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Abstract 

The dynamics of parametrically driven, slowly varying counterpropagating wave trains in nearly conservative 
systems are considered. The system is assumed to be invariant under reflection and translations in one direction, 
and periodic boundary conditions with period L are imposed, with L large but not too large in order that 
the eífect of detuning be significant. The dynamics near the minima of the resulting resonance tongues are 
described by a system of coupled nonlocal Schródinger equations with damping and parametric forcing. 
Elsewhere the long time behavior of the system is described by a damped complex Duffing equation with 
real coefficients, whose solutions relax to spatially uniform standing waves. Near the bicritical points where 
two adjacent resonance tongues intersect a pair of coupled damped complex Duffing equations captures the 
properties of both puré and mixed modes, and of the periodic solutions resulting from a Hopf bifurcation 
on the branch of mixed modes. As an application, we consider a Faraday system in an annulus in which a 
pair of counterpropagating surface gravity-capillary waves are excited parametrically by vertical vibration of 
the container, including the mean flow driven by time-averaged Reynolds stresses due to oscillatory viscous 
boundary layers along the bottom and the free surface. This mean flow is shown to have a large eífect near the 
bicritical point, where the mean flow changes the dynamics of the system both quantitatively and qualitatively. 
In particular, inclusión of the mean flow permits Hopf bifurcations from the branches of puré standing waves, 
and parity-breaking bifurcations from mixed modes. 

PACS: 47.20.Ky; 47.20.Ma; 47.35,+i; 47.54.+r 
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1. Introduction 

In this paper we consider a pair of coupled, weakly damped, parametrically forced Schrodinger 
equations that describe the weakly nonlinear evolution of a pair of slowly modulated, counterpropa-
gating wavetrains in extended, nearly conservative systems invariant under reflection and translation 
in one spatial dimensión. Elsewhere (Martel et al., 2000; Higuera et al, 2002b) we have discussed 
the limit of small detuning, and shown that in this regime the dynamics near onset is described 
by a pair of coupled nonlocal Schrodinger equations with damping and parametric forcing. These 
equations describe the dynamics near the minimum of each resonance tongue. However, in systems 
that are large but not too large the allowed wavenumbers may differ from the wavenumber selected 
via the dispersión relation and the difference between the response frequency and (half the) forcing 
frequency may be substantial. In the following we cali this difference the detuning and discuss the 
dynamics when the detuning is nonzero, Le., the dynamics near the boundaries of the resonance 
tongues away from their minima. 

The present study is motivated by the dynamics of surface gravity-capillary waves excited by the 
vertical vibration of a container of liquid (Miles and Henderson, 1990; Cross and Hohenberg, 1993). 
In low viscosity liquids the surface waves are described by a pair of coupled, weakly damped, 
parametrically forced Schrodinger equations, but these include in addition a coupling to a mean 
flow driven by time-averaged Reynolds stresses in the oscillatory viscous boundary layers along the 
bottom (and lateral) boundaries as well as the free surface (Vega et al, 2001). This mean flow 
was in fact observed already by Faraday (1831) in his classic experiments on this system (since 
named after him) through the nonuniform accumulation of sand at the bottom of the container. 
The same effect has also been observed in dust along the wall of a sound tube (the Kundt tube) 
(Rayleigh, 1945; Schlichting, 1968). A theoretical explanation of this effect was provided by 
Rayleigh (1883), who showed that the mean flow responsible for this accumulation was viscous 
in origin (even though the viscosity was quite small). He did so by analyzing the flow in what we 
nowadays cali the oscillatory boundary layer near the bottom of the container, and obtained the key 
ingredients for subsequent work on this flow by Schlichting (1932). Schlichting's analysis was in 
turn extended to the viscous boundary layer along the free surface by Longuet-Higgins (1953) (see 
Craik (1985) for the early references and Riley (2001) for a recent review). This mean flow (also 
known as a streaming flow, or acoustic streaming) diflers fundamentally from the inviscid mean flow 
that appears in water wave models such as the celebrated Davey-Stewartson (or Benney-Roskes) 
equations (Davey and Stewartson, 1974; Pierce and Knobloch, 1994). The viscous mean flow of 
interest here is a consequence of the nonzero tangential velocity and shear stress at the internal 
edge of the oscillatory boundary layers attached to the walls and the free surface, respectively, both 
of which vanish in the inviscid regime. Although mean flows of this type have sometimes been 
studied as a by-product of surface waves (Liu and Davis, 1977; Iskandarani and Liu, 1991), their 
dynamical interaction with the surface waves that produce them has been systematically ignored, 
based on the mistaken assumption that their effects should be of higher order. Recent work on 
nearly inviscid Faraday waves in a variety of configurations (Vega et al, 2001; Higuera et al., 2001, 
2002a,c; Martín et al, 2002) (see also Knobloch and Vega (2002), and Knobloch et al. (2002) 
for recent reviews) confirms that the mean flow interacts with the surface waves already at leading 
order, and henee cannot be omitted from the analysis. In particular the mean flow is unavoidable 
near mode interaction points (cf. Higuera et al, 2002c), the case of particular interest in the present 



Fig. 1. Resonance tongues (JI = ±(v — lian)) showing the instability threshold for the fíat state. Owing to the invariance 
of the amplitude equations under the operation Á^ —> iA^,¡i —> —¡i the diagram for ¡i < 0 is obtained via reflection in 
H = 0. 

work. Regrettably, there are at present no experimental studies of the excitation of mean flows near 
such points in large domains (cf. Douady et al, 1989, Fig. 1), although mode interactions in small 
aspect ratio systems have been studied (Ciliberto and Gollub, 1985; Simonelli and Gollub, 1989). 

Against this background, the remainder of the paper is organized as follows. The basic amplitude 
equations governing the evolution of the complex amplitudes of the two counterpropagating waves 
are summarized in Section 2, together with a brief summary of the structure of the resonance 
tongues associated with a parametric instability (Fauve, 1995). The weakly nonlinear dynamics near 
threshold for generic valúes of detuning is considered in Section 3, while Section 4 focuses on the 
dynamics near a bicritical point, where neighboring resonance tongues intersect. The Faraday system 
is considered in Section 5, followed by concluding remarks in Section 6. In each case, we derive the 
leading order amplitude (or amplitude-mean flow) equations and discuss their properties. It should 
be emphasized that although in the limit considered in this paper the aspect ratio is large it is 
not so large that spatial modulations of the surface waves enter into the theory. This is because the 
theory is developed for forcing amplitudes that are appropriately cióse to threshold. For larger aspect 
ratios spatial modulations must be taken into account. This may be achieved via mode truncation 
as in Decent and Craik (1999), or via a systematic asymptotic expansión focusing on the effects of 
dispersión as in Martel et al. (2003) and references therein. The coupling between these effects and 
the viscous mean flow in a nearly inviscid Faraday system is explored in Lapuerta et al. (2002). 
These effects do not enter in the regime studied in the present paper. 

2. Amplitude equations and stability of the flat state 

In an extended nearly conservative system the amplitudes of slowly varying counterpropagating 
wavetrains, driven parametrically by external vibration, satisfy equations of the form (Martel et al. 
(2000), Eqs. (5)-(7)) 

¿t^4 i¡iA =F 4± ±|2 4± (<5 + ív)A± + icxAfx + i ( £ M T + y\A^\2)A± + 

A±(x+L,t)=A±(x,t). 

(2.1) 

(2.2) 



These equations are valid provided that 

\Afx\<\Af\ 4^141, ¡AfKlA+Kl, (2.3) 
and the real parameters ¡i (forcing amplitude), v (detuning), and 5 (damping rate) are small. The 
dispersión coefficient a and the coefficients /?, y of the nonlinear terms are also real but of order 
unity. In writing these equations we have shifted the phase of A^ by n/4 relative to the equations 
used in Martel et al. (2000). 

These equations are invariant under reflection and translations, represented by the operations 

A+ <r+A~ and A± -»• étícA± for all c. (2.4) 

In fact Eqs. (2.1) and (2.2) remain invariant (after a rescaling to restore the unit group velocity) 
under the transformation 

v ->• v + 2n/L - a(2n/L)2, A± -»• Q
±^ILA±. (2.5) 

This transformation allows us to restrict the detuning to a neighborhood of the interval 

- n/L < v sí n/L. (2.6) 

The limit considered in Martel et al. (2000), 

§ ~ v ~ n~L~24l, (2.7) 

corresponds to (a) a moderately large aspect ratio (so detuning is still felt), (b) a forcing frequency 
that yields an appropriately small detuning, in addition to (c) an appropriately small threshold ac-
celeration to overeóme the (assumed) small dissipation. These conditions restrict the validity of the 
theory to the vicinity of the minimum of the primary resonance tongue. As shown in Martel et al. 
(2000) in this regime Eqs. (2.1) and (2.2) reduce to a pair of coupled nonlocal Schrodinger equa­
tions. Identical analysis holds near the minima of the other resonance tongues, corresponding to the 
excitation of modes with modulation wavenumber m) provided |v — 2mn/L\ ~ L~2. However, this 
reduction no longer applies if condition (b) is relaxed. It is this case, viz. 

\v\~L~\ v ^ 0 , (2.8) 

that is of interest here. In the following we therefore focus on the limit: 

5L41, | v | - L _ 1 < ^ l , \n-v\<\v\, (2.9) 

where we are anticipating that the instability threshold is ¡ic ~ v. This limit is the counterpart of 
(2.7) (after relaxing the condition |v| 4L~X), except for the fact that we are not making at this stage 
any assumption about the order of magnitude of the damping rate 5 except that it is small compared 
to L~\ 

To study the limit (2.9) we scale variables and parameters according to 

(x,t) = L(x,t), A±=L~1A±, (v, n) = L~\v, /t). (2.10) 

Dropping the tildes we obtain (cf. Martel et al., 2000, Eqs. (11) and (12)) 

Af^Af + i ( v ^ - fiAT) = -5LA± + iL-1[(J3\A±\2+y\AZf\2)A± + aAfx] + ••-, (2.11) 

A±(x + l,t)=A±(x,t). (2.12) 

file:///v/~L~/


It is these equations that are the subject of Section 3. We emphasize that the properties of these 
equations differ from those obtained on the basis of fundamentally small aspect ratio theories, even 
for the primary standing waves. This is a consequence of the scaling (2.10b) which limits the theory 
that follows to smaller amplitudes than those accessible in small aspect ratio theories. In particular, 
we do not expect to see secondary saddle-node bifurcations on the standing wave branches, although 
our results do reproduce the direction of branching of the primary standing waves from such theories 
(cf. Umeki, 1991). Additional differences, arising from the presence of a large number of modes in 
the present system, are discussed in Section 3. 

The linear stability of the flat solution A^ = 0 of (2.11) and (2.12) is analyzed by considering 
infinitesimal perturbations of the form exp(Xt) with a wavenumber 2nm. The dispersión relation is 

(X + 5Lf + [v - 2nm + a(2nm)2L-1]2 - ¡i2 = 0. (2.13) 

Thus the threshold for the instability of the flat state is associated with the mode m = 0 (see 
Fig. 1), and is given by ¡i = v + S2L2/(2v) + • • • (Le., according to (2.9a) and the rescaling (2.10), 
¡i w v, as anticipated above). The remaining (infinitely many) modes are weakly damped (because 
5L4,\) and thus cannot be ignored a priori. These are either of the form 

A±=A±¿*»"t+2™¿> with A- = A+A+, (2.14) 

or of the form 

¿±=¿±e±i(-*.<+2-«) with A-= A-A+^A+/A+, (2.15) 

where to leading order (as \¡i — v\ <̂  |v|, L —>• oo, and 5L —>• 0) 

^ , -,1/? , i + ±sm—2nm + v [1 — v/(mn)]1/2 =F 1 
sm = [(2nm)2-4nmvf2 and A% = — = y- -( 1/2 ^ , , (2.16) 

v [1 - v/(mn)Y/¿ ± 1 

for each integer m ^ 0. In (2.15) we are using the identity 

A+
mA~ = l, (2.17) 

which follows from (2.16). Note that 

\A+\ < 1 f o r a l l m ^ O if v ^ 0 , and A+ -»• 0 as m ->• oo. (2.18) 

Thus in the generic case (v ^ 0,n) a single marginally unstable mode (m = 0) is present at 
threshold. However, in the special case v = % the marginal stability curves for the modes m = 0, m=í 
cross at ¡i=n. In the following we cali the point (v,¡i)=(n,n) a bicritical point or a codimension-two 
point (see Fig. 1). In the vicinity of this point two modes are near marginal stability and henee 
nonlinear interactions between them may oceur already at small amplitude. Similarly, when v = 0 the 
marginal stability curves for m = ±l cross at ¡i = 2n. Thus the point (v,¡i) = (0,2n) defines another 
bicritical point, although this point is of less interest since all the local dynamics it produces are 
necessarily unstable due to the prior instability of the m = 0 mode. The results for other bicritical 
points follow from invariance of the amplitude equations under (2.5). Thus near (v,¡i) of the form 
(n + 2mn,n) two adjacent nearly marginal modes coexist with an infinite number of weakly damped 
modes but no other unstable modes. The role played by these weakly damped modes in this región 
depends on the assumed damping rate, as discussed next. 



3. Dynamics in the generic case: v ^ O, n 

In order to understand the nature of the limit (2.9) and the origin of the complexity that must be 
expected, we consider two cases, depending on the order of magnitude of the damping rate. 

3.1. Significant damping: 5 ~ L~3^2 

For this case we introduce the damping rate parameter 5, the bifurcation parameter fi, and a slow 
time variable x defined by 

5=L-3/25, n = v + L~1jl, and x=L~1/2t, (3.1) 

and seek a solution in terms of the eigenmodes (2.14) and (2.15): 

+ Y, e±Ü%mx[(At + L~V2Ami + ' ' -ySmt + (Bt + L~V2Bmi + ' ' Oe"*"']. (3.2) 

Here, according to (2.14) and (2.15), the complex amplitudes Á^0, A^ and B^ are such that 

^oo=A)o> Bm=AmAm. (3-3) 

These and the higher order terms Amj and Bmj depend only on the slow time variable x. Substituting 
(3.1) and (3.2) into (2.11) and setting to zero the coefficients of e

±1Smt±l27imx at order 0{L~XI2) we 
obtain 

iv(A± - A*) = -dA+fdx - 5A±, (3.4) 

i v ( 4 U £ -B^) = -dAt/dx-5At, (3.5) 

HA-B^ - Alx) = -dBt/dx - 5Bt. (3.6) 

Eq. (3.3a) now shows that the two equations (3.4) are identical. Thus (3.4) yields no solvability con-
dition. However, Eqs. (3.5) and (3.6) do require a solvability condition. Using (2.17) this condition 
can be written in the form 

[l-(A+)2](dAt/dx + 5At) = 0, (3.7) 

implying that 

A^ü —> 0 exponentially a s z ^ o o . (3-8) 

This property of the solution is a consequence of the magnitude of the damping rate selected by 
(3.1), cf. (2.9). Thus, after a transient, we can take 

A± = 0 for all m^O. (3.9) 

This fact, together with (3.3a), results at order 0(L_ 1) in the pair of equations 

iv(A± - Af2) = -dA±/dx - 5A± + ifiA* + i(p + y)\A±\2A±. (3.10) 



The resulting solvability condition can be written in the form 

d04+ - A- )/dT + d{Atx ~ A~i) = 2i[/2 + (P + yMoIV0V (3-11) 
or, invoking (3.4) and denoting AQ0 = A, 

A" + 25A' + 52A = 2v[/2 + (p + y)M|2K (3.12) 

In the following we exelude the codimension-two point /? + y = 0 and consider therefore the two 
cases v(j5 + y) > 0, and v(j5 + y) < 0. In the former Eq. (3.12) possesses solutions that blow up in 
finite time, an observation consistent with the fact that the primary bifurcation from the flat state to 
the simplest standing waves (steady states of (3.12)) is subcritical. In contrast if 

v(p + y)<0, (3.13) 

as assumed henceforth, then all solutions of (3.12) are uniformly bounded as % —>• oo. This result 
follows from the exact relation: 

^-[\A'\2 + (S2 - 2vfi)\A\2 - v(j8 + y)\A\4] = -4S\A'\2, (3.14) 
di 

obtained on multiplying (3.12) by A and adding the result to its complex conjúgate. 
For convenience we write Eq. (3.12) in terms of the amplitude and phase ofA, defined by A=RQ10, 

R" + 25R' + (51 - e'2)R = 2v[/¿ + (j8 + y)R2]R, (3.15) 

0" + 2(5+R'/R)9r = 0. (3.16) 

Integrating (3.16) we obtain 

O1 =K{)R-2Q~2k (3.17) 

(for some constant K()), which implies that 6' —>• 0 exponentially, as % —>• oo. The apparent breakdown 
of this argument as R —>• 0 can be overeóme using an equation obtained by summing the product of 
(3.12) with A, and its complex conjúgate, and integrating the result: AA' —AA =K()Q~2ÓZ, cf. (3.17). 
Thus for large times we may take the phase of A to be constant and, in particular, take A to be 
real. Eq. (3.12) then reduces to the standard Duffing equation, whose solutions converge to a steady 
state at large times. Thus, no complexity can be expected in this case. 

Note that if 

L~l/24d<l, (3.18) 

(the first condition being required for the validity of conditions (3.8)) Eq. (3.12) will evolve in a 
nondissipative manner over a time of order of % ~ b~x as described by the conservative complex 
Duffing equation 

A" - 2v[fi + (p + y)\A\2]A = 0. (3.19) 

The counterpart of (3.14) now yields 

\A'\2 - 2vfi\A\2 - v(p + y)\A\4 = constant. (3.20) 

A second integral is given by the counterpart of (3.17), namely 

e'=K0R-2, (3.21) 



for some constant K(), generically nonzero. Thus 

R" - K¡R~3 = 2v[/¿ + (p + y)R2]R, (3.22) 

and henee only steady states and periodic solutions are to be expected at large times. In fact, Eq. 
(3.22) can be integrated once, yielding 

R'2 - K2 = -K2R~2 + v[2/¿ + (p + y)R2/2]R2, (3.23) 

for some constant K\. The allowed time-periodic solutions are now easily computed, but all ultimately 
decay to steady states for T>¿> _ 1 . 

3.2. Small damping: 5 ~ L~2 

The simplification described in the preceding section is a consequence of the assumption that 
5 7̂  0 (in fact, ¿>>L-1/2, or equivalently that 3^>L~2), for otherwise (3.8) no longer follows from 
(3.7). The situation is more interesting for smaller damping rates. Consequently, in this section we 
consider the case 5 ~ L~2, which in conjunction with (2.9) is the true counterpart of (2.7). To study 
this case we retain the parameter fi defined in (3.1) as the bifurcation parameter, but redefine the 
damping rate parameter 5 and the slow time variable T: 

5=L~25, T=L~lt. (3.24) 

In fact, we should use two slow time variables in this limit, namely t ~ Ü¡2 and t ~ L, but this 
makes the analysis unnecessarily involved. Of course, because only the slowest time variable is used, 
some of the equations (Eq. (3.30) below) will depend on the small parameter L~x. The expansions 
(3.2) must be replaced by 

+ E Q±Ü7imXi(At + ¿ - 1 ^ i + ' ' -ySmt + (Bt +L~lB^ + • • Oe"^ ' ] , (3.25) 

where the relations (3.3) still hold. Eqs. (3.5) and (3.6) now become 

iv(A+A± -Blx) = -(U±/dT - 5At + i[£fl£ " (2nm)2aAt] + i\A\2[(2p + y)A± + yB*] 

-m¿t\24l +2i/?]T(K±|2 + \Bt\2)AÍ 

+ i? E KK*I2 + \Bn\2Mt + iA^Bf + AtBf)BH (3.26) 

iv(A-B± - Alx) = -dBt/dx - SBt + i[(iAl - (2nm)2aB±] + i\A\2[(2p + y)B± + yA%] 

-iP\Bt\2Bt+2i^(\At\2 + \Bt\2)Bt 

+ iy E WA«\2 + \B^\2)Bt + (A*Bf + AfBf)AH (3.27) 



where A = A^J= A00), as above. The solvability conditions for these equations can be written, using 
(3.3b), in the form 

+ *VAA±IA„ , ^±^_o ; ,^+,±_ i a [ 1 + ( y l + ) 2 ] ( 2 7 l ? w ) 2 ^ ± 

2 j ± _ i f t n _Lr / ( + ^4^ | J± |2J± 

[1 - (A+)2](dA±/dx + 8A±) = 2ifiA+A± - ia[l + (A+)2](2nm)2A 

+ i((2jg + y)[l + (A+)2] + 2yA+) \A\2A± - ij8[l + (/1+)4]M±|2^ 

+ 2 i / ? £ ( [ l + (yl+yl+)2]M±|2 + [(A+f + (^+) 2] |^ | 2>4± 

+ i y j ] [ ( / l+ +A+f\At\2 + (1 + y l + y l + ) 2 | ^ | 2 ] ^ , (3.28) 

implying that 

[1 - (yl+)2](dM±|2/dT + 25\At\2) = 0. (3.29) 

Thus once again \A^ \ —>• 0 for all m ^ O , albeit on the slower timescale % ~ 1. With this simplification 
the counterpart of Eq. (3.12) becomes 

L~\A" + 2¿U' + b2A) = 2v[/2 + (L3 + y)M|2R (3.30) 

and the analysis of Section 3.1 carries over verbatim to the present case. In particular no persistent 
complex dynamics are expected as t —>• oo. Thus contrary to expectation the 5 ~ L~2 case is 
identical to the 5 ~ L -3/2 case, except for the (considerably longer) timescale for the decay of 
complex transients. 

4. Dynamics near the bicritical point: |v — n\ <̂ 1 

Let us consider now the dynamics near the codimension-two point obtained at v=n. For simplicity, 
we consider the limit of significant damping. Smaller valúes of the damping ratio only lead to 
complex transients, as in Section 3.2. We introduce the bifurcation parameters fi and v, defined as 

fi = n+L~\fi-2n2a), v = % + L~\v - 2n2a), (4.1) 

where the shift —27i2a is included to eliminate the effect of dispersión (see below), and use the 
same scaling and time variables as in Section 3.1, namely 

5=L-3/2$, T=L~l/2t. (4.2) 

Eqs. (2.11) and (2.12) now become 

Af^Af + in(A± -A*) = -L~1/2(At + 5A*1) + iL_1[(/2 - 2n2a)AT - (v - 2n2a)A±)] 

+ iL-1[(P\A±\2 +y\A^\2)A± + aAfx] + •••, (4.3) 

A±(x + l,t)=A±(x,t). (4.4) 

The eigenfrequencies and the constants defined in (2.16) are now given by 

sm = 2n(m2 - mf12, A^¡ = (±sm - 2mn + n)/n, (4.5) 



and the eigenfrequencies therefore coincide in pairs, namely 

So=Si=0, S-\=S2=2\fl%, S-2=S-Í = 2\[Í>%,... . (4.6) 

Since the marginal modes correspond to m = 0, m = 1 we may write for (3.2) 

A± = Af + L~1/2Af + L~lAf + --- + {Bf+ L~1/2Bf + L~xBf + • • .)e
±2l7ÜX + HOH, (4.7) 

where, as in Section 3.1, we have 

A" = 4 , B~ = -B+, (4.8) 
and the abbreviation HOH stands for spatial harmonics with wavenumbers 2nm, with m ̂  0,1. As 
in Section 3 these higher harmonics decay to zero exponentially as % —>• oo and can be ignored. 
Substitution of (4.7) into (4.3) yields, at orders 0(¿- 1 / 2 ) and 0(L~V), 

in(Af-Áf) = -dAf/dx-5Af, (4.9) 

in(-Bf -Bf) = -dB±/dx-5B± (4.10) 

and 

m{Af -Af) = -dAf/dx - 5Af + i(/2 - 2n2a)Af - i(v - 2n2a)A^ 

+ ip(\Af\2 +2\B±\2)At + iy[(\Af\2 + \Bf\2)Af +AfB*Bf], (4.11) 

in(-Bf -Bf) = -dBf/dx - 5Bf + i(/2 - 2n2a)Bf - i(v + 2n2a)B± 

+ ij8(|5±|2 + 2\A±\2)B± + iy[(\B*\2 + \Af\2)Bf + BjAfAf]. (4.12) 

Using (4.8) we obtain that Eqs. (4.9) and (4.10) are always solvable. But, as in Section 3.1, Eqs. 
(4.11) and (4.12) possess a solution only if two solvability conditions hold. These lead to the 
following evolution equations for A = A^ = A^ and B = B^ = —B^: 

A" + 25A' + 52A = 2%\¡i - v + p(\A\2 + 2|5|2) + y\A\2]A, (4.13) 

B" + 25B' + 52B = 2%\¡i + v - £(|5|2 + 2|^|2) - y|5|2]5. (4.14) 

Note that these equations are invariant under the operations 

A^y-A, A^emA for all d , B -»• -B, and B -»• e1C25 for all c2, (4.15) 

which genérate the group 0(2)x0(2), much larger than the original orthogonal group 0(2), see (2.4). 
Thus some care must be taken in the interpretation of the results. The additional (and spurious) sym-
metry is not broken by higher order terms in (4.3) and (4.4) because the original spatially resonant 
terms corresponding to wavenumbers N and N+í, viz. ÁNBN and BN~1AN+1, become exponentially 
small as N —>• oo and henee are absent from Eq. (2.1). The absence of these terms is important since 
if present they would split the mixed mode branch into two, characterized by (N +1)<¡>A —N(¡>B = 0,TI, 

where <¡>A,B are the phases ofA and B. In addition, there is the possibility of a transition between these 
two branches via a tertiary branch of traveling waves created at either end through parity-breaking 
bifurcations (Crawford et al, 1990). None of this behavior will be present here. 

Depending on the sign of f¡+y one of the two equations (4.13) and (4.14) possesses solutions that 
blow up in finite time. This is to be expected since one of the two branches that come together at the 
bicritical point is necessarily subcritical. Thus no global attractor can be expected. However, some 
interesting albeit local dynamics are still possible. To pursue these, we first consider the steady states. 



4.1. Steady states and their linear stability 

For the sake of simplicity, we assume that 

£ + y > 0 . (4.16) 

The case /? + y < 0 yields similar results, since Eqs. (4.13) and (4.14) are invariant under the 
operation 

A^B, v - > - v , P^-P, y - » - ? . (4.17) 

The puré mode solutions of Eqs. (4.13) and (4.14) are given by 

, ,? v — fi + o21(2%) , ,, , , , ? , ?, v + fi — d2/(2n) 
As

2 = —n - — - , B2=0, and \AS\
2 = 0, B2 = —n - — - (4.18) 

and correspond to standing waves with adjacent wavenumbers, while the mixed modes are given by 

,. , 9 , 9 , , (271/2 — S2,— 271/2 + <r) (v,v) 

(î i2-i<i)= w-y) +ikrñ <419) 

and correspond to spatially modulated standing waves. In the following we exelude the codimension-
two points P — y = 0 and 3/? + y = 0, and take fi as the bifurcation parameter. It follows that the 
two types of puré modes in (4.18) only exist if fi < /2<j~ and fi > fi^, respectively, where 

fif = 52l(2n) ± v (4.20) 

are the bifurcation points from the flat state, and that they bifúrcate in opposite directions. Mixed 
modes only exist if 

v/(3j8 + y) > 0 (4.21) 

and min{fi^~, fi^} < fi < max{fi^~,fi^}, where 

fif = S2/(2n) ±(P- y)v/(3jff + y) (4.22) 

are the bifurcation points from the branches of puré modes. The linear stability properties of these 
steady states are easily determined. The puré modes exhibit only steady-state instabilities, and these 
correspond to the bifurcation points to the mixed mode state. The first puré mode in (4.19) bifurcates 
subcritically and henee is unstable with respect to perturbations of like form (Le., standing wave 
perturbations with m = 0), while the second puré mode is asymptotically stable if v > 0 and either 
(i) v > 0, 3/? + y > 0 and fi^ < fi < /2¡~, or (ii) v > 0, 3/? + y < 0 and fi > fi^, or (iii) v < 0, 
3/? + y < 0 and fi > /2¡~, and unstable otherwise (see Fig. 2). The latter instabilities are nothing but 
an instability of a supercritical puré mode with respect to perturbations in the form of an adjacent 
mode. Such secondary bifurcations genérate mixed modes and these can in turn be either stable or 
unstable. The linear stability of such mixed modes is found by replacing A and B in (4.13) and 
(4.14) by As(l+X\QXz +X2Q

Xz) and Bs(l + Y\QXz + f2Q
Xz), respectively, and linearizing. The resulting 
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Fig. 2. Sketch of the stable (—) and unstable ( ) puré and mixed modes of (4.13) for ¡3 + y > 0 and: (a) v > 0, 
3p + y > 0, p - y > 0, (b) v > 0, 3p + y > 0, P - y < 0, (c) v > 0, 3p + y < 0, (d) v < 0, 3p + y < 0 (thus P - y < 0\ 
and (e) v < 0, 3/? + y > 0. Results for /? + y < 0 follow using the symmetry (4.17). 

algebraic equations 

'a + sf 
2% 

fi + v-2(p + y)\As\
2-2p\Bs X! - (p + 7)|A|2X2 - 2/?|5s|

2(T1 + Y2) = 0, 

(4.23) 



-{$ + y)\As\
2Xx + 

2t6\As\
2(X1+X2) + 

(X + 5? 
2% 

(X + 5f 
2% 

fi + v-2(fi + y)\As\
2-2p\Bs 

fi-v + 2(p + y)\Bs\
2+2p\As 

X2-2p\Bs\
2(Y1+Y2) = 0, 

(4.24) 

Y1+(t6 + y)\Bs\
2Y2 = 0, 

(4.25) 

2p\As\
2(X1 + X2) + (p + y)\Bs\

2Yx + 
(A + 5? 

2% 
fi-v+2(p + y)\Bs\

2 + 2p\As Y2 = 0, 

yield the characteristic equation 

(X2 + 2bXf 
4n2 

'X2 + 2¿A 
271 

203 + y)M, 
U 2 + 2 ¿ A 

271 
+ 2(i5 + y) |5 í |

2 + 16ñ¿s\2\B3 

(4.26) 

0, 

(4.27) 

obtained with the help of (4.19). This equation possesses a double zero eigenvalue, with eigenfunc-
tions 

(XuX2,YuY2) = (iAs,-iAs,0,0) and (XUX2,YUY2) = (0,0,iAs,-iAs), (4.28) 

which result from the invariance of (4.13) and (4.14) under the actions (4.15). The remaining 
eigenvalues arising from the first factor are stable. Thus we only need to consider the roots of the 
second factor: 

(i) If P — y 7̂  0, 3f¡ + y ^ 0 this factor yields zero eigenvalues only at the bifurcation points 
corresponding to the appearance of the branch of mixed modes. 

(ii) However, purely imaginary eigenvalues, of the form X = ± ü / , are possible provided that 

XJ/2 = n(P + yXI^I 2 - \AS\
2) = -52 + [54 + 4 ^ ( 3 0 + y)(fi - y)\As\

2\Bs\
2]ll2 > 0. (4.29) 

Since, according to (4.19), 

2[/2 - 52l(2n)} .A.2.na v2 [jl-52/(2n)]2 

\B, \AS \M\BS (4.30) 
¡1-y ' ^ ' '" J | ( 3 ^ + y)2 ($-yf ' 

we conclude immediately that the corresponding secondary Hopf bifurcation does not occur if 
( 3 £ + y ) 0 3 - y ) < 0. If, however, ( 3 £ + y ) 0 3 - y ) > 0 and (4.21) holds, a unique Hopf bifurcation 
point fi = fÍH is present. The uniqueness of this point follows from an examination of the two 
quantities appearing in Eq. (4.29) as a function of M = [fí — 32/(2n)]/(t8 — y) in the permitted 
range between ±v/(3/? + y). 

The resulting bifurcation diagrams are sketched in Fig. 2, and are in agreement with general (but 
local) results for the (nonresonant) interaction of two period-doubling modes in the presence of 
0 (2 ) symmetry, cf. Crawford et al. (1990). Note, however, that for reasons already explained there 
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Fig. 3. Sketch of the fluid domain. 

is only a single branch of mixed modes, and that this branch has two zero eigenvalues instead of 
the expected single zero eigenvalue. In particular, since there are no other eigenvalues in the phase 
direction, there are no parity-breaking bifurcations from the mixed mode branch. However, the Hopf 
bifurcation from the mixed modes does not require the presence of the resonant terms, since it occurs 
in the standing wave invariant subspace. 

5. Application to the Faraday system 

As mentioned in Section 1, Eqs. (2.1) and (2.2) describe Faraday waves in large aspect ratio, 
two-dimensional containers, provided that the effect of the mean flow produced by the waves is 
included. The proper form of this mean flow can be obtained from the general coupled amplitude 
mean flow (GCAMF) equations, derived in Vega et al. (2001). As shown below, the mean flow has 
only a minor effect in the generic case considered in Section 3, but its effect near the bicritical point 
considered in Section 4 is much more dramatic. 

5.7. Coupled amplitude-mean flow equations 

We consider a two-dimensional fluid layer above a horizontal píate that is vibrated vertically with 
an appropriately small amplitude (Fig. 3). The layer is laterally unbounded, with periodic boundary 
conditions. We use a Cartesian coordinate system with the x-axis along the unperturbed free surface 
and y vertically upwards, and nondimensionalize space and time with the unperturbed depth h and 
the gravity-capillary time [g/h + T/iph3)]-1^2, where g is the gravitational acceleration, p is the 
density and T is the coefficient of surface tensión. The nondimensional equations governing the 
system then are (Vega et al, 2001) 

</fct + Ílyy = £2, &t ~ ¡l/y&x + ¡k&y = CgiQja + Qyy), (5.1) 

f t - k - hf* = i^yy ~ VW( 1 " fl) ~ 4fx*ky = 0 aty = f, (5.2) 



(i - s)fx - sifj^TTf!^ - i>yt + Atfx -(ik + bfx)a + (42 + ^2)x/2 

+(42 + tá)yfx/2 ~ 4n<±>2 sm(2wt)fx = ~Cg[3\kxy + \\lyyy - (t/xxx + Yxyy)fx\ 

+2Cg 

ry !yJ xl ** -r^vj Miiyx-wiy_( x
 K-,gl-"Kxy i Yyyy \Yxxx i Va}»}» 

íxy ~~ YyyyJJ x ~ Yxyyk*- ~ J x 2rxyñ + (Ax-^yy)fx] , 0 ^ (V5fcc>> ~ V W / x ~ Txyy{ 1 ~ / * ) / ; 

1+f: 
+ 2Cg

 yWy vyyyux ^ rxyy,~ JX)Jx ^ y = f, 

(5.3) 
l + / x 2 

Qydx = \l/ = \l/y = Q aty = -l, (5.4) 

tKx + Z,j>,0 = «K*,J>,0, f(x + L,t) = f(x,t), / / d x = 0. (5.5) 

Here \¡/ is the streamfünction, such that the velocity (u,v) = (—\J/y,4x), Q is the vorticity, and / 
is the free surface elevation required to satisfy volume conservation recalled in (5.5c). Condition 
(5.4a) is necessary in order that the pressure be periodic in x. The remaining equations and boundary 
conditions are standard. The resulting problem depends on the aspect ratio L, the nondimensional 
vibration amplitude ¡i and frequency 2a>, the capillary-gravity number Cg = v/[gh3 + Th/p]1^2, and 
the gravity-capillary balance parameter S = T/(T + pgh2), where v is the kinematic viscosity. Note 
that Cg and S are related to the usual Onhesorge number C = vlp/iTh)]1^2 and the Bond number 
B = pgh2/T by Cg = C/(l + 5)1 /2 and 5 = 1/(1+ B). Thus 0 < S < 1, and the extreme valúes, 
5 = 0 and 1, correspond to the purely gravitational (T = 0) and the purely capillary (g = 0) limits, 
respectively. 

In a laterally unbounded layer the driving frequency 2a> selects a wavenumber k near ko, given 
by the inviscid dispersión relation for surface gravity-capillary waves 

co = [(1 - S + Sk¡)h tanh£0]1/2- (5.6) 

The associated eigenfunction is proportional to (\J/,f) = (fo, 1), with 

f0 = cosmh[ko(y + l)]/(£0sinMo). (5.7) 

The GCAMF equations are derived under the following assumptions: 

(l+h)(Cg/(o)1/2<l, L>\, |̂ x| + | ^ | ^ 1 , \f\<\, (5.8) 

and the assumption that the spatial Fourier transforms of \¡/ and / both peak for all time around the 
wavenumbers ±mko, with m = 0,í,... . These require, in particular, that 

Cg<\. (5.9) 

In a laterally bounded container the wavenumber ko may not fit, and instead the vertical vibration 
of the container will select wavenumbers near the slightly shifted wavenumber k, defined by 

k = 2nN/L, (5.10) 

where N > 1 is an integer such that 

- n< k0L - 2nN < n. (5.11) 

file:///Yxxx


Thus 

\k-ko\ - i _ 1 < ^ l . (5.12) 

With the wavenumber k the inviscid problem can be embedded in one with periodic boundary 
conditions. Thus in the following we use k instead of ko as the basic wavenumber. 

The above assumptions permit us to decompose the streamfiínction (and vorticity) in the bulk and 
the free surface elevation into three parts, namely, (i) two parametrically excited counter-propagating 
wavetrains with frequency co and wavenumbers ±k associated with the surface gravity-capillary 
modes, modulated slowly in both space and time, (ii) a mean flow depending weakly on time but 
in principie strongly on the spatial variables x and y, and (iii) the remaining part of the solution, 
which will be called nonresonant. As discussed in Vega et al. (2001) our assumptions guarantee 
that the mean flow variables exhibit well-defined averages in the fast variable x (see (5.24) below). 
Under these conditions the free-surface deflection and the streamfiínction in the bulk can be written 
in the form 

/ = emt(A+elkx +A~Q-lkx) + ce. + HOT + fm +NRT, (5.13) 

xj, = W()Q
mt(A+Qlkx - A~Q-lkx) + ce. + HOT + ij/m+ NRT. (5.14) 

Here the superscript m denotes the mean flow variables, and NRT and HOT stand for nonresonant 
terms and higher order terms, respectively. The function f 0, defined in (5.7), is evaluated at the 
shifted wavenumber k. The complex amplitudes A^ depend weakly on both t and x, while fm, \J/m 

and Qm depend weakly on t but strongly on x (and y), 

\Af\ + \Af\<\A±\<\, \f?\<\r\<i, m<\r\<h (5.15) 

cf (2.3). 
The complex amplitudes A^ and the mean flow variables \J/m and fm evolve on a timescale that is 

large compared to the basic period 2n/a> according to evolution equations obtained from appropriate 
solvability conditions (Vega et al, 2001). To adapt the resulting GCAMF equations to the notation 
and scaling used in (2.1), we must redefine t, ̂ ± , \J/m, and ¡i as 

A±=A±/Jv~g, xjjm = xjjmlvg, fí = ncüktanhk/vg, (5.16) 

where vg = co'(k) is the group velocity of the surface waves. Dropping tildes, the amplitude equations 
become 

Af^Af = icüAt -{o + ivM* + m^\2 + yMT|2M± + itiAT 

±iTi J g(y)(^)xdyA± + ir2(f
m)xA±, (5.17) 

while the equation for the mean flow in the bulk takes the form 

C + «/& = Í2m, Í2f - [^ + (M+ |2 - \A-\2)g(y)]Q™ + ^Qm
y = (QK)(Í2£ + Qm

yy\ (5.18) 

in — 1 < y < 0, with the boundary conditions 

xl?-f? = r3(\A-\2-\A+\2)x, ^y = r4(\A+\2-\A-\2) aty = 0, (5.19) 



(1 - S)f: - Sflx - v]^t + Cgvg(^yy + 3 « , ) = -r5vg(\A+\2 + \A~\2)X aty = 0, (5.20) 

Q™dx = xpm = 0, xJj™ = -r6[iA+A-e¿lkx + c.c. + \A-\¿-\A+\¿] at y =-l, (5.21) 

4±r 4±r A±(x+ L, t)=A ^ , 0 , x¡Jm(x+L,y,t) = x¡jm(x,y,t), fm(x + L,t) = fm(x,t), 

fm(x,t) dx = 0. 

(5.22) 

(5.23) 

The latter are derived from a carefül matching between the nonlinear flow in the oscillatory boundary 

layers (whose thickness is 0 ( Q )) and the flow in the bulk (Vega et al, 2001). The horizontal 
mean valué (•)* is defined as 

{G(x,y,t))x = (2f)-X i G(z,y,t)dz, with M<f<^Z, (5.24) 

(5.25) 

while 5 > 0 and v are given by 

5 = (axC
lJ2 + «2Cg)/vg, v = [2nN/L -k{)- vgaxCf]/vg, 

where 

a! = £(co/2)1/2/sinh(2£), a2 = [2 + (1 + tanh2£)/(4 sinh2£)]£2. 

Finally, the dispersión coefficient a is given by 

a = -co"(k)/(2vg). 

(5.26) 

(5.27) 

The remaining coefficients in (5.17), (5.19)—(5.21), fi,y,r\,. ..,r$, and the function g have also 
been computed, and are given by 

_ o)k2[{\ - S){9 - <J2){\ - a2) + Sk2{l - a2){3 - a2)] , [8(1 - S) + 5Sk2]o)k2 

P — A - T r s - , 777^ 777J777 TJTT-i 1 7T, n , n ,_n > (5-28) 

y 
o)k2 

4a2[(í - S)a2 - Sk2(3 - a2)] 

(1 - S + Sk2)(l + o2)2 4(1-S) + lSk 

4(1-S + Sk2) ' 

(l-S + 4Sk2)a2 + l-S + Sk2 (5.29) 
— o -t- O/C" 

A = kc/(2(o), r2 = (ok(l- a2)/(2avg), (5.30) 

r3=2co/ff, r4 = %aú2/a, r5 = (1 - a2)o)2/a2, r6 = 3(1 - a2)oú/a2. (5.31) 

$( j ) = 2a>k cosh[2k(y + 1 )]/sinh2£, (5.32) 

where a = tanh£. Note that /? diverges at (1 — S)a2 = Sk2(3 — a2), i.e., when the strictly inviscid 
eigenfrequency (5.6) satisfies ío(2k)=2ío(k). In the present paper we do not pursue this 2:1 resonance 
further; see Jones (1992) and Christodoulides and Dias (1994) for a strictly inviscid analysis, and 



McGoldrick (1970) and Trulsen and Mei (1995, 1997) for nearly inviscid descriptions that ignore 
the mean flow. 

5.2. Dynamics near the bicritical point 

To examine the role of the mean flow near the bicritical point we first rescale the variables and 
parameters as in (2.10), namely 

(x,t) = L(x,t), A±=L~1A±, (v, n) = L~\v, /t), (5.33) 

and 

xJ/
m=L-2$m, f"=L-2fm, (5.34) 

where \J/m = \J/m(x,y,T), fm = fm(x,x). Dropping the tildes and defining the bifurcation parameters 
p, and v, the damping rate parameter 8 and the slow time variable % as in (4.1) and (4.2), namely 

¡i = n+L-\jl-2n2a), v = % + L~\v - 2n2a), 5 = L-3/25, x = L~1/2t, (5.35) 

Eqs. (5.17)—(5.23) become 

Af ^Af + in(A± -A*) = -L~1/2(Af + 5A±) + iL"1 [(/2 - 2n2a)ÁZf - (v - 2n2a)A±] 

+ iL-1[(P\A±\2 +y\A^\2)A± + aAfx] 

ro 

i'yy, = ®l>?yyy i n " l < V < °> ( 5 3 7 ) 

+ L~\±irx j g(y){il?)xdy + ir2{fn)x]A± + ---, (5.36) 

^ = r,(\A-\2-\A+\2)x, ^y = r4(\A+\2-\A-\2) aty = 0, (5.38) 

xjjm = 0, xJj™ = -r6[iA+A-e2lkLx + c.c. + \A-\2-\A+\2] aty = -í, (5.39) 

A±(x + l,t,T)=A±(x,t,T), \¡jm{x+l,y,T) = \¡jm{x,y,T), (5.40) 

cf. (4.3) and (4.4), where, because of the scaling (5.33), the spatial average (5.24) must be replaced 
by 

rx+í 

{G{x,y,t))x = {2f)~x G(z,y,t)dz, with 1/L4>?41. (5.41) 
Jx—rf 

The parameter s appearing in (5.37) is defined as 

e=L3'2Cg/vg, (5.42) 

and is always (at least logarithmically) small; see remark at the end of this section. Note that the 
free surface elevation fm(x,x) decouples from the remaining mean flow variables, and is determined 



by (5.20) and (5.23), 

fm = -r5vg[\A+\2 + \A-\2- í (\A+\2 + \A-\2)dx]/(l-S), (5.43) 
Jo 

where the integral comes from volume conservation and we assumed 

1 - 5 - 1 , (5.44) 

thereby excluding the capillary limit. 
As in Section 4, we now write 

A± = A± +L~1/2Af +L~xAf + ••• + {B±+L-xl2Bf+L-xBf + • • -)e±2mx + HOH, (5.45) 

where 

Ao=A+, B~ = -B+. (5.46) 

Thus 

\A+\2 - \A~\2 = 2A+B+e2mx + ce. + • • •, \A+\2 + \A~\2 = 2(\A+\2 + \B+\2) + •••. (5.47) 

and so fm vanishes at leading order. Likewise, we suppose that 

xjjm = x¡j{)(y,x)Q2mx + ^(j;,T)e2iax + c.c. + • • •, (5.48) 

although \JA will not be needed in what follows. The slow function \J/o is found (upon substitution 
of (5.43), (5.47a) and (5.48) into (5.37)-(5.39)) to be given by 

</Vyr = Slj/Oyyyy Ül - 1 < }> < 0, (5.49) 

iAo = -2r3A+B+, ip0yy = 2r4A+B+ aty = 0, (5.50) 

tA) = 0, xp()y = 2 ÍV+5+ at y = -1. (5.51) 

Eqs. (4.9) and (4.10) continué to hold, and again yield no solvability condition. However, Eqs. 
(4.11) and (4.12) must be replaced by 

m(Af -Af) = -dAf/dx - 8Af + i(/2 - 2n2a)Af - i(v - 2n2a)A0
h + ip(\A±\2 + 2|5+|2>4+ 

+ iy[(\Af\2 + \Bf\2)A± +AfB*Bf] ± iA j g(y)^y dyB±, (5.52) 

in(-Bf -Bf) = -dBf/dx - 5Bf + i(/2 - 2n2a)Bf - i(v + 2n2a)B± + ifi(\B±\2 + 2 | ^ | 2 ) 5 ^ 

+ iy[{\Bf\2 + \Af\2)B± + BfAfAf] ± iA j g{y)^y dyAf, 

(5.53) 

where \¡/f are defined as 

\J/(t = \J/() and \¡JZ = \¡/0. (5.54) 



Eqs. (5.52) and (5.53) are solvable only if the following conditions hold (cf. (4.13) and (4.14)): 

r0 

A"+ 25A'+ d2A = 2n[fi-v +p(\A\2 + 2\B\2) + y\A\2]A + 2nr1 / g(y)(py dyB, (5.55) 

B"+ 25B'+ 52B = 2n[fi + v-fi(\B\2+2\A\2)-y\B\2]B-2nr1 / g(y)<pydyA, (5.56) 

where, as in Section 4, 

A=A+=A~, B = B+ = -B~, q> = ^. (5.57) 

Using these variables the mean flow equations (5.49)-(5.51) become 

cpyyz = S(pyyyy in - 1 < y < 0, (5.58) 

<p = -2r3AB, (pyy = 2r4AB aty = 0, (5.59) 

<p = 0, (py = 2r6AB aty = -í. (5.60) 

In the following we refer to (5.55), (5.6), (5.58)-(5.60) as the coupled amplitude-mean flow 
(CAMF) equations, and note that 

• The CAMF equations are still invariant under the operations 

A^y-A, A^elclA, (p^e~lci(p and B -»• -B, B -»• e1C2B, (p -»• e l c> (5.61) 

for all c\ and C2. Thus the spurious symmetry, noted in Section 4, is still present. Moreover, since 
the mean flow is not slaved to the surface waves it plays a dynamical role in the stability of such 
waves (see below), and henee in their dynamics. 

• When \5\ ~ 1, as assumed above, the parameter s=dCg/(dvg), and henee (using (5.6) and (5.25a)) 
is (i) of the order of cj 4,1 if k is bounded above, and (ii) of the order of \¡k2 4,1 if k is large. 
In fact, s is only logarithmically small (and so can be treated as 0(1)) if A: is logarithmically 
large compared to l/Cg. 

• The CAMF equations show readily that the (leading order) mean flow is nonzero whenever AB ^ 
0, Le., the mean flow vanishes only for the puré modes with m = 0 or 1. 

5.3. Linear stability of the puré modes 

The puré modes genérate no mean flow and henee are still given by (4.18), namely 

\As\
2 = ' - f i ^ ( 2 n \ \B2\ = (Ps = 0, 

W 2 = 9, = 0, \Bs\
2 = ' + f l - ^ ( 2 n \ (5.62) 

In the context of the Faraday system these solutions represent puré standing waves, with respective ly, 
N and N + 1 wavelengths in the period L. Fig. 4a shows the regions in the (S,k) plañe where the 
quantity /? + y is positive (unshaded) and negative (shaded). As in Section 4, we assume that 

£ + y > 0 . (5.63) 
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Fig. 4. The regions of positive (unshaded) and negative (shaded) valúes of the quantities (a) /? + y, (b) 3/? + y + ^(0) 
and (c) /? — y + ^(0) in the (£,&) plañe. The curves bounding the shaded regions on the left are all distinct. 



The results for the case /? + y < 0 follow from those below using the invariance of the CAMF 
equations under the operation 

A^B, -v, P^-P, 7^-7, A -r. (5.64) 

The first of the puré modes in (5.62) then bifurcates subcritically and henee is always unstable. 
The linear stability properties of the second puré mode in (5.62) are determined by replacing A by 
BS(XXQX% + X2Q

XT), B by 5,(1 + YXQX% + Y2Q
XT) and q> by 2\BS\

2(<PX2Q
X% + <PXXQX%) and linearizing 

Eqs. (5.55), (5.56) and (5.58)-(5.60). There are then two types of potential instabilities. The puré 
mode instability satisfies 

(X + 5? 
2n 

{$ + y)\Bs\
2Yx + 

fi-v + 2(p + y)\Bs Y1+(p + y)\Bs\
2Y2 = 0, 

(X + 5f 
2% 

fi-v + 2(p + y)\Bs Y2 = 0, 

(5.65) 

(5.66) 

withXi, X2 and q> slaved to Y\ and Y2. This system possesses a zero eigenvalue, with eigenfunction 
(Y\,Y2) = (iBs,—iBs), due to the invariance of Eqs. (5.55)-(5.60) with respect to the operation 
(5.61b). The remaining three eigenvalues are strictly negative, as in Section 4. The mixed mode 
instability excites perturbations that are orthogonal to the mode in question. Thus X\ ^ 0, X2 ^ 0, 
but Y\ = Y2 = 0. Both X\ and X2 satisfy identical equations: 

(X + 8f 
2% 

fi + v-2p\Bs\
2 -2r1\Bs d(y)#ydy x = o, (5.67) 

where $ is the unique solution of 

X<Pyy = B'Pyyyy Ül - 1 < J/ < 0, 

<P = - A , <Pyy = T4 at y = 0, - A , 

o, <z> <Z> = 0, <Py = r6 at y = -\. 

Integration of (5.68H5-70) for X > 0 yields 

VX(y+l) VX(y + l) 
<P = Ki sinh K7 c o S h ^ ± l > - l + r6{y+l), 

(5.68) 

(5.69) 

(5.70) 

(5.71) 

where 

K, 

K? 

( r 3 + r6)coshTyX/s + r4(s/ X)[cosh T/X/S — 1] 

\JX~fs cosh \fJJs — sinh \JX~fs 

( r 3 + TÓ) sinh \fX~fs + r4(s//l)[sinh A/I/S — \fX¡¿\ 

while if X = 0 

<P = r6(y+l) 

'X/scosh wX/s — sinh v/A/s 

r[6(r3 + r6) + r4](j + i)2 + ±[2(r3 + r6) + r4](y + i)3. 

(5.72) 

(5.73) 

file:///JX~fs
file:///fJJs
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Note that all the eigenvalues X of (5.67) are doubled. These eigenvalues satisfy 

X2 + 25 X 

2% 
+ 2v - (3j8 + y)\Bs\

2 - S)(X)\BS\
2 = 0, 

where 

(X) = 2rx / g(y)$ydy. 

Thus, if X > 0, 

°J{"X) 
4k2 

sinh 2k 
but when X = 0, 

4k2 

[(r6£), + KMX) - K2£)3(X)], 

0(0): 
sinh 2£ 

Here 

sinh 2k 

2k ' 

A>0i + ^[6(r3 + r6) + r4]04 + ^P(r3 + r6) + r4]05 

sinh(2£ + \/JJi) sinh(2£ — \/JJi) ^ 
i=^-L -\ i=^-L ~ 0 i 

2{2k + Jlfz) 2(2k - •Jije) 

(5.74) 

(5.75) 

(5.76) 

(5.77) 

cosh(2£ + v/I/s) — 1 cosh(2£ — v/I/s) — 1 

2(2£ + y/JJz) 2(2k - y/Xfz) 

cosh 2k — 1 sinh 2k cosh 2k 
+ . 4k2 " 3 4£3 2 F 

One can check that, properly interpreted, the above expressions apply even when X < 0 or when it 
is complex. Note that /?, r 3 , r 4 and TÓ depend only on k and 5, while 5 and s are determined by 
the chosen valúes of Cg and L; fi and v are of course the two parameters that unfold the bicritical 
point. 

The characteristic equation (5.74) admits a stationary instability at 

[3p + y + 2)(0)]\Bs\
2/2, (5.78) 

and the instability sets in as \BS\ increases if 3/? + y + 0(0) > 0 and as \BS\ decreases if 3/? + y + 
0(0) < 0. The regions of positive (unshaded) and negative (shaded) valúes of 3/? +y + 0(0) in the 
(S,k) plañe are shown in Fig. 4b. The instability is oscillatory with X = iXj, Xj > 0, if 

15, 
SXi 1 

4% + 
SXj[3p + y + S)R(Xi)] (5.79) 

710/(1/)' 4TC ' 2TC0/(/1/) 

where we have written 0 ( / t=ü / ) = 0/?(/l/)+i0/(/l/). Thus (i) when 3^+y > 0 and 0(0) > 0 (0(0) 
< 0) the mean flow reduces (increases) the amplitude at which the steady-state instability sets in 
and vice versa, and (ii) the mean flow permits the presence of an oscillatory instability on the 
supercritical puré mode branch provided 0/(/l/) > 0. This bifurcation generates a mean flow that 
oscillates back and forth, and henee cannot occur if such a flow is excluded from the formulation 
(cf. Section 4). When 0/(/l/) > 0 Eq. (5.79) provides a parametric representation of a curve in the 
v vs. \BS\

2 plañe of the type shown in Fig. 5. In Fig. 5a-d we show for four choices of S and k the 



Fig. 5. The neutral steady and oscillatory instability curves of the second puré mode in (5.62), for 3=1, £ = 0.1 and (a) 
k = 0.5, S = 0,(b)k = 0.5, S = 0.8, (c) k = 2, S = 0, and (d) k = 1, S = 0.8. The puré mode is stable only below these 
curves. For comparison, the neutral instability curve without mean flow (i.e., £^(0) = 0) is shown using a dashed line. In 
all cases the results correspond to the bifurcation diagram in Fig. 2(a); to obtain this diagram for cases (b) and (d) one 
must first apply the transformation (5.64). 

región in the (\Bs\
2,v) plañe where the puré mode (0,BS) is stable (unshaded) and unstable (shaded). 

Note that for sufficiently large detuning the presence of the Hopf bifurcation reduces dramatically 
the región of stability of the puré mode, especially in cases (a,c). The reduction is smaller in cases 
(b,d); since /? + y < 0 in these plots the transformation (5.64) has been applied. 

5.4. Linear stability of the mixed modes 

The mixed mode solutions of the CAMF equations (5.55), (5.56), and (5.58)-(5.60) are given by 

(\M\\B]\) = 
(2nfi - d2, -2nfi + S2) 

+ 
(v,v) 

(ps = 2<P(0,y)AsBs, (5.80) 
2n[p-y + ®(0)] ' 30 + y + 0(O)' 

cf. Eq. (4.18a), where <P(X,y) is the unique solution of (5.68)-(5.70) and 0(0) is as defined in 
(5.77). In the following we exelude the codimension-two points ¡i—y+0(O)=O and 3/?+7+0(O)=O; 
both quantities are shown in Fig. 4b and c in the (S,k) plañe. It follows that we may use Fig. 2 
to deduce the structure (though not the stability properties) of the mixed mode branches, provided 
we replace ¡i — y and 30 + y by (í — y + 0(0) and 30 + y + 0(0), respectively. The steady-state 



bifürcation points at the end of the mixed mode branch are unchanged, although this is not true of 
the secondary Hopf bifürcation (see below). 

The linear stability properties of the mixed modes are determined by replacing A, B, and q> by 
AS(\+XXQXX+X2Q

XX\ BS(\ + YXQXX + Y2Q
XX\ and (ps+ÁsBs(<¡>XQXx

 + <¡>2Q
XX), respectively, and linearizing 

Eqs. (5.55), (5.56) and (5.58)-(5.60). From the latter it follows that: 

fa = 2(X2 + Y1 )<P(X, y), <j)2= 2{XX + Y2 )<P(X, y), 

while the former show that (X\,X2,Y\,Y2) satisfy the algebraic equation 

'{X + 5f 

(5.81) 

271 
fi + v - 2(3 + y)\As\

2 -2p\Bs X-(p + y)\As\
2X2 

[2j8 + ^ ( O ) ] ^ 2 ^ - 2p\B3\
2Y2 - ^(X)\BS\

2(X1 + Y2) = 0, (5.82) 

together with three equations obtained by (i) interchanging X\ <-> X2 and Y\ <-> Y2, (ii) interchanging 
As <-> Bs, X\ <-> Y\, X2 <-> Y2, and changing the signs of (fi,y,v,!3), and (iii) interchanging X\ ^ X2 

and Y] <-+ Y2 in the result of (ii). Here 3){X) is as defined in (5.76) and (5.77). Using (5.80) it 
follows that X+ =X1+X2 and Y+ = Y1 + Y2 satisfy 

X2 + 2SX 
2% 

2(p + y)\As\
2-(®(X)-®(0))\Bs X+ - [4p + Si{Q) + Si(X)]\Bs\

2YJ' 

[4/3 + 3i(0) + 3i(X)]\As\
2X++ 

X2 + 2SX 
2% 

+ 2(3 + y)\Bs\
2 + (mX)- mO))\As Y' 

while X~ =XX-X2 and Y 

'X2 + 25X 

Y\ — Y2 satisfy 

2n 
(2(X) - ^ (0)) |5 , x~ + [Si(X) - ^ ( o ) ] ^ ! 2 ^ - = o, 

[Si(X)-Si{Q)]\As\
2X- + 

X2 + 25X 
2% 

+ (®(X) - ®(0))\AS Y~ 0. 

:0, 

(5.83) 

:0, 

(5.84) 

(5.85) 

(5.86) 

We may identify the former equations as describing instability with respect to amplitude or standing 
wave perturbations (the spatial phase of the mixed mode remains fixed by these perturbations), while 
the latter describe instability with respect to phase perturbations. 

The nondegeneracy conditions ?>fi+y+!3)(0) ^ 0, /?—y+S¡(0) ^ 0 (Fig. 4b and c) guarantee that the 
system (5.83) and (5.84) does not possess any zero eigenvalues; this is a consequence of the fact that 
the mixed mode branch is monotonic and henee contains no saddle-node bifurcations. Consequently, 
instability can only set in through a Hopf bifürcation. Since this bifürcation preserves spatial phase 
it produces a standing oscillation (Le., a vacillation) about the mixed mode. In contrast, the system 
(5.85) and (5.86) always has a double zero eigenvalue (resulting from the symmetries (5.61)), 
but in addition there can be a fürther zero eigenvalue resulting in a parity-breaking bifürcation of 
the mixed modes. To see this we examine the limit X —>• 0 of (5.85) and (5.86). In this limit 



D(X) — D(0) = aX + 0(X2), and the system (5.85) and (5.86) reduces to a characteristic equation of 
the form 

X2 a 27icr(/2 - 52/2n) 
s~ n-j + w) + 0 U ) 0, (5.87) 

indicating the presence of a parity-breaking bifurcation at 

fí = fip = l- + J-[P-y+D(0)]. (5.88) 

This instabihty is only possible because the coupling to the mean flow results in a transcendental 
characteristic equation with a larger number of zero eigenvalues, and it produces traveling waves 
that drift steadily either to the left or the right. In addition we may have purely imaginary roots of 
the characteristic equation. This possibility is also a consequence of the coupling to the mean flow, 
and it generates the so-called direction-reversing waves, Le., an oscillation in the spatial phase of 
the mixed mode (Landsberg and Knobloch, 1991). We do not pursue here these instabilities further. 

6. Concluding remarks 

In this paper we have examined the dynamics of the nearly inviscid Faraday system near 
codimension-two points where the neutral stability curves for adjacent modes cross. As is well-known 
such points provide the key to the nonlinear phenomena associated with the transition from one mode 
to another, since near such points the necessary secondary bifurcations all occur at small amplitude 
and so are (usually) analytically accessible. We focused on large aspect ratio domains which permit 
the presence of large-scale mean flow, and explored the role played by this flow in the resulting 
transition. In the absence of a mean flow we showed that the basic equations reduce to equations 
already familiar from the theory of nonresonant interaction of distinct modes. The different possibil-
ities are summarized in Fig. 2. An important feature of these diagrams is that one of the two modes 
is necessarily subcritical while the other is supercritical. This property is a consequence of the fact 
that the primary Faraday resonance in an inviscid fluid produces an instabihty whose direction of 
branching depends on the sign of the detuning (relative to optimal). 

In the absence of mean flow the only diflerence between the present theory and that appropriate 
to more viscous systems is the fact that the dynamics of the two interacting modes are second 
order in time. However, the added degrees of freedom are all damped and do not permit new types 
of instabihty. The situation changes dramatically once the coupling to the mean flow is included 
(Section 5). The mean flow shifts the onset of the secondary bifurcation to mixed modes (either 
increasing or decreasing the range of stable mixed modes, depending on parameters), but more 
importantly it also permits a new type of instabihty of the puré modes. This instabihty is oscillatory 
and produces the so-called direction reversing waves (Landsberg and Knobloch, 1991), Le., periodic 
oscillation in the spatial phase of the puré mode. This instabihty may precede the steady-state 
instabihty to mixed mode, resulting in a dramatic change in the bifurcation behavior. Although we 
have not pursued the nonlinear evolution of these oscillations we surmise that they most likely 
disappear via a global bifurcation. Fig. 5 summarizes the possible secondary bifurcations from the 
puré mode branches as a function of the (scaled and shifted) detuning v, with the regions of instabihty 



indicated by shading. In cases (a,c) the results of Fig. 4 show that /? + y > 0, 3/? + y + 0(0) > 0, 
p - y + 0(0) > 0, while in cases (b,d) p + y < 0, 3j3 + y + 0(0) < 0, jg - y + 0(0) < 0. The 
transformation (5.64) shows that the bifürcation diagrams in both cases are topologically the same 
provided one exchanges Bs for As and changes the sign of v. This diagram is shown in Fig. 2a, and 
shows that the supercritical mode bifurcates first and is initially stable. This mode loses stability at 
finite amplitude to a mixed mode which inherits the stability before undergoing a Hopf bifürcation. 
It is the first of these bifurcations that may be preceded by the bifürcation to direction-reversing 
waves. Fig. 5 also shows the presence of an interesting codimension-two point, at which the steady 
and Hopf bifurcations on the supercritical puré mode branch come in simultaneously. This is an 
interaction between a pitchfork and a symmetry-breaking Hopf bifürcation, and such interactions 
may lead to a variety of new dynamical phenomena, cf. Landsberg and Knobloch (1993). 

Similar computations for the stability of the mixed modes in the presence of mean flow show that 
the mixed modes can lose stability in two ways, either via a parity-breaking steady-state bifürcation 
producing traveling waves, or via a Hopf bifürcation. Of the latter there are two types, a Hopf 
bifürcation in which the oscillations respect the spatial phase of the mixed modes (producing so-called 
standing waves) and a Hopf bifürcation which produces oscillations in the spatial phase (and so 
results in direction-reversing waves). Only the standing oscillations are possible in the absence of 
the mean flow (cf. Fig. 2a) and these must be present even with mean flow in diagrams such as Fig. 
2a where (in the standing wave subspace) the stability assignments at the two ends of the mixed 
mode branch differ. In particular, in Fig. 5a the standing wave instability will necessarily destabilize 
the mixed modes in the región to the left of the codimension-two point. Although we have not 
pursued the mixed mode instabilities further it is clear that these permit the presence of new types 
of higher codimension points in parameter space (for example, where the two Hopf bifurcations 
coincide), and henee new types of rich dynamics. 
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