc in the same way 
as found here for e = 0.2. 

Finally, the theoretical prediction [18] that canards will form once ¡x - HH = 0(e) is also broadly consistent 
with the numerical results. We believe, therefore, that except for the effects of symmetry the transition observed in 
Fig. 6 is essentially the result of a classical canard associated with a subcritical Hopf bifurcation. 

4.3. Case III: Symmetric and asymmetric bursting 

This case displays very interesting dynamics over a large (semi-infinite) range of the forcing amplitude ¡x where 
no stable steady states exist. As shown in Fig. 11, when the puré mode P- loses stability in a symmetry-breaking 
bifurcation at «» 2.8, small perturbations drive the system to a stable branch of R\ ^-symmetric periodic 
orbits. If this periodic branch is continued backwards (i.e., for /J, < /¿SB) one finds that it ultimately terminates in a 
heteroclinic bifurcation involving the nonsymmetric fixed points M±. The eigenvalues of M± at this bifurcation are 
0.001940, -0.42229, -0.998 ± 4.819Í and -1.58926 and henee no chaotic dynamics result. Anentirely different 
scenario unfolds when this periodic branch is continued for /J, > /¿SB • First, the Ri /^-symmetric branch undergoes 
a pitchfork bifurcation that generates stable asymmetric periodic orbits (see Fig. 11, inset). With further increase in ¡x 
these asymmetric orbits undergo a period doubling bifurcation PD and, as shown in the bifurcation diagram of Fig. 12, 
chaotic dynamics are found not long after The chaotic behavior is marked by a crisis in which two asymmetric 
chaotic attractors collide at /x «a 4.903 and merge, forming a symmetric chaotic attractor (a symmetry-increasing 
bifurcation). The interval over which chaos is observed is relatively short (4.902 < /J, < 4.92), however, and the 
system is soon attracted to a new branch of Ri ^-symmetric periodic orbits created in a saddle-node bifurcation. 
When, in turn, this Ri ^-symmetric branch loses stability, we observe a new branch of stable asymmetric periodic 



Fig. 11. Case III, correspondingto Fig. 2c. Bifurcation diagramfor steady states andperiodic orbits, interms ofthe Euclideannorm |\(X, Y,v)\\ 
and the Li norm | \(X, Y, v)\ \Ll, respectively, as a function of ¡J,. Thick solid (dashed) lines correspond to stable (unstable) periodic orbits; thin 
solid (dashed) lines correspondió stable (unstable) steady states. The arrow indicates the location of a subcritical bifurcation on P_ to unstable M. 
This bifurcation produces a hysteretic transition to stable R\ ¿Í2-symmetric oscillations that exist between the heteroclinic bifurcation indicated 
by the symbol D and a symmetry-breaking bifurcation labeled SB (inset). 

orbits created in a nearby saddle-node bifurcation. This sort of alternating transition between /íi ^-symmetric 
and asymmetric oscillations is repeated again and again. Note also that the chaotic windows associated with these 
transitions become narrower and narrower as ¡x increases. In Fig. 13, we show stable attractors associated with 
three consecutive periodic windows in Fig. 12. These limit cycles are evidently relaxation oscillations, but this 
time involving slow drifts along branches of both equilibria and of periodic orbits, with fast jumps between them. 
Because of their resemblance to bursting in excitable membranes or spiking in neurons we refer to these oscillations 
as bursting or spiking as well. In our case, however, the bursting oscillations may be symmetric or asymmetric, 
with the symmetry alternately present and broken in successive periodic windows. In the following we suggest an 
explanation for this remarkable behavior adapted from ref [41]. 

As in Case II the behavior described above can be understood, at least in part, by considering the nullcline 
£ : F\(X, Y, v; ¡x) = F2(X, Y, v; ¡X) = 0. As indicated in Fig. 14, the projection of £ onto the (v, Re(X)) plañe 
consists of pairs of branches of stable (5,±) and unstable (U^ states, related by symmetry. However, in Case III Eqs. 
(42) with s = 0 also contain a one parameter family of attracting limit cycles. These periodic solutions are created, 
as v increases, in a heteroclinic bifurcation involving the two fixed points U+ and U~, and are /íi^-symmetric. 
Between this heteroclinic bifurcation and the fold points q± the stable Ri ^-symmetric limit cycles coexist with the 
stable fixed points S± (see Fig. 14). When e is finite but small these states couple to the slow evolution of the variable 
v, and the manifolds of steady states and periodic orbits become part of the slow manifold of the system (42), cf 
[41]. In the following we speak of the solutions as drifting along this manifold (the slow phase); this drift proceeds 
until the system is forced away from the slow manifold, heralding the onset of the fast phase of the oscillation that 
takes it back to the slow manifold. The plots in Figs. 13 can be interpreted in this light, with episodes of almost 
constant Re(X) corresponding to drift along the manifold of steady states S± and the return trajectory consisting of 
a drift along the branch of periodic orbits. 

To understand the nature of the oscillations that result we begin by considering the drift along M~£, the part of 
the slow manifold near the stable steady states S+. The drift is in the direction of increasing v and so takes the 
system towards q+ (see Fig. 14). Near this point this slow drift ends and the system jumps abruptly to the branch 
of symmetric periodic states, labeled/?. In Fig. 14, this transition is indicated by a vertical short-dashed line, and 



Fig. 12. Case III: bifurcation diagram showing an alternating sequence of Ki¿Í2-symmetric (R1R2) and asymmetric (A) periodic orbits. The 
figure is constructed by recording successive máxima of 
the first chaotic región. The parameters are as in Fig. 2c. 
figure is constructed by recording successive máxima of ||(X, 7)|| = y ||X|| + | |F| | at each valué of ¡JL. The inset shows an enlargement of 

Fig. 13. Case III. (a) Projection onto the (Re(X), v) plañe of stable symmetric and asymmetric periodic orbits in successive periodic Windows 
in Fig. 12. (b) The corresponding time series Re(X(r)). 



Fig. 14. Case III. Theslowmanifoldforthesystem(42)lies within 0(e) of the manifolds S^, U^ of steady states, andthemanifoldpofperiodic 
orbits, of Eqs. (42) with e = 0. The slowdrifts in v that occur when 0 <E«1 are indicated by broken ‘horizontal’ arrows; the fast phase results 
in ‘vertical’ jumps. These are indicated by vertical arrows, and labeled by integers to indícate the corresponding transition in the associated time 
series Re(X(r)). (a) Asymmetric relaxation oscillations of Eqs. (42) when ¡J, = 6.0 and e = 0.01. (b) Ri ¿Í2-symmetric relaxation oscillations of 
Eqs. (42) when ¡J, = 6.5 and e = 0.01. 

labeled with the number 2. The system then drifts towards the left along the corresponding slow manifold Mp until it 
reaches the vicinity of the e = 0 heteroclinic connection, where the oscillations disappear and so does the associated 
slow manifold Mp (0 < e <C 1). With the disappearance of Mp the system is forced to either jump toward S+ or 
toward S~. Whichof these two outcomes takes place is determinedby the phase of the trajectory near U+ or U~. 
These states are saddles with one unstable direction and three stable directions; for example, the eigenvalues of U± 

at n = 6.5 are 0.6547, —0.9999 ± 14.236Í and —2.65405. Thus, the least stable eigenvalue is infact complex, and 
this is so in the other periodic windows as well. The time series show clearly that when the drift along Mp ends the 
system approaches either U+ or U~ along its stable manifold; what happens thereafter depends on which part of 
its unstable manifold is followed. If the unstable manifold of U+ (say) takes the system to S+ (as in Fig. 14a) the 
fast phase (labeled 1) terminates on S+ and the system thereafter drifts towards the right along Af¡¡~. The resulting 



Fig. 15. Case III. Projections of (a) an asymmetric solution at ¡J, = 6.0 and (b) an Ri ¿Í2-symmetric solution at ¡J, = 6.5 on the (Re(X), Im(X)) 
plañe, both calculated with e = 0.01, showing the role played by the stable manifold of U in determining the part of the slow stable manifold 
followed by the solution. The actual trajectory spirals around this manifold. 

oscillation is an asymmetric relaxation oscillation. In contrast, if the unstable manifold of U+ takes the system to 
S~ (cf Fig. 15) the fast phase terminates on S~ and the system thereafter drifts towards the right along M$ . In 
Fig. 14b, this transition is labeled 1; the accompanying panel shows the corresponding signature in the time series. 
When the slow phase terminates the system jumps back to the large amplitude periodic state (transition 2) and drifts 
along it to the left, but this time when it falls off Mp in a transition labeled 3 it goes to U- and by symmetry follows 
its unstable manifold towards S+. The resulting trajectory is /íi ^-symmetric. Fig. 15 shows the oscillations of 
Fig. 13 inaprojectionthat highlights the role of the stable manifold of these unstable steady states as a separatrix 
between the two slow phases of the relaxation oscillation. 

We now turn to the sequence of transítions revealed in Fig. 12. The bifurcation diagrams in Fig. 16 shows what 
happens in all transitions from an asymmetric oscillation to a symmetric one, and from a symmetric one to an 
asymmetric one, as/x increases, while Fig. 17 shows the period of the corresponding solutions, also as a function of 
H (boxed regions). Each transition is accompanied by a stability gap within which chaotic dynamics (symmetric and 
asymmetric) are found, and each new periodic solution emerges out of such a región in a saddle-node bifurcation. 
Fig. 17 also shows that in each transition the period of the stable oscillation jumps by an approximately constató 
amount, and subsequently decreases along both the stable and the unstable branches away from the saddle-node 
bifurcation. 

Fig. 18 focuses on a branch of asymmetric relaxation oscillations that first appears in a saddle-node bifurcation 
near ¡x = 7.0, and shows that as one follows the stable branch from the saddle-node towards larger ¡x one encounters 
an interval of ¡x in which the period drops precipitously (Fig. 18a, inset). Just after this point the stable (asymmetric) 
relaxation oscillation loses stability via period-doubling (not shown). Fig. 18b shows the time series at the point 
marked 3 (JJ, = 7.3118) just before this loss of stability, and suggests that this loss of stability is a consequence of 
the fact that the trajectory is beginning to follow the unstable manifold before peeling off towards S±. By point 
5 (/j, = 7.5533) the trajectory follows the unstable manifold U~ all the way to the saddle-node at q~. For yet 
larger /J, the oscillation remains unstable but the trajectory departs from U~ in the opposite direction (see point 6, 
H = 10.0). These results indicate that with increasing /J, the trajectory comes closer and closer to the hyperbolic 
steady states U± resulting in longer and longer drift along the unstable manifold Mu- This fact also suggests an 
increasing role for the leading eigenvalues of U±. In the present case the least stable eigenvalue Xs is complex, 
but the unstable eigenvalue Xu < |Re(A.s) |. Thus no chaotic dynamics are expected. Note that in contrast to Case II 
in the present case the drift along U± is not triggered by a bifurcation in the fast system, and so is not the result 
of a canard. 



Fig. 16. Case III. Detail of the bifurcation diagrams nearthe transition from asymmetric to symmetric relaxation oscillations near (a) ¡J, = 6.23, 
and (b) ¡J, = 6.79. Solid (broken) lines indícate stable (unstable) solutions. The labels SN, SB and PD denote saddle-node, symmetry-breaking 
and period-doubling bifurcations, respectively. The original (and unstable) oscillations correspond to the straight dashed line and undergo no 
bifurcations in this regime. 

Stable bursting behavior of the type shown in Figs. 13, 14 and 18 becomes increasingly dramatic as ¡x is 
increased, revealing ever more clearly the two slow phases and the rapid transition between them. In Fig. 19a, 
we show a stable oscillationfore = 0.01 and ¡x = 9.0 projectedonto the (\\(X, Y)\\ = vl l^l l 2 + H^lP^ v) plañe, 
cf. Fig. 14, and superposed on the slow manifold computed with e = 0. We see that during one part of the slow 

Fig. 17. Case III. Alternating sequence of R\ R2-symmetric and asymmetric relaxation oscillations. The diagram shows the period (half-period) 
of asymmetric (symmetric) periodic relaxation oscillations as a function of ¡JL. Solid (dashed) line corresponds to stable (unstable) states. The 
labels SN, SB and PD denote saddle-node, symmetry-breaking and period-doubling bifurcations, respectively. 



Fig. 18. Case III. (a) Period of asymmetric relaxation oscillations as a function of ¡J,. Solid (dashed) lines correspond to stable (unstable) 
states. (b) Stable relaxation oscillations corresponding to the open circles (1-3) in figure (a) projected on the (Re(X), v) plañe together with the 
corresponding time series ||X(r)||. (c) Unstable relaxation oscillations corresponding to the remaining open circles (4—7) in figure (a) in the 
same projection. 



phase (labeled 1) the system drifts towards smaller v along the slow manifold Mp of stable periodic solutions p. 
Near the heteroclinic connection in the fast system the oscillations end and the system undergoes a rapid transition 
to the stable manifold Ms indicated by a vertical arrow. Thereafter it enters a new slow phase, labeled 2, and 
drifts in the direction of increasing v, towards the fold point q, where the slow phase ends and the system makes 
a rapid transition back to Mp. This transition is also indicated by a vertical arrow. The small cusp-like feature 
at the onset of phase 2 results from a brief visit of the trajectory near the unstable slow manifold Mu, before 
being ejected towards the stable slow manifold Ms. As fi increases and the next symmetry-switching transition 
is approached the solutions spend more and more time near Mu, and henee involve longer and longer episodes 
of drift along Mu- Fig. 19b and c show two examples of this behavior, differing only slightly in the valué of fi. 
In the first of these the system drops to the unstable steady state at the end of the slow phase 1, and then drifts 
along Mu towards larger v before a sudden jump to Ms. The slow drift continúes along Ms towards the fold on 
£ where the system jumps to the oscillatory state/?, and the slow phase 1 recommences. In contrast, the solution 
in Fig. 19c jumps from Mu to Mp (instead of Ms) and so begins to drift towards smaller v but the next time, 
instead of following Mu, it jumps to Ms and begins to follow the standard relaxation oscillation scenario. The 
remarkable sensitivity to the valué of /J, is evidently a consequence of the amplification of small differences in the 
approach of the trajectory towards Mu by the unstable eigenvalue of U, and heralds the transition from asymmetric 
oscillations to symmetric ones: in effect, with each half-turn around U± the trajectory changes the direction in 
which it leaves U±, and henee its symmetry. In addition its period jumps by a finite amount, a phenomenon we 
have already noted. When the number of turns increases monotonically with /J, there will be an infinite sequence 
of symmetry-changing transitions, and henee a sequence of periodic windows with alternating symmetric and 
asymmetric relaxation oscillations. Thus each saddle-node bifurcation creates a pair of periodic orbits with an 
extra half-turn. Moreover, since it takes a finite interval in /J, to change the frequeney sufficiently to add a half-
turn these symmetry-changing transitions cannot accumulate, in contrast to the cascades of symmetry-switching 
gluing bifurcations that oceur in other Z>2-symmetric systems [21]. As documented above this is the case for the 
parametersof Case III; forotherchoices suchas Case II with 0.35 <y< 0.4 (notshown) the number of transitions is 
finite. 

4.4. Case IV: Delayed loss ofstability and chaos 

Case IV is quite complex because of the proximity to the saddle-node bifurcation on the P+ branch of two 
other bifurcations, the symmetry-breaking Hopf and steady state bifurcations H and SB, respectively. The former 
interaction, i.e., saddle-node/Hopf, is responsible for the properties of the oscillations createdatthe Hopf bifurcation. 
This codimension-two bifurcation is much studied [19,46] and its unfolding corresponding to Fig. 2d confirms 
not only the presence of a branch of oscillatory solutions that bifurcates towards larger /J, but also shows that 
this branch must be initially unstable before acquiring stability in a tertiary toras bifurcation. This theoretical 
prediction is confirmed in Fig. 20a where the toras bifurcation is labeled TR (JJ, & 1.00136). The figure shows, 
however, that the interval in which the periodic oscillations (thick line) are stable is quite narrow, and that these 
oscillations lose stability at larger /J at a second toras bifurcation (JJ = 1.0083). We presume that this loss of 
stability is a consequence of the proximity of these parameter valúes to the second codimension-two interaction: the 
saddle-node/pitchfork bifurcation. Indeed, Fig. 20a shows that the periodic oscillations eventually become stable 
again (at a third toras bifurcation) before transferring stability, via a Hopf bifurcation, to the mixed modes M 
created at SB. This Hopf bifurcation is in tura found in the appropriate unfolding of the saddle-node/pitchfork 
interaction. 

It is important to emphasize that the oscillations created in the Hopf bifurcations on the P+ andMbranches have 
distinct symmetry properties. The former are R\ -symmetric and disappear in a gluing bifurcation at JJ = /jg «a 1.03 
involving the larger amplitude P+ state. The latter produces a pair of asymmetric oscillations, which glue together 
as /J approaches /jg from above (see Fig. 20a). There are therefore two possible sources of complex behavior in 
this parameter regime, the first associated with the global bifurcation at JJ = /jg, and the second associated with 



Fig. 19. Case III. Stable asymmetric relaxation oscillations for (a) ¡J, = 9, (b)/u, = 9.185468521 and(c)/x = 9.185468525. The top panel shows 
the location of these solutions in a period vs. ¡J, plot (Fig. 17). The slow drifts, present when 0 < s « 1, are labeled with numbers to indícate 
the corresponding phase inthe accompanying time series ||(X, 7)||, computedfrom Eqs. (42) with e = 0.01. The arrows indícate the direction 
of drift as well as the fast transitions. 



Fig. 20. Case IV, corresponding to Fig. 2d for (a) y = —0.35 (mean flow included) and (b) y = 0 (mean flow absent). Thin solid (dashed) lines 
correspond to stable (unstable) steady states. Thick solid (dashed) lines correspond to branches of stable (unstable) periodic orbits generated in 
Hopf bifurcations on P+ and M, indicated by the letter H. Saddle-node, symmetry-breaking pitchfork and torus bifurcations are indicated by 
SN, SB and TR, respectively In (b) the symbol D indicates the homoclinic global bifurcation where the branch of periodics orbits, created at H, 
terminates. Note the rapid growth in the oscillation amplitude (inset) as this point is approached, cf. [35]. 

the termination of the torus branches. The former is not directly responsible for the observed chaotic dynamics 
(see below) since the eigenvalues of P+ at /xg are real, and the leading unstable eigenvalue is smaller than the 
(magnitude of the) leading stable one. Analysis of the saddle-node/Hopf interaction shows that the associated torus 
branch terminates in general in a global bifurcation as well. As shown by Guckenheimer [17] and in more detail by 
Kirk [24,25] this bifurcation is generically associated with thin wedges of chaotic behavior. We expect this type of 
behavior at the end of the first torus branch, and similar behavior may be associated with the torus branches created 
when the various periodic oscillations identified below lose stability as well. Fig. 20b shows that when the coupling 
to the mean flow is omitted the behavior of the system simplifies dramatically. However, despite the differences in 
behavior summarized in Fig. 20a and b there is clear correspondence between the two figures. This correspondence 
is a consequence of both the small valué of e which is responsible for replacing the steady states Min Fig. 20b by 
slowly drifting states that form the slow phase of the oscillations created in the Hopf bifurcation on P+ (Fig. 20a), 
and of the small valué of the mean flow v associated with these oscillations. This correspondence is explored in 
greater depth below. 

InFig. 21a, we show a two-frequency attractor obtained at /x = 1.0005, that is, immediately afterthe trivial state 
becomes unstable (/¿o = 1.00045), with the mean flow included (Fig. 20a). Fig. 22a shows the corresponding time 
series. This attractor appears to describe oscillations about the small amplitude Pi-symmetric oscillation created 
at the Hopf bifurcation on the P+ branch. The absence of exact Pi symmetry suggests that this attractor is related 
to the symmetry-breaking torus bifurcation at /x «a 1.00136. This bifurcation appears to be supercritical, producing 
stable two-frequency oscillations in /J, < 1.00136. These are initially almost Pi-symmetric but grow increasingly 
asymmetric as ¡x decreases. The Pi-symmetric oscillations undergo a second torus bifurcation at /x «a 1.0083 but 
this time the bifurcation is subcritical, i.e., the resulting two-frequency oscillations are present in /J, < 1.0083 but 
are now unstable. However, Fig. 23 shows that this observation only scratches the surface of the complexity that is 
present in this parameter regime. In addition to the Pi-symmetric oscillations just mentioned (Fig. 20 and lowest 
curve in Fig. 23) there is a large number of additional branches of Pi-symmetric oscillations, four of which are 
included in the figure. These are labeled (a-d) and are stable near minimum period (solid lines) and unstable 
elsewhere (dashed lines). Fig. 24 shows the projections of these stable oscillations in four cases, one from each 
branch. It is clear that the oscillations corresponding to the different branches differ in the number of revolutions 



Fig. 21. CaseIV. Stable attractors ofEqs. (26)-(28)fortheparametersinFig. 2d. (a) Atorusat/x = 1.0005. (b) Achaotic attractor at/x = 1.0175. 
(c) A T^-symmetric periodic orbit at [i = 1.0205. 

about the two mixed modes M±, and that múltiple stable oscillations are present simultaneously. However, in all 
cases the oscillation period is of order \/s as expected of relaxation oscillations. The torus bifurcations at which 
these oscillations acquire stability with increasing \i may be responsible for the presence of chaotic oscillations in 
this regime, such as that shown in Figs. 21b and 22b, but the details of this process are beyond the scope of the 
present paper. 

The behavior reported in Fig. 24 is also a consequence of the two distinct slow time scales present in the 
problem, Le., of the small valué of the parameter s. The set £ of equilibria of Eqs. (42) with s = 0, given by 
F\(X, Y; v, ¡JL) = F2ÍX, Y; v, ¡JL) = 0, consists of symmetry-related stable (5,±) and unstable ( t /±) steady states. 
Of these the 5,± are created in pitchfork bifurcations from the trivial state as |i>| decreases. The 5,± states lose 



Fig. 22. Case IV. Time series corresponding to the attractors in Fig. 21. 

stability via subcritical Hopf bifurcations at h and turn into U (see Fig. 25). The branches of periodic oscillations 
p created in these Hopf bifurcations are always unstable and terminate in a homoclinic connection to an R\-
symmetric fixed point UQ. When /x = 1.01185 UQ = (0, 0, 1.025, 0.87303) and its eigenvalues are real: 0.458, 
—0.054, —1.945 and —2.458. The eigenvectors of the two leading eigenvalues are Vu = (0.8454, 0.5341, 0, 0) and 
ys = (0.7458, 0.4389, 0, 0). The global bifurcation at UQ is therefore a standard ‘figure eight’ gluing bifurcation 
with no associated chaos; its presence does not appear to be relevant for the dynamics shown in Fig. 24. Rather, 
the observed behavior appears to be a consequence of the fact that all four eigenvalues of S± are complex. When 
0 < s <̂C 1 the solutions of Eqs. (42) drift slowly along the attracting slow manifolds Ms associated with S±m, this 
drift is in the direction of increasing v for M^ and decreasing v for M$. As in Case III, when s is sufficiently small 
the fast motion undergoes a delayed loss of stability (cf. [2]), although this time no global bifurcation is involved. 
This behavior can be seen clearly in Fig. 26, computed for s = 0.0001: the trajectory moves slowly along M$, 
passes through a Hopf bifurcation (in the fast system) at h~, and continúes along the unstable manifold M^ for a 



Fig. 23. Case IV. The period ofseveral branches ofperiodic oscillations as a functionof/xwhene = 0.001. Thebranches (a-d)are Ki-symmetric, 
while (e and í) are ¿Í2-symmetric. Solid (dashed) lines indícate stable (unstable) solutions. Saddle-node, symmetry-breaking pitchfork and torus 
bifurcations are indicated by SN, SB and TR, respectively. 

time of order 1/e. The trajectory then spirals away from M~j~¡ and towards M~¿ . Once it is sufficiently cióse to M~¿ 
the same process repeats, but this time with v decreasing. As shown in Fig. 27 the drift along the slow manifolds 
Ms and Mv is faster at larger valúes of e. With less time to approach Ms the oscillations appear less and less 
“damped” and the orbits begin to resemble those in Fig. 24. 

The above point of view also permits us to understand the origin of the prominent cusp-like feature that develops 
on the higher branches of oscillatory states as ¡x decreases (Fig. 23). This structure is not due to an incipient 
global bifurcation. Instead what appears to be happening is the following. As /J, decreases the real part A. of the 
unstable eigenvalue at the detachment point also decreases, implying a longer oscillation period. At the same 
time the Hopf frequency co at h~ also decreases. For the transition from U~ to S+ one must make at least half 
a turn around U~ before detachment, otherwise the trajectory ends up on the large amplitude U~ state (see Fig. 
25). This change in the type of oscillation becomes inevitable once CO/JT falls below A.. Numerically we find that 
this condition is quite accurately satisfied at the tip of the cusp, while before the cusp is reached (i.e., for larger 
valúes of ¡JC) A < CO/JT. After the cusp the unstable two-dimensional manifold of U~ starts to veer away from the 
stable manifold of S+ and begins to approach the three-dimensional stable manifold of the large amplitude U~ 
state. As this happens the period drops slightly but the oscillation amplitude starts to increase. Fig. 28 shows the 
oscillations on either side of the (secondary) minimum in the period along branch (d) in Fig. 23. Thereafter the 
period increases rapidly as the trajectory spends more and more time drifting along the slow manifold associated 
with the large amplitude unstable state U~ instead of the stable small amplitude state S+, thereby acquiring an 
altogether different appearance. On the left each branch eventually terminates in a homoclinic connection to the 
puré mode P+ contained in the slow manifold of U~ (see Fig. 29, panel 1), while on the right it terminates 



Fig. 24. Case IV. Examples of stable Ki-symmetric oscillations onthe branches (a-d) in Fig. 23 at ¡i = 1.01185. 

in a homoclinic connection to the origin (see Fig. 29, panel 2). Except for the complications arising from the 
presence of reflection symmetry much of the above phenomenology resembles that studied recently by Krauskopf 
and Wieczorek [26] and attributed to a nearby saddle-node/Hopf bifurcation with no stable fixed points [47], cf. 
Fig. 20a. 

Fig. 23 also shows two branches of R2-symmetric oscillations labeled (e and f). These are also stable near 
minimum period; a stable R2-symmetric oscillation on branch (e) is illustrated in Figs. 21c and 22c. This type of 
solution can be described in an analogous manner to the R1-symmetric orbits on branches (a–d) discussed above. 



Fig. 25. Case IV. (a) Bifurcation diagram for Eqs. (42) showing the norm \\(X, Y)\\ as a function of v when ¡J, = 1.01185 and e = 0. Thick 
dashed lines indícate branches of periodic orbits generated in Hopf bifurcations at h^. Thin solid (dashed) lines indícate stable (unstable) steady 
states. The remaining parameters are as in Fig. 21. (b) Detail of the bifurcation diagram in (a). 

Fig. 26. Case IV. (a) Stable relaxation oscillation computed from Eqs. (42) when ¡i = 1.01185, e = 0.0001, projected onto the (v, \\(X, Y)\\) 
plañe. (b) The corresponding time series | |V(T) , F(T)||. The remaining parameters are as in Fig. 21. 



Fig. 27. Case IV. Stable Ki-symmetric oscillations for ¡i = 1.01185 and several different valúes of e. The remaining parameters are as in Fig. 
21. In each case the time series (right column) show a single period only. Note that (d) corresponds to a branch omitted from Fig. 23. 



Fig. 28. Case IV. Unstable periodic solutions in the cusp región on branch (d) of Fig. 23, showing the continuous transition from relaxation 
oscillations involving the states S+ to oscillations involving the large amplitude states U~. (a) ¡J, = 1.008389, near mínimum period, (b) 
¡j, = 1.004072, near the tip of the cusp, (c)/u, = 1.00733, near the secondary mínimum, (d)/u, = 1.00844, to the rightof the secondary mínimum. 

The divergence of the oscillation period with both increasing and decreasing \x indicates that all of these branches 
appear and disappear through global bifurcations (see Fig. 23). To identify these we show in Figs. 29 and 30 high 
period unstable oscillations on the (d) and (f) branches, one near the initial appearance of each branch and one near 
its end. In contrast to the (d) branch the (f) branch originates and terminates in global bifurcations involving the 
originandthe steady states ±P±. However, despite the appearance of Figs. 29 and 30, no heteroclinic connectionto 
a periodic orbit actually occurs. In fact the observed behavior appears to be organized by codimension-two points 
corresponding to connections between the steady states P± and the origin. The figures suggest, and computations 
confirm, that all the eigenvalues of the fixed points involved are real. However, a more detailed understanding of 
this remarkable behavior along the lines of refs. [23,21], or indeed in terms of the theory of slow-fast systems, is 
beyond the scope of this paper. 

It is clear that in Case IV the system (26)-(28) exhibits múltiple coexisting stable states, some periodic (see Fig. 
23), others quasiperiodic or chaotic (see Fig. 21). The latter are readily located between the symmetry-breaking 
bifurcation on branch (c) and the saddle-node bifurcation on branch (e), and exist on either side of/x = 1.017. Since 
we do not follow unstable tori we cannot identify the transitions that might lead from the various two-frequency 
states to the observed stable chaotic oscillations. It is likely, however, that each of the periodic oscillations depicted 



Fig. 29. Case IV. Examplesoflargeperiodunstable Ki-symmetricoscillationsonbranch(d)atthelocationsindicatedinFig. 23. (l)/x = 1.0230, 
(2) ¡i = 1.0258. 

in Fig. 24 bifurcates into chaos, and henee that the example in Fig. 21b is but one from a number of coexisting 
intervals of chaos, cf. [26]. 

5. Discussion and conclusions 

In this paper we have examined the dynamics of parametrically driven Faraday waves in slightly elliptical 
containers onthe assumption that (i) the viscosity of the liquid is small (as measuredby the dimensionless quantity 
Cg <c 1) and (ii) the effective Reynolds number Re of the streaming flow driven in oscillatory boundary layers 
(defined in Eq. (3)) is also small. Under these conditions we were able to replace the Navier-Stokes-like equation 
for the mean flow by a single ordinary differential equation, and focused on the interesting case 0 < e <$C 1. The 
mean flow is then only weakly damped, and the resulting equations take the form of a singularly perturbed system. 
Althoughthe condition for this to be the case, X\Re~l <¡C 1, provides a competing constraint onthe Reynolds number, 
the two requirements are not in contradiction. This is because the small hydrodynamic eigenvalue A.i depends on 
the aspect ratio R of the cylinder and will be small wheni? is large. The approach we have taken focuses on the role 
played by the coupling to the streaming flow, but does not attempt to make quantitative predictions for the Faraday 
system under experimental conditions. Specific applications require the computation of the coupling coefficient 
y as well as the nonlinear coefficients a\, «2 for appropriate meniscus boundary conditions. These remain to be 
done. For this reason we have chosen to treat Eqs. (26)-(28) as a model system that captures the dominant effeets 
of the coupling to the streaming flow, with y as a free parameter, for fixed detuning r and ellipticity A. We have 



Fig. 30. Case IV. Examples of large period unstable ¿Í2-symmetric oscillations onbranch(f)at the locationsindicatedin Fig. 23. (3)/u, = 1.02632, 
(4) ¡j, = 1.02680. 

seen that the broken circular symmetry of the system (A ^ 0) destroys the one-parameter family of standing waves 
present in a circular container, selecting two standing waves from this family, with slightly different frequencies 
and thresholds. As inotherproblems of this type [36] this results inthe competitionbetweentwo almost degenerate 
modes, and such interaction often leads to complex dynamics. 

We have focused on four distinct cases, three of which were computed for the coefficients «i, «2 obtained by 
Miles for a free contact line [34]. In each of these linear stability theory indicated the absence of any stable steady 
states, i.e., the presence of regions in parameter space in which the puré and mixed modes are all unstable. In the 
first case we found very simple dynamics, organised by a gluing bifurcation of a standard kind, but no chaos. Cases 
II and III are of greater interest. When e is small both these cases exhibit relaxation oscillations with múltiple 
time scales. In Case II these oscillations involved fast transitions between slowly varying steady states called 
mixed modes, corresponding to periodic standing waves. In the original Faraday system this type of oscillation 
corresponds to a quasiperiodic mode of oscillation of the system with two quite distinct frequencies. In Case III 
we located relaxation oscillations of a more complex kind. Here the slow manifold of the amplitude equations is 
composed of both equilibria and (symmetric) periodic oscillations, and the resulting time series (Fig. 19a) appear 
indistinguishable from the type of (so-called parabolic) bursting behavior exhibited by neurons [44], even though it 
involves visits to saddle-foci. In the Faraday system, the periodic oscillations correspond to mixed mode oscillations 
in which the contribution of the two orthogonal standing waves oscillates periodically in time (as does their relative 
phase), and the relaxation oscillations found are oscillations between this complex state and a puré mode standing 
wave. However, in both cases the basic picture is simple: the system drifts along the slow manifold until it passes a 
bifurcation, typically a saddle-node bifurcation, where it is forced away from the slow manifold. The resulting fast 
phase then takes it to another part of the slow manifold and the process repeats. In our system we have seen that 
oscillations of this type occur when the streaming flow is weakly damped. As a result the streaming flow behaves as 
a slowly varying parameter, and the system drifts along the slow manifold computed by ‘freezing’ the mean flow. 



In our system we encountered two twists on this well-known picture. The first centered on the presence of 
the two reflection symmetries in Eqs. (26)-(28) which permit the presence of periodic oscillations with different 
types of symmetry; these can in turn undergo symmetry-breaking or symmetry-switching bifurcations. The second 
centered on the presence of canard explosions characterized by an abrupt change in the amplitude (and in our 
case symmetry as well) of a periodic orbit. Fig. 6a and b shows an example of each of these orbits in Case II, 
computed at almost the same valué of the parameter ¡x. The figure shows clearly the dramatic change in the 
oscillation amplitude as /J, passes through the canard at /J, = /xc. We were able to demónstrate that the canard in 
Case II is linked to a subcritical Hopf bifurcation, and established a link between canards and global bifurcations. 
In particular we argued that there must exist an exponentially small neighborhood of the canard parameter valué 
Ha in which the canard is ‘unfolded’ by any finite valué of the small parameter e, thereby restoring the behavior 
expected of a global bifurcation. It is this exponential sensitivity to the exact valué of /J, that is responsible for 
the explosive nature of the canard phenomenon [11,2]. In case III we found a whole variety of bursting solutions, 
characterized by slow drifts along branches of both stable and unstable equilibria and of periodic states, separated 
by fast transitions between them. Here we located an apparently infinite sequence of hysteretic transitions between 
asymmetric and /Íi^-symmetric oscillations occurring in ever narrower intervals in /x as /x increases. Much of 
this behavior could be understood by studying the trajectory near the point of closest approach to the unstable 
saddles U±, and the global behavior of their stable and unstable manifolds, which is in turn inherited from the 
heteroclinic connection that destroys the oscillations in the fast system. In particular, we saw that the change of 
symmetry between successive periodic windows is due to an extra half-turn of the trajectory around the unstable 
steady states as /J, increases. This point of view allowed us to understand why the intervening chaotic intervals 
become narrower with increasing /J, but the ‘symmetry-switching’ transitions do not accumulate at a finite valué 
of fi, in contrast to the cascades of symmetry-switching gluing bifurcations that occur in other Z>2-symmetric 
systems [21]. 

In Case IV we saw that the primary puré mode branch bifurcates subcritically before turning around towards 
larger ¡x. By moving the Hopf bifurcation to direction-reversing waves below this saddle-node bifurcation we made 
sure that the branch of puré modes P+ remains unstable above the saddle-node bifurcation. In this case the direction-
reversing waves created in the Hopf bifurcation must also be initially unstable, and only acquire stability at larger 
H at a torus bifurcation. When this bifurcation is supercritical the resulting toras branch bifurcates towards smaller 
valúes of /J, and is at least initially stable. The branch terminates in a global bifurcation involving the puré modes and 
this bifurcation is typically associated with chaos [17,24,25]. Thus, in this instance the primary bifurcation gives 
rise to either chaotic or quasiperiodic oscillations even though it is a steady state bifurcation The same mechanism 
has been seen in other systems, and is responsible for the presence of chaos at onset of natural doubly diffusive 
convection [7] and for the presence of a three-frequency state called a repeated transient at onset of binary fluid 
convection [6]. However, a more detailed look at this case revealed a plethora of additional branches of periodic 
orbits, which start and end in global bifurcations, and acquire stability through toras bifurcations. These periodic 
orbits have a highly unusual appearance which we have traced to the separation between the time scales for the 
evolutionof the waves and of the mean flow, specifically the requirement 0 < e <¡C (r — A)2 ~ 10~3. In particular, 
we found that the unusual appearance of the oscillations is the consequence of delayed loss of stability that occurs 
as a result of a slow passage through a Hopf bifurcation in a system with symmetry. Theory (cf [2]) shows that the 
delay lasts for a time of order 1 ¡e; during this time the solution drifts along the unstable manifold of equilibria, much 
as in a canard, although the resulting behavior is not canard-like and in particular has quite different dependence on 
the parameters /J, and e. Note that since the Hopf bifurcations are subcritical the unstable periodic orbits created at 
the bifurcation are not involved in this behavior, cf. [20]. 

The present system differs in an important aspect from the most familiar systems exhibiting canards in having a 
pair of reflection symmetries. These symmetries have an important effect on the transitions, and in particular one can 
have canards onbranches of symmetric oscillations as well as nonsymmetric ones. Related behavior is present when 
two identical oscillators are symmetrically coupled. The resulting system can undergo relaxation oscillations with 
both oscillators oscillating in phase (a symmetric oscillation) or exactly out of phase (an asymmetric oscillation). 



Examples include coupled neurons [18] and coupled continuously stirred tank reactors [4,5], but the transition 
between these two oscillation types has not hitherto been systematically investigated. This is an interesting topic 
for future investigation. 

The results of this paper demonstrate that the inclusion of the streamingflow in the amplitude equations describing 
Faraday waves in a nearly circular domain has dramatic consequences for the range of available dynamical behavior. 
In particular, its presence is responsible for relaxation oscillations, an unusual phenomenon in fluid dynamics, and 
one that could be confirmed in experiments. Of the four cases considered, Case IV is closest to the conditions 
required for the validity of Eqs. (26)–(28) since both Γ and Λ are small, and the magnitude of the streaming flow 
remains small as well. Yet despite this its effects remain dramatic (cf. Fig. 20). In forthcoming work, we shall 
examine these transitions in greater detail, and shall explore the analogues of this behavior in the partial differential 
Eqs. (1)–(6) as well. 
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