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Abstract

The dynamics of parametrically driven, slowly varying counterpropagating wave trains in nearly conservative
systems are considered. The system is assumed to be invariant under reflection and translations in one direction,
and periodic boundary conditions with period L are imposed. with L large but not too large in order that
the effect of detuning be significant. The dynamics ncar the minima of the resulting resonance tongues arc
deseribed by a system of coupled nonlocal Schrodinger equations with damping and parametric forcing.
Elsewhere the long time behavior of the system is described by a damped complex Dulling equation with
real coeflicients, whose solutions relax to spatially uniform standing waves. Near the bicritical points where
two adjacent resonance tongues intersect a pair of coupled damped complex Duffing equations captures the
properties of both pure and mixed modes, and of the periodic solutions resulting from a Hopf biturcation
on the branch of mixed modes. As an application, we consider a Faraday system in an annulus in which a
pair ot counterpropagating surface gravity-capillary waves are excited parametrically by vertical vibration of
the container, including the mean flow driven by time-averaged Reynolds stresses due to oscillatory viscous
boundary layers along the bottom and the free surface. This mean flow is shown to have a large effect near the
bicritical point. where the mean flow changes the dynamics of the system both quantitatively and qualitatively.
In particular, inclusion of the mean flow permits Hopf bifurcations from the branches of pure standing waves,
and parity-breaking bifurcations from mixed modes.
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1. Introduction

In this paper we consider a pair of coupled, weakly damped, paramctrically forced Schrodinger
cquations that describe the weakly nonlincar evolution of a pair of slowly modulated, counterpropa-
gating wavetrains in cxtended, ncarly conservative systems invariant under reflection and translation
in vne spatial dimension. Elsewhere (Martel cf al.. 2000; Higucra ct al., 2002b) we have discussed
the limit of small detunimg, and shown that in this regime the dynamics ncar onsct is described
by a pair of coupled nronlocal Schrodinger cquations with damping and parametric forcing. These
equations describe the dvnamics near the minimum of each resonance tongue. However, in systems
that are large but not too large the allowed wavenumbers may differ trom the wavenumber selected
via the dispersion relation and the difference between the response frequency and (half the) forcing
frequency may be substantial. Tn the following we call this difference the detuning and discuss the
dynamics when the detuning is nonzero, i.e., the dyvnamics near the boundaries of the resonance
tongues away from their minima.

The present study is motivated by the dynamics of surface gravity-capillary waves excited by the
vertical vibration of a container of liquid (Miles and Henderson, 1990; Cross and Hohenberg, 1993).
In low viscosity liquids the surface waves are described by a puair of coupled. weakly dammped,
parametrically forced Schrodinger equations, but these include in addition a coupling to a mean
flow driven by time-averaged Reynolds stresses in the oscillatory viscous boundary layers along the
bottom (and lateral) boundaries as well as the free surfuce (Vega et al, 2001). This mean flow
was in fact observed already by Faraday (1831) in his classic experiments on this svstem {since
named after him) through the nonumiform accumulation of sand at the bottom of the container.
The same eflect has also been observed m dust along the wall of a sound tube (the Kundt tube)
(Rayleigh, 1945, Schlichting. 1968). A theoretical explanation of this eflect was provided by
Rayleigh (1883}, who showed that the meun {low responsible for this accumulation was viscous
in ongin (even though the viscosity was quite small). He did so by analyzing the Qow in what we
nowadays call the cscillatory boundary layer near the bottom of the container, and obtamned the key
ingredients for subsequent work on thas fow by Schlichting (1932). Schlichting’s analysis was 1n
turn extended to the viscous boundary layer along the free surface by Longuet-Higgms (1953) (see
Craik (1985) for the early references and Riley (2001) for a recent review ). This mean [ow (also
known as a streaming How, or acoustic streaming )} dillers fundamentally from the inpviscid mean flow
that appears in water wave models such as the celebrated Davey—Stewurtson (or Benney—Roskes)
equations (Davey and Stewartson, 1974; DPierce and Knobloch, 1994). The viscous mean Oow of
interest here 1§ a comsequence of the nonzero tangential velocity and shear stress at the internal
edge of the oscillatory boundury layers attached to the walls and the free surface, respectively, both
of which vanish in the mviscid regimme. Although meun [ows of this type have sometimes been
studied as a by-product of surface waves (Liu and Davis, 1977; Iskandarani and Liu, 1991), their
dynamical intcraction with the surface waves that produce thcm has beon systematically ignored,
based on the mistaken assumption that their clicets should be of higher order. Recent work on
necarly inviscid Faraday wavces in a varicty of configurations (Vega ct al., 2001; Higucra ct al., 2001,
2002a,c; Martin ¢t al, 2002) (scc also Knobloch and Vega (2002), and Knobloch ct al. {2002)
for rceent reviews) confirms that the mean flow interacts with the surface waves alrcady at lcading
order, and hence cannot be omitted from the analysis. Tn particular the mean flow is unavoidable
near mode interaction points {¢f. Higuera et al,, 2002¢), the case of particular interest in the present
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Fig. 1. Resonance tongues (¢ — £{v — 2am)) showing the instability threshold for the flat state. Owing to the invariance
of the amplitude equations under the operation 4' — 4" . g — —p the diagram for ¢ < 0 is obtained via reflection in
i — A

work. Regrettably, there are at present no cxperimental studics of the excitation of mcan flows near
such points in large domains {cf. Douady ct al, 1989, Fig, 1}, although modc intcractions i small
aspect ratie systems have been studiced {Ciliberto and Gollub, 1985; Simoenelli and Gollub, 1989 ).

Against this background, the remainder of the paper is organized as follows. The basic amplitude
cquations governing the evolution of the complex amplitudes of the two counterpropagating waves
arc summarized in Scction 2, together with a brief summary of the structure of the resonance
tongucs associated with a paramctric mstability {Fauve, 1995), The weakly nonlincar dynamics ncar
threshold for generic values of detuning is considered in Scetion 3, while Scetion 4 focuses on the
dynamics ncar a bicritical point, where neighboring resonance tongues intersect. The Faraday system
is considercd in Scction 5, followed by concluding remarks m Scction 6. In cach casc, we derive the
leading order amplitude {or amplitude-mean flow) cquations and discuss their propertics. It should
be emphasized that although in the limit considered m this paper the aspect ratio is large it is
not so large that spatial modulations of the surface waves enter into the theory. This is because the
theory 18 developed for forcing amplitudes that arc appropriately close to threshold. For larger aspect
ratios spatial modulations must be taken into account. This may be achicved via mode truncation
as in Deeent and Craik (1999), or via a svstematic asymptotic cxpansion focusing on the ¢ffccts of
dispersion as in Martel ¢t al. (2003) and references therein, The coupling between these effects and
the viscous mean flow in a ncarly inviscid Faraday system is ¢xplored in Lapucrta ct al. {2002),
These effects do not enter in the regime studicd in the present paper.

2. Amplitude equations and stability of the flat state

In an extended nearly conservative system the amplitudes of slowly varving counterpropagating
wavetrains, driven parametrically by external vibration, satisty equations of the form (Martel et al.
(2000), Eqs. (5)—(7)

AT F AT — AT = — (5 + A= + AL i BAEP + AT+ (2.1

X

AT+ Lty = A%(x 1) (2.2)



These equations are valid provided that
+ + + + +

|A\”).,‘<|AY |<<‘4L |<§l* ‘Ar |<€A ‘«L {23)
and the real parameters g (forcing amplitude), v (detuning), and d {damping ratc} arc small. The
dispersion coctficient o and the cocthicients fi, 4 of the nonlingar terms are also real but of order
unity, In writing these cquations we have shifted the phase of A% by 7/4 relative to the cquations
uscd in Martel ot al, {2000},

These cquations are invariant under reflection and translations, represented by the operations

AT =47 and AT — 4T for all ¢ (2.4)

In fact Eqs. {2.1) and (2.2) remain invariant {after a rescaling to restore the unit gronp velocity)
under the transformation

v— v 27/ — a(2riLY, AT — oI gE (2.5)
This transformation allows us to restrict the detuning to a neighborhood of the interval

— /L <v< A/l {2.6)
The limit considered in Martel et al. (2000},

Sy pie L7021, (2.7)

corresponds to (a) a moderately large aspect ratio (so detuning is still felt), (b} & forcing frequency
that yields an appropriately small detuning, in addition to {c} an appropriately small threshold ac-
celeration to overcome the (assumed) small dissipation. These conditions restrict the validity of the
theory to the vicinity of the minimum of the primary resonance tongue. As shown m Martel et al.
(2000} mn this regime Eqs. (2.1) and (2.2} reduce te a pair of coupled nenfocal Schridinger equa-
tions. Identical analysis holds near the mimma of the other resonance tongues, corresponding to the
excitation of modes with modulation wavenumber m) provided |v — 2mn/L| ~ L2, However, this
reduction no longer applies if condition {b} is relaxed. It is this case, viz.

[v| ~ L7Y v# 0, (2.8)
that 15 of interest here. In the following we therefore focus on the limit;

SL<L, v ~L7h<€l, u— v <€y (2.9)
where we are anticipating that the instability threshold is g, =~ v, This liunit is the counterpart of
(2.7} {after relaxing the condition |v|<€L~"), except for the fact that we are not making at this stage
any islsumption about the order of magnitude of the damping rate o cxeept that it is small compared
N :l/}'o S'tudy the limit (2.9) we scale variables and parameters according to

(x.)=LED, AT=L7'4%, (vuy=L7"(v. . (2.10)
Drropping the tildes we obtain (of. Martel et al., 2000, Egs. (11} and {12))

AFF AT filvaT —pdty= SLAT +iLT'[(p

AF AT AT F )+ (2.11)

AT+ 1,0y = 4F(x0. (2.12)
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It is these cquations that arc the subject of Scction 3. We emphasize that the propertics of these
cquations differ from those obtained on the basis of fundamentally small aspect ratio theorics, even
Jor the primary standing waves, This is a consequence of the scaling (2.10b) which limits the theory
that follows to smaller amplitudes than thosc accessible in small aspect ratio theorics. In particular,
we do not expect to sce secondary saddle-node bifurcations on the standing wave branches, although
our results do reproduce the direction of branching of the primary standing waves from such theories
(cf. Umeki, 1991). Additional ditferences, arising from the presence of a large number of modces in
the present system, arc discussed i Seetion 3,

The linear stability of the flat solution 4% =0 of (2.11) and {2.12) is analyzed by considering
infinitesimal perturbations of the form exp(Az) with a wavenumber 2mm. The dispersion relation is

(2 + LY 4+ [v — 2mm 4+ a2am VL' — i’ = 0. (2.13)
Thus the threshold for the instability of the flat state is associated with the mode m = 0 {sce
Fig, 1), and is given by g =v + & L%/(2v) + - (i.c,, according to (2.9a) and the rescaling (2.10),

W= v, as anticipated above). The remaining (infinitely many ) modes arc weakly damped (because
AL % 1) and thus cannot be ignored a priori. These are cither of the form

At = gt 120 ith 4 = A 4] (2.14)
or of the form

AE = T F I with g A = A AL (2.15)
where to leading order (as | —v|<€|v|. L — oc, and 6L — 0)

—(2am) — 4] and  AE = T i“m Rl H - :E:ﬁ;ﬁi i 1 (2.16)

for each integer m # 0. In (2.15} we are using the identity

AfAS = (2.17)
which follows from {2.16). Notc that

AL <1 forallm#0 if v#0 and A, >0 asm— oo (2.18)

Thus in the generic case (v # (,@) a single marginally unstable mode (m = 0) is present at
threshold. However, in the special case v=m the murginal stability curves for the modes m=0, m=1
cross at g=7. In the following we call the pomt (v, )=(m, n) a bicritical point or a codimension-two
point {see Fig. 1), In the vicimity of this point two modes are near marginal stability and hence
nonlinear interactions between them may occur already at small amplitude. Similarly, when v=0 the
marginal stability curves for m = =1 cross at =27 Thus the point (v, ) = (0,2n} defines another
bicritical point, altheugh this point is of less interest since all the local dynamics it produccs are
necessarily unstable due to the prior instability of the m = ¢ modc, The results for other bicritical
points follow from invanance of thce amplitude cquations under (2.5). Thus ncar (v, g} of the form
(m+2mn, 7} two adjacent ncarly marginal modes cocxist with an infinite number of weakly damped
modes but ne other unstable modes. The role played by these weakly damped modes in this region
depends on the assumed damping rate, as discussed next.



3. Dynamics in the generic case: v F (0, n

In order to understand the nature of the limit (2.9) and the origin of the complexity that must be
cxpected, we consider two cascs, depending on the order of magnitude of the damping rate,

3.1, Significant damping: & ~ L737

For this case we introduce the damping rate parameter &, the bifurcation parameter f, and a slow
timc variable t defined by

—12

6:L_3*‘f'23, ,tt:erL_',ﬁ, and T=L7"", (3.1)

and seek a solution in terms of the eigenmodes (2.14) and (2.15):

AF a7 L4
+ Z e:EQTinI[(_i:I: +L 124”| 4+ )1\;‘_|_(B:E +L—IIZB:|:

2] el
0 S~

4 e {3.2)

=, A% and B are such that

Here, according to (2,14} and (2.15), the complex amplitudes A4
Ay =AYy, BF=ataf (3.3)

h fii A
These and the higher order terms Ai and B,i” depend only on the slow time variable 7. Substituting

(3.1} and (3.2) into (2.11) and suttmg to zero the cocfficients of ¢ 2™ at order O(L7172) we
obtain

WAE — A% = —d4a%/de — 64%, (3.4)
(A AL — BTy = —dat/dr — 642, (3.5)
(A BE — 4ty = —dBt/dr — B (3.6)

Eq. (3.3a) now shows that the two cquations (3.4) arc identical, Thus (3.4} viclds no solvability con-
dition. However, Eqs. (3.5) and (2.6) do require a solvability condition. Using {2.17) this condition
can be written in the form

1 — (AP (ddarde + 64F) =0, (3.7)
implying that
A#j — 0 exponentially as T — oo. {3.8)

This property of the solution is a conscquence of the magnitude of the damping rate sclected by
(3.1}, ¢t (2.9). Thus, aftcr a transicnt, wc can takc

AL =0 for all m # 0. (3.9)
This fact, together with (3.3a), results at order O(L~") in the pair of ecuations

+ =+ +
(g — 0’) = —dAy/de 0401 '1”’100 +i(f + 7). '100‘ ’100 (3.10)



The resulting solvability condition can be written in the form

iy — A5 )/dT + o4, — Ay )= ool 1dgo- (3.11)
or, invoking (3.4) and denoting A, = 4.
AT+ 204" + 54 =2y i+ (f+ (3.12)

In the following we exclude the codimension-two point f+ ¢ = ¢ and consider thercfore the two
cascs v(ff + 1) = 0, and v(F + ¥} < 0. In the former Eq. (3.12) posscsses solutiens that blow up in
finite time, an observation congistent with the fact that the primary bifurcation from the flat state to
the simplest standing waves (steady states of (3.12)} is subcritical. In contrast if

Wi +7) <0, (3.13)
as assumed henceforth, then all solutions of (3.12) are uniformly bounded us © — oc. This result
follows from the exact relation:

d
—[]4’
dr[
obtamed on multiplying (3.12) by 4 and addimg the result to its complex conjugate.
For convenience we write Eq. (3.12) in terms of the amplitude and phase of A, defined by 4=Re".

A

P& 2vAl (B A =

(3.14)

R 4+ 23R + (8 — R = W[ + (5 + HRYR, (3.15)

#4205+ RURW =0. (3.16)
Integrating (3.1(}') we obtam

§ = KR 2620 (3.17)

(for some constant K, ), which implics that (¥ — 0 ¢xponentially, as 7 — oo, The apparent breakdown
of this argument as R — O can be overcome using an cquation obtained by summlnﬂ the product of
(3.12) with 4, and its complex conjugate, and integrating the result; 447 —. 14 =Ko, of (3. 17).
Thus for large times we may take the phase of 4 to be constant and, in particular, ta.kc 4 to be
real. Eq. (3.12) then reduces to the standard Dutfing cquation, whose solutions converge to a steady
statc at large times. Thus, no complexity can be cxpected in this casc.

Note that if

L Mgl (3.18)

(the first condition being required for the validity of conditions (3.8)} Eq. (3.12) will evolve in a
nondissipative manner over a time of order of 7 ~ 47! as described by the conservative complex
Duffing equation

A" — [+ (B+1)A]F14 = 0. (3.19)
The counterpart of (3.'14) now yields
|4'|* — = constant. (3.20)

A second integral 1§ given by the counterpart of (3.17), numely

& = KyR7", (3.21)



for some constant Ky, gencrically nonzero. Thus
R" — KiR™ = 29[ + (§ + 7)R™IR, (3.22)

and hence only steady states and periodic solutions are to be expected at large times. In fact, Eq.
(3.22) can be integrated once, yielding

R — K= KR y20+ (f + 1R 2R, (3.23)

for some constant &7, The allowed time-periodic solutions arc now casily computed, but all ultimately
decay to steady states for 730671

3.2 Small damping: 6 ~ L2

_ The simplification described in the preceding SLLTIU[I is a consequence of the assumption that
0 # 0 (in fact, 03 L712, or cquivalently that 83 L7%), for otherwise (3.8) no longer follows from
(3.7}, The situation 1s more interesting for smaller damping rates. Conscquently, m this scction we
consider the casc ¢ ~ £72, which in conjunction with (2.9} is the truc counterpart of {2.7). To study
this casc we retain the paramcter ji defined in (3.1) as the bifurcation paramcter, but redefine the
damping rate paramcter ¢ and the slow time variable 7

—L7%, =L7't (3.24)

2

In fact, we should use two slow time variables in this limit, namely 7 ~ L¥? and 7 ~ L, but this
makes the analysis unnecessarily involved. Of course, because only the slowest time variable 15 used,
some of the equations {(Eq. (3.30) below) will depend on the small parameter L~'. The expansions
{3.2) must be replaced by

=+ +
A _AOO+L 401+L 4()1+"

+ Z il"*mx (Am ]A;::l 4. ‘)Cisml + (B,:),: + L IB;ll:l 4. '.)C_ismﬂ], (325)
OFme|

where the relations (3.3) still hold. Egs. {3.5) and (3.6) now become

(A ALY — BT )= —ddz/ds —SA,ijr i[2BT — (2mm Y odZ] +i|AP[2f + At + BT
i i + 21[; Z ( |A‘j:|2 + | )Am
/0
+iy [T + [BFF)AT + (AT B + 47 BT )BT, (3.26)
10
iv(A-BE AT = —dBEjdr — 3B,f + i[,(Li,f. — (2amYuBE] +ilA((28 + vIBE 4 yAT]
- I/}le | )B
.’?/0
iy Y [ATP + (BT )By + (AT BY + Ay BT)IAT, (3.27)

ey



where 4 = A (= 4,,), as above. The solvability conditions for these equations can be written, using
(3.3b), in the form

[1— (ALY NAAT /7 4 54T) = 2047 4F — i1 + (A7 P )(2mm Y AT

BT
+ i(( 264+ )01+ (A, 1]+ "“’/1,;'1) ¥ B

F 208> ([ + (AFATPIATE + (A5 + (AP NAF P45

A — AT+ (A )]

n0
i Y AL+ AT AE (U A A YA A (3.28)
()
implying that
[1— (ALYl P ide + 28|47 ) =0 (3.29)

Thus once again |45| — 0 for all m # 0. albeit on the slower timescale T ~ 1. With this simplification
the counterpart of Eq. (3.12) becomes

LA 284 + 84y =

(3.30)

and the analysis of Section 3.1 carries over verbatim to the present case. In particular no persistent
complex dynamics are expected as 1 — oo. Thus contrary to expectation the & ~ L2 case is
identical to the & ~ L% case, except for the (considerably longer) timescale for the decay of
complex trunsients.

4. Dynamics near the bicritical point: [v — 7| €1

Let us consider now the dynamics near the codimension-two point obtained at v==. For simphcity,
we consider the limit of significunt damping. Smaller values of the damping ratio only lead to
complex trunsients, as m Section 3.2. We introduce the bifurcation parameters f and ¥, defined as

w=rm+ L7 =27, v=a+4+L7'(F—27%%), {(4.1)

where the shift 27z is included to eliminate the eflect of dispersion (see below), and use the
same scaling and time variables as in Section 3.1, namely

§=175, 1=1"""% (4.2)
Eqgs. (2.11) and {2.12} now become
AT F AT 4 in(4T — A7) = —L7V4F £ 645y + L7 (1 = 272%0) AT — (6 = 27747

HILT(BATE 4 9] AT AT + a5+ (4.3)
A*(x +1,8) = AT (x,1). (4.4)
The cigenfrequencics and the constants defined in (2.16) arc now given by

S =2m(m® — VR, AT = (+s,, — 2mm 4+ )i, (4.5)

0]



and the cigenfrequencics therefore coincide in pairs, namely
So=81=0, S_ =5 =221, s_»=s5=2V6m ... . {4.6)
Since the marginal modces correspond to m =0, m = 1 we may write for (3.2)
AF =y + L7 LA o+ B+ LTVPBE LT B+ ey HOHL (47)
where, as in Section 3.1, we have

A=A, By =-B, {4.8)

and the abbreviation HOH stands for spatial harmonics with wavenumbers 27m, with m # 0,1, As
in Scection 3 these higher harmonics decay to zero cxponentially as 7 — 20 and can be ignored.
Substitution of (4.7} into (4.3} yiclds, at orders O(L™"2) and O(L™")

im(aF — AFy= —daFidr — 647, (4.9)
in(-Bf — Bf)y= —dBY/dv — $BF (4.10)
and
(AT — AF y = —ddfjdr — $4F + i — 2770 AT — i(9 — 2784
BUAT +21B5 AT + BT + (BT )4y + 47 BT 81, (4.11)

in{—Bf — B y= —dBt/dr — 6B + i{_[z — 2 )BT — (T 2 ) B
+ip(|BE £ iy[(BF 1P + |47 P)BE + BF AT A7), (4.12)

Using (4.8) we obtain that Egs. (4 9) fmd (4,10} arc always solvable, But, as in Scetion 3.1, Egs.
(4.11) and (4.12) possess a solution only if two solvability conditions hold, These lead to the

following evolution equations for 4 = 4; = 4, and B = B} = -5 :
A"+ 254" + 54 =2x[) (4.13)
B" + 268 + #B=2a[i+ % — J(|B]* +2]4*) — ¥|B]*1B. (4.14)

Note that these cquations are invariant under the operations
A— —A, A4—c"4 foralley, B— —B, and B— B for all ¢ (4.15)

which generate the group O(2}x 0{2), much larger than the original orthogonal group O(2), see (2.4).
Thus some care must be taken in the iterpretation of the results. The additional (and spunious )} sym-
metry is not broken by higher order terms m (4.3) and {4.4) because the criginal spatially resonant
terms corresponding to wavenumbers & and N + 1, viz. AV 8Y and BY~' AN+ become exponentially
small as N — oo amd hence are absent from Eq. (2.1). The absence of these terms is important since
if present they would sphit the mixed mode branch into two. characterized by (N + 1)y —Nopp=0.7,
where ¢4 are the phascs of 4 and B. In addition, there is the possibility of a transition between these
two branches via a tertiary branch of traveling waves created at ecither cnd through parity-breaking
bifurcations {Crawford ct al., 1990} Nonc of this behavior will be present herc.

Depending on the sign of 47 one of the two cquations (4.13} and (4.14) possesses solutions that
blow up in finite time. This 1s to be expected since one of the two branches that come together at the
bicritical point is necessarily subcritical. Thus no global attractor can be expected. However, some
interesting albeit local dyvnamics are still possible. To pursue these, we first consider the steady states.



4.1, Steady states and their linear stabifity

For the sake of simplicity, we assume that
f+7=>0. (4.16)

The cuse i + y < 0 vields similar results, since Eqs. (4.13) und (4.14) are invariant under the
operation

A= B F—-—4 [f—==b 73— -7 (4.17)
The pure mode solutions of Eqs. (413} and {4.14) ure given by

. V—fi+ 32,-"‘(.2?5)

A R 32,-"(2?5)
3 - [)) + ’}‘ —

B+

, Bl =0, and |4 =0. |B (4.18)

B

and correspond to standing waves with adjacent wavenumbers, while the mixed modes are given by
S0 (=8, 2R+ o) (%, %) N
Bly= > . + (4.19)
2a(f —7) 3+
and correspond to spatially modulated standing waves. In the following we exclude the codimension-
two points 5§ —y =0 and 35 + v =0, and take £ as the bifurcation paramcter, It follows that the
two types of pure moedes in (4.18) only exast if f < &, and g > {7, respectively, where

X
N

(

A,

aE=en+ (4.20)

are the bifurcation pomts from the fat state, and that they bifurcate in opposite directions. Mixed
modes only exist if

Vi3 +7)=>0 (4.21)
and min{fi;, &7} < i < max{f,, i}, where
=5 L (F— V3B + 1) (4.22)

are the bifurcation points from the branches of pure modes. The lincar stability properties of these
steady states are easily determined. The pure modes exhibit only steady-state instabilities, and these
correspond to the bifurcation points to the mixed mode state. The first pure mode n (4.19) bifurcates
subcritically and hence is unstable with respect to perturbations of like form {i.e., standing wave
perturbations with s = 0}, while the sccond pure mode i1s asymptotically stable if # = 0 and cither
(i) $>0, 3+ y>0and iy <fg<fy, or (i) v>0, 3+ <0 and 7> f, or (ili) ¥ <0,
3+ < 0and I > fif, and unstable otherwise (see Fig. 2}. The latter instabilities are nothing but
an instability of a supercritical pure mode with respect to perturbations in the form of an adjacent
mode. Such secondary bifurcations generate mixed modes and these can in turn be either stable or
unstable. The linear stability of such mixed modes is found by replacing 4 and B in (4.13) and
(4.14) by A1 4+X,e* + X227 and B,(14 ¥ &'+ V1), respectively, and linearizing. The resulting
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Fig. 2. Sketch of the stable {(—) and unstable (- - -) pure and mixed modes of (4.13) for 4+ >0 and: (a) v > O,
4> >0 (>0 30+ >0 = <O (V> 0,30+ <0, (d) V<0, 354+ <0 (thus i — > < 0),
and (e) v < 0, 3fi + 7 > 0. Results for i + - < ¢ follow using the symmetry (4.17).

algebraic equations

(7 +0)?
2

-
pl
”

bap+|Bp

— A= 2B A = 281BP | X — (B o APX = 26|BJAY + Y2y =0,

(4.23)



- (/L + (§ ; N n . ) 2
—(f+ )40 + [T) — A+ =20+ AP = 2817 | X = 2B (Y + V) =0,
(4.24)
. (L+8Y .. 2 mms el v e 2
2B/ + X0+ —r f—F+208 4+ )B4+ 2f]4,] L+ (f+ 9B Y2=0,
(4.25)
2 2 (/+f§)2 n ~ 2 o 2
BAF X+ X)) + (BB + | = = A=+ 2AF + 7B+ 26147 T2 =0,

(4.26)

vield the characteristic equation

(A2 + 2507 |22+ 254 2\ (2254 ) s 2 2
-2 DA ) | ———= + 205 + )|B,| 165°14.?|B,]*| =0,
e o (f+ 74, 5o TN + 16571475 :

(4.27)

obtained with the help of (4.19). This equation possesses a double zero eigenvalue, with eigenfunc-
tions

(X0, X, Vi, Th) = (id,, —i4,,0.0) and (XX, ¥, F>) =(0,0,id,, —id,), (4.28)

which result from the invariance of (4.13} and (4.14) under the actions (4.15}. The remaining
gigenvalues arising from the first factor are stable. Thus we only need to consider the roots of the
second factor:

(Y If f—y # 0, 3f+ 7 # 0 this factor vields zero eigenvalues only at the bifurcation points
cotresponding to the appearance of the branch of mixed modes.
(ii) However, purely imaginary eigenvalues, of the form A = ti4;, are possible provided that

A2 =B+ B = A = =6 + [0 + 477G + 1) — DIAFIBFT > 0. (429)
Since, accerding to {4.19),
= [fi — 33,-"'(271 3]

P Y

SR = e - R (4.30)
p— Bp+7¥ F—rr

we conclude immediately that the corresponding secondary Hopf bifurcation does not occur if
(3F+7Hp—7) < 0 I, however, (34N f—7) > 0 and (4.21) holds, a unique Hopt bifurcation
point [i = fiy 1s present. The uniquencss of this point follows from an examination of the two
quantitics appcearing in Eq. (4.29) as a function of M = [ — S £ — ) m the permitted
range between +47/(35 + ).

il

B — |4 =

The resulting bifurcation diagrams arc skctched in Fig, 2, and arc in agrcement with gencral (but
local) results for the (nonrcsonant) interaction of two period-doubling modes in the prescnce of
O(2) symmetry, cf, Crawford et al. (1990}, Note, however, that for reasons already explained thers



Fig. 3. Sketeh of the Quid domain,

is only a single branch of mixed modes, and that this branch has two zere eigenvalues instead of
the expected single zero eigenvalue. In particular, since there are no other eigenvalues in the phase
direction, there are no parity-breaking bifurcations from the mixed mode brunch. However. the Hopf
bifurcation from the mixed modes does not require the presence of the resonant terms, since it ocours
in the stunding wave invariant subspace.

5. Application to the Faraday system

Ag mentioned n Scetion 1, Egs. (2.1) and (2.2} describe Faraday waves in large aspect ratio,
two-dimensional containers, provided that the effcet of the mean flow produced by the waves is
included, The proper form of this mean flow can be obtained from the gencral coupled amplitude
mean flow (GCAMF) cquations, derived in Vega ct al. (2001). As shown below, the mean flow has
only a minor effeet in the generic case considered in Scetion 3, but its eftect near the bicritical point
considered in Scetion 4 15 much more dramatic,

3.1 Coupled amplitude-mean flow equations

We consider a two-dimensional fuid laver above a honzontal plate that is vibrated vertically with
an appropriately small amplitude (Fig, 3). The layer s laterally unbounded, with periodic boundary
conditions. We use a Cartestan coordinate system with the x-uxis along the unperturbed free surface
and y vertically upwards, and nondimensionalize space and time with the unperturbed depth A and
the gravity-capillary time [géh + T/ (ph*)] 7%, where g is the gravitational acccleration, p is the
density and 7 is the coctlicient of surface tension. The nondimensional cquations governing the
systcm then are (Vega ct al., 2001)

Yoo F il = 0 = 0y = Q0 + Q) (5.1)

fl - Q/f\' - Er&v.fﬂ\" = (fo’fvy - ‘f’%\"){_l - f%) - 4.ft‘1£ﬁ_1-‘ =0 aty= f.-: {52)



(1 =S)f2 = SUV U+ (Rl = e + i fe — Ok + 6 F0Q + (U + 5 )2

O U i — e Sin(2at) fr = —Cul3¥s + Wowr — (W + k)]

2*/{’\';*}‘“2 + “ﬁ&\:x: - "’fvv) f.x (U'Mv - V'fw )f2 - ‘/fr g (l - fz)f\
+2(‘< b X i - ryy 2l + 2C L) rYyySL . 1 JX at p= .
{ L+ /3 s L+ /3 =
(5.3)
I
/ Qudx ==y, =0 at y=—1, (5.4)
Jo . p
L
W(x+ Loy, ty=wx, vr),  f(x+L1)= Fix,r), fdx=0. {5.5)

0
Here i 1s the streamfunction, such that the velocity {u.v) = {—,tk). € is the vorticity. and f
is the free surfuce elevation required to satisty volume conservation recalled in (5.5¢). Condition
(5.4a) is nceessary in order that the pressure be pertodic in x. The remaining cquations and boundary
conditions are standard. The resulting problem depends on the aspect ratio £, the nondimensional
vibration amplitude g and frequency 2, the capillary-gravity number C, = v/[gh® + Th/p]'?, and
the gravity-capillary balance paramcter § = I/(7 + pgh®), where v is the kinematic viscosity. Note
that C, and § arc rclated to the usual Ounhesorge number C = v[p/(Th)]"* and the Bond number
B =pgh®/T by C, =CH{1+B8)" and § =1/{1 + B). Thus 0 <8 < 1, and the extreme valucs,
S =0 and 1, correspond to the purely gravitational (7 = 0) and the purcly capillary (g = 0} limits,
respectively,
In a laterally unbounded layer the driving frequency 2o sclects a wavenumber & near &, given
by the inviscid dispersion relation for surface gravity-capillary waves

w=[(1 — 8 + Sk Yy tanh o] (5.6)
The associated cigenfunction is proportional to (i /)= (¥, 1), with

o = arsinh [kl v + 1))/ (ko sinh &y ). {5.7)

The GCAMF cquations are derived under the following assumptions:

(L+k)(Chien) P <l, Ly, k| + il <1, |f]<1, (5.8)
and the assumption that the spatial Fouricr transforms of J and / both peak for all time arcund the
wavenumbers +mky, with m =0, 1,, .. . These require, in particular, that

Cy <L {5.9)

In a laterally bounded container the wavenumber ky may not fit, and instead the vertical vibration
of the container will select wavenumbers near the slightly shifted wavenumber £, defined by

k =2nN/L, (5.10)
where N3 1 is an integer such that

— 7 < Il\f()L —2aN <7 (il | )
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Thus
|k — kol ~ L1 <1 (5.12)

With the wavenumber & the inviscid problem can be embedded in one with periodic boundary
conditions. Thus in the following we use & instead of &y as the basic wavenumber.

The above assumptions permit us to decompose the streamfunction (and voerticity } in the bulk and
the free surfuace elevation into three parts, numely, (1) two parametrically excited counter-propagating
wavetraing with frequency o and wavenumbers £k associuted with the surfuce gravity-capillary
modes, modulatcd slowly in both space and time, {ii) a mean flow depending weakly on time but
in principle strongly on the spatial variables x and y, and (iii} the remaining part of the solution,
which will be called roaresonant. As discussed in Vega ot al (2001) our assumptions guarantce
that the mean flow variables cxhibit well-defined averages in the fast variable x (sce (5.24) below),
Under these conditions the free-surface deflection and the streamfunction in the bulk can be written
in the form

f=e (4™ L 47e7 ™Y L oo+ HOT + f™ + NRT, (5.13)

=Ty ATe™ — ATy o ce + HOT + " + NRT, (5.14)

Here the superscript s denotes the mean flow variables, and NRT and HOT stand for noaresonant
terms and higher order terms, respectively. The function %, defined in (5.7), 1s cvaluated at the
shifted wavenumber . The complex amplitudes 4% depend weakly on both £ and x, while /7, ™
and £2" depend weakly on 7 but strongly on x (and y),

AT+ |47 <|aF| <l [T <M<l T <€t <L (5.15)

of (2.3).
The complex amplitudes A* and the mean Now variables ¥ and 77 evolve on a timescale that is
lurge compared to the basic period 27/t according to evolution equations cbtained from appropriate
solvability conditions {Vega et al., 2001}, To adapt the resulting GCAMF equations to the notation
and scaling used in (2.1), we must redefine 7, 4, ", and g us
z_ PE TN T LB
F=u,t, AT =47/ /iy, W =y"v,

R

{ = pook tanh &/e,, (5.16)

where v, = w'(k) is the group velocity of the surface waves. Dropping tildes, the amplitude cquations
become

AP [ ATAT 4 pd T

A T A =iadt — (54 imat i

(
iiﬂ/ gy dy A% + i (™) A7, (5.17)
1

while the equation for the mean flow in the bulk takes the form

2/{,&1 Lyt = O Q;n _ [‘;”"?-n + (H : |2 .

ryy ¥

A7) gOnIQT + Q) = (Cyfog (20 + €27, (5.18)
in —1 < y < 0, with the boundary conditions

W= 7 = TR = A R = T4 — A7) at p =0, (5.19)



(1= S)f¥ = Sfhe — vy + Curgiyl, + 53U ) = —Tstg[ATP + 47 at y=0. (5.20)

L
/ Qrdx=y" =0, ¥ =-Tglid"d & oo+ |4 P — |41 at y=-1, (5.21)
S
AT+ Ly= AT, e+ Loy Oy =6 ), My + L0 = M, (5.22)
L
/ F7v ) dy =0, (5.23)
0

The latter arc derived trom a c.,a.rc,ful matching between the nenlinear flow in the oscillatory boundary
layers {whose thickness is O(C( )) and the flow in the bulk {Vega et al., 2001). The horizontal
mean value (-}* is defined as

o
(Glx, p.OY = (26)! / G{z, v1)dz,  with 1€/ <L, (5.24)
x=¢
while 4 = 0 and v arc given by
S=(C* + o Cylr,,  v=[aN/L —ky —v,1C} i, (5.25)
where
s = k(w/2Y 4 fsiah(2k), o2 = [2 + (1 + tanh®% )/(4 sinh?k )]k, (5.26)

Finally, the dispersion coctlicient # is given by
x=—a (k) (20, (5.27)

The remaining coetficients in (5.17), (519521, f,%,T,.... T, and the function g have also
been computed, and are given by

kA1 = SH9 — o)1 — a®) + SE37 — oW 3 — )] [8(1 —§) + 58k wk?

= 528
4 4a[(1 —8)a? — Sk(3 — )] 401 —§ + Sk2) (5.28)
T — _U)]‘.'_ (1 - S + S]L )(1 + U 4(1 - + 75!\, (5'29)

2 (1 =8 + 45k )ak 1—.S'+.S'A~ :
Iy =ka/(2w), Ty=wk(l —a ) (261,), (5.30)
' =2wio, Ii= 80),?\:2_,:’5, I's=1{1- Uz)wz;’az, s =3(1— 0'2)61)1’(,-’;52. (5.31)
g(v) = 2wk cosh[2k(y + 1))/sinh’k, (5.32)

where ¢ =tanh k. Note that § diverges at (1 — §)s* =5k°(3 — a2), i.e., when the strictly inviscid
eigentrequency (5.6) satisfies «o(25)=2m(k ). In the present puper we do not pursue this 2:1 resonance
further; see Jones (1992} and Christodoulides and Dias (1994) for a strictly inviscid analysis, and



McGeldrick (1970) and Trulsen and Mei (1995, 1997} for nearly mviscid descriptions that ignore
the mecan flow,

3.2, Dynamics near the bicritical point

To examine the role of the mean flow near the bicritical point we first rescale the variables and
parameters as in {2.10}, namely

(v.i)=LFD, AT =L7'3%,  (w=L"'G 0. (5.33)
and
!,/Im _ L—Z,]:,m, fﬁr _ L—Z‘]?m’ (534)

where " = y7(%, v, 1), /™ = f"(F, ©}. Dropping the tildes and defining the bifurcation parameters
foand ¥, the damping rate parameter o and the slow time variable © as in (4.1) and (4.2), namely
w=n+L7"G -2, v=a+L7'G-27%), =L, 1=r""", (5.35)
Egs. (5.17)5.23) become
AF F AT pin(at — ATy = LA ATy F LG - 200 AT — (5 — 27047
AFF 4

+iL7p AT 4t + 04t

0
+L"[iiﬂ/ GOy Ay i (") AT + - (5.36)
-1

e = Wiy =1y <0, (537)
Wr=TalA™F =4 Py i =Ta(d' P = [47]) at y=0, (5.3%)
Y =0, " =—I4[1d A7 poo AT — |4 at y=—1, (5.39)
AT+ L) = A ), W+ L) = T v, (5.40)
cf. (4.3} and (4.4), where, because of the scaling (5.33), the spatial average (5.24) must be replaced
by
x4
(Glx, y,0))y =24y ! / Gz, vridz,  with /L €4 <1 (5.41)
=

The parameter ¢ appearing in (5.37} is delined as
e =¥ C, v, (5.42)

and 18 always (at least logarithmically} small; see remark at the end of this section. Note that the
free surfuce elevation f™{x,7) decouples from the remaining mean [low variables, and 18 determined



by (5.20}) and (5.23},

1
A+|2+|A|2f {
U]

where the integral comes from volume conservation and we assumed

=150, “ydx]li(1 — S). (5.43)

AP A

1 - §~1, (5.44)

thercby cxcluding the capillary limit,
As In Section 4, we now write

AP =AT LV L (B LB LB 4 e L HOH,  (545)
where

Ay =4, B, =-B}. (5.46)
Thus

AT = 47 = 2B oot o (AP AT = 2T BT+ (547)
and so /" vanishes at leading order. Likewise, we supposc that

25Ty

P = (30 iy, 1) e 4 (5.48)

although iy will not be needed in what follows. The slow function ¥ is found {(upon substitution
of (5.43), (5474) and {548} into (5.37)1(5.39)) to be given by

Yoppr = Woyyyy M — 1 < p <0, (5.49)
o = 21540 B, Wy, =2144) B at y=0, (5.50)
Yo =0, Vo, =206d)B;, aty=—1. (5.51)

Egs. {4.9) and (4.10) continue to hold, and again yield no solvability condition. However, Egs.
(4.11) and (4.12) must be replaced by

in(Af — 3F )= —d4F/dr = 4F it — 2770 AT — (3 — 278 AT + ip(|4T) + 2|BE P4t
2 2 | | 4] 1] 0 1] 0

]
+ip[(4T P + |BT )45 + AT By Byl £ 16 / gy, dy By, (5.52)
4 —1

im(—Bf — BT )= —dBif/dr — $BF + i — 2w )BT — (P + 27%0)BY + if(|BE]F + 24578
1]

+[(BF = |4FF)BE + BTAT A1+ 0T, / i 4y 47,

where = are defined as

W = and Y, = (5.54)



Eqs. (5.52) and (553} arc solvable only if the following conditions hold (¢f {4.13) and (4.14)})
0

E]A+znr1/ G(9)F,dyB, (555)
J—1

A" 254" + 54 =2a[i— P+ P|A]F = 2|B]P) + |4

B" 4+ 268 + B =2m[fi+V— BB + 24"y —

]
BI*18 —2nl', f a( ), dy4, (5.56)
—1

where, as in Section 4,

A=d)=4,, B=B=-8,, o=t (5.57)
Using these varables the mean flow cquations (5.49)(5.51) become

Prye = EPyypypy I — 1T <y <0, (5.58)

©0=—2144B, ¢, =21:4AB at y=9, (5.59)

@=0, ¢@,=2Is4B at y=—1. (5.60)

In the following we refer to (5.55), {5.6), (5.58)(5.60) as the coupled amplitude-mean flow
(CAMF) equations, and note that

s The CAMF equations are still invariant under the operations

—ie

A— -4, A—e&"4, ¢p—ep and B— —B, B—e"B ¢ — g (5.61)

for all ¢; and ¢2. Thus the spunious symmetry, noted in Section 4, 15 still present. Moreover, since
the meun [ow is not slaved to the surface waves it plays a dynamical role in the stability of such
waves (see below), and hence in their dynamics.

e When || ~ 1, as assumed above, the parameter £ =0C,/(dv, ). and hence (using (5.6) and (5.25a})
is (1) of the order of C}z <1 if £ is bounded above, and (ii) of the order of 1/£% <1 if k is large.
In fact, £ is only logarithmically small (and so can be treated as O(1)) it £ is logarithmically
large compared to 1/C,.

e The CAMF equations show readily that the (leading order) mean flow is nonzero whenever 4B #
{0, i.e., the mean tlow vanishes only for the pure modes with m =0 or 1.

3.3, Linear stability of the pure modes

The pure modes generate no mean flow and hence are still given by (4.18), namcly

— 1+ 0% ,
== g = g0,
s P4 A= d(2n)

Py
In the context of the Faraday system these solutions represent pure standing waves, with respectively,
N and N + 1| wavclengths in the period L. Fig. 4a shows the regions in the (8, k) plane where the
quantity f + 7y is poesitive {unshaded) and ncgative (shaded). As in Scction 4, we assume that

f+y=0. (5.63)

‘Aﬂ‘z — (P = 0,

B;

(5.62)
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The results for the case § + v < 0 follow from those below using the invariance of the CAMF
cquations under the opceration

A—=B $—=—i pf—==p y—=—y == o0o—3 (5.64)

The first of the pure modes in (5.62) then bifurcates subcritically and hence is always unstable.
The linear stability properties of the second pure mode in {5.62} are determined by replacing 4 by
B XieM + Xae'), B by B,(1 + Yie¥ + Yae¥) und o by 2‘83‘2(@)(26)“ + X ¢4y and linearizing
Eqs. (5.55), (5.56) and (5.58)(5.60). There are then two types of potential instabilities. The pure
mode instability satisfics

g '): 2 i ,\ . ,

% — A=+ 2B+ B | B+ NB T =0, (5.65)
NS L)

(p+IBI T+ %_}i_vu(ﬁw)lm‘] ¥y =0, (5.66)

with X7, X5 and ¢ slaved to ¥7 and ¥;. This svstem possesses a zero eigenvalie, with eigenfunction
(Y1, V) = (iB,, —iB,), due to the invariance of Eqs. (5.55+(5.60) with respect to the operation
(5.611). The remaining three eigenvalues are strictly negative, as in Section 4. The mixed mode
instability excites perturbations that are orthogonal to the mode in question. Thus X7 # 0, X) # 0,
but ¥, =¥, =0, Both X7 and X, satisfy identical equations:

G+ovY , " .
C2b —r—2gmp —2nlml [ g(ne,dy|x =0, (567)
i —1
where ¢ 1§ the unique solution of
Aby,=edy, in — 1 <y <, (5.68)
fI):—Fg,, "p},y: I'; at Jf’ZO, (569)
$=0, @,=1% aty=-1 (5.70)

Integration of (5.68)(5.70) for A > 0 yields

VAr+ ) Viy+ )

cosh —1

VA + 1)
\/E

& — K | sinh — K + I v+ 1), (5.71)

where
{13+ 1grcoshy/2fe + s{e/A)ecosh+/Aje — 1]
v/ Afecosh y/J/e — sinh \/ A/ ’
. (I3 4 gysinh A/ + Da(s/2)[sinh /28 — \/A/¢]
Ky = = . - . (5.72)
v Afscosh /Aje — sinh (/2 /g
while it A =10

=Ty +1) = J6(T's + o)+ Tal(y + 1) + 32ATa + To)+ Tal(y + 1 (5.73)

K[z
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Note that all the eigenvalues 4 of (5,67} are doubled. These cigenvalucs satisty

4204 R,
o 20 G IBL - HAIB =0, (5.74)
where
)
D(iy =21 / g )P, dy. (5.75)
—I

Thus, if / = 0,

i

-2

PO = gp e + K1 %2(2) — Ky Ga(A)]. (5.76)
but when 4 =0,
7= - [I‘(’% + 1[6“* + Lg) + 14]% + é[zua + 1)+ 1‘4]%} (5.77)
sinh2k | ° 2 & O - 1 3 5 @i . )

Here

gy — sinh 2!(} 9, = \/Z sinh{2k + /. AfE) n 5i11h(2k — 4 /, Ale) ol
2k ¢ | 22k 4+ \/Aje) 202k — \/Aje)

g, — \/E cosh(2k 4+ /4/e) — 1 B cosh(2k — 1/ a/e) — 1 ,
‘ & 202k + /Aie) 22k — \/fAie)
. cosh 2k — 1 ] ) simh2k cosh 2k
g, =ML, g B 0&.17
442 4k 2k
Onc can check that, properly interpreted, the above cxpressions apply cven when A4 < 0 or when it
is complex. Note that 5, I's, Iy and I's depend only on & and S, while ¢ and ¢ arc determined by
the chosen values of C; and L; { and ¢ arc of course the two paramcters that unfold the bicritical
point.
The charactcristic cquation (5.74) admits a stationary instability at

P =35 + 7+ 2(0)|B.]/2, (5.78)

and the instability sets in as |B| increases if 3+ v+ 2(0) >0 and as |B,| decreases it 3§+ v +
F(0) < 0. The regions of positive (unshaded} und negative {shaded) values of 3+ v+ 2(0) m the
(5.%) plane are shown in Fig. 4b. The mstablity i1s oscillatory with 2 =14;, Ay = 0, 1f

+ .

SRS R P ™
T4y ) 47 2m(ay)

where we have written 2{A=14;) = @(/; ) +1%; (7). Thus (1) when 3f5+y > 0 and Z(0) > 0 (Z(0)
< 0) the mean flow reduccs (incrcases) the amplitude at which the steady-state instability scts in
and vice versa, and (11} the mcan flow permits the presence of an oscillatory instability on the
supcreritical pure mode branch provided %;{A;) > 0. This bifurcation gencratcs a mcan flow that
oscillates back and forth, and henee cannot occur if such a flow 1s excluded frem the formulation
{cf. Scction 4). When 25(4;) > 0 Eq. (5.79) provides a paramctric representation of a curve in the
? vs. |B,|* plane of the tvpe shown in Fig. 5. In Fig. 5a—d we show for four choices of § and /& the
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Fig. 5. The neutral steady and oscillatory instability curves of the second pure mode in (5.62). for d=1, =01 and (a)
k=05 85=0.0) k=05 8=08 () k=2, 5=0.und (d) k= [, §=0.8. The pure mode is stable only below these
curves. For comparison, the neutral instability curve without mean flow {i.e.. 2(3) = 0} is shown using a dashed line. In
all cases the results correspond to the bifurcation diagram in Fig. 2(a}; to obtain this diagram for cases (b) and (d) one
must first apply the transformation {3.64).

—

region in the (|8, |2._ v} plane where the pure mode (0.5, ) is stable {unshaded) and unstable (shaded}.
Note that for sufficiently large detuning the presence of the Hopf bifurcation reduces dramatically
the region of stability of the pure mode, especially in cases (a,c). The reduction is smaller in cases
{b.d); since i+ < 0 in these plots the transformation (5.64) has been applied.

3.4 Linear stability of the mixed modes

The mived mode solutions of the CAMF equations (5.35), (5.56), and (5.38)-(5.60) are given by

(2nfi — 0% =2mfi + 52) N (¥. %)

2a[fi — o + Z(0)] 3+ + 20y
ctf. Eq. (4.18a), where @(/. 1) is the unique solution ot (5.68)(5.70) and %({0) is as defined in
(5.77). In the following we exclude the codimension-two points §—-+%(0)=0 and 3+ +%(0)=0;
both quantities are shown in Fig. 4b and ¢ in the (5.%) plane. It follows that we may use Fig. 2

to deduce the structure {though not the stability properties) of the mixed mode branches, provided
we replace ff— v and 3fi4+ 7 by f— o+ @2(0) and 35 + 4+ 2(0), respectively. The steady-state

a3

(|4,)°. 1By = 0, =200, v)4,B,. (5.80)

N



bifurcation points at the end of the mixed mode branch are unchanged, although this is not truc of
the sccondary Hopt bifurcation {sce below).

The lincar stability propertics of the mixed modes are determined by replacing 4, B, and ¢ by
A1 +X e+ X)), B(1 + T8+ ¥,e47), and q73.+.51585((j)1@’“+d,_)ge“), respectively, and linearizing
Egs. (5.55), (5.56) and {5.58)—(5.60). From the latter it follows that:

Gy =20 + VOB D), d =206 + V)P(Ly), (5.81)
while the former show that (X)X, Y, }2) satisfy the algebraic equation

(2t &)

A — 258,
o’ N BB

A, X

A28 )

'] X —{F+7)

— 28+ 2(0)|B,]’T1 — 2p|B

together with three equations obtained by (i) interchanging X| < X; and Vi « 73, (i1) interchanging
A = B, X| « 7|, Xb & ¥», and changing the signs of (5, 7,7V, %), and (iii) interchanging X, « X»
and ¥i — ¥, in the result of (ii). Here Z(4) is as defined in (5.76) and (5.77). Using (5.80) it
follows that X' = X, + X, and V' =¥, + V> satisty

Vo= 2B + ) =0, (3.82)

o

/1.2 + 2(§;1: 3 bl W, oa . 7 — 5 P i _—
. 208 + 90 A7 — (A — OB " | X7 — [4f + 2(0) + (DB, |"V~ =0,
(5.83)
. L - 2428 ) _ ) . . N
[4f + 2(0) + U4 X + [T + 208 + )BT+ (Z(4) — SZ’(U))|AV|“] Y= =0,
(5.84)
while X~ =41 — % und Y~ =Y, — ¥, satisfy
1 2f:ﬁ ; .
if}“(@u)@wnww‘X‘+mmm9mmswf‘=u (5.85)
. ) A28l )
— [@(A) — 2O ]" X + % + (%A} — @(0)),-'15“] Y= =0 (5.86)

We may identify the former equations as descnbing instability with respect te amplitude or standing
wave perturbations {the spatial phase of the mixed mode remains lixed by these perturbations), while
the latter describe instability with respect to phase perturbations.

The nondegeneracy conditions 354+»+%(0) £ 0, f—r+%(0) # 0 (Fig. 4b and ¢) guaruntee that the
system (5.83) and (5.84) does not possess any zero cigenvalues; this is a conscquence of the fact that
the mixed mode branch is monotonic and hence containg no saddle-node bifurcations. Conscquently,
instability can only sct m through a Hopf bifurcation. Since this bifurcation prescrves spatial phase
it produccs a standing oscillation (i.¢., a vacillation) about the mixcd mode. In contrast, the systcm
(5.85) and (5.86} always has a doublc zcro cigenvalue {resulting from the symmctrics (5.61)),
but in addition there can be a further zero cigenvalue resulting in a parity-breaking bifurcation of
the mixed modes. To see this we examine the limit 4 — 0 of (5.85) and (5.86). In this limit



D{A}y—D(0) =+ 0(A?), and the system (5.85) and {5.86) reduces to a characteristic cquation of
the form

. 2ma(fi— 5 im)

4 f—y+D(0)

+0(a)| =0, (5.87)

indicating the presence of a parity-breaking bifurcation at

~

L& 5o _
h=fp=o—+ E‘E[ﬁ — 5+ D(0)]. (5.8%)

This instability is only possible because the coupling to the mean {low results in a transcendental
characteristic equation with a larger number of zero eigenvalues, und it produces traveling waves
that drift steadilv either to the left or the right. In addition we may have purely imaginary roots of
the characteristic equation. This possibility 15 also a consequence of the coupling to the mean How,
and it generates the so-called direction-reversing waves, i.e., an oscillation in the sparial phase of
the mixed mode (Landsberg and Knobloch, 1991). We do not pursue here these instabilities further.

6. Concluding remarks

In this paper we have examined the dynamics of the neurlv inviscid Faraday system near
codimension-two points where the neutral stability curves for adjacent modes cross. As 18 well-known
such points provide the key to the nonlinear phenomena associated with the transition from one mode
te another, since near such pomnts the necessary secondary bifurcations all occur at small amplitude
and so are (usually ) analvtically accessible. We focused on large aspect ratic domains which permit
the presence of large-scale mean fow, and explored the role played by this flow in the resulting
transition. In the absence of a mean flow we showed that the basic equations reduce to equations
already familiar from the theory of nonresonant interaction of distinet modes. The different possibil-
ities are summarized in Fig, 2. An mportant feature of these diagrams is that one of the two modes
is necessarily subcritical while the other is supercritical. This property i1s 4 consequence of the fuct
that the primary Faraday resonance m an inviscid fluid produces an instability whose direction of
branching depends on the sign of the detuning (relative to optimal).

In the absence of mean flow the only dillerence between the present theory and that appropriate
te more viscous systems is the fact that the dynamics of the two interacting modes are second
order in time. However, the added degrees of freedom are all damped and do not permit new types
of instability. The situation changes dramatically once the coupling to the mean How i included
{Section 5). The mean [low shifts the onset of the secondary bifurcation to mixed modes (either
increasing or decreasing the range of stable mixed modes, depending on parameters), but more
importantly it also pcrmits a new type of instability of the purc modes. This instability is oscillatory
and produccs the so-called dircetion reversing waves (Landsberg and Knoblech, 1891), i.c¢., periodic
oscillation in the spatial phasc of the purc mode. This instability may precede the steady-state
instability te mixed mode, resulting in a dramatic change in the bifurcatien behavior. Although we
havc not pursucd the nonlincar cvolution of these oscillations we surmise that they most likely
disappear via a global bifurcation. Fig. 5 summarizes the possible secondary bifurcations from the
pure made branches as a tunction of the (scaled and shifted)} detuning ¥, with the regions of instability



indicated by shading. In cascs (a,¢) the results of Fig. 4 show that f+7 >0, 3§ + 7y + 2(0) > 0,
f =7+ Z(0)>0, while in cascs (b,d) §+5 <0, 3 +53 +2(0) <0, f —y+ %(0) <0 The
transformation (5.64) shows that the hifurcation diagrams in both cascs arc topelogically the same
provided onc exchanges B, for A, and changes the sign of ¥. This diagram is shown mn Fig, 2a, and
shows that the supcrentical mode bifurcates first and is initially stable, This mode loses stability at
finite amplitude to a mixed mode which inherits the stability before undergoing a Hopf bifurcation.
It is the first of these bifurcations that may be preceded by the bifurcation to direction-reversing
waves. Fig, 5 also shows the presence of an interesting codimension-two point, at which the steady
and Hopf bifurcations on the supercritical pure mode branch come in simultaneously. This is an
interaction between a pitchfork and a symmetry-breaking Hopf bifurcation, and such interactions
may lead to a variety of new dynamical phenomena, cf. Landsberg and Knobloch (1993}

Similar computations for the stability of the mixed modes in the presence of mean flow show that
the mixed modes can lose stability in two ways, either via a paritv-breaking steady-state bifurcation
producing traveling waves, or via a Hopt bifurcation, Of the latter there are two types, a Hopt
bifurcation in which the oscillations respect the spatial phase of the mixed moedes (producing so-called
standing waves) and a Hopf bifurcation which produces oscillations in the spatial phase (and so
results in direction-reversing waves). Only the standing oscillations are possible in the absence of
the mean flow (cf. Fig. 2a) and these must be present even with mean flow in diagrams such as Fig.
2a where {in the standing wave subspace} the stability assignments at the two ends of the mixed
mode branch dilfer. In particular. in Fig. 5a the standing wave instability will necessarily destabilize
the mixed modes in the region to the left of the codimension-two point. Although we have not
pursued the mixed mode instabilities further it 15 clear that these permit the presence of new types
of higher codimension pomts in parameter space (for example, where the two Hopf bifurcations
coincide), und hence new types of nich dynamics.
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