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Abstract 

Three-dimensional (3D) oscillatory boundary layers attached to deformable solid walls and free boundaries 
of general form are analyzed via matched asymptotic expansions, to obtain the time-averaged tangential 
velocities and tangential stresses, respectively, at the edge of the layers. These provide the appropriate boundary 
conditions that are to be used to calcúlate the streaming flow in the bulk, outside the boundary layers. The 
resulting formulae generalize to 3D the well-known expressions due to Schlichting (Phys. Z. 33 (1932) 327) 
and Longuet-Higgins (Philos. Trans. R. Soc. A 245 (1953) 535). 
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1. Introduction 

Nearly inviscid oscillatory flows involve oscillatory boundary layers near solid walls and free 
boundaries. Reynolds stresses exhibit a non-zero temporal mean in these boundary layers, where 
they drive a mean flow, as first shown in a pioneering work by Lord Rayleigh (1883), in his expla­
naron of the anomalous sand accumulation at the bottom of a vertically vibrated container and of 
dust at the walls of sound tubes, observed 50 years earlier by Faraday (1831). Rayleigh made a care-
ful analysis of the (nowadays called) boundary layer attached to a no slip boundary and obtained the 
steady mean flow responsible for sand or dust nonuniform accumulation near the boundary, but did 
not pay much attention to the fact that the horizontal mean flow velocity is non-zero at the internal 
edge of the boundary layer, and thus is able to drive a mean flow in the bulk. This was done 50 years 



later by Schlichting (1932) (see also Schlichting (1968)) and fürther pursued by Longuet-Higgins 
(1953), who also calculated the streaming flow within the boundary layer attached to a free bound­
ary, and the associated time-averaged shear stress that again was non-zero at the internal edge of 
the layer. An important well known (Batchelor, 1967) property is that the time-averaged velocity or 
stress converges to a generally non-zero valué as viscosity goes to zero, while it would vanish if 
viscosity is zero (when the boundary layer is absent), which is not surprising due to the singular per-
turbation character of the inviscid limit. More recently, the mean flow induced by no slip boundaries 
(also called steady streaming, or acoustic streaming Riley, 2001) has been studied in connection 
with flows in blood vessels (Padmanabhan and Pedley, 1987), generation of mean motions in the ear 
(Lighthill, 1992), interaction of sound waves with bodies (Riley, 1992), and flows around vibrating 
bodies (Yan et al, 1993). And the streaming flow produced in the boundary layer attached to a 
vibrating free boundary is of interest in water wave theory (Phillips, 1977; Liu and Davis, 1977; 
Craik, 1982, 1985; Iskandarani and Liu, 1991 and references therein) and has been shown to play a 
role in the instability of the ocean to Langmuir circulations (Leibovich, 1983). These flows have also 
been studied in connection with capillary waves (Mollot et al., 1993) and in conjunction with thermal 
eflects (Nicolás and Vega, 1996; Nicolás et al, 1997, 1998; Lyubimov et al, 1997), intending to con­
trol thermocapillary convection (Anilkumar et al., 1993), which is undesirable in materials processing 
in microgravity (Kuhlmann, 1999). Most of these works dealt with the two-dimensional (2D) case 
and used the 2D formulae derived by Schlichting (1968) and Longuet-Higgins (1953) for the bound­
ary conditions at the edge of the boundary layers when solving the mean flow equations in the bulk. 
When dealing with 3D problems instead, the boundary conditions must be derived in each case due to, 
in words of Lighthill (1992, p. 576), "a regrettable absence of information about streaming generated 
within three-dimensional Stokes boundary layers". The main object of this paper is precisely to fill 
this gap, deriving general formulae for the 3D case. These are not straightforward extensions of (and 
cannot be guessed from) their 2D counterparts; compare, e.g. (4.6) and (4.8), or (5.26) and (5.32) 
below. And some care must be taken in extending 2D results to axisymmetric problems, see the exam-
ple at the end of Section 5.3. Seeking for reasonable generality, we shall consider oscillatory boundary 
layers attached to both deformable solids and free boundaries that are oscillating around a surface 
of arbitrary smooth shape. Still, in all works mentioned above, the streaming flow was a by-product 
of the primary oscillatory flow, which happens when the forcing frequency is not a natural frequency 
of the system. If instead the oscillations are resonant, the mean flow does aflect the weakly-non-linear 
dynamics of the surface waves themselves at leading order (producing a term in the amplitude equa­
tions that is of the same order as the cubic non-linearity that is usually retained), as it has been 
recently shown (Vega et al., 2001; Higuera et al, 2001; Martin et al, 2002; Knobloch and Vega, 
2002; Knobloch et al, 2002). This is consistent with the fact that steady circulations are well known 
to aflect surface wave dynamics (Milewsky and Benney, 1995; Mashayek and Ashgriz, 1998). 

Against this background, the remaining of the paper is organized as follows. In order to Alústrate 
the role of the oscillatory boundary layers in the forcing of the streaming flow in the bulk, and to 
explain the difficulties to be encountered in 3D, we consider in Section 2 a fairly simple 2D problem, 
namely a vibrating container filled with liquid. The 3D problem is formulated in Section 3, and the 
boundary layers attached to 3D solid walls and free boundaries are analyzed in Sections 4 and 5, 
respectively. For completeness we also briefly consider in Section 6 a boundary layer attached to a 
deformable solid, which is of interest in, e.g. Biophysics (Padmanabhan and Pedley, 1987; Lighthill, 
1992). Finally, some concluding remarks are made in Section 7. 



2. A simple 2D problem 

We consider a horizontal 2D rectangular container that is vibrating horizontally and harmon-
ically with an amplitude a and a frequency co (Fig. 1). We use the unperturbed height of the 
liquid i and co-1 as characteristic length and time for non-dimensionalization (the velocity be-
ing non-dimensionalized with co f), to write the governing equations and boundary conditions in a 
vibrating, rectangular coordinate system as 

Ur+V y 0, 

Uf + V(üy ~ VX) = ~PX + R (UXX + Uyy) + £ COS t, 

Vt - U{Uy ~ VX) = ~Py+R~\VXX + Vyy), 

u = v = 0 at y = — 1 and at x = ±1 , 

v = ft + ufx, (uy + vx)(l - f2
x) + 2(vy - ux)fx = 0, 

p - (u2 + v2)/2 - Gf + Tfx 

( l+ /x 2 ) 3 / 2 

2R ' [yy + uxf
2

x - (uy + Í;X)/X] 

l + / x 2 
at j = / , 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

/ = 0 a tx = ± l . (2.6) 

Here w and u are the horizontal and vertical velocity components, p (=pressure + Gy + (u2 + v2)/2, 
where p is the density and g is the gravitational acceleration) is the hydrostatic, stagnation pressure, 
/ is the free boundary elevation (measured from the undisturbed position), and G = g/(j?cü2) and 
T = c/(p/3co2) are non-dimensional measures of gravity and surface tensión, respectively, where a 
is the surface tensión coefficient. For simplicity we assume that G ~ T ~ 1, that the aspect ratio of 

Fig. 1. 



the container is 2, and that the liquid filis the container up to the borders of the lateral walls, see 
below. The following basic assumptions concern the non-dimensional vibrating amplitude and the 
Reynolds-Strouhal number (also known as pulsatile Reynolds number Sobey, 1980), 

e = a/¿<l, R = (o¿2/v = (¿/¿u?>h (2.7) 

where v is the kinematic viscosity and /bi = y/v/có is the thickness of the oscillatory boundary layers. 
With this notation, R = Re • St, where Re = acoif/v is the Reynolds number and St = {¡a = s_1 is 
the Strouhal number. The first assumption (2.7) implies that convection is small compared to the 
non-steady part of inertia and because of the second assumption (2.7), two oscillatory boundary 
layers develop near the bottom and the free surface. Thus convective terms will be neglected at 
leading order, the boundary layer equations will be linear, and boundary-layer separation (Smith, 
1986) and other non-linear phenomena (Sobey, 1980; Stephanoff et al, 1980; Pedley, 2000 and 
references given therein) that appears at finite Strouhal number will be absent in the analysis below. 

In this limit, we seek the following expansions outside boundary layers (in the bulk) 

(u,v, p, f) = e[(u°, v°, p°,F)ek + c e ] + s2[(usE,vsE, ps, f) + •• •] 

+ s 3 [ « v\, p°x,Fx )QU + ce. + •••] + •••, (2.8) 

where c e stands for the complex conjúgate and only those terms that will be relevant below are dis-
played. Also, F, F\ and all variables with superscripts o(=oscillatory), s(=steady, or time averaged) 
and/or E(=Eulerian) are independent of t. Thus (usE,vsE) is a first approximation of the time-averaged 
velocity (an Eulerian mean). Substituting (2.8) into (2.1)-(2.6) we obtain at order 0(s), 

iv° + p° = 0, (2.9) 

0 a tx = ± l , (2.10) 

= 0 at y = 0, (2.11) 

F = 0 a tx = ± l , (2.12) 

which uniquely determines (u°,v0,p°,F) provided that the oscillations are non-resonant (namely, 
that the homogeneous versión of (2.9)-(2.12) has only the trivial solution) as we assume hereafter. 
In order to calcúlate (usE,vsE) we could think that vorticity vanishes if it is zero initially. This and 
the continuity equation (with inviscid boundary conditions) would give usE = vsE = 0, but this would 
be wrong because vorticity is non zero in the boundary layers and can (and will!) diffuse and be 
convected into the bulk. This job is to be taken by the mean flow, which is given in the bulk by 
the following equations: 

uf + vf = 0, (2.13) 

(vsE + vsd)(uf - vf) = -£+R-\tg + ufy), (2.14) 

- (usE + usd)(uf - vf) = -qsy+R;\vsE + vfy), (2.15) 

where qs is a modified averaged pressure at order 0(s4) and 

(usd,vsd) = i ( « X + v°uy,ü
0v°x + v°v°y) + c.c. (2.16) 

< 

v° 

v° 

+ v°y 

= 0 

- i / 

= m° 

at y 

= P° 

+ P°x ~ 1/2 

= - 1 , u° 

-GF + TF, 



is the Stokes drift velocity. The overbar denotes hereafter the complex conjúgate. Let us recall 
here that the Stokes drift appears in a natural way when calculating the mass transpon velocity (a 
Lagrangian mean), which is given by (Batchelor, 1967) 

(usL,vsL) = (usE,vsE) + (usá,vsá) 

and is the velocity associated with the time-averaged trajectories of material elements (thus the 
appropriate one for, e.g. convection of passive scalars). The streaming flow Reynolds number is 
defined as 

Rs = s2R = OM2/V = (a//bl f (2.17) 

and is assumed to be of order one for simplicity (but it can be large, see below). Eq. (2.13) is 
obtained by substituting (2.8) into (2.1) and averaging in time. Eqs. (2.14) and (2.15) instead are 
obtained at order 0(s4) and those terms depending on the Stokes drift velocity are obtained after 
some algebra from the time average of the Reynolds stresses resulting form products of oscillatory 
terms at orders O(s) and 0(s3), namely 

(v0(u°iy ~ v°lx), -ü °(u°ly - v°lx)) + c e , (2.18) 

where u\ and v° satisfy 

iw? + v°(uf -vf) + p°lx = iu° - u°(uf -vf) + p°ly = 0. (2.19) 

Replacing (2.19) into (2.18) yields the required terms appearing in (2.14) and (2.15) plus a potential 
contribution to the modified pressure qs. Note that the oscillatory terms at orders O(s) and 0(s2) 
are potential. Thus their products yield zero Reynolds stresses. 

Now, Eqs. (2.13)—(2.15) apply in the bulk (in fact, in the unperturbed bulk, bounded by the 
solid walls and the unperturbed free boundary) and must be accompanied by the following boundary 
conditions: 

usE = -3[(l+i)u0ü°x + c.c.]/2, vsE = 0 aty = -l, (2.20) 

usE = 0, ÜSE = - 3 [ ( 1 + Í ) Í ; 0 Í J ° + C . C . ] / 2 a tx = ± l , (2.21) 

vsE = (Fu0 )x +ce, uf =2(Fu°)xx + 4Fxu°x + c.c. atj> = 0. (2.22) 

These result from imposing that the solution in the bulk matches with that in the boundary layers. 
Let us first consider the Stokes boundary layer attached to the bottom of the container, which has 

a thickness R~x^2 (or, in dimensional terms, i\,\, defined above). Introducing the stretched variable 

n=RV2(y+l) ( 2 2 3 ) 

and the expansions 

(u, v, p) = e[(ü °,R-l/2v°, p0)^ + c e ] + s2[(ü s,R~l/2vs, ps) + •••] + •••, (2.24) 



into (2.1)-(2.3), we obtain the following equations at orders O(s) and 0(s2) 

ü°x + v° = 0, iü° = -p0
x+ü°m + l/2, p° = 0, (2.25) 

ü\n - pl = d°ü°n + c e , pl = ü0ü0
n+c.c, (2.26) 

with boundary conditions 

ü ° = v° = us = vs = 0 at r¡ = 0, ü°n = üs
n = 0 as r¡ ->• oo, (2.27) 

where we are anticipating a matching condition with the outer flow. Integration of (2.25)-(2.27) 
yields 

Ü° = -U(l-Q-Vin), v° =-Ux[n + (z'^ - 1 ) M ) , ps = \ü°\2+P, (2.28) 

where Í7 and P depend only on x, and 

üs = -3[(l+i)UÜx + c.c.]/2 + 0(e-n,y/2) as f/^ oo. (2.29) 

And we only need to compare (2.8) with (2.24) using (2.28a and b) and (2.29), and require matching 
between both (which yield U = w°(x, — 1) and P = p°(x, — í)) to obtain the boundary conditions 
(2.20). The boundary conditions (2.21) are obtained from (2.20) using invariance under translation 
and rotation. The derivation of (2.22) is omitted here but we must mention that (in addition to 
being much more involved) it bears an additional difficulty. Namely, since the free boundary vertical 
displacement can be large compared to the boundary layer thickness (which oceurs if Rs is large, see 
(2.17)), we must use a time-dependent curvilinear coordinate system attached to the free boundary 
to analyze the boundary layer. Solving the equations in the boundary layer and applying matching 
conditions with the outer flow we obtain the time averaged normal velocity (~usE) and shear stress 
(TSE ~ dusE/dy) of the outer flow at the edge of the boundary layer, which is y = f in first 
approximation; and these conditions must be translated to the unperturbed free boundary y = 0 using 
a Taylor expansión (recall that / is small). 

The analysis above does not apply near the corners at x = ± l , y = — \,0, where some small viscous 
regions appear that should be in principie analyzed separately. But an orders-of-magnitude estimate 
readily shows that these regions only produce a higher order effect on the mean flow in the bulk 
because the Reynolds stresses are much smaller there than in the oscillatory boundary layers. It was 
precisely because of this that we pinned the triple points (x = ±1 , y = 0) to the upper edge of the 
lateral walls. Note nevertheless that if the triple points were allowed to oscillate with an unperturbed 
contact angle different from 0 and n, then the Reynolds stresses would be huge in these regions, 
which could have a net effect on the streaming flow in the bulk. But unfortunately these regions 
have not been analyzed for oscillating triple points, which would be a non-trivial task (in fact, a 
generalization of the classical work by Moffatt, 1964). 

The boundary conditions (2.20)-(2.21) are readily extended to curved smooth boundaries by just 
replacing u° or v° by the tangential velocity components, and x or y by an are length parameter 
(Batchelor, 1967). A similar extensión of (2.22) includes some new terms that depend on the 
curvature of the unperturbed free boundary (Longuet-Higgins, 1953) (see (5.32) below) and are due 
to the vibrating motion of the free boundary. And the same happens near vibrating deformable solids, 
see Section 6 below. The extensión of these boundary conditions to 3D requires more care. If the 
solid boundary or the unperturbed free boundary is a plañe, then the tangential velocity components 



will be vectors and the tangential derivatives should be replaced in (2.20)-(2.22) by 2D projections 
on the plañe of the 3D V operator, V. But the final formulae cannot be guessed. For instance, a 
second derivative of a vector v could lead to, e.g. either the (2D) Laplacian of v or V(V • v). This 
extensión has already been made by Hunt and Johns (1963) and Liu (1977). If, in addition, the 
solid boundary or unperturbed free boundary is a more general smooth surface, then we must use 
the projection of the velocities on the tangent plañe and the intrinsic gradient operator along the 
surface, and the results will depend on the (principal) curvature(s) of the surface. This generalization 
requires some well-known (Aris, 1962) tools from Differential Geometry, which are systematically 
used in related contexts (Romano, 1993). 

3. Formulation of the 3D problem 

Let us consider a liquid occupying a región of the 3D space, bounded by a (possibly deformable) 
solid and/or a free boundary; e.g. a bubble, a pendant drop, a capillary bridge or a liquid-filled 
container. The solid boundary (if present) and/or the reference frame are/is oscillating harmonically 
with a frequency w. As in Section 2 we use co_1 and i as characteristic time and length for 
non-dimensionalization, where i is required to be of the order of the wavelength of the excited 
oscillatory flow. The continuity and Navier-Stokes equations are 

V - v = 0, 8v/8í + (v • V)v = -Vp + R~lAv + sa eos t, (3.1) 

where v is the velocity, p is the hydrostatic pressure and a is a fixed unit vector. For convenience 
we are not decomposing here convective terms into Reynolds stresses and a potential part, as we 
did in Section 2. These equations are subject to the following boundary conditions 

v = vw = SVWQU + ce. at the no slip boundary, (3-2) 

v • nF = (df/dt)n • nF, [(Vv + Vv T ) • nF] xnF = 0, 

p - GnF • e z / + 2TM(f) = R'1 [(Vv + Vv T ) • oF] • oF at the free boundary. (3.3) 

Here Vw is a given vector function of position along the boundary, ez is the upward unit vertical 
vector, nF and n are the outward unit normáis to the free boundary and the unperturbed free boundary, 
respectively, / is the free boundary deflection along n, M(f) is the mean curvarme of the free 
boundary, and the superscript T stands for the transpose. The parameters s, G, T, and R are defined 
as in Section 2 and again required to satisfy (2.7), which is the basic assumption and is rewritten 
here for convenience 

e = a/¿<l, R = (o¿2/v = (¿/¿uf>h (3.4) 

where /y = Vv/m ^s the thickness of the oscillatory boundary layers. The expansions (2.8) are now 

(v, p,f) = e((B°, p°,F)eü + ce.) + s2((vsE, ps,fs) + • • •) + • • •, (3.5) 

where w° and vsE (and their counterparts for p and / ) are independent of time and vsE is the 
(Eulerian) time-averaged velocity. The counterpart of the problem (2.9)-(2.12) giving the oscillatory 



flow in the bulk is now 

V - w ° = 0, iw° + Vp° - a/2 = O, (3.6) 

u° • n = Vw • n at the unperturbed no slip boundary, (3.7) 

u° • n = iF, p° — Gn • ezF + TAF = 0 at the unperturbed free boundary, (3.8) 

where A is the intrinsic Laplacian operator along the unperturbed boundary (u.b.). As in Section 
2 we assume that the homogeneous versión of (3.6)-(3.8) has only the trivial solution; otherwise, 
the solution depends on arbitrary complex constants (or amplitudes) whose calculation requires to 
also derive amplitude equations, involving higher order (viscous and/or non-linear) terms (Nicolás 
and Vega, 1996; Vega et al., 2001; Martin et al., 2002). The unique solution to this inviscid, linear 
problem can be obtained upon separation of variables for appropriate geometries (or numerically 
otherwise) and will be considered below as known. And the counterparts of the mean flow equations 
(2.13)-(2.15) are 

V • vsE = 0, (3.9) 

_ (VSE + vsd) x ( V x vsE) = -Vps +i?s"
1AvsE, (3.10) 

where the streaming flow Reynolds number (which as in Section 2 can be large) is defined as in 
Section 2, namely 

Rs = s2R = OM2/V = (a//bl f, (3.11) 

and the Stokes drift velocity is now given by 

vsd = i(a° • V)w° + C.C. = i V X (B° X B°). (3.12) 

The boundary conditions for the streaming flow (namely, the counterparts of (2.20)-(2.22)) are 

FE = <P(U, Vw), vsE • n = <¡>{U, Vw) at the unperturbed solid boundary, (3.13) 

fsE = (¡>(U,F), vsE • n = <¡>(U,F) at the unperturbed free boundary, (3-14) 

where the tilde over a vector denotes the orthogonal projection of the vector over the tangent plañe 
to the u.b.; in particular, fsE is the Eulerian shear stress, namely the orthogonal projection of the 
Eulerian stress TSE = [V(vsE) + V(vsE)T] • n. The right-hand sides, 0 and <¡>, will be calculated in 
Sections 4-6, in terms of U = ü° (u.b.), Vw, and F, see (3.7) and (3.8). This will require to apply 
matching conditions between the solutions in the bulk and in the oscillatory boundary layers. 

Although the analysis above was made for Rs ~ 1, it remains valid under the solé assumptions 
(3.4), which are the only assumptions in this paper. Note that under (3.4) Rs varíes in a wide range, 
from small to large valúes, because i? - 1 and s are independent small parameters. If i?s ̂ > 1, then the 
mean flow exhibits a secondary viscous boundary layer on top of the primary oscillatory boundary 
layers considered above (Stuart, 1966). 

Once the linear problem (3.6)-(3.8) is solved, which is usually a reasonable task, the right-hand 
sides of (3.10), (3.13) and (3.14) are readily calculated (the functions 0 and <¡> will be obtained 
below), and the non-linear problem (3.9)—(3.10), (3.13) and (3.14) can be solved, numerically except 



for small Rs and appropriate geometries. Note that the streaming flow equations are decoupled from 
the steady deflection of the free boundary, fs, which can be calculated a posteriori from (3.3). 

The analysis in Sections 4-6 will require to solve the equations of motion in the oscillatory 
boundary layers. The flow near vibrating solid walls and free boundaries is conveniently analyzed 
in a frame attached to the u.b. To this end, at each normal to the u.b., the velocity is decomposed 
into its tangential and normal components as 

v = v — wn and w = v-n. (3.15) 

Using the formulae in Appendix A, the governing Eqs. (3.1) are rewritten as 

V • v + 8w/8^-2Mw + 0(|v| + |vP|)|¿;| = 0 , (3.16) 

8v/8í + (v • V)v + w8v/8^ - wáCv = -Vp - ¿JS?(Vp) + R~x82v/8^2 

+ 0((|vf + |wf + | ^ | K | +( |v | + \w\)R-x), (3.17) 

8w/8í + w8w/8^ = - 8 ^ / 8 ^ + ir182w/8<f + 0((|v|2 + |wf) + (|v| + \w\)R~v), (3.18) 

where we are anticipating that in the boundary layers considered below |V| ~ 1 and |8/8^| ~ R1/2. 
Here, t, is a coordinate along n, V • and V are the intrinsic divergence and gradient operators 
along the u.b., and Jzf is the Weingarten map of the u.b., which bears complete information on 
the curvature of the u.b.. Let us recall here that the Weingarten map (Thorpe, 1979) of an oriented 
surface S, with a unit normal n, is defined as Jzfv = —(v • V)«. This map is associated with the 
second fundamental form of the surface by II(v)=£C(v) • v. Thus the curvature of the normal section 
of S that is tangent to the unit vector v is given by K„ = ¿£(y) • v. Still, the eigenvalues of Jzf are the 
principal curvatures and the associated eigenvectors are tangent to the curvature directions. Thus 
we have 

¡£{y\e\ + 1^2) = K\vxex + K^v^e^, (3.19) 

where e\ and 2̂ are unit vectors along two curvature directions, and K\ and K2 are the associated 
principal curvatures. 

Similarly, if / is the (small) deflection of the free boundary along n then the boundary conditions 
(3.3a and b) are rewritten as 

w = df/dt + i? • V / + 0((|v| + \w\)\f\2l (3.20) 

8v/8^ + á?v + Vw + /JS?(JS?V + V # ) - (Vv + Vv T ) • Vf 

+ 2 (8w/80V/ + 2 w i f ( V / ) = O((|v| + |w|) | / |2) at Z = f. (3.21) 

These equations and boundary conditions are of independent interest in, e.g. the analysis of the 
flow in thin films (Couder et al, 1989) of arbitrary shape. 

4. The boundary layer attached to a static solid wall 

As in the analysis of the Stokes boundary layer in Section 2 (except for a change in sign), we 
use the stretched coordinate 

t}=Rxl2t (4.1) 



and seek the following expansions 

(p, v) = s(P, V)eu + ce. + s2[(p\ vs) + OT] + • • •, 

w = SR-1!2WQU + c.c. + s2(ws + OT) + • • •, (4.2) 

where V, vs, W, ws, P, and ps are time independent and OT stands for oscillatory terms, depending 
on t as Qmt, with m ^ O . Note that s2vs and s2ws are the steady parts of the velocity components at 
leading order. Replacing (4.1)-(4.2) into (3.16)—(3.18) we obtain the following equations at orders 
s and s2 

d2V/dt]2-iV = VP, dP/dt] = 0, dW/dt] = -V • V, (4.3) 

8V/8f/2- Vps = (V • V)V + WdV/dn +c.c, dps/dn = 8ws/8f/ = 0, (4.4) 

in —oo < r¡ < 0. Also, Eq. (3.2) and matching conditions with the outer flow lead to 

F = vs = 0, W = ws = 0 att] = 0, dV/dt] = dvs/dt] = 0 at r¡ = -oo. (4.5) 

Integration of (4.3)-(4.5) subsequently yields 

V = U(l-QVin), W = -[f/ + ( l -e^ / i ") /Ví]V • U, 

in — oo < r¡ < 0, where as defined above U is such that the tangential component of the outer flow 
at the solid wall is given by v = E(UQU + c.c.) + 0(s2) and 

vs = <í> = - [ ( 2 + 3i)(V • Ü)U + (Ü • V ) í / + c.c.]/2, ws = (/> = 0, (4.6) 

at r¡ = — oo. Now, we only need to apply matching conditions with the outer, inviscid flow, invoking 
(3.5) and (4.2), to obtain that these expressions for 0 and <¡> are precisely the right-hand sides of 
(3.13). And using this, (3.12) and (A.9), the tangential and normal components of the Lagrangian 
mean tangential velocity, vsL = vsE + vsd, at the edge of the boundary layer are found to be (cf. 
(2.20)-(2.21)) 

vsL = _[(2 + 3i)(V • Ü)U + (\-2i)(Ü • V ) í / + c.c.]/2, vsL • n = 0. (4.7) 

As in Section 2 the forcing tangential velocity is independent of both viscosity (Le., of R) and the 
curvature of the boundary. The latter will not be true for vibrating boundaries (Sections 5-6 below). 

These formulae generalize the well known ones in 2D (Batehelor, 1967), namely (cf. (2.20)-
(2.21)) 

M
sE = -3[(l+i)?7dí7/d»s + c.c.]/2, usL = -[(3 + 5i)UdÜ/ds + c.c.]/2. (4.8) 

Here, v and U have been written as v = ut and U = Ut, where t is a unit tangent vector to the u.b. 
and s is an are length parameter along the u.b. 

5. Oscillatory boundary layer attached to a free boundary 

Now the boundary layer is oscillating with the free boundary. As explained at the end of Section 
2, the derivation of the boundary conditions (3.14) is made in two steps: in Section 5.1 we analyze 
the oscillatory boundary layer in a reference frame attached to the free boundary, and apply matching 



conditions with the outer flow at the edge of this layer; and in Section 5.2 we obtain the boundary 
conditions of the outer flow at the unperturbed free boundary. 

5.7. The oscillatory boundary layer 

We redefine the normal velocity component and use the following stretched coordinate attached 
to the free boundary 

w* = w - df/dt - v • V/, f]=RV2(^-f\ (5-1) 

to rewrite Eqs. (3.16)—(3.18) as 

8w*/8f/ + R~xl2{ V • i? - 2Mdf/dt) = 0(£2iT1/2 + sR~l), (5.2) 

8v/8í + (v • V)v + R1/2[(w* + v • V/)8v/8f/ - (dp/dr¡)Vf] - (df/dt)á?v + Vp 

+ (f +R-xl2f])^(Vp) - 82v/8f/2 = 0(e(e + iT1 / 2)2) , (5.3) 

dp/df] +R~l/2(d2f/dt2 -d2w*/df]2) = 0(s(s+R-l/2)2), (5.4) 

where we are anticipating that the boundary layer thickness is 0(i? -1/2) and that \v\ ~ | / | ~ s 
and |w*| ~ ER~X¡2 + s2. Note that these equations do not coincide with the original Eqs. (3.16)-
(3.18); thus the Prandtl transposition theorem (which only applies at leading order and requires that 
| / | ~ R~xl2, Glauert, 1957) cannot be applied here. Similarly, the boundary conditions (3.20)-(3.21) 
are rewritten as 

w* = 0(£3 + £2iT1/2), (5.5) 

8v~/8f/ + (8w*/8f/)V/ + ÍT 1/2[j^v + V(8/ /8 í + v • V / ) ] 

+ R-Xl2[f^(^v + V(8//8í)) + 2 ( 8 / / 8 í ) ^ ( V / ) ] 

- r 1 / 2 ( V v + Vv T ) • V / = 0(£3+£Í?"1) atí/ = 0. (5.6) 

Now we seek the expansions 

/ = sFe" + ce. -\ , 

v = £( V{) + R~l/2 Vx )e" + ce. + £2(v^ + R~l/2v¡ + OT) + • • •, 

w* = SR-1!2WXQU + c e + £2(ws
2 + OT) + • • •, 

p = e(P0 + R-X!2PX )e" + c e + s2(ps
2 + R-X!2p\ + OT) + • • •, (5.7) 



where the various coefficients (F, VQ, Vi,...) are independent of í. Substituting (5.7) into (5.2)-(5.4), 
the following equations result at orders s, sR~x^2 and s2 

d2 Vo/dt]2 - iF0 = VP0 , 9^o/9f/ = 0, 8 Wi/dt] = -V • V0 + 2iMF, 

82 Vi/dn2 -iVi=VPx+ r¡&(VP0), dPi/dn = F, 

d2vs
2/dt]2 - Vp\ =F^(iV0 + VPo) - (dPi/dt])VF + (F 0 • V)F 0 

+ WidV0/dt] + c.c, dps
2/dt] = dws

2/dt] = 0, (5.8) 

in —oo < r¡ < 0. We also impose the boundary conditions (5.5)-(5.6), which lead to 

Wi=0, dV0/dt] = 0, dVi/dt] = -(£'V() + iVF), 

ws
2 = 0, dvs

2/dt] = 0 att] = 0, (5.9) 

and anticipate the following matching conditions with the outer flow 

dV0/dt] = d2Vi/dt]2 = dvs
2/dT] = 0 as r¡ -»• -oo. (5.10) 

Integration of (5.8)-(5.10) yields 

p0 =p^ v0 = U = iV¿>§, Wi = (2\MF - V • V)t], (5.11) 

px=Fn+P\, Vi=-2eVim/V¡ + nH + íVP0
1, (5.12) 

w*2 = 0, v\ = vf, pl = -\U\2 + \F\2 + pf, (5.13) 

where U, P$, P\, pf and vf are independent of r¡ and 

H = á?U + ÍVF. (5.14) 

Now, using (5.11)—(5.13) the steady part of the momentum Eqs. (5.3) and (5.4) and the boundary 
conditions (5.6) at order E2R~X^2 can be written as 

8^/8f/ = POL, (5.15) 

82
v /̂8f/2 = -2é^i[(H • V)Ü + (Ü • V)H + iF&H]/yfi 

+ 2f/e^/i"(2iM^ + V • Ü)H + c.c. + (Vp¡+POL) (5.16) 

in —oo < r¡ < 0, and 

8V|/8Í/ + JSfvf = ( V i / + V í / T ) • VF - V ( í / • VF) 

- (2\MF - V • U)VF - F&(&U - iVF) + ce. (5.17) 

at ?/ = 0, where POL stands for a polynomial in the r¡ variable, whose coefficients can depend on 
position along the free boundary. Here we take into account that those terms of the order of s2i?_1/2, 
not displayed in (5.3), depend quadratically on (v,w, p,f), and thus can only contribute to POL in 
(5.16). Also we anticipate a part of the matching conditions with the outer flow, namely 82v|/8f/2 = 0 



as t] —> — oo. Thus the right-hand side of (5.16) must vanish at r¡ = — oo and, consequently, the last 
term there (i.e., V_p| + POL, which is a polynomial in r¡ because p\ =POL, see (5.15)) identically 
vanishes. Then we only need to intégrate (5.16) and take into account (5.17) to obtain 

{dvydnx^oo + jsfvf = -2Í[(H • v)ü + (ü • V)H + (v • ü)H] 

+ Fá?H + 4MFH + (Vi/ + Ví / T ) • VF - V(U • VF) 

- (2iMF - V • U)VF + 2ÍFJS?(VF) + ce. (5.18) 

Now we consider the tangential and normal velocity components of the outer flow. Invoking (5.1), 
(5.7), (5.11)-(5.13), and (5.18) we obtain 

v = gf/e" + ce. + £2(vf + OT) + • • •, (5.19) 

w = S\FQU + c e + s2(U • VF + c e + OT) + • • •, (5.20) 

8v/8^ = SHQ1( + c e + ^[(avI/aí/^-oo + OT] + • • •, (5.21) 

at £=f. Here / / is as defined in (5.14) and we have used the expression 9v/9^ = ifv + V w + 0(|^|), 
which holds for the oscillatory part of the outer flow and is obtained when taking into account that 
this oscillatory flow is potential. 

5.2. Boundary conditions for the outer flow at the unperturbed boundary 

In order to calcúlate v, w, and 9v/9^ at the u.b. (^ = 0) we need a leading order approximation 
of the derivatives of these quantities with respect to ¿,, which are given by (5.21) and 

9w/9^ = -s[( V • U - 2 1 ^ ) 6 " + c e ] + • • •, 

92v/9^2 = £[2J^£/- - V ( V • U - 2iMF)]eü + c e + • • •, (5.22) 

at £ = / , where we have used the continuity Eq. (3.16) and have taken into account (A.5) and (A.6) 
at leading order (recall that the oscillatory flow in the bulk is potential in first approximation). Then 
a Taylor expansión and (5.19)—(5.21) yield 

v = eUeu + ce. + £2[vf - (FH + c e ) + OT] + • • •, (5.23) 

w = S\FQU + c e + s2[V • (FU) + ce. + OT] + • • •, (5.24) 

9v/9^ = sHeü + ce. + £2(9vy9f/)^=_oo 

+ £2[FV(V • U) - 2FSCH - 2ÍMFVF + c e + OT] + • • •, (5.25) 

at the u.b. (£ = 0), where we have used the identity V ( F V • U) = (V • U ) V F + F V ( V • U). And 
we only need to apply matching conditions with the outer flow, invoking (5.18), (5.23), (5.25) and 



(A. 11), to obtain the right-hand sides in the boundary conditions (3.14), which are 

fsE = <í> = 2(2MF(á?U + iVF) - FáC(áCU) + V[V • (FU)] + (VF • V)U) 

+ 2((V •V)VF-í[(áCU • V)Ü + (Ü • V)á?U + (V • Ü)á?U]) + c.c, (5.26) 

vsE . n = <¡> = V • (FU) + c e , (5.27) 

where we have taken into account that, since VF and U are potential, 

F V • U + V F • U = V • (FU), ( V i / + V í / T ) • V F = 2(VF • V)U, 

(U • V ) V F + ( V F - V)U = V ( V F - U ) . (5.28) 

Similarly, invoking (5.28b), (A.9) and (A. 12), we obtain the counterparts of (5.26) and (5.27) for 
the Lagrangian velocity, 

fsL = 4(F(2M + &)(&U + iVF) + ( V F • V)U 

+ (V • U ) V F + i[(&Ü • V)U - (V • Ü)á?U]) + c e , (5.29) 

v s L -n = 0. (5.30) 

Three remarks are now in order 
(a) As in 2D (Longuet-Higgins, 1953), the Eulerian and Lagrangian shear stresses are independent 

of viscosity, but do depend explicitly on the curvature of the u.b., through the mean curvature M 
and the Weingarten map if. 

(b) The normal component of the Lagrangian velocity vanishes at the u.b., which is consistent 
with the fact that the net mass flux across this surface must be zero. The Eulerian velocity instead 
does exhibit a normal component at the u.b. (see (5.27)), which is just due to non-linear terms in 
the boundary condition (3.3a) (or (3.20)); thus it comes from a purely inviscid effect, which is not 
aflected by the oscillatory boundary layer. 

(c) Let us assume that the oscillatory flow is standing, which oceurs if the phases of F and iU 
are constant and coincide. In this case, the right-hand sides of (5.26)-(5.27) and (5.29) identically 
vanish, which means that the normal component of the Eulerian velocity and the Eulerian and 
Lagrangian shear stresses are all zero. This property is useful to obtain a priori properties of the 
streaming flow produced by surface waves (Higuera et al., 2002a,b). 

5.3. 2D problems, planes and cylinders 

The expression (5.30) simplifies in 2D to 

fsL = %[KF(KU + idF/ds) + (dF/ds + ÍKÜ)dU/ds + c e ] , (5.31) 

where we are using the same notation as at the end of Section 4 and K = K • n is the curvature of the 
u.b., with K and n being the curvature vector and the outward unit normal, respectively; thus K > 0 
if the u.b. is concave towards the exterior of the fluid domain. Here we have taken into account 
that in 2D the mean curvature M must be replaced by K/2 and that applying the Weingarten map 
consists of multiplying by K. This expression coincides (up to notation differences) with that first 



derived by Longuet-Higgins (1953), which is usually employed in the literature (e.g. Phillips, 1977; 
Craik, 1982, 1985). The counterpart of (5.31) for the Eulerian mean velocity is obtained from (5.26) 
to be 

-fE = 2[iicFdF/ds + d2(FU)/ds2 + (2dF/ds + iicÜ)dU/ds + ce.]. (5.32) 

If (in 3D) the u.b. is a plañe, both the mean curvature and the Weingarten map identically vanish, 
and (5.26) and (5.29) simplify to 

fsE = 2[V(V • (FU)) + (VF • V ) í / + (V • U ) V F + c e ] , (5.33) 

fsL = 4[(VF • V)U + (V • U)VF + ce.]. (5.34) 

This latter expression coincides (up to notation differences) with that obtained by Liu (1977). 
For cylinders of arbitrary cross-section, the components of the Eulerian tangential stress along the 

cross-section and the axis are 

x^oss = 2ÍKFFS + 2[(FU% + (FV)y]s + 2(2FSUS + FyUy + FsVy) 

-2ÍK[VUy + U(Üs + Vy)] + c.c, (5.35) 

fSlal = 2wFFy + 2[(FU)S + (FV)y]y + 2(FS Vs + 2FyVy + FyUs) 

-2ÍKUVS + C.C, (5.36) 

respectively, where K is the curvature of the cross-section (whose sign is defined as in (5.31)) and 
we have taken into account that the mean curvature of the cylinder is M = K/2, and according to 
(3.19) the Weingarten map is given by 

(5.37) 

Eq. (5.35) reduces to (5.32) if V is set to zero and dependence on y is eliminated. Note however that 
(5.35)—(5.36) are essentially different from the particularization of (5.33) to Cartesian coordinates, 
namely the former are not obtained from the latter by just replacing x by s (as it happened with the 
tangential velocity in Section 4). This is so because (5.35)—(5.36) depend explicitly on the curvature 
of the cross-section, as anticipated above. For instance, if the cylinder is circular with radius 1 and 
the flow is axisymmetric, then the axial Eulerian stress at the u.b. is obtained from (5.36) by setting 
K = — 1 and U = 0, and eliminating dependence on s, as 

fflal = 2[ - iFFy + (FV)yy + 2FyVy + c e ] , (5.38) 

which does not coincide with its counterpart in 2D for straight u.b. (Le., that obtained from (5.32) 
when setting K = 0 and replacing U and s by V and y, respectively). Eq. (5.38) coincides (up to 
notation differences) with those derived by Nicolás and Vega (1996) for this particular geometry, but 
not with its counterpart used by Lyubimov et al. (1997), where Longuet-Higgins's 2D formula was 
(somewhat loosely) employed for the cylindrical geometry. For large frequeney the oscillatory flow 
exhibits a short axial wavelength, much smaller than the transversal curvature radius of the cylinder. 
Then j-derivatives are large, the first term in the right-hand side of (5.38) can be neglected and 
both expressions coincide. 
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6. Deformable vibrating solid boundaries 

If a solid wall is not at rest then its motion must be taken into account. For completeness we also 
allow the wall to be deformable, and assume that it is vibrating in such a way that its deflection along 
the outer unit normal to its unperturbed position, n, and its tangential velocity (Le., perpendicular to 
n) are 

f = eFét + c.c. + ---, vw = sUwek +C.C. + ---. (6.1) 

As in Sections 4 and 5 the tangential component of the outer flow at the unperturbed boundary is 
of the form v = s(t/eu + ce.) + • • •. Proceeding as in Sections 4 and 5, the right-hand sides of the 
boundary conditions (3.13) at the u.b. are found to be1 

vsE . n = <¡> = V • (FU) + c e , (6.2) 

FE = 0 = [4M(U - Uw) - £?UW - iVF]F - [(Ü - Üw) • V](U - Uw)/2 

- [(2 + 3i)V • Ü - (2 - i)V • ÜW](U - Uw)/2 

+ í[(Ü • V)UW + (UW • V)Ü]+c.c. (6.3) 

Here, as in Section 5, M and if are the mean curvature and the Weingarten map of the u.b., and 
V • and V are the intrinsic divergence and gradient operators along the u.b. 

Invoking (3.12), (6.2)-(6.3) and (A.9), the tangential and normal components of the Lagrangian 
mean velocities are found to be 

Í^L = í(Ü • V)U + F(2á?U + iVF) + ce. + v® and vsL • n = 0, (6.4) 

respectively, where vsE is given by (6.3). As in Section 5.1 (and for the same reason), the Lagrangian 
mean normal velocity at the u.b. vanishes but the Eulerian mean normal velocity does not. The 
tangential components of both the Eulerian and Lagrangian mean velocities do depend explicitly on 
the curvature of the u.b., which is entirely due to the motion of the boundary (c.f. Section 4). 

6.1. 2D problems, planes and cylinders 

In 2D, with the same notation as in Section 5.1, Eq. (6.3) reduces to 

usE
 = KF(2U - 3UW) -iFdF/ds - 3[(Ü - Üw)d(U - Uw)/ds]/2 

-i[(3U - 5Uw)dÜ/ds] -(3U- Uw)dÜw/ds]/2 + c e (6.5) 

If (in 3D) the u.b. is a plañe then Eq. (6.3) becomes 

vsE = -iFVF - [(2 + 3i)V • Ü - (2 - i)V • ÜW](U - Uw)/2 

- [(Ü - Üw) • V](í / - Uw)/2 + i[(Ü • V)UW + (Uw • V)Ü] + c e (6.6) 

1 A detailed derivation can be obtained from the authors. 



Two particular cases are of practical interest. If the solid boundary exhibits no tangential velocity 
to leading order then Uw = 0, and 

v^ = -iFVF - [(Ü • V)U + (2 + 3i)(V • Ü)U]/2 + ce. (6.7) 

This expression coincides (up to notation differences) with that obtained for unperturbed plañe walls 
by Lighthill (1992), who extended a former expression obtained by Hunt and Johns (1963) for 
the particular case F = 0, and also with those obtained for circular cylinders, in the axisymmetric 
(Nicolás and Vega, 1996; Lyubimov et al, 1997) and non-axisymmetric (Higuera, 1998; Higuera 
et al, 2002a,b) cases. If instead the outer flow is at rest and the solid boundary oscillates only 
tangentially to itself, then U = 0, F = 0, and 

vsE = -[(Üw • V)UW + (2 - i)(V • ÜW)UW + c.c.]/2 + • • •. (6.8) 

This latter expression is of interest for instance in the analysis of the streaming flow produced in 
the surrounding air by Marangoni waves in not-too-thin soap films (Vega et al., 1998 and references 
therein). 

Finally, if the u.b. is a cylinder then the components of the Eulerian velocity along the cross-section 
and the axis of the cylinder are obtained from (6.3) without difliculty, but yield quite involved ex-
pressions. For simplicity we only consider the particular case in which the oscillatory axial velocities 
vary linearly with the axial coordinate (which require that in addition the tangential velocity com­
ponents and the solid boundary deflection be independent of the axial coordinate), namely 

U = U(s), Uw = Uw(s), V = yV0(s), Vw = yV^(s), F = F(s), (6.9) 

which is of interest in flows in blood vessels (Padmanabhan and Pedley, 1987). In this case (6.3) 
yields the following components of the Eulerian mean velocity 

usE = [K(2U -3UW)- idF/ds]F - [(Ü - Üw)d(U - Uw)/ds]/2 

- [(2 + 3i)(dí7/d5 + f 0 ) - (2 - i)(dÜw/ds + V%)](U - Uw)/2 

+ i(ÜdUw/ds + UwdÜ/ds) + c.c, (6.10) 

Í;SE = y(2KF(V0 - V0
W) - (2)-\(U - Uw)d(V, - V^/ds + \V0 - V^\2] 

- [(2 + 3í)(dÜ/ds + fo) - (2 - i)(dí7w ds + V%)](V0 - V^/2 

+ i(C/dr07dy + UwdV0/ds + 2f0r0
w) + c.c), (6.11) 

respectively. Note that (6.10) coincides with (6.5) if VQ and V™ are set to zero. And (6.10)—(6.11) 
coincide with the expressions used by Padmanabhan and Pedley (1987) if the oscillatory flow is 
standing (namely, if the phases of F and ill are constant), which was the case in that work. 

7. Concluding remarks 

We have considered the streaming flow produced by a nearly inviscid oscillatory flow in general 
3D geometries. We have generalized the 2D well-known formulae (Schlichting, 1932; Longuet-Higgins, 
1953) giving the complete set of boundary conditions (3.13)—(3.14), which are necessary to calcúlate 



the secondary streaming flow in the bulk (outside the oscillatory boundary layers), where it is 
governed by Eqs. (3.9) and (3.10). With these general formulae we can avoid the tedious and 
tricky boundary layer analysis that would be necessary in each particular 3D problem, in the same 
way as it happened with the former 2D formulae. This is specially useful in the weakly-non-linear 
analysis of nearly-inviscid vibrating systems with free boundaries, such as the Faraday system (Miles 
and Henderson, 1990), in which the streaming flow is not just a by-product, but can interact at 
leading order with the primary vibrating flow (Vega et al, 2001; Higuera et al., 2001; Martin et al, 
2002; Knobloch and Vega, 2002; Knobloch et al., 2002). The derivation of the boundary conditions 
has required to calcúlate the streaming flow within the oscillatory boundary layers attached to 3D 
(deformable) solid walls and free boundaries, and apply matching conditions with the streaming 
flow in the bulk. As in 2D, the boundary conditions consist of imposing a tangential velocity and 
a shear stress near a no slip boundary and a free boundary, respectively, in terms of the solution 
of the linear problem giving the primary oscillatory flow. The only assumptions for the validity of 
the analysis above are those in (3.4). Thus the free boundary deflection can be large compared to 
the boundary layer thickness, which happens as the streaming flow Reynolds number is large (see 
(3.11)), as required in many applications. This generality required that the analysis of the inner 
structure of the boundary layer be made in an oscillating curvilinear coordinate system attached to 
the moving boundary. 

The formulae derived in the paper have been written in terms of both the Eulerian and Lagrangian 
mean velocities, and have been compared to previous results in the literature for particular 2D and 
3D geometries. 

For simplicity we have considered a steady streaming flow. But this can also be slowly varying 
with time due to various reasons (instabilities of steady patterns, coupling to the primary oscillatory 
flow). The extensión is straightforward. We only need to allow the streaming flow variables to also 
depend on the slow time variable 

X = £2t. (7.1) 

The resulting equations would only change in a term 9VSE/9T that must be added to the left-hand 
side of (3.10). The boundary conditions (3.13) and (3.14) instead remain unchanged. 
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Appendix A. 

Here, we collect some vector identities used above, whose derivation is omitted because it 
requires an extensive use of non-intuitive analytical tools, which perhaps are not of much interest 
in themselves from a purely fluid dynamical point of view.2 As above, t, is a coordinate along the 

2 It can be obtained from the authors upon request. 



(A.2) 

(A.3) 

(A.4) 

(A.5) 

outward unit normal n to the u.b. and the velocity vector in the original static reference frame is 
decomposed as 

v = v + wn, (A. 1) 

where w = v • n and v = v — wn are the velocity components along n and orthogonal to n, respectively. 
The following identities hold 

Vp = Vp + £&(Vp) + (dp/dOn + 0(|^|2|^|), 

V • v = V • v + 8w/8^-2Mw + 0(|^|(|v| + |w|)), 

(v • V)v = (v • V)v + w(8v/8^ - áCv) 

+ [v • (Vw + Jz?v) + w8w/8^]fl + 0(|^|(|v| + |w|)2), 

Av = 82v/8^2 + (82w/8^2> + 0(|v| + \w\), 

8v/8^ = ^ v + Vw + ^ ( ^ v + Vw) + 0(|^|2(|v| + |w|)) if V x v = 0, (A.6) 

where V • and V are the intrinsic divergence and gradient along the u.b. t, = 0, M is the mean 
curvature of the u.b., Jzf is the Weingarten map. 

If / is the (small) deflection of the free boundary along n, then the boundary conditions (3.3a 
and b) can be written as 

w = df/dt + v • V/, (A.7) 

8v/8^ + JS?(V + /JS?V) + Vw + fáC(Vw) - (Vv + Vv T ) • Vf 

+ 2 (8w/80V/ + 2 w i f ( V / ) = O((|v| + |w|) | / |2) a t ^ = / . (A.8) 

The tangential and normal velocity components of the (re-scaled) Stokes drift are 

vsd = i(F . V)V + iW(2SeV + W ) + c.c., wsd = iV • (WV) + c.c, (A.9) 

in first approximation, in terms of the oscillatory flow velocity, assumed to be given by 

v = sVé( +c.c. H , w = sWek + c.c. H . (A.10) 

The tangential stress associated with the velocity field v at the u.b. is 

f = 8v/8^ + jSfv + Vw. (A.ll) 

In particular, the tangential stress associated with the Stokes drift, namely the orthogonal projection 
of Tsd = [V(vsd) + V(v s d)T] • n on the tangent plañe to the u.b. is 

fsd = 2([2(M + JS?)(JS?17 + iVF) + á?(á?U)]F - V[V • (FU)] + (VF • V)U. 

+ (V • U)VF + i[(seü • v)u + (ü • v)seu - (V • ü)&u] + ce.) (A.12) 



in first approximation, where with the notation used in this paper, V = U and W = iF, with U and 
F given functions of position along the unperturbed free boundary. 
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