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Abstract

Three-dimensional (3D) oscillatory boundary lavers attached to deformable solid walls and free boundaries
of general form are analyzed via matched asymptotic expansions. to obtain the time-averaged tangential
veloeities and tangential stresses, respectively, at the edge of the layers. These provide the appropriate boundary
conditions that arc to be used to calculate the streaming flow in the bulk, outside the boundary layers. The
resulting formulae generalize to 3D the well-known expressions due to Schlichting (Phys. Z. 33 (1932) 327)
and Longuet-Higgins (Philos. Trans. R. Soc. A 245 (1953) 535).
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1. Introduction

Nearly inviscid oscillatory tflows involve oscillatory boundary layers near solid walls and free
boundaries. Reynolds stresses exhibit a non-zero temporal mean m these boundary layers, where
they drive a miearnr flow, as first shown in a pioneering work by Lord Rayleigh (1883}, in his expla-
nation of the anomalous sand accumulation at the bottom of a vertically vibrated container and of
dust at the walls of sound tubes, observed 50 years earlier by Faraday (1831). Rayleigh made a care-
ful analysis of the (nowadays called} boundary layer attached to a no slip boundary and obtained the
steady mean tlow responsible for sand or dust nonunitorm accumulation near the boundary, but did
not pay much attention to the fact that the horizontal mean tlow velocity is non-zero at the internal
edge of the boundary layer, and thus is able to drive a mean flow in the bulk. This was done 50 vears



later by Schlichting {1932) (sce also Schlichting (1968)) and further pursued by Longuct-Higgins
(1953), who also calculated the streaming How within the boundary layer attached to a free bound-
ary. and the associated time-averaged shear stress that again was non-zero at the internal cedge of
the laver. An important well known (Batchelor, 1967) property is that the time-averaged velocity or
stress converges to a gencrally non-zero value as viscosity goes to zero, wlhile it would vanish if
viscosity is zero (when the boundary layer is absent), which is not surprising duc te the singular per-
turbation character of the invigcid limit. More recently, the mean flow induced by no slip boundarics
(also called steady streaming, or acoustic streaming Riley, 2001) has becn studicd in conncction
with flows in blood vessels (Padmanabhan and Pedley, 1987), generation of mean motions in the ear
(Lighthill, 1992), interaction of sound waves with bodies (Riley, 1992), and flows around vibrating
bodies (Yan et al., 1993). And the streaming flow produced in the boundary layer attached to a
vibrating free boundary is of interest in water wave theory (Phillips, 1977; Liu and Davis, 1977,
Craik, 1982, 1985; Tskandarani and Liu, 1991 and references therein) and has been shown to play a
role in the instability of the ocean to Langmuir circulations (Leibovich, 1983). These flows have also
been studied in connection with capillary waves {(Mollot et al., 1993) and in conjunction with thermal
elfects { Nicolas and Vega, 1996; Nicolas et al., 1997, 1998; Lyubimov et al., [997), intending to con-
trol thermocapillary convection {Anilkumar et al., 1993), which 15 undesirable in materials processing
in microgravity (Kuhlmann, 1999). Most of these works dealt with the two-dimensional (2D} case
and used the 2D formulae derived by Schlichting (1968) and Longuet-Higgins (1953 ) for the bound-
ary conditions at the edge of the boundary layers when solving the meun low equations in the bulk.
When dealing with 3D problems instead, the boundary conditions must be derived in each case due to,
in words of Lighthill (1992, p. 576). “a regrettable absence of information about streaming generated
within three-dimensional Stokes boundary layers™. The main object of this paper is precisely 1o fil]
this gap, deriving general formulae for the 3D case. These are not straightforward extensions of (and
cannot be guessed from) their 2D counterparts; compare, e.g. (4.0} und (4.8), or {526} and (5.32)
below. And some care must be taken in extending 2D results to axisymmetric problems, see the exam-
ple at the end of Section 5.3. Secking for reasonable generality, we shall consider oscillatory boundary
luyers attached to both deformable solids and free boundaries that are oscillating around a surface
of arbitrary smooth shape. Still, in all works mentioned above, the streaming {low was a by-product
of the primary oscillatory flow, which happens when the forcing frequency is not a natural frequency
of the system. If instead the oscillations are resonunt, the mean low does aflect the weakly-non-linear
dynamics of the surface waves themselves at leading order (producing a term in the amplitude equa-
tions that is of the same order as the cubic non-linearity that is usually retained), as it has been
recently shown (Vega et al., 2001; Higuera et al, 2001; Martin et al., 2002; Knobloch and Vega,
2002; Knobloch et al., 2002). This is consistent with the Fact that steady circulations are well known
te aflect surface wave dynamics (Milewsky and Benney, 1995; Mashayek and Ashgriz, 1998).

Against this background, the remaining of the paper 1s organized as follows. In order to illustrate
the role of the oscillatory boundary layers in the forcing of the streaming flow in the bulk, and to
cxplain the ditficultics to be cncountered in 3D, we consider in Scetion 2 a fairly simple 2D problem,
namely a vibrating container filled with liquid. The 3D problem is formulated in Scetion 3, and the
boundary laycers attached to 3D solid walls and free boundarics arc analyzed in Scctions 4 and 5,
respectively, For completencss we also briefly consider in Scction 6 a boundary layer attached to a
deformable solid, which is of interest in, c.g. Biophysics (Padmanabhan and Pedley, 1987; Lighthill,
1992). Finally, some concluding remarks are made i Section 7.



2. A simple 2D problem

We consider a horizontal 2D rectangular container that is vibrating horizontally and harmon-
ically with an amplitude « and a frequency o (Fig, 1}, We usc the unperturbed height of the
liquid # and o~ ! as characteristic length and time for non-dimensionalization (the velocity be-
ing non-dimensionalized with « ), to write the governing cquations and boundary conditions in a
vibrating, rectangular coordinate system as

e + 1y =0, (2.1)
e+ iy, — 0= — py + R (e + 1) + £ 084, (2.2)
b=ty — U) = —py+ R0 + 25, ), {2.3)
u=v=0 aty=—1 and at x==£I, (2.4)

v=fituf, (u,Fodl — 42, —u)f =0,

Vs w TF 2R oy e /2 — (1 + ) f ] .
p—{u"+e V2 -Gf + e = - —— at v= 1/, 2.5
1’ ( ), 4f (_l + j; )1}@ 1 + j% P ‘f ( )

=0 atx==xl {2.6)

Here # and ¢ are the horizontal and vertical velocity components, p {=pressure + Gy + (1° + )2,
where p 1s the density and ¢ 15 the gravitutional acceleration} is the hydrostatic, stagnation pressure,
[ 1is the free boundary elevation (measured from the undisturbed position), and G = g/(£®*) and
T = o/(pi*e’) are non-dimensional measures of gravity and surface tension, respectively, where o
is the surface tension coellicient. For simphicity we assume that G ~ T ~ [, that the aspect ratio of
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the container 1s 2, and that the liquid fills the container up to the borders of the lateral walls, sce
below, The following basic assumptions concern the non-dimensional vibrating amplitude and the
Reynolds—Strouhal number (also known as pulsatile Reynolds number Sobey, 1980),

e=uif<l, R=wlh=(Hyrs>l (2.7)

where v is the kinematic viscosity and £y =+/ v/ is the thickness of the oscillatory boundary layers.
With this notation, R = Re - St. where Re = ae #/v 1s the Reynolds number and St = ¢/a = &7 is
the Strouhal number. The first assumption {2.7) implies that convection 18 small compared to the
non-stcady part of incrtia and because of the sccond assumption (2.7), two oscillatory boundary
laycrs develop near the bottom and the free surface. Thus convective terms will be neglected at
leading order, the boundary layer cquations will be lincar, and boundary-layer separation {Smith,
1986) and other non-hncar phenomena (Sobey, 19807 Stephanoft ot al, 1980; Pedley, 2000 and
referenees given therein) that appears at finite Strouhal number will be absent in the analysis below,
In this limit, we seck the following cxpansions outside boundary layers (in the bulk)

(v, p, ) =el(u, 0", p°, F)e" + cc]+ &1, ™, po fHy+ -]
+ &[S, 0, Ly el e+ T4 (2.8)

where c.c. stands tor the complex conjugate and only those terms that will be relevant below are dis-
plaved. Also, F, Fy and all variables with superscripts o(=oscillatory), s(=steady, or time averaged)
and/or B(=Eulerian) are independent ot z. Thus («*f, *2) is a first approximation of the time-averaged
velocity (an Eulerian mean), Substituting (2.8} into (2.1)—(2.6} we obtain at order O(z),

uy oS =it + pl — 172 =10+ pi =0, {2.9)
=0 at p=—1, uw'=0 atx=-=tlI, (2.10)
v —1f =p' —GF + TF=0 at y=0, (2.11)
F=0 atx==I, (2.12)

which uniquely determines (u®, ", p°, F) provided that the oscillations are non-resonant {namely,
that the homogenecus version of (2.9%(2.12) has only the trivial solution} as we assume hereafter.
In order to calculate (u™t, %) we could think that vorticity vanishes if it is zero initially. This and
the continuity equation (with inviscid boundary conditions) would give «** =+t =0, but this would
be wrong because vorticity is non zero in the boundary layers and can (and will!) diffuse and be
convected into the bulk. This job is to be taken by the mean flow, which is given in the bulk by
the following equations:

Wl =0, (2.13)
(r*F + 'L?Sd)(:ltf' — Y= —¢® RN u*,,r, ), (2.14)
— ('t )(uf’ — z‘-ff‘) = —qi. + R;'(vﬁi + vsﬁ ), (2.15)

where ¢° is a modificd averaged pressure at order O(e*) and

8d sy o 1 S0 oo
(™ o™y = i(i7 "ud + L‘,Uu_‘}‘,,u “pt 4+ E”U_‘}‘,) +c.c. (2.16)



is the Stokes drift velocity, The overbar denotes hercafter the complex conjugate. Let us recall
here that the Stekes drift appears in a natural way when calculating the mass transport velocity (a
Lagrangian mecan ), which is given by (Batchelor, 1967)

(HSL. Us[.) _ (HSE, i-.E"F') T (HS(I, US(‘])

and is the velocity associated with the time-averaged trajectories of material elements (thus the
appropriate ane for, e.g. convection of passive scalars). The streaming flow Reynolds number is
defined as

Ro=R = wi/y = (ujly ) (2.17)

and is assumcd to be of order one for simplicity {but it can be large, sce below), Eq. (2.13) is
obtained by substituting (2.8) mto {2.1) and averaging in time. Egs. (2.14) and {2.15) mstcad arc
obtained at order O(¢') and those terms depending on the Stokes drift velocity are obtained after
some algebra from the time average of the Reynolds stresses resulting form products of oscillatory
terms at orders O(¢) and O(c"), namely

(07(uy, — o), —1 2wy, — oD+ e (2.18)

Iy

where u] and 1y satisty
Lo a¢,sF _ aF . E _ sF 0 _
Wi+ o'y — )+ pl =il —ut e, —op )+ pi, =0 (2.19)

Replacing (2.19) into (2.18) yields the required terms appearing in {2.14) and (2.15) plus a potential
contribution to the modified pressure ¢f. Note that the oscillatory terms at orders O(¢) and O(¢?)
are potential. Thus their products yield zero Reynolds stresses.

Now, Eqs. (2.13)H2.15) apply m the bulk {in fact, in the waperturbed bulk, bounded by the
solid walls and the unperturbed free boundary } and must be accompanied by the following boundary
conditions:

Wt = 3[(L+D)ud +eel2, rY=0 at y=-1, (2.20)
Wt =0, = 3[{1+1)F +ecl2 at x==xl, (2.21)
oY = {(Fut) 4+ oo, ) =2Fu ) +4Faf + oo at p=0. (2.22)

These result from impoesing that the solution in the bulk matches with that in the boundary layers.
Let us first consider the Stokes boundary laver attached to the bottom of the container, which has
a thickness R™'? (or, in dimensional terms, /. defined above). Introducing the stretched variable

n=R" v+ 1) (2.23)
and the cxpansions

(“f o, p) = é’[(ﬁ Da-R_IpﬁDs [)U )Cié + C'C'] + EQ[(I:_‘ES’R—I,Q{;S, ps) + - ] + -, (22’4)



into (2.1)=(2.3), we obtain the following cquations at orders O(z) and O(g?)
g, +8,=0, Wd"=-pl+d, +1/2, p,=0, (2.25)

7S ~ 70,50 =4 500
Wy — Dy =0 +ec,  pPy=0", +cc, (2.26)

:

with boundary conditions

at n=0, @, =0,=0 asy— oo, (2.27)
where we are anticipating a matching condition with the outer flow. Integration of (2.25)(2.27)
vields

P'=—U(l—e ¥y, ®=-Uln+e V" - DV, p=f P (2.28)

where U7 and P depend only on x, and

B8 = 31+ DUT, +oc]2 10V as g — oo (2.29)
And we only need to compare (2.8) with (2.24) using {2.28a and b) and (2.29), and require matching
between both {(which yield U/ = u*(x,—1} and P = p*(x,—1)) to obtain the boundary conditions
(2.20). The boundary conditions (2.21} are obtained from {2.20} using invariance under translation
and rotation. The derivation of (2.22) i1s omitted here but we must mention that {(in addition to
being much more involved) it bears an additional difficulty. Namely, since the free boundary vertical
displacement can be large compared to the boundary layer thickness (which occurs if R, 18 large, see
(2.17)}), we must use a time-dependent curvilinear coordinate system attached to the free boundary
te unalyze the boundary layer. Solving the equations in the boundary layer and applying matching
conditions with the cuter flow we obtain the time averaged normal velocity (=2v*" ) and shear stress
(zF =~ CuwT/03) of the outer flow at the edge of the boundary layer, which is y = f in first
approximation; and these conditions must be translated to the unperturbed free boundary y =0 using
a Taylor expansion (recall that /' is small).

The analysis above does not apply near the comners at x==x1, v=—1,0, where some small viscous
regions appedr that should be in principle analyzed separately. But an orders-of-magnitude estimate
readily shows that these regions only produce a higher order effect on the mean flow i the bulk
because the Reynolds stresses are much smaller there than in the oscillatory boundary layers. It was
precisely because of this that we pinned the triple points (x = £1, y = 0) to the upper edge of the
lateral walls. Note nevertheless that if the triple pomnts were allowed to oscillate with an unperturbed
contact angle different from 0 and 7, then the Reynolds stresses would be huge in these regions,
which could have a net effect on the streaming [low in the bulk. But unfortunately these regions
have not been analyzed for oscillating triple points, which would be a non-trivial task (in fact, a
generalization of the classical work by Mollatt, 1964).

The boundary conditions {(2.20)}+2.21) ar¢ readily cxtended to curved smooth boundarics by just
replacing ¢ or ¢ by the tangential velocity components, and x or y by an arc length parameter
(Batchclor, 1967). A smmlar cxtension of (2.22) includes some new terms that depend on the
curvature of the unperturbed free boundary (Longuet-Higgins, 1953) (sce (5.32) below) and arc duc
to the vibrating motion of the free boundary. And the same happens near vibrating deformable solids,
sce Seetion 6 below, The extension of these boundary conditions to 3D requires more carc. If the
solid boundary or the unperturbed free boundary is a plane, then the tangential veloeity components



will be vectors and the tangential derivatives should be replaced in (2.201+(2.22) by 2D projections
on the plane of the 3D V operator, V. But the final formulac cannot be guessed. For instance, a
sccond derivative of a vector v could Icad to, ¢.g. ¢ither the (2D} Laplacian of v or V(V - v). This
cxtension has alrcady been made by Hunt and Johns (1963) and Liv (1977), If, in addition, the
solid boundary or unperturbed free boundary is a more gencral smooth surface, then we must vse
the projection of the velocitics on the tangent plane and the jatrinsic gradient operator along the
surface, and the results will depend on the (principal)) curvaturce(s) of the surface. This gencralization
requires some well-known (Aris, 1962) tools from Ditferential Geometry, which are systcmatically
used in related contexts (Romano, 1993).

3. Formulation of the 3D problem

Let us consider a liquid occupying a region of the 3D space, bounded by a {possibly deformable)
solid and/or a free boundary: e.g. a bubble, a pendant drop, a cupillary bridge or a liquid-filled
container. The solid boundary (if present) and/or the reference frame are/is oscillating harmonically
with a frequency . As in Section 2 we use w~' and ¢ as characteristic time and length for
non-dimensionalization, where /# is required to be of the order of the wavelength of the excited
oscillatory flow. The continuity and Navier—Stokes equations are

Vov=0 &t +(v - Vin=—-Vp+R 'Ar+cacost, {(3.1)

where v is the veloeity, p is the hydrostatic pressure and @ is a fixed unit vector. For convenience
we are not decomposing here convective terms into Reynolds stresses and a potential part, as we
did in Scction 2. Thesc cquations are subjeet to the following boundary conditions

v =" =gl 4 e at the no slip boundary, (3.2)
verr={07/700n - mrr, [{(Vv+ VvT) cnr] % =0,

p—Gar e f +2TM(fY=R'(Ve+ Vo ).nz]-ngz  at the free boundary. {3.3)

Here V¥ 1s a given vector function of position along the boundary, . 18 the upward unit vertical
vector, rp and n are the outward umit normals to the free boundary and the unperturbed free boundary,
respectively, f is the free boundary defllection along n, M( /) is the mean curvature of the free
boundary, and the superscript T stands for the transpose. The purameters ¢, G, T, and R are deflined
as 1n Section 2 and again required to satisfy (2.7), which is the basic assinption and is rewritten
here for convemience

e=uif €1, R=wl"jv={{)>»I1, (3.4)
where /g = 4/ Vv/w is the thickness of the oscillatory boundary layers. The expansions (2.8) are now
(0. p, f)=e((u®, p°. F)e" +cc )+ (. p5 f)+ - Y+ -, (3.5)

where u* and ¥ (and their counterparts for p and £} are independent of time and v is the
(EBulerian) time-averaged velocity. The counterpart of the problem (2.9)-(2.12) giving the oscillatory



flow in the bulk is now

V.-u'=0, " +Vp'—a2=0, (3.6)
" -n=F".n atthe unperturbed no slip boundary, (3.7)
. n=iF, p"—Gn-e.,F+TAF=0 at the unperturbed free houndary, {3.8)

where A s the intrinsie Laplacian opcrator along the unperturbed boundary (ub.). As in Scction
2 we assume that the homogeneous version of {3.6)—(3.8) has only the frivial solution; otherwise,
the solution depends on arbitrary complex constants (or amplitudes) whose calculation requires to
also derive amplitude equations, invalving higher order (viscous and/or non-linear) terms {Nicolas
and Vega, 1996; Vega et al, 2001; Martin et al., 2002). The unique solution to this inviscid, lincar
problem can be obtained upon separation of variables for appropriate geometries (or numerically
otherwise) and will be considered below as known, And the counterparts of the mean flow equations
(2.13)H2.15) are

Vv el =g, {3.9)

— (wE 3y (W oxvfy = -Vt RITARE, (3.10)

where the streaniing flow Revnolds number {which as in Section 2 can be large) is delined as in
Section 2, namely

Ry=¢'R=wa' iv=(alty), (3.11)
and the Stokes drift velocity 15 now given by
W i@ Vo 4+ ce. =iV x (1® x i°). (3.12)
The boundary conditions for the streaming ow (namely, the counterparts of (2.203(2.22)) are
SR =@ V"), v on =g, F")  at the unperturbed solid boundary, (3.13)
FP=@®(U,F), vF.n=§U F) atthe unperturbed free boundary, (3.14)

where the tilde over a vector denotes the orthogonal projection of the vector over the tangent plane
to the ub.; in particular, £F is the Eulerian shear stress, namely the orthogonal projection of the
Eulerian stress ™ = [V (") 4+ V(") ] - n. The right-hand sides, @ and ¢, will be calculated in
Sections 46, in terms of U7 =" (u.b.), V¥, and F, see (3.7) and (3.8). This will require to apply
matching conditions between the solutions in the bulk and in the oscillatory boundary layers.

Although the analysis above was made for R, ~ 1, it remains valid under the sole assumptions
(3.4}, which arc thc only assumptions in this paper. Note that under (3.4) R, varies in a wide range,
from small 1o large values, because R~ and ¢ arc independent small parameters, If R, 1, then the
mean fHow cxhibits a sccondary viscous boundary layer on top of the primary oscillatory boundary
laycrs considercd above (Stuart, 1966).

Oncc the linear problem (3.6)-(3.8) is solved, which is usually a reasonable task, the right-hand
sides of (3.1Q), {3.13) and (3.14) arc rcadily calculated (the functions & and ¢ will be obtained
below), and the non-fincar problem (3.93.10}, (3.13) and (3.14) can be solved, numerically except



for small R, and appropriate gcometrics. Note that the strecaming flow equations arc decoupled from
the steady deflection of the free boundary, /*. which can be caleulated a posteriori from (3.3 )

The analysis in Scctions 4-6 will require to solve the cquations of moetion in the oscillatory
boundary lavers, The flow necar vibrating solid walls and frec boundarics is conveniently analyzed
in a frame attached te the ub. To this end, at cach normal to the ub, the veleeity is decomposed
into its tangential and nermal components as

v=r—Wwn and Ww=v.n (3.15)
Using the formulae in Appendix A, the governing Egs. (3.1) are rewritten as
V- 4 00/0E — 2MW + O(]F] 4 p)|E] =0, (3.16)

A+ (- VW 4+ wdw/oé — = -—Vp—E@(Vpi+ Rilazﬁ,ﬁ'f}fg
+O((F)* + |w|?

v

PR, (37

R0+ WOW ¢ = —0 /& + RTIOM0E 4+ O((|#]7 + |ﬁ?'|3) + (7] 4 W)HR™, (3.18)

where we are anticipating that in the boundary layers considered below [V| ~ 1 and |8/0¢] ~ R172,
Here, & is a coordinate along #, V - and V are the inrrinsic divergence and gradient operators
along the wb., and £ is the Weingarten map of the wb., which bears complete information on
the curvature of the w.h.. Let us recall here that the Weingarten map (Thorpe, 1979) of an oriented
surface §, with a unit normal n, is defined as #F = —(¥ - V)a. This map is associated with the
second fundamental form of the surface by 77{i)=(¥) . #. Thus the curvature of the normal section
of § that is tangent to the unit vector ¥ is given by x, = 2{¥} . ¥. Still, the cigenvalues of % are the
principal curvatures and the associated eigenvectors are tangent to the curvature directions. Thus
we have

Lojer + ey =i ey + e, (3.19)

where ¢; and ¢, are unit vectors along two curvature directions, and x; and x, are the associated
principal curvatures.

Similarly, if £ is the (small) deflection of the free boundary along # then the boundary conditions
(3.3a and b) are rewritten as

W=070t 4+ -V OWE + WDLA (3.20)
WICE+ L+ Vi + L L+ Vi) — (Vi Vi) - VS
2ROV + 20 #(V ) =C at &= 1. (3.21)

These equations and boundary conditions arc of independent interest in, ¢.g. the analysis of the
flow in thin films (Couder et al., 1989} of arbitrary shape.

(|p

4. The boundary layer attached to a static solid wall

Asg in the analysis of the Stokes boundary layer in Section 2 (except for a change m sign), we
usc the stretched coordinate
5n =RV (4.1)



and scck the following cxpansions
(p.F)=c(PF)c¥ +oc + & [{( )+ OT] +-- -,
=R foo. + W HOT) 4 -, {4.2)

where V, 5, B, w', P, and p* arc time independent and OT stands for oscillatory terms, depending

on { as ¢, with m # 0. Note that &+* and &2w* arc the steady parts of the velocity components at

lcading order. Replacing (4.1-(4.2) into (3.16)1+3.18) we¢ obtain the following cquations at orders
7

g and g

Vit — iV =VP, 8Pin=10, oW/iEn=-V .V, (4.3)

et =V p = (VN W L WaV/ty+ce. 0pHion=aw'/dn =0, (4.4)
in —oc < # < 0. Also, Eq. (3.2} and matching conditions with the outer flow lead to

V=yvi=0, W=w=0 atn=0, Viog=0dn=0 atn=—o0 {4.5)
Integration of (4.3)(4.5) subsequently yields

V=U(l—e"), W=—[n+(l—e")VilV .U,

in —o¢ < n < 0, where as defined above U 1s such that the tangential component of the outer flow
at the solid wall is given by ¥ = &(Uc + cc.) + O(¢*) and

W=@ = _[2431NV - U)W+ (U - VWU +cc]2. w=¢=0, (4.6)

at y = —oo. Now, we only nced to apply matching conditions with the outer, inviscid flow, invoking
(3.5) and (4.2), to obtamn that these expressions for @ and ¢ arc precisely the night-hand sides of
(3.13). And vsing this, {3.12) and (A.9), the tangential and normal components of the Lagrangian
mean tangential velocity, v = v + ¥4 at the edge of the boundary layer are found to be (cf.
(2,20)+2.21))

Bl = (24 30V - U + (1 = 2000 - VU +celi2, v on=0, (4.7)

As in Section 2 the forcing tangential velocity is independent of both viscosity (i.e., of R) and the
curvature of the boundary. The latter will not be true for vibrating boundaries (Sections 5-6 below).

These tformulae generalize the well known ones in 2D (Batchelor, 1967), namely (cf. (2.20)
(2.21))

W= 31+ DT AU /s + e ]/2, w™ = —[(3+ 50U AU ds + ce]/2. (4.8)

Here, ¥ and &/ have been written as ¥ =ut and U = U't, where ¢ is a unit tangent vector to the uw.b.
and s is an arc length parameter along the w.b.

5. Oscillatory boundary layer attached to a free boundary

Now the boundary layer is oscillating with the free boundary. As explained at the end of Section
2, the derivation of the boundary conditions (3.14) is made in two steps: in Section 5.1 we analyze
the oscillatory boundary layer in a reference frame attached to the free boundary, and apply matching



conditiong with the outer flow at the cdge of this layer; and in Section 5.2 we obtain the boundary
conditions of the outer Hlow at the unperturbed free boundary.

5.1, The oscillatory boundary laver

We redefine the normal veloeity component and use the following stretched coordmate attached
to the free boundary

W= af =5V =R = ), (5.1)
to rewrite Eqs. (3.16)—(3.18) as

oWt o+ RTVHV = 2MEfe) = O RTI 4 oY, (5.2)

ORI+ (5 - VW4 R +7 . VO n — (Qp/omyV F]1 = (Df100)%F + Vp

9

([ + RTENAV p)y— 85/t = Olele + RTVY, (5.3)

apiom+ RVH For — 0 ont) = Ole(e + RV, {(5.4)

where we are 'a,ntigipa'[inU that the boundary layer thickness is O(R™Y?) and that |8] ~ [/] ~ ¢
and W ~ ¢R™'2 + 2. Note that these cquations do not coincide with the original Egs, (3.16)—
(3.18); thus the Prandt]l transposition theorem (which only applics at leading order and requires that
|/ | ~ R™Y2, Glauert, 1957) cannot be applicd here. Similarly, the boundary conditions (3.20)(3.21)
arc rcwritten as

Wt =0 + ¢RT', (

A
h
o

TR+ (W OV f + RV + VO f it +v - VI
+ RS LLT + V@ 720) + 2820 (V)]
RNV VY-V =0(8 + R at p=0. (5.6)
Now we seck the expansions
=cFe + oo+ -,
F=e(Fy + BV fee + 8008 R VS 1 OT) -,
W= eR e 4o+ 2w+ 0T+,

p=aPy+ RPN +co + (P + R p5+ 0T+, (5.7)



where the various coctlicients (F, VFy, 7, ...} arc independent of £, Substituting (5.7) into (5.2)-(5.4),
the following cquations result at orders ¢, cR™ Y2 and &

PV iont iV, = V P, CPy/tn=10, TW/0y= —V -V, + 2iMF,
FVont —iV, = VP +n#(VFy), P\ iln=F,

o — Vi =F 2V, + VP — (0P /o) VE +(Fy - VOV,
+ W eVt +ee.,  Opiity =ows/dy =0, (5.8)

in —oc < 1 < 0. We alse impose the boundary conditions (5.5)(5.6), which lead to

Wi=0, 0F/on=0, 0V/on=—(LV,+iVF).

wh =0, 5/on=0 atn=0, (5.9)
and anticipate the following marching conditions with the outer flow

Vo=V /e = on/en =0 as n — —oc, (5.10)
Integration of {5.8)+(5.10) viclds

Py=P, V,=U=iVP), W =(Q2iMF -V -Up, (5.11)
Pi=Fn+ P, ¥y=—2V"HNI+nH +iVP, (5.12)

2, (5.13)

. ‘( .
wi =10, W=, pi=
sl

where U, Py, P, p§
H— 72U +iVF. (5.14)

,%(]

and »3" arc mdependent of i and

Now, using (5.11}5.13) the steady part of the momentum Egs. (5.3} and (5.4} and the boundary
conditions {5.6) at order ¢?R™1? can be written as

apsjon =POL, (5.15)
s = —2V(H - VYT + (T - VH + iFLHVA
+2neYMIME +V - U)H + e+ (V p5 + POL) (5.16)
in —oc <y <O, and
i+ vy =(VU + VU Ty . VF =V (i . VF)
—(Q2IMF =V - U)WVF — F#(PU —iVF) +cc. (5.17)

at # = 0, where POL stands for a polynomial in the » variable, whose coellicients can depend on
position along the free boundary. Here we take into account that those terms of the order of £2R 172,
not displaved in (5.3), depend quadratically on (¥,», p, '}, and thus can only contribute to POL in
(5.16). Also we anticipate a part of the matching conditions with the outer Tow, namely 2%v§/n* =0



as 4§ — —oc. Thus the right-hand side of (5.16) must vanish at 77 = —oo and, consequently, the last
term there (Le., V p5 +POL, which is a polynomial m # because pi —=POL, see (5.15)) identically
vanishes, Then we only need to integrate (5.16) and take into account (5.17) to obtain

(OV30n), —oo + LY ==2i[(H - VYU +(0 - V)YH +(V . U)H]
+FSH+4MFH - (VU +VUT) . VF V(U . VF)
—(2IMF =V . U)\VF +2iIF#(VF)+cc. (5.18)

Now we consider the tangential and normal velocity components of the outer flow. Invoking (5.1),
(5.7}, (5.11)-(5.13), and (5.18) we obtain

F=ele’ e+ 2000 + 0T+, (5.19)
W= eiFc" 4 e+ (U - VF +ee +OTH -, (5.20)
PFO¢ = cHEY 4 e+ [0V 0 hye oo + OT] 4+, (5.21)

at {=f. Here H is as defined in (5.14) and we have used the expression 0¥/0f = %%+ Vi + O(]€]).
which holds for the oscillatory part of the outer flow and is obtained when taking into account that
this oscillatory flow 1s potential.

5.2 Boundary conditions for the outer flow ai the unpertwrbed boundary
In order to caleulate #, W, and &F/8¢ at the ulb, (& =0} we need a leading order approximation
of the derivatives of these quantitics with respect to £, which are given by (5.21) and
/08 = —e[(V - U — 2iMF)e" +cc]+ -,
P8 =2 H — V(V - U= 2iMF)e" +co 4 - - -, (5.22)

at = f, where we have used the continuity Eq. (3.16} and have tuken into account {A.5) and (A.6)
at leading order {recall that the oscillatory flow in the bulk 15 potential in first approximation). Then
a Taylor expansion and (5.19)+(5.21) vield

F=clUc" +ce 4+ —(FH +cc)+ 0T+ -, (5.23)

W = eiFc fee + [V - (FU)Y fec + OT] + -, (5.24)

OFi0¢ = eHe" 4o + & (Dv5/8n)y——se
+ & [FV(V - U) = 2F¥H — 2IMFVF +ce. + OT] + -, (5.25)

at the wb. (¢ =10), where we have used the identity V(FV . U)=(V . U)WEF+EFV(V - U). And
we only need to apply matching conditions with the outer [ow, invoking (5.18), (5.23), (5.25) and



(A 11}, to obtain the nght-hand sides in the boundary conditions (3.14), which are
=@ = 20MF(LU +iVF)= F#(FU)+ V[V AFU)+(VF - V)
+20(V - UWF —i[(2U - VY + (I - V)ZU +(V - DDLU + e (5.26)

vEon=¢p=V . (FU)+cec, (5.27)
where we have taken into account that, since VF and U are potential,
FV . U4 VE . U=V . (FU), (VU + VU . VF=2(VF - VU,
(U - VIWVF +(VF - VYU =V(VF -1 (5.28)

Similarly, invoking (5.28b), (A.9) and (A.12), we obtain the counterparts of (5.26) and (5.27) for
the Lagrangian velocity,

PL=4FOM + LHLU +IVF)+(VF - VU
+(V . UWF +i[(£U . VU —(V . T)2U]) +cc., (5.29)

Won_o. (5.30)

Three remarks are now in order

{a) As in 2D (Longuet-Higgins, 1953}, the Eulerian and Lagrangian shear stresscs are independent
of viscosity, but do depend explicitly on the curvature of the ub., through the mean curvature M
and the Weingarten map .

{b} The normal component of the Lagrangian velogity vanishes at the ub., which 1s consistent
with the fact that the net mass flux across this surface must be zero. The Eulerian velocity instead
docs ¢xhibit a nermal component at the ub. {scc (5.27)), which is just duc to non-lingar terms in
the boundary condition (3.3a) (or (3.20}); thus it comes from a purcly inviscid cffect, which is not
affected by the oscillatory boundary layer,

(¢} Let us assume that the oscillatory flow is standing, which occurs if the phases of F and 1/
arc constant and coineide. In this casc, the right-hand sides of (5.26)H5.27} and (5.29) identically
vanish, which means that the normal component of the Eulerian velocity and the Eunlerian and
Lagrangian shcar stresses arc all zero. This property is uscful to obfain a priori propertics of the
strcaming flow produced by surface waves (Higuera ct al., 2002a,b).

-

5.3, 2D problems, planes and cvlinders

The expression (5.30) simplifics in 2D fo
Bl = §[kF (kU +1dFids)y 4 (dF /ds + i) dUids + cc]. (5.31)

where we are using the same notation as at the end of Scction 4 and k=w% - # is the curvature of the
u.b., with % and a being the curvature vector and the outward unit normal, respectively; thus « > 0
if the uwb. is concave towards the cxterior of the fluid domain. Here we have taken mto account
that in 2D the mcan curvature 44 must be replaced by /2 and that applying the Weingarten map
consists of multiplying by x. This expression coincides {up to notation differences) with that first



derived by Longuct-Higging (1953 ), which is usvally employed in the literature (c.g. Phillips, 1977,
Craik, 1982, 1985), The counterpart of (5.31) for the Eulerian mean velocity s obtained from (5.26)
to be

= 2[ieF dF/ds + PFU YA + (2dF/ds + il ) dUMds 4 ce]. (5.32)

If {in 3D} the u.b. is a plane, both the mean curvature and the Weingarten map identically vanish,
and (5.26) and (5.29) simplify to

P =2[V(V (FU)+(VF - VYU + (V- U)VF fcel (5.33)

FL=4[(VF VYU +(V - U)VF +ccl. (5.34)

This latter expression coincides (up to notation differences) with that obtained by L {1977).
For cvlinders of arbitrary cross-section, the components of the Eulerian tangential stress along the
cross-section and the axis are

B e = AKFF 4 2[(FU )+ (FV),) + 20F U+ F U, + F.V)

Y CrOas

—2ik[FU, + UG, 4+ V) +ce, (5.35)
Tl = 2FF, + 2[{EU ) + (FV )], 4+ 20F 0, 28,1, + F U

— 2kl V4 cc. (5.36)

respectively, where « 18 the curvature of the cross-scetion (whose sign 1s defined as in (5,31}) and
we have taken mto account that the mcan curvature of the cylinder 18 M = «/2, and according to
(3.19) the Weingarten map 1s given by

(jﬂg)v)s:rnss K 0 i (s .
(3’1} )axiul a O 0 i . A )

Eq. (5.35) reduces to (5.32) if I is sct to zero and dependence on p is climinated, Note however that
(5.35)+5.36) arc csseatially different from the particularization of (5.33) to Cartesian coordinates,
namely the former arc not obtained from the latter by just replacing x by s (as it happened with the
tangential velocity in Scetion 4}, This is so because (5.35)3H5.36) depend explicitly on the curvature
of the cross-section, as anticipated above, For instance, if the cylinder 1s circular with radms 1 and
the flow is axisymmetric, then the axial Eulerian stress at the wb. is obtained from (5.36) by sctting

£ =—1and U =0, and climinating dependence on s, as
B =2 —1FF, +(FV ), +2F,F, +ccl, (5.38)

which does not coincide with its counterpart n 2D for straight u.b. (i, that obtained from (5.32)
when sctting x = 0 and replacing {7 and s by ¥ and vy, respectively ). Eq. (538} coimncides (up to
notation differences) with thosc derived by Nicolas and Vega (1996) for this particular gecometry, but
not with its counterpart uscd by Lyubimov ¢t al. (1997), where Longuct-Higgins's 2D formula was
(somewhat looscly) employed for the cylindrical gcometry. For large frequency the oscillatory flow
cxhibits a short axial wavelength, much smaller than the transversal curvature radivs of the cylinder.
Then y-derivatives arc large, the first term in the right-hand side of (5.38) can be neglected and
both expressions coincide,



6. Deformable vibrating solid boundaries

If a solid wall is not at rest then its motion must be talken into account. For completencss we also
allow the wall to be deformable, and assume that it is vibrating in such a way that its deflection along
the outer unit normal to its vaperturbed position, #, and its tangential velogity (i.c., perpendicular to
n) arc

f=eFe oo+, P=el" 4co+---. (6.1

As in Sections 4 and 5 the tangential component of the outer flow at the unperturbed boundary is
of the form ¥ = (e +cc.} + ---. Proceeding as in Sections 4 and 5, the right-hand sides of the
boundary conditions (3.13) at the u.b. are found to be'!

¥ n— =V . (FU)+cc, )

PE = = WML — Uy — 2UY —iVFIF - [(I/ = 0Y) . V(U = U"))2
—[2+30WV - U -2 =0V . U1 = U"y2
+il( - VYUY + (U Vi +cc. (6.3)

Here, as in Section 5, 3 and & are the mean curvature and the Weingarten map of the ub., and

V - and V are the intrinsic divergence and gradient operators along the u.b.
Invoking (3.12}), {6.2)(6.3} and (A.9), the tangential and normal components of the Lagrangian
mean velocitics are found to be

o= U - VYW +FRLU +iVF)+ce. +7 and »" . n=0, {6.4)

respectively, where ¥ is given by (6.3). As in Section 5.1 {and for the sume reason), the Lagrangian

mean normal velocity at the ub. vanishes but the Eulerian mean normal velocity does not. The
tungential components of both the Eulenan and Lagrangian mean velocities do depend explicitly on
the curvature of the u.b., which 1s entirely due to the motion of the boundury (c.f. Section 4).

6.1, 2D problems, planes and cvlinders

In 2D, with the same notation as in Scetion 5.1, Eq. (6.3) reducces to
uh =k F2U = 30" —iF dFids — 3[(U — U"Yd(U — U")/ds)j2
—i[(30 = 5L AU/ds] — (3T — U*)ydUids)i2 + cc. (6.5)
If {in 3D) thc u.b. 1s a planc then Eq. (6.3} becomes
PP _iFVF —[24+30V - U -2 -0V - U (U -U")2
—[(O0 = 0"y VU = Uy2 +i[(7 - VU + (U - VY] +cc. (6.6)

VA detailed derivation can be obtained fram the authors.



Two particular cascs arc of practical inferest. If the solid beundary cxhibits no tangential velocity
to leading order then L7 = (), and

= iFVF - [(U - VU + 243}V - U2+ ce. (6.7)

This expression ceincides (up to notation differences) with that obtained for unperturbed planc walls
by Lighthill (1992), who cxtended a former cxpression obtained by Hunt and Johns {(1963) for
the particular casec ' = 0, and also with those obtaincd for circular cylinders, in the axisymmctric
(Nicolas and Vega, 1996; Lyubimov ¢t al, 1997) and non-axisvmmetric (Higuera, 1998; Higucra
et al., 2002a,b) cases. If instead the outer flow is at rest and the solid boundary oscillates only
tangentially to itself, then I/ =0, F =0, and

W= (O - VYU + 210V - U U +ecliz+ - (6.8)

This latter expression is of interest for instance in the analysis of the streaming flow produced in
the surrounding air by Marangoni waves in not-too-thin soap films (Vega et al., 1998 and references
therein),

Finally, if the u.b. is a ¢vlinder then the components of the Eulerian velocity aleng the ¢ross-section
and the axis of the cylinder are obtained from (6.3 ) without difficulty, but vield quite involved ex-
pressions. For simplicity we only consider the particular case in which the oscillatory axial velocities
vary linearly with the axial coordinate (which require that in addition the tangential velocity com-
ponents and the solid boundary deflection be independent of the axial coordinate), namely

= [/T(S), Lru' — U-W(S), V= }«'V()(S), Y — y]r,,’ar(s)’ F = F(S), (69)

which is of interest in flows in blood vessels (Padmanabhan and Pedley, 1987). In this case (6.3)
yields the following components of the Eulerian mean velocity

wt = [w(2U — 3U"Y — idF/ds)F — [(U — UMY (U — U*)ids)/2
— (2 4 3i)dT7ds + Vo) — (2 —i)dT*ids + FEN(U — U* )2
+T AU ds + UV AT /ds ) + ce., (6.10)

v = (e F(Vy — VP — (7T = UMY d(Fy — PEids 4+ [V — B
—[(2 4+ 30)dT/ds + Vo) — (2 — DT ds + FEN(Vo — F)i2
+T APy ids + U7 AV ds + 2F, Vi'd+ee.), (6.11)

respectively, Note that (6,10} comeides with (6.5) if ¥y and F¥ arc sct to zero. And (6.10)-(6.11)
coincide with the e¢xpressions used by Padmanabhan and Pedley (1987) if the oscillatory flow is
standing (namely, if the phases of 7 and iUV are constant), which was the case in that work.

g

7. Concluding remarks

W have considered the strecaming flow produced by a ncarly inviscid oscillatory low in general
3D geometrics. We have generalized the 2D well-known formulae (Schlichting, 1932; Longuet-Higgins,
1953) giving the complete set of boundary conditions (3.13(3.14), which are necessary to calculate



the sccondary strcaming flow in the bulk {outside the oscillatory boundary layers), where it is
governed by Egs. (3.9) and (3.10} With these general formulac we can avoid the tedious and
tricky boundary laycer analysis that would be necessary i cach particular 3D problem, in the same
way as it happened with the former 2D formulac. This s specially useful in the weakly-non-lingar
analysis of ncarly-inviscid vibrating systems with free boundarics, such as the Faraday system (Miles
and Henderson, 19903, in which the strecaming flow is not just a by-preduct, but can intcract at
leading order with the primary vibrating How (Vega ot al, 2001; Higucra ct al.,, 2001; Martin ct al,
2002; Knobloch and Vega, 2002; Knobloch ¢t al., 20023, The derivation of the boundary conditions
hag required to calculate the streaming flow within the oscillatory boundary layvers attached to 3D
(deformable) solid walls and free boundaries, and apply matching conditions with the streaming
flow in the bulk. As in 2D, the boundary conditions consist of imposing a tangential velocity and
a shear stress near a no slip boundary and a free boundary, respectively, in terms of the solution
of the lingar preblem giving the primary oscillatory flow, The only assumptions for the validity of
the analysis above are those in (3.4). Thus the free boundary deflection can be large compared to
the boundary laver thickness, which happens as the streaming flow Revnolds number is large (see
(3.11)}), as required in many applications. This generality required that the analysis of the inner
structure of the boundary layer be made in an oscillating curvilinear coordinate system attached to
the moving boundary.

The formulae derived in the paper have been written in terms of both the Eulerian and Lagrangian
mean velocities, and have been compared to previous results in the literature for particular 2D and
3D geometries.

For simplicity we have considered a steady streaming flow. But this can also be slowly varying
with time due to various reasons (instabilities of steady patterns, coupling to the primary oscillatory
flow). The extension is straightforward. We only need to allow the streaming [low variables to also
depend on the slow time variable

s
o

T=§&1 (7')

The resulting equations would only change in a term O/t that must be added to the left-hand
side of (3.10). The boundary conditions (3.13) and (3.14) instead remain unchanged.
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Appendix A,
Here, we collect some vector identitics uscd above, whose derivation is omitted because it
requires an cxtensive use of non-intuitive analvtical tools, which perhaps arc not of much interest

v . . . - 3 oo ’
in themselves from a purcly fluid dynamical point of view.* As above, ¢ is a coordinate along the

= It can be abtained from the authors upon request.



outward unit normal # to the ub, and the velocity vector in the original static reference frame is
decomposed as

V=7 +Vn, (A1)

where w=v - r and ¥=v» —wn are the velocity components along r and orthogenal to n, respectively.
The following identities hold

Vp=Vp+ LV )+ (0p8m+ O] p). (A2)
Vv=V . F+dija¢ -2} (%] + ). (A3)
(v - Vo =(F. VW4 505 — £7)

LI (VW 4 L8+ 00i0/08n 4+ O( (9] + %] 1), (A4)
Av = 088 + (W06 + Of|v| + ), (A5)
OF/OE = L0+ VW + EL(LTE VWY + O(EP (| + W)y if Vxr=0, (A.6)

where V - and V are the intrinsic divergence and gradient along the wb. ¢ = 0, 3 is the mean
curvature of the wb., & is the Weingarien map.

If 7 is the (small) dellection of the tree boundary along n, then the boundary conditions (3.3a
and b} can be written as

w=0f/tt+7V - V/, (A7)

IF/OE+ LT+ fLF)V+ VW + FLVW) = (Vi+ Vi) . VF
+20FDOV [+ 20 L (V) =07 + eI /P) at &= 1. (A8)
The tangential and nermal velocity components of the (re-scaled) Stokes drift arc
P i(F . VW +iFQLY + VI +ce, =iV (WV)+ce, (A.9)
in first approximation, in terms of the oscillatory flow velocity, assumed te be given by
F=cVel fcc b oo, w=eWe foc +ooe. {A10)

The tangential stress associated with the velocity lield v at the u.b. 15

§ = OF/0¢ + LF + V. (A1)
In particular, the tangential stress associated with the Stokes drift, namely the orthogonal projection

of 2% = [V + V(»*)7] . 1 on the tangent planc to the ub. is
B=2(2(M + LHLU +iIVF) + & .,er)]F — VIV - (FUN+(VF - V)U.
+(V - UWWVF +il(LU - VYW +(I - V)ZU —(V . D) ZU] +cc.) (A.12)



in first approximation, where with the notation wsed in this paper, ¥ =17 and B = iF, with I/ and
£ given functions of position along the unperturbed free boundary.
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