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Relaxation oscillations in a nearly inviscid Faraday system
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Abstract. In the nearly inviscid regime parametrically driven surface gravity-capillary waves
couple to a streaming flow driven in oscillatory viscous boundary layers. In an elliptical con-
tainer of small eccentricity this coupling can lead to relaxation oscillations.
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1 Introduction

In recent work on parametrically driven Faraday waves we have shown that in the presence of small vis-
cosity (Cg = v(gh® +Th/p)~1/2 « 1) the waves couple to a streaming flow driven in oscillatory viscous
boundary layers at rigid walls and the free surface [12]. This flow in turn affects the waves responsible for
the oscillatory boundary layers. While a detailed description of this feedback loop (and the derivation of
the asymptotically exact equations) is very involved, it is known [9, 12] that this coupling is responsible
for different types of drift instabilities of the waves, instabilities that have been observed in experiments
in annular containers [2] but are absent from the theory when the coupling to the streaming flow is neg-
lected.

These instabilities arise not only in annular containers but in cylindrical containers as well, and are driven
by a coupling between the streaming flow and the spatial phase of the waves. Richer dynamics result when
the container is deformed into an elliptical one. This case is interesting even in the absence of a streaming
flow because it results in competition between two nearly degenerate standing waves. As shown in [7] in this
case the streaming flow also couples to the amplitudes of the standing waves, resulting in a much stronger
coupling between the waves and the streaming flow. In this paper we explore the consequences of this coup-
ling in model equations derived in [7] under the assumption that the Reynolds number of the streaming flow
is small:
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Fig. 1. The coefficients 1, oy for an m =1 inviscid mode with a free contact line as a function of the aspect ratio R. Here
o1 =—A—B, 0y =—A+ B, where A and B are computed by Miles [10]
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Here X and Y are the (complex) amplitudes of Faraday waves oriented along the two axes of the ellipse,
while v is a real variable proportional to the amplitude of the large scale (axisymmetric and purely azimuthal)
component of the streaming flow. In these equations time has been scaled relative to the viscous damping
time. In the following we assume that v is weakly damped (¢ <« 1), and use the coefficients «1, @2 com-
puted by Miles [10] for a right circular cylinder with a moving contact line boundary condition, viz. «; = 0.4,
ap = —2.58 for a cylinder of height # = 14.1 cm and radius Ri = 9.2 cm (Fig. 1). The coefficients u, I,
and A are proportional to the forcing amplitude, detuning, and eccentricity of the container, respectively,
while y measures the coupling to the streaming flow. For a pinned contact line the first two coefficients are
known [8]; ¥ remains to be computed. In the following we take I = —0.5, A=04, y = —0.6, e =0.01, and
examine the properties of these equations as p increases.
Equations (1)—(3) are equivariant with respect to the group D2 generated by the two reflections

R (XY, v) = (—X,7Y, —v), R (X,Y,v) = (X, Y, —v). “4)

As a result there are two types of steady states, the Pure Modes (P+) given by Py =(0,Y,0) =
(0, Rye'?+,0) and P_ = (X, 0,0) = (R_é'?-,0,0), with P, invariant under Ry and P_ under R, and the
Mixed Modes (M) given by M = (X, Y, v) = (R_e'®~, R, ¢+, v). Both are shown in Fig. 2 together with
their stability properties. Note that both pure mode branches bifurcate subcritically. The P_ branch bifur-
cates first and acquires stability at a saddle-node bifurcation before losing it again at larger amplitude at
a symmeltry-breaking steady state bifurcation. The P4 branch is never stable, and neither are the mixed
modes connecting the pure mode branches. Thus interesting behavior sets in beyond the symmetry-breaking
bifurcation on the P_ branch, i.c., for © > pugp ~ 2.8. In the following we describe the results of numerical
integration of Eqs. (1)—(3) in this regime.

Once P_ loses stability at SB small perturbations drive the system to a stable branch of Ry Ry-symmetric
periodic orbits, also shown in Fig. 2. If the corresponding branch is continued backwards (i.e., for i < usp)
one finds that it ultimately terminates in a heteroclinic bifurcation involving the nonsymmetric fixed points
M. The cigenvalues of M at this bifurcation are 0.001940, —0.42229, —0.998 +4.819{ and —1.58926 and
hence no chaotic dynamics result. An entirely different scenario unfolds when this periodic branch is contin-
ued for u > pgp. First, the Ry R>-symmetric branch undergoes a pitchfork bifurcation that generates a pair
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Fig. 2. Bifurcation diagram showing the (maximum) value of || X +Y|| as a function of w. Thick solid (dashed) lines cor-
respond to stable (unstable) periodic orbits; thin solid (dashed) lines correspond to stable (unstable) steady states. The arrow
indicates the location of a subcritical bifurcation on P_ to unstable M. This bifurcation produces a hysteretic transition to stable
Ry R>-symmetric oscillations that exist between the heteroclinic bifurcation indicated by the symbol [] and a symmetry-breaking
bifurcation labelled SB (inset)
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Fig. 3. Bifurcation diagram showing an alternating sequence of RqR>-symmetric (R; Ry) and asymmetric (A) periodic orbits.
The figure is constructed by recording successive maxima of [|[(X, ¥)|| =+/||X]|? +||¥]|? at each value of j. The inset shows
an enlargement of the first chaotic region

of stable asymmetric periodic orbits (see Fig. 2, inset). With a further increase in p these asymmetric orbits
undergo a period-doubling bifurcation PD and, as shown in the bifurcation diagram of Fig. 3, chaotic dy-
namics are found not long after. The chaotic behavior is marked by a crisis in which two asymmetric chaotic
attractors collide at ¢ ~4.903 and merge, forming a symmetric chaotic attractor (a symmetry-increasing
bifurcation). The interval over which chaos is observed is relatively short (4.902 < 1 < 4.92), however,
and the system is soon attracted (o a new branch of R R>-symmetric periodic orbits created in a saddle-
node bifurcation. When, in turn, this R; R>-symmetric branch loses stability, we observe a new branch of
stable asymmetric periodic orbits created in a nearby saddle-node bifurcation. This sort of alternating (ran-
sition between Ry Ro-symmetric and asymmetric oscillations is repeated again and again. Note also that the
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Fig. 4. (a) Projection onto the (Re(X), v) plane of stable symmetric and asymmetric periodic orbits in successive periodic
windows in Fig. 3. (b) The corresponding time series Re(X (7))

chaotic windows associated with these transitions become narrower and narrower as p increases. In Fig. 4
we show stable attractors associated with three consecutive periodic windows in Fig. 3. These limit cycles
are evidently relaxation oscillations, but of an unusual type, involving slow drifts along branches of both
equilibria and of periodic orbits, with fast jumps between them. Moreover, these oscillations may be sym-
melric or asymmetric, with the symmetry alternately present and broken in successive periodic windows. In
the following we suggest an explanation for this remarkable behavior.

To understand this behavior we rewrite Eqs. (1)—(3) in the form

X' =Fi(X,Y, o), Y =FyX,Y,v;p), v=eGX,Y,v), &)

where X = (Re(X), Im(X)), Y = (Re(Y), Im(Y)), and assume that 0 < & << 1. The properties of the relax-
ation oscillations can be understood by taking first the case of € = 0. In this case v becomes a parameter, and
Eq. (5) become

X'=F (X, Y v, 1), Y =FyX,Y;v,pn). (6)

This pair of equations can have both steady state solutions and periodic solutions. Of particular significance
is the one-dimensional nullcline X' : F'1 (X, Y, v; u) = F»(X, Y, v; 1) = 0 that contains the steady states
when £ > 0 and consists of them when e = 0. As indicated in Fig. 5 the projection of X' onto the (v, Re(X))
plane consists of pairs of branches of stable (S*) and unstable (U%) states, related by symmetry. In addition
to these branches of steady states Eq. (5) with € = 0 also contain a one parameter family of attracting limif cy-
cles. These periodic solutions are created, as v increases, in a heteroclinic bifurcation involving the two fixed
points Ut and U~ and are R| Ro-symmetric. Between this heteroclinic bifurcation and the turning points g*
the stable Ry Rp-symmetric limit cycles coexist with the stable fixed points ST (see Fig. 5). When ¢ is finite
but small these states couple to the slow evolution of the variable v, and the manifolds of steady states and
periodic orbits become part of the slow manifold of the system (5). In the following we speak of the solutions
as drifting along this manifold (the slow phase); this drift proceeds until the system is forced away from the
slow manifold, heralding the onset of the fast phase of the oscillation that takes it back to the slow manifold.
The plots in Fig. 4 can be interpreted in this manner, with episodes of almost constant Re(X) corresponding
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Fig. 5a,b. The slow manifold for system (5) lies within O(e) of the manifolds SE, U* of steady states and the manifold p of
periodic orbits of (5) with & = 0. The slow drifts in v that occur when 0 < & < 1 are indicated by broken ‘horizontal’ arrows; the
fast phase results in ’vertical” jumps. These are indicated by vertical arrows, and labelled by integers to indicate the corresponding
transition in the associated time series Re(X(7)). (a) Asymmetric relaxation oscillations of Eq. (5) when ;¢ = 6.0 and & = 0.01.
(b) R{ R>-symmetric relaxation oscillations of Eq. (5) when © = 6.5 and ¢ = 0.01
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Fig. 6a,b. Projections of (a) an asymmetric solution at ;= 6.0 and (b) an RjRp-symmetric solution at = 6.5 on the
(Re(X), Im(X)) plane, both calculated with ¢ = 0.01, showing the role played by the stable manifold of U £ in determining the
part of the slow stable manifold followed by the solution. The actual trajectory spirals around this manifold

to drift along the manifold of steady states S* with the return trajectory consisting of a drift along the branch
of periodic orbits.

To understand the nature of the resulting relaxation oscillations in greater detail we begin by considering
the drift along M, the part of the slow manifold near the stable steady states S*. The drift is in the direction
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Fig. 7. Alternating sequence of Ry Ry-symmetric and asymmetric relaxation oscillations. The diagram shows the period (half-
period) of asymmetric (symmetric) periodic relaxation oscillations as a function of p. The solid (dashed) lines correspond to
stable (unstable) states. The labels SN, SB, and PD denote saddle-node, symmetry-breaking and period-doubling bifurcations,
respectively

of increasing v and so takes the system towards ¢ (see Fig. 5). Near this point this slow drift ends and the
system jumps abruptly to the branch of symmetric periodic states, labelled p. In Fig. 5 this transition is indi-
cated by a vertical short-dashed line, and labelled with the number 2. The system then drifts towards the left
along the corresponding slow manifold M, until it reaches the vicinity of the heteroclinic bifurcation where
the oscillations disappear (¢ = 0), and so does the associated slow manifold M, (0 < & < 1). With the disap-
pearance of M, the system is forced to either jump toward ST or toward S~. Which of these two outcomes
takes place is determined by the phase of the trajectory near U™ or U ™. These states are saddles with one un-
stable direction and three stable directions. In what follows it is important that the least stable eigenvalue is in
fact complex. For example, when & = 0 the eigenvalues of U¥ at ;. = 6.5 are 0.6547, —0.9999 4 14.236; and
—2.65405, and these values are typical of the other periodic windows as well. The time series show clearly
that when the drift along M, ends the system approaches either U * or U~ along its stable manifold; what
happens thereafter depends on which part of its unstable manifold is followed. If the unstable manifold of
U™, for example, takes the system to S* (as in Fig. 5a) the fast phase (labelled 1) terminates on S* and the
system thereafter drifts towards the right along M;r. The resulting oscillation is an asymmetric relaxation
oscillation. In contrast, if the unstable manifold of U™ takes the system to S~ the fast phase terminates on
S~ and the system thereafter drifts towards the right along My . In Fig. 5b this transition is labelled 3; the
accompanying panel shows the corresponding signature in the time series. When the slow phase terminates
the system jumps back to the large amplitude periodic state (transition 2) and drifts along it to the left, but
this time when it falls off M) in the transition labelled 1 it goes to U™ and by symmetry follows ifs unstable
manifold towards ST. The resulting rajectory is Ry Ro-symmetric. It is clear that these two outcomes are the
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Fig. 8a,b. Detail of the bifurcation diagrams near the transition from asymmetric to symmetric relaxation oscillations near
(a) £ =6.23, and (b) . =6.79. Solid (broken) lines indicate stable (unstable) solutions. The labels SN, SB, and PD denote
saddle-node, symmetry-breaking and period-doubling bifurcations, respectively

result of a 7 phase change in the direction in which the trajectory enters the neighborhood of U™, Figure 6
shows the oscillations of Fig. 4 in a projection that highlights the role of the stable manifold of these unstable
steady states as a separatrix between the two slow phases of the relaxation oscillation.

The above discussion points to a very specific role of the unstable steady states U * in determining
whether the oscillations are symmetric or asymmetric. This is because, as already mentioned, the periodic
states p disappear in a heteroclinic connection involving these two states; this in turn is a consequence of
the Ry Ry symmetry of the p states. Consequently it comes as no surprise that these steady states are in-
volved in the transition from one type of oscillation to the other, and in the associated windows of chaos
(see Fig. 3). To understand the main features revealed in Fig. 3 we examine the period along the succes-
sive branches of periodic oscillations as & increases. We find that as ¢ increases each periodic oscillation
is born in a saddle-node bifurcation, and that the period decreases along both the stable and the unstable
branches away from these saddle-node bifurcations (see Fig. 7). In each case the long period appears to be
related to the close approach of the trajectory to one of the unstable steady states U* although no global bi-
furcation takes place. Figure 8 shows what happens in a bifurcation diagram, and highlights the sequence
of bifurcations that occur in every transition from an asymmetric oscillation to a symmetric one, and from
a symmetric one to an asymmetric one. Figure 9 looks at one of these in more detail. This figure focuses on
the branch of asymmetric relaxation oscillations that first appears in a saddle-node bifurcation near ;1 = 7.0.
Figure 9b shows that many of the characteristic features of the time series are related to the approach of the
trajectory to the unstable steady states U*. Moreover, the figure also shows that as one follows the stable
branch from the saddle-node towards larger @ one encounters an interval of p in which the period drops
precipitously (Fig. 9a, inset), behavior that is a consequence of the trajectory switching from the slow sta-
ble manifold ST to the slow unstable manifold U*. Just after this point the stable (asymmetric) relaxation
oscillation loses stability via period-doubling; this period-doubled oscillation is not shown. Figure 9b shows
the time series at the point marked 3 (=~ 7.31) just before this loss of stability, and reveals that the trajectory
reverts back to ST before the fast transition to the oscillatory phase. However, as j increases the trajectory
starts to follow the unstable manifold all the way to the saddle-node at ¢~ (see point marked 5, ¢« ~ 7.5) and
the resulting relaxation oscillation is unstable. For larger p the oscillation remains unstable but the trajectory
departs from U~ in the opposite direction (see point marked 6, 1« ~ 10). The observed behavior appears to
be a consequence of the fact that the leading stable (i.e., the least stable) eigenvalues A; of U are complex. It
follows that when the Ry Rp-symmetric oscillations collide with U + at the heteroclinic bifurcation, present
when ¢ = 0, the trajectory approaches both these steady states in the form of a spiral, before leaving along
the unstable manifold. The corresponding unstable eigenvalue A, < |Re(Ay)|, precluding chaotic dynamics
in the & = 0 system. When 0 < & <« 1 this type of motion persists but is now accompanied by a slow drift
along the slow manifold M, towards the region of the ¢ = 0 heteroclinic bifurcation. The situation where
Ay > |Re(As)] in the fast system (& = 0) is also of interest, although it does not occur for the parameter values
explored here.
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Fig. 9. (a) Period of asymmetric relaxation oscillations as a function of . Solid (dashed) lines correspond to stable (unstable)
states. (b) Stable relaxation oscillations corresponding to the open circles (1,2,3) in figure (a) projected on the (Re(X), v) plane
together with the corresponding time series ||X(7)||. (¢) Unstable relaxation oscillations corresponding to the remaining open
circles (4,5,6,7) in figure (a) in the same projection

In Fig. 10 we summarize the corresponding results for ¢ = 0.01 and p = 9.0 using the norm ||(X, Y)|| =
VIIX[12+]Y||? to indicate the oscillation amplitude, cf. Fig. 5. We see that the oscillations terminate in
a heteroclinic bifurcation involving the unstable states U*. During one part of the slow phase (labelled 1) the
system drifts towards smaller v along the slow manifold M), of stable periodic solutions p. When it reaches
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Fig. 10. Slow manifold for the system (5) consisting of stable periodic orbits (solid line) and stable steady states (thin line) of
Eq. (5) with ¢ =0 and p« = 9.0. The slow drifts, present when 0 < & < 1, are labelled with numbers to indicate the correspond-
ing phase in the accompanying time series |[(X, Y)||, computed from Eq. (5) with ¢ = 0.01 and ;« = 9.0. The arrows indicate the
direction of drift as well as the fast transitions. The relaxation oscillations are asymmetric

the location of the global bifurcation the oscillations end, and the system undergoes a rapid transition to
a stable state S indicated by a vertical arrow. Thereafter it enters a new slow phase, labelled 2, and drifts in
the direction of increasing v, towards the turning point ¢, where the slow phase ends and the system makes
a rapid transition back to M),. This transition is also indicated by a vertical arrow. The resulting time series is
quite dramatic (Fig. 10) and reveals the two slow phases very clearly, as well as the rapid transition between
them. In fact one can verify that the small cusp-like feature just prior to the onset of phase 2 is due to the spi-
raling of the trajectory towards the unstable steady state U before being ejected along the unstable manifold
of U.

Except for the presence of the oscillatory slow phase the time series in Fig. 10 corresponds to a standard
relaxation oscillation. Similar relaxation oscillations are associated with the higher saddle-node bifurca-
tions as well (cf. Fig. 7). However, in appropriate albeit small ranges of w the oscillations take on a new
form, and exhibit canard-like behavior (Fig. 11): the slow phase now includes a drift along part of the un-
stable slow manifold My. This drift is quite clearly visible in the corresponding time series. Notice that
both solutions shown in Fig. 11 are periodic and stable, and are computed for almost identical values of
the parameter w, and yet are very different. In Fig. 11a the system drops to the unstable steady state at
the end of the slow phase 1, and then drifts along My (labelled 2 in Fig. 11a) towards larger v before
a sudden jump to Mg. The slow drift (labelled 3) continues along Mg towards the turning point on X
where the system jumps to the oscillatory state p, and the slow phase 1 recommences. In contrast, the so-
lution in Fig. 11b jumps from My to M, (instead of M) and so begins to drift towards smaller v but the
next time, instead of following My, it jumps to Ms and begins to follow the standard relaxation oscilla-
tion scenario. As already mentioned, the resulting difference in the time series is dramatic. The extreme
sensitivity of these solutions to the precise value of w is an indication that this is indeed a canard, but
this time it is evidently associated with the slow passage through the global bifurcation with which the
periodic states p terminate on U. We emphasize that these relaxation oscillations, like those in Fig. 9,
vary a great deal along each of the oscillatory branches created in the original saddle-node bifurcation,
but that away from the canard-like behavior just described, this variation is gradual and occurs over O(1)
intervals in .

Finally, it is also clear that with each half-turn of the trajectory around U* the trajectory will change
the direction in which it leaves U*. When the number of turns increases monotonically with s there will
be an infinite sequence of symmetry-changing transitions, and hence a sequence of periodic windows with
alternating symmetric and asymmetric relaxation oscillations. Moreover, since it takes a finite interval in p
to change the frequency sufficiently to add a half-turn these symmetry-changing transitions cannot accumu-
late, in contrast to the cascades of symmetry-switching gluing bifurcations that occur in other D;-symmetric
systems [5].
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2 Discussion

In this paper we have examined the dynamics of parametrically driven Faraday waves in slightly elliptical
containers on the assumption that (i) the viscosity of the liquid is small (as measured by the dimensionless
quantity C < 1) and (ii) the effective Reynolds number of the streaming flow driven in oscillatory boundary
layers is also small. Under these conditions the system is described by a five-dimensional system of ordi-
nary differential equations. The eccentricity of the container, although small, is of crucial importance in the
phenomena identified here since it results in a coupling of the streaming flow to the complex amplitudes of
the two nearly degenerate modes. As in other problems of this type [11], such an interaction often leads to
complex dynamics. We have seen that when ¢ is small (i.e., the streaming flow is weakly damped) relaxation
oscillations may result. These are oscillations consisting of slow phases interrupted by fast ‘jumps’ from one
state to another. A particularly novel property of our system is the presence of jumps between steady and pe-
riodic states. In the Faraday system the periodic oscillations correspond to mixed mode oscillations in which
the contribution of the two orthogonal standing waves oscillates periodically in time (as does their relative
phase), and the relaxation oscillations found are oscillations between this complex state and a standing wave.
However, the basic picture is quite simple: the system drifts along the slow manifold until it passes a bifurca-



tion, typically a saddle-node bifurcation although in our case a global bifurcation plays a similar role, where
it is forced away from the slow manifold. The resulting fast phase then takes it to another part of the slow
manifold and the process repeats. The resulting time series (Fig. 10) appear indistinguishable from the type
of (so-called parabolic) bursting behavior exhibited by neurons [13]. In our system we have seen that oscilla-
tions of this type occur when the streaming flow is weakly damped. As a result, the streaming flow behaves as
a slowly varying parameter, and the system drifts along the slow manifold computed by ‘freezing’ the mean
flow.

Because of the Dy symmetry of our equations additional phenomena occur. We have seen that as ¢ in-
creases there is an infinite sequence of transitions between asymmetric and R Rp-symmetric oscillations,
each associated with a narrow interval of chaotic dynamics. These transitions are hysteretic, and involve
canard-like behavior, associated with the passage of the system through a global (in our case, heteroclinic)
bifurcation in the fast system, cf. [1, 3, 4]. In addition we saw that the change of symmetry between succes-
sive periodic windows is due to an extra half-turn of the trajectory around the unstable steady states as w
increases. This point of view allowed us to understand why the intervening chaotic intervals become nar-
rower with increasing p but the ‘symmetry-switching” transitions do not accumulate at a finite value of /.
The presence of relaxation oscillations, let alone of canards, is unusual in fluid dynamics, and we believe
that our study represents the first time that ducks have been found in water. A forthcoming paper describes
our results in greater detail [6].
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