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We consider the Floquet lincar problem giving the threshold acccleration lor the
appearance of Faraday waves in large-aspect-ratio containers, without further re-
strictions on the valucs of the paramcicrs. We classily all distinguished limits for
varying values of the various parameters and simplify the e¢xact prablem in each limit.
The resulting simplified problems either admit closed-form solutions or are solved
numcrically by the well-known methoed introduced by Kumar & ‘luckcrman (1994).
Some comparisons are made with (g} the numerical solution of the original exact
problem, (£) somc ad hoc approximaltions in the literature, and (¢) some experimental
results.

1. Introduction and formulation

Faraday waves (Faraday 1831) are gravity capillary waves excited parametrically
by vertical vibration of the container. In addition to their intrinsic interest in Auid
mechanics, these waves are considered today a prototype of a pattern forming system.
‘The most intcresling spatio-tempoeral behaviours arc associated with nonlincarity
{(Miles & TTenderson 1990; Fauve 1995), especially in large-aspect-ratio containgrs
{Kudrolli & Gollub 1996), but unfortunately a complete, consistent weakly nonlinear
theory for these waves is still Tacking today, and some gaps still remain at the
linear level Among the still unresolved questions. linear damping is not completely
undcerstood for low viscosily al modcerate aspect ratio, cven il the cffcets of contact
ling dynamics and surface contamination are eliminated (TTenderson & Miles 1994,
Martel, Nicolas & Vega 1998; Howell et al. 2000). The theoretical and experimental
dclcrmination of the instability threshold has reccived considerable atiention, both
in the moderate (Henderson & Miles 1990; Jiang et al. 1996) and large (Douady
1990; Edwards & Fauve 1994; Kumar & Tuckerman 1994; Bechhocfer er al. 1995,
Christiansen, Alstrom & Levinsen 1995; Kumar 1996; Licubashevski, Tingberg &
Tuckerman 1997) aspect-ratio limits. In particular, it lateral walls are ignored the
instability threshold is reliably calculated for arbitrary viscosily by a numcrically
cheap method (Kumar & Tuckerman 1994). But even in this simple case, a systematic
asymptotic analysis of the scveral distinguished limits or regimes, to identily the
relevant non-dimensional parameters in each case, i1s lacking. That analysis is the
main object of this paper.

In order to formulate the problem we consider a wide cylindrical container,
which is vertically vibrated with an amplitude «° and frequency «'. We attach
the reference frame to the contaziner (figure 1) and non-dimensionalize space and
tim¢ with the unperturbed height of the liquid # and the gravity—capillary time
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FiGure 1. Sketch of the fluid domain.

t;, = [g/h+a/(pi*)]7'2, where g is the gravitational acceleration and o is the coef-
ficient of surface tension. In addition, we linearize both the momentum equation and
the boundary conditions around the quiescent state, to obtain

Veut+w. =0, (1.1}
m=—-Vp+ColAu+u..), w=—p +ClAw+w.), (1.2)
=10 w=0 at z=-—1 and at (x,y} in T, (1.3}

w=7Ff, o+Vw=0 at z=0, (1.4}
p—(1 =8} +SAf —2C,w. + aw*fcos(wt) =0 at z =0, (1.5}
f=0 or {=DVf-n at T, (1.6}
/fdxdy—O at =90, (1.7}

Jy

where the boundary condition {1.6) depends on the attachment mode of the contact
line (either pinned end or dynamical contact angle, with D a phenomenological
constant, see Hocking 1987; Henderson & Miles 1994 and references therein). In
the above equations # and w are the horizontal and vertical components of the
velocity, p is the pressure, f is the vertical deflection of the free surface, V., V-
and A are the horizontal gradient, divergence and Laplacian operators, and X is
the cross-sectionn of the container; I is the boundary of X and the vector n is
the (horizontal} outward unit normal to I'. The system is vibrating harmonically,
with non-dimensional amplitude @ = a”/h and frequency @ = 2rnw’t,. In addition,
the problem depends on the capillary gravity number C, = v/[gh® + 6h/p]Y/? and the
gravity capillary balance parameier S = o /(¢ + pgh?’}), where p is the density and v
is the kinematic viscosity. C, is the ratio of the capillary—gravity time to the viscous
time, and is small most frequently in practice. C, and S are related to the Ohnesorge
number C = v[p/ch]'/* and the Bond number B = pgh’/s as C, = C/(1 4+ B}"/? and
S=1/{14+B) Thus 0 £ § <1, and the extreme values S = 0 and 1 correspond to
the purely gravitational (¢ = 0) and the purely capillary (g = 0) limits, respectively.

If the wavelength is sufficiently small compared to the aspect ratio {see § 5 below),
we may ignore the lateral walls and reduce the stability problem (1.1)}+{1.5) to the
analysis of its normal modes, which are of the form

{u,w,p, Y= (U, W, P, F)explilkix + k2], (1.8)

in terms of the horizontal wavevector components k; and k;. Substitution of these
expressions into (1.1)-(1.5) and elimination of U yields

P, =k'P, W,=—P, 4 C(W., —kK’W), (1.9)
W=W,=0 at z=-—1, {1.10}
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MGURE 2. Representative neutral instability curves of (2.3)-(2.6) associated with sub-barmonic (5)
and harmonic (H) perturbations. ¢, =1, S =05 and («) @ =2, (h) & = 1.5

W—F=W_.+kW=0 at z=0, (1.11)
P—(1 =S+ SK)F —2C,W. + aw’Fcos(wt) =0 at z=0, (1.12)

where k = \/k{ + k3 is the wavenumber of the mode. The calculation of the instability
threshold . requires determination those Flogquet exponents of {(1.9) (1.12) that are
purely imaginary; in fact, in all cases considered in this paper these exponents
arc found to bc cither O or im, which correspond to rcal Floquet multiplicrs |1
or —1 respectively. For fixed values of the remaining paramcters, this determines
a sequence of tongues like that in figure 2, whose minimum yields a.; this is so
because the flat solution is stable at @ = 0. Using the method introduced by Kumar
& Tuckerman (1994), the numerical calculation of the Floquet exponents is fairly
cheap, even for extreme values of the parameters (see the Appendix). But, without
further simplifications, a. depends on three parameters: w, C, and §. Fortunately,
these are usually large/small, and the number of parameters can be reduced under
appropriale re-scaling and/or asymptolic analysis. We shall be mainly concerned with
the distinguished limits, namely those limits in which the equations include as many
terms as possible once a basic assumption is made. These limits are:
A. Nearly inviscid limits. 1If

C,<l, C,<1=8S+w and Cw'’ <1 =8+Sw/C, (1.13)

then the most dangerous mode at threshold is potential, except in two thin boundary
layers near the bottom wall and the free surface. and an approximation of 4. can
be found in closed form. As in the viscous limit below, scveral sub-limits can be
distinguished, depending on the ratio of the container depth to the wavelength
of the eigenmodes, and on whether the eigenmodes are monochromatic in first
approximation or not.

B. Viscous limits. If (1.13) does not hold, then the most dangerous mode at threshold
exhibits non-localized vorticity due to viscous effects. Two sub-limits are considered,
depending on which condition (1.13) fails.

B.1. Moderate and long waves, Now the most dangerous mode at threshold exhibits
a bounded wavenumber and thus it affects the whole fluid field, down to the bottom
of the container. We shall consider three cases.

B.1.1. Basic limit and highly viscous sub-limit. This is the most general limit, which is
capturcd as

C.'=0() and w~ C,, (1.14)

@



and includes as sub-limits the remaining limits considered below. As usual, O denotes
hereinafter the Landau O-symbel, namcly w = O(¢) mcans that cither v < ¢ or
p o~ ¢p. If (1.14) holds with C, 3> 1 then viscous effects dominate gravity and surface
tension, which can both be ignored in (1.12).

B.1.2. Long-wave [limit. This imit applics il C, <1 and (1.13b) [ails, namecly il

C,<l, 1-8=0(C,) and w=0(C,). (1.15)

The wavenumber of the most dangerous mode i1s small and we can neglect those
lerms proportional to &% in (1.9) and (1.11), and ncgleet the term proportional o C,
in (1.12),

B.1.3. Small-frequency limit. This is a sub-limit of the limits A, B.J.7 and B.1.2, and
applies when

C,'=0(1) and 0<«C, or C<,1-85=0(C) and o< C,. (L16)

The most dangerous mode at threshold oscillates on a time scale much shorter than
@ ! and can be calculated by a WK B approximation.

B.2. Short waves. This limit applics when 1he wavelength ol the most dangerous modc
is small compared to depth. It occurs when either C, <1 and (1.13¢) fails, or C, is
at least of order unity and w 3 C,, namely

Co<1 and 1-5+Sw/C, = O(Cé"’2£93"2), or w <& C, F=0(1). (117

Now the most dangerous mode at threshold only affects a thin laver of thickness
O(k ') near the free surface.

Note that if (1.13) does not hold then one of the conditions (1.14) (1.17) holds.
Thus the classification above covers all possible values of the parameters, including
some that are somewhat unlikely in practice but are alse considered for the sake of
completeness.

With these ideas in mind, the paper is organized as follows, 'I'he viscous and ncarly
inviscid limits will be analysed in §2 and § 3, respectively. The results of this analysis
will be compared in §4 with some previous approximations in the literature. The
clicet of distant sidewalls and a comparison with cxperimental results in the literature
will be made in §5 and §6 respectively. Some concluding remarks will be made in §7.

2. Viscous limits
These limits apply il (1.13) docs not hold.

2.1. Moderate and long waves

Now the wavelength of the most dangerous mode at thresheld is either of the order
of the height of the container or larger. Three distinguished limits are considered.

2.1.1. Basic limit and highly viscous sub-limit
Let us assumec that
w ' ~C, =01, (2.1)
with § arbitrary. This is the most general limit and leads to no simplification in
(1.9) (1.12). For convenience we introduce the re-scaling

P=pr/C, F=CF, I=Ct &=uw/C, (2.2)



which corresponds to non-dimensionalizing time with the viscous time 4°/v. Equations
(1.9)—(1.12) arc rcwritlcn as

P, =kP, Wi=—-P.+W., kW, (2.3)
W=W,=0 at z=1, (2.4)

W —Fr=W., +kEWw =0, (2.5)

P—(1-85+ Skz)F/C}f —2W, + a®*Feos(bi)=0 at z=0. (2.6)

For fixed values of C,, @ and §, this problem can be solved as indicated in the
Appendix, (0 oblain marginal instability curves for harmonic and sub-harmonic
perturbations (1 and —1 Tloguet multipliers) that are like the resonance tongues in
figure 2, where the minimum is indicated and provides the threshold amplitude, which
corresponds 1o a sub-harmonic perturbation for é = 2 and (o a harmonic onc for
@ = 1.5. When & is varied, the solid curves in figure 3 are obtained. As C, — oo the
instability threshold becomes independent of both gravily and surlace tension (scc
(2.6)). Thus the curve labelled €, = 20 in figure 3(d) is independent of $; this curve
gives a4 quite good approximation for C, only moderately large (e.g. for C, = 2 the
curve would be distinguishable {rom that for €, = a0). Note that [or & > @y (~ 2
it C, = 0.5) the threshold a, is attained at the first (from the left) resonance tongue in
ligurc 2, which corresponds to a sub-harmonic instablity. And as o is decrcasced the
whole group of resonance tongues in figure 2 rolls clockwise (in addition to moving
up) in such a way that the minimum changes to a higher-order tongue, and the
instability altcrnately changes {rom sub-harmonic to harmonic and vice versa (at the
points indicated with circles in figure 3}. As & — 0 the eigenmodes exhibit oscillations
on the time scale 7 ~ 1 but a much larger period, of the order of @5 in this limit the
curves {a), (¢) and (d) in figure 3 match with the asymptotic results in §2.1.3 obtained
by the WK B method and

a@* — A, as @ — 0, (2.7)

where the constant 4, is plotted vs. § (for the indicated valucs of C,) in figure 5(b)
below. On the other hand we have the asymptotic behaviour, which is obtained below
in §2.2;

a0 > A, ~ 1672 as ® — o« (2.8)

2.1.2. Long-wave limit

Now the wavelength of the most dangerous mode s small, and requires that
viscosity, gravity and the forcing frequency be correspondingly small, namely

C, <1, 1=8S=0(C,) and o =0Q(C,). (2.9)
The distinguished limit is 1 — 8 ~ k* ~ @ ~ a’ ~ C, < 1, and lcads to the scaling
P =(1-S+CyP, W=CW, F =C]F, (210)
k=k/(1l =S+CH)? y=(01-8)/C,, &= Cya, '

with T = C,t and @ = ©/C, as in §2.1.1, and to the [ollowing approximation of
(1.9)-(1.12):

P, =constant, W.;= kP, + W..,, (2.11)
W=W,=0 at z=-1, (2.12)
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FiGure 3. Basic and highly viscous limits. Instability threshold acceleration of (2.3)-(2.6},
a.i? = @l (2new" ) /v in terms of & = 2ne B v, for (ah) Cp =01, (¢) C, = 05, (d) C, = 1, =,

and the indicated values of S. Exact { ), two-term approximation in (A9) (— — — —), Cerda
& Tirapegu (1998) approximation (—- —-—). WKB approximation from the Mathieu equation (4.3)
(o ). and asymptotic behaviours as @ — 0,7~ (— —).

W—Fi=W.=P/p+)—[+0+ 0k —adn’cos ®I1F =0 at z=0. (2.13)

This problem depends on k, &, ¢ and v and, when solved as indicated in the
Appendix, provides the instability threshold d.@° plotted vs. & in figure 4 for several
representative values of v, As in §2.1.1, the instability is sub-harmoenic for sufficiently
large @ and changes alternately from sub-harmonic to harmonic and vice versa (at
the points indicated with circles) as @ is decrcased. The asymptotic behaviours

dm?— A, as ®—0 and 2@ -1 as & — % (2.14)
are plotted with dashed lines, as obtained in §$2.2 and §3.1 below; Aa/ + 1) s
plotted vs. 7 /(3 + 1) n figure 5(d) below.

2.1.3. Small-frequency limit

This limit applies whenever the forcing frequency is sufficiently small. It is a
sub-limit of the limits considered above, in §2.1.1 and §2.1.2, and applies when either

C;'=0(1) and o<, (2.15)

or
1—85=0(C,) and o <C, < 1. (2.16)
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Figuri 4. Viscous long-wave Limil. Instability threshold acceleration of (211} (2.13),
467 = & (2re’ PR v(gh + oh/e)?] in terms of @ = 2w h/v, for the indicated values of
v =ah/[vgh® + ah/p)'.
In the limit {2.15) we apply a WKB approximation. We re-scale { and a as
T=a1, A= ad’ (2.17)

where @ = w/C, as above, and then seck solutions of {2.3)-(2.6) of the form
(W,P,F) = (Wy(z,17), Py(z. 1), Fo{t)} exp {m‘j Z(J)da] +ec. L+ (2.18)
0

as @ — 0, where c.c. stands for the complex conjugate. When this ansatz and (2.17)
are placed into (2.3)-(2.6) and higher-order terms are neglected, we obtain

130:: = sz)uv }:Wn = _130__ + Wo.. — k2 Wo. (2-19)
Wo=Wy=0 at z=—1, (2.20)

Wo—Ey = Wo. + KW, =0 at z =0, (2.21)

Py—(1 =S+ SK)Fo/C; + AFgcost—2Wy. =0 at z=0, (2.22)

where the slow time variable 7 acts as a parameter and /(z) is defined as that
eigenvalue with largest real part; this is numerically calculated from the dispersion
relation of (2.19)-(2.22), which is A/, 7} = 0, where Ay is the right-hand side of
{A3) in the Appendix, after setting » = 0 and subtracting 4 cost. As usual in the
WKB method (Bender & Orszag 1978; Wasow 1987), the associated approximation
of the time derivatives breaks down at the turning points, which correspond to the
multiple eigenvalues of (2.19)-(2.22); but this failure does not affect our leading-order
approximation. Now, according to (2.18), the marginally unstable points arc given by

Re ( / B Z(r)dr) —0, (2.23)
0

where Re stands for the real part. This equation provides the marginal instability
value of 4, which is shown as a thick line in figure 5(a). For comparison, the exact
marginal instability curves for @ = 0.3 are also plotted. Note that the approximation
is reasonably good near the minimum, even for this not-so-small value of &, but it
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FiGURre 5. Small-frequency sub-limit. (o) Marginal instability curve for C, = 1, § = 0.5; asymptotic
results as @ — 0 calculated from (2.23) (thick line} and exact results calculated from (2.3) (2.6) for
& = 0.3 (thin lines). (h) Asymptotic (as & — 0) instability threshold acceleration in terms of S, as
calculated from (2.23) for the indicated values of C,. (¢} Asymptotic as @ — 0 (— — —) and exuct
for & = 0.3 (——) eigenfunction for k. = 0.83. C, = 1. § = 0.5, A, = 55. (d) Asymptotic (as & — )
threshold acceleration in the long-wave limit (2.11)—(2.13).

does not distinguish between harmonic and sub-harmonic perturbations; this would
require consideration of higher-order terms and analysis of the turning points. The
instability threshold acceleration A, is readily obtained as that value of 4 where the
plot in figure 5(a) attains its minimum, at k = k. >~ 0.83. For other parameter values
we obtain A, in terms of C, and S, as plotted in figure 5(b). The corresponding
eigenfunction F(z) = Fy(t)expld " f; Z(¢)da] + c.c. (see (2.18}) at threshold, k = k.,
is plotted n figure 5(¢), and compared with the exact eigenfunction at & = 0.3; once
again the comparison is rcasonably good.

In the limit (2.16) we must consider the WKB approximation of (2.11)—(2.13) as
¢ — 0. As above, the instability threshold in this limit is obtained from equation (2.23),
where 2(7) is thal eigenvalue with largest real part of the problem obtained by substi-
tuting © = @i, A = ai* and (W, P.F}y = (Wo(z,7), Po(z, 1), Fo(t)yexpld™" f] A(o}da]+
c.c.+ -+ in (2.11)—(2.13), and neglecting higher-order terms as @ — 0. For the sake
of brevity we do not give explicitly here this linear eigenvalue problem, but it yiclds

a0t > A, as & >0, (2.24)

where the constant 4., /(x + 1) is plotted vs. »/(7 + 1) in figure 5(d).



22, Short waves
This limit applies when either

C,'=0(1) and w3 C,, (2.23)

or
Ce <1 and o> 1 (2.26)
Ulnder either of these conditions, the most dangercus wavenumber is large and the
associated cigenmode is such that the velecity vanishes cxceept in a thin layer attached
to the free surface, whose thickness is of the order of the wavelength (ie. small as
compared to the height of the container, which is 1).
If {2.25) holds then the distinguished limit is

o~k ~ais»l, C,~1 (2.27
#

[lsing the scaling

P = Cy 1;’2“)_1/3& P= wlF, n=0C; 1/2(01/_5? T = M,
T (2.28)
k=C"w Pk, A=C; "w'a,
(1.10)(1.12) arc rewrilicn in this layer as
P, =P, w, =P, + W, —iWw, (2.29)
W =0 at 5= —o, {2.30)
W—FE, =W, +EW=0 at 5=0, (2.31)
P— 2w, +AFcost=0 at n=0. {2.32)

Note that this problem is independent of both gravity and surface tension, which

are dominated in (2.32) by viscous effects. Thus this imit can also be obtained as a

sub-limit (as & — o) of the highly viscous limit considered in §2.1.1. The problem

depends only on k and ff, and when solved as indicated in the Appendix yields the

instability threshold A, = A, ~ 1.672, which provides the asymptotic behaviour (2.8),
If (2.26) holds then the distinguished limit is

W ~ ko~ C, MWos WP agltsl (2.33)
and leads to the scaling defined by (2.28) and
b= Clo/(S+CH)? §=c,*s. (2.34)

Using these, (1.9) (1.11) are rewritten as given by {2.29) (2.31). and (1.12) becomes
P—[(14+ 837307 4 (148 1o 28k F —2W, + AF cost=0 at 5 =0.
(2.35)

As above, this problem is solved numerically (see the Appendix) to obtain the Faraday
stability threshold acceleration A, plotted vs. @& in figure 6{a). Note that as @ increases
all curves approach that labelled § = o, which corresponds to neglecting gravity and
replacing (2.35) by

P—o VR — 2w, + AF cost =0 at =0, (2.36)
Now, we must distinguish two cases. (i) IS = 0(1) the validity of (2.36) requires that
(1+ 80 = C1RPw¥ » 1, (2.37)
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FIGURE 6. Short-wave [imit. (a) Instability threshold of (2.29)-{2.31) and (2.33), given by
Ao = a(2ra” /)" in terms of & = 2ne piv o + (03 e + a /]2, for the indicated

values of § = o/[(pv2 )7 pg + a /B3] asymptotic behaviours as & — 0,7 (— — —). (b) Com-
PN . .
parison between the approximation {2.39) (or (3.20)), giving 4.8 = aq.wS"?/C, in terms of
A2 . &
2§77 = w25\ {(— — —) and the exact threshold acceleration calculated from (2.29)—2.31) and

(2.35) for § =500 (—}; asymptotic bchavieurs as (?)35"9':3 — 0, (— —)

as obtained by comparing those terms accounting for gravitational and viscous effects
in (2.35). Similarly, capillary effects are small compared to viscous cffects provided
that

(1+8)0"/8 = ClPw'?/S > 1. (2.38)

(ii) If instead S > 1 then gravity can be neglected for & < 1. In this limit, (3.19)
below holds, the short-wave limit of the nearly inviscid regime (§3.1.1 below) applies,
and according to (3.20) below and the scaling (2.34), the threshold curve is given by

A3/2 A

28" — o287 41 + (6172877 4.2 1), (2.39)
to a first approximation; in fact this approximation applies whenever & < 1, without
the need for § being large, This approximate expression is plotted in figure 6(h), where
it is also compared with the ‘exact’ curve for § = 500, and yields two asymptotic

2972 &9/2 . :
behaviours, as 8" <« 1and as 8" > 1, which become apparent in the curve
labelled § = 100 in figure 6{a).

The asymptotic behaviours as @ — 0 and & — =« are also plotted in figure 6(« ).
According to our comments above, the former is given by

A =240) 4+ if S=wo, A =850+ if S<ux (2.40)

In the limit & — o, when both (2.37) and (2.38) hold. (2.35) reduces to (2.32) and thus
we have the asymptotic behaviour 4, — A, (= 1.672} as & — =, which coincides
with both the asymptotic behaviour (2.8) and the related result above in the limit
(2.25).

3. Nearly inviscid limits

In these limits viscous effects can be ignored except in two boundary layers attached
to the bottom wall and the free surface. This requires that (sec below)

., <1, C,«1—=8S+w and C;/Ews’fz €1 =854+5w/C,. (3.1)



If we tried to obtain the whole marginal instability curve in this regime then we
would obtain a non-local Mathicu cquation similar to thosc considered by Bever &
Frigdrich (1993) and Miiller e al. (1997). But for most values of the parameters in
this regime, namely whenever (ct. (3.1})

C, <1, Cu€m and CF0™* € 1-5+Sw/C, (3.2)

the cigenfunction at threshold is monochromatic to a lirst approximation and the
instahility threshold is given by a standard Mathieu equation. This case will be treated
in §3.1. I mstcad (3.1) holds but (3.2} docs net, which occurs il

C,<l, o=0(C,) and C, < 1-38, (3.3)

then the eigenfunction at threshold is not monochromatic but the WKB method
applies.

3.1. Monochromatic eigenfunctions
In the limit (3.2) the free-surface detlection F is given by

F/ 4261 4+ |QF — 2Qd + 2d° — ako® tanhk cos(wt)|F =0, (3.4)

where the damping rate . the inviscid cigenfrequency € and the viscous detuning d
are
- A’(Q/Z)“2 T YN {1+ tz.n‘lhzk)k2
sinh2k % 4sinh? k
. 1/2
Q@ = [klanhk(l —§ + SKMY2, d= M r1/2 {(3.0)
sinh2k ¢
Note that the second term in the expansion (3.3) is essential as soon as k is large.
The two-term approximation of the damping raic (3.5) is quite good in the wholc
range (3.2) (Martel & Knobloch 1997), Note that there is a discrepancy between the
coefficient of C, in (3.5) and its counterpart calculated by Martel & Knobloch, which
comes [rom a gap in their calculation (Knobloch, Martel & Vega 2002). But this tcrm
can be in fact neglected, to obtain the following well-known approximation:

8 > k|(1—S + Sk’ )k tanh k]/*C7% /(212 sinh 2k) + 2k°C,, (3.7)

Co -y (3.5)

which is uniformly valid in the limit (3.2). Of coursc we could proceed with higher-
arder terms in (3.5), but their calculation is increasingly tedious and only provides
small corrections (the next O(Cg/z)—term yields a 15% correction at €, ~ 0.1, Miiller et
al. 1997). Equation {3.4) could be obtained quite directly by adding viscous dissipation
to the standard inviscid Mathicu cquation {Kumar & lTuckcrman 1994), Bul for
convenience we explain how (3.4} (with § approximated as in (3.7)) is derived from first
principles and where its validity limais (3.2) come {from. We consider the distinguished
limit C, < 1, @ ~ 1, in which the solutions of {1.9)—(1.12) exhibit two thin boundary
layers, with thicknesses O( Cé/ 2), ncar the bottom plate and the {ree surface. Outside
these layers, in the bulk, (1.9) (1.12) can be replaced by

Pzz = k2P7 Wr = _Pze (38)
W = [C /@) A (W,/Q — W) at z=—1, (3.9)
W —F, = =2k°C,I" ai z=0, (3.10)

P—(1—S+SK)F —2C,W, + aw’Fcosiw) =0 al z =0, (3.11)



to the approximation relevant here, where we have taken into account that vorticity
vanishes (o all orders in the bulk; the boundary conditions arc obtained from matching
conditions between the solution in the boundary layers and that in the bulk. The
assumption above that the solution be monochromatic is essential to obtain the
solution in the boundary layer attached to the bottom plate in closed form.

Since C, < 1, we seek the expansions

(P.W) = (Po, Wo) + C2(PL W) + Col o, Wa) -, (3.12)
and introduce the ansatz
I = —[#o(F) + Cg”z_i»t’:’l(F) + Co 5 Fy -], {3.13)

where, for j =0,1,2, %, arc lincar operators acting on the [ree-surface dellection £,
Substituting (3.12)—(3.13) into (3.8)3.11) we obiain, at leading order,

Wy = F/sinh[k(z + 1)|/sinhk, Py = —F"coshlk(z + 1)|/(ksinhk), (3.14
FoF) = klanhk[l — S + Sk? — aw? cos(wt)|F, 314)

where the third expression comes from a standard solvability condition. Similarly, at
0(Cy™) and 0(C,) we obtain

FUF) = k(2Q)VA(F — QF)/ sinh 2k, }

| 2 ' (3.15)
#5(F) = 42F + O(k?F' + d*F)/ sinh’ k

and, according to (3.13), the Mathieu equation (3.4) follows. When looking at the
ingredients in this derivation, we obtain the validity limits (3.2) by anticipating that
w ~ € and requiring that the thicknesses of the boundary layers, O(C,/w)"/?, be
small compared to either (i) the height of the container if « is bounded or (ii) the
penctration depth of the waves, &', i w is large.

Now since & < 1, the stability analysis of (3.4) 1s standard. The most dangerous
mode is the sub-harmonic (and monochromatic, as anticipated above) one with a
[requency £2 ~ «w/2, which corresponds to a firsi resonance longue and gives a. ~ &,
the remaining tongues are associated with modes exhibiting frequencies mmw/2 and
yicld a ~ 8'/™ (> 8) for cach integer m = 2 (Bender & Orszag 1978). and thus they
never provide the instability threshold. For fixed values of w, C, (< 1) and S, the
first resomance tongue corresponds to values of the wavenumber & such that Q(k) is
closc to w/2, and the marginal instability curve (a vs. k) of (3.4) 1s given by

{(wktanhk)a/é =2[1 + (2 — w/2 — dy /8% (3.10)

to the approximation relevant here. As the wavelength is (slightly) varied, this condi-
tion provides the hyperbola plotted as a solid hine in lgure 7(a), whose minimum is
attained at Q = w/2+d and leads to the threshold amphitude for TTaraday instability,
which is

a, = 26 /{wk tanhk) ~ (coth® k — DHC)? /(20" %) + 4k coth kC, /o, (3.17)

where the approximation (3.7) has been used and the wavenumber £ is given by
(recall that @ ~ /2 and see (3.6a))

(1 — 8+ Skik tanhk = w?/4. (3.18)

The approximation (3.17) is plotted with dashed lines in figure 7(b,c) for C, = 10 *.
Nolg that the approximation is good provided that w is ncither too small nor too large,
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FIGURE 7. Instability threshold in the nearly inviscid regime. (¢) Marginal instability curves;
asymptotic result from (3,16) (——), and exact result from (1.9)-(1.12) for €, = 1072, 0 = 1 and:
S=0(———).S=05(—-——)and S =1{(-- ). (h,c) Instability threshold acceleration
in terms of @ for the indicated values of §: asymptotic result from (3.17) (— — —). cxact result
from (1.9)}(1.12) for C, = 10 * (——); asymptotic behaviours from (3.20) and (3.24) (— —},
and long-wave approximation from (2,11} (2,13} (-~ ). (d) Approximation (3.23) { ) and
asymptotic behaviours for small and large w /{1 — §) (— —).

according to (3.2}. In addition, the exact value of ¢, and its asymptotic behaviour (as

o — 0 and o — o) are plotted for comparison. These asymptotic behaviours deserve
some attention.

Nearly inviscid short waves
If
| <w and Cla’? <1 —S+Sw/C, (3.19)

then & 1s large at threshold (sce (3.18)) and (3.17)-(3.18) become ¢, = 4kC,/w and
{1 —8 + Sk*)k = w?/4 to a first approximation, or

@’SY? = (08" %a /CH[1 + (08 ?a./C)/16]. (3.20)
This expression is readily obtained in the distinguished limit Sk ~ 1 (which requires
that S be small), but also applies as either Sk — 0 or Sk? — o, as is readily seen. It
matches with the short-wave limit considered in §2.2, as anticipated there.



Nearly inviscid long waves
If
C, €1, (3.21)

then the wavenumber & is small (sce (3.18)) and, Lo a first approximation, (3.17)-(3.18)
become

a, = C;-’fz/(2cz)1’"2k2) and (1 — S + Sk = w?/4, (3.22)
which can be simplilied to
a,w' (1 —8)/C7 = (1= 8y /0’ + [(1 = $¥/w' +{1 - 8) /'], (3.23)

In order lo obtain this we only need o consider the distinguished limit 1 — § ~ &2
{which requires that 1 — § be small) in (3.22} and check that the approximation also
holds as 1 — S < k? and as 1 — S >» k. This approximation vields the threshold curve
plotted in figure 7{(d), where the asymptotic behaviours arc

a‘;(rJB"QCg_UE -1 a8 w/(1-8)—w, {(3.24)

a‘,.(ns-"z(f;”z(l —5)' =2 as w/(1=S)-0 (3.25)

Asymptotic behaviour (3.25) matches either with the long-wave limit considered in
§2.1.2 (scc (2.14b)) if 1 — § = O(C,), or with the non-monochromatic case considered
next if 1 =8 C,.

3.2, Nown-monochromatic eigenfunclions

In the limit (3.3) the eigenfunctions at threshold are noi monochromatic and oscillate

on a characteristic time much shorter than the forcing period 2n/w. As in §2.1.3,

thosce cigenlunctions and the instability threshold are readily calculated by the WKB

method, which in the limit (3.3) leads to closed-form expressions as follows. As in the

approximation implicit in (3.6}, (3.7), the eigenvalue of (2.19) (2.22) is given by

CoA(T) = [(amw” cost — 1+ § — Sk?)k tanh k]'/?
—|(ae’ cosT — 1 + § — Sk jk tanh k| *kC)/? /(27 sinh 2k) — 2k*C, + - -+

{(3.26)

which applics in the limit (3.3) provided that, in addition Im A > |Re 4], where Re and

Im stand for the real and the wmaginary parts. This requires in particular that 4 be

not real. Thus invoking (2.23) and (3.26), and anticipating that Sk* < 1 at marginal

instability we have

a’ =1—-5+ A, with |4] <1, (3.27)
we obtain the following approximation for A:
{1 —8) Y24 — SkY(k tanh k)'?

= I;[(1 — $)k tanh k1"*kC, 77 /12 sinh(2k)] 4 4rk>Cy + -, (3.28)

where
1
I =2 / (1 - de = nj2*?
0

I = (1 —costi ™ dr = 2°*B(3/4,1/2) ~ 5.70,
0]
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Figure & Marginal instability curves for ¢, = 10 2, § = 0.5 and «» = 0.01: ——, exact solution
from (2.3)-(2.6); — — —. approximatc WKB solution given by (3.27)-{3.28) and - -+ -, approximate

WK B solution as calculated in §2.1.3.

B being the beta-function (Abramowitz & Stegun 1972). Equations (3.27)-(3.28) yield
a U-shapcd curve, like that plotted with a dashed line in figurc 8, whose minimum
provides the instability threshold. The approximation (3.28) does not coincide, cven
at leading order, with the result of applying the WKB method (as v — 0} to the
Mathieu equation (3.5}, the main ditference being the term proportional to C;ﬁ COST

in (3.26); this is not surprising because (3.5) only applies when the oscillation is
monochromatic.

4, Some approximations in the literature

Here we consider two ad hoc approximations already considered in the literature
to elucidate their scope.

As noticed by Kumar (1996) and further pursued by Miles (1999), the numerical
solution of the basic problem used by Kumar & Tuckerman (1994}, quoted in the
Appendix, converges so fast that a two-term truncation frequently yiclds quite good
results. That approximation is given by (A 9) in the Appendix and has been used to
calculate those curves plotted with dashed lines in figure 3. From this figure and other
comparisons not presented here we conclude that the approximation is reasonably
good along the first resonance tongue. Note that the eigenfunctions are increasingly
complex as @ — 0 (§2.1.3) and thus this two-mode approximation must fail for
small frequency. Also note that the approximation is better for small C,, which is
consistent with the fact that in the nearly inviscid limit the eigenfunctions become
monochromatic.

A second (family of) approximation(s) is related to the Mathieu equation, which
is the simplest equation exhibiting parametric instabilities (Bender & Orszag 1978).
There has been two Lypes of such approximations reporied.

Bever & Friedrich (1995) and Miiller et al. (1997) derived a non-local Mathieu
equation in the nearly inviscid limit C, — 0, the non-lecal term resulting from
the solution in the Stokes boundary layer attached to the bottom of the container.
That cquation reduces to (3.4} if the forcing frequency is not too large and only
monochromatic solutions are sought, but it also provides the non-monochromatic
solutions considered in §3.2.



Cerda & Tirapegui (1998) instead considered the highly viscous limit and proceeded
as lollows. They considered the temporal Laplace transform of (2.3)-(2.0),

Pw By = | (Bw. el d, {4.1)
JO

and eliminated P* and W" from the resulting problem, to obtain after some algebra
an equation of the form

‘P’(s)ﬁ* + ai®’ /

0

i

7" cos(@ie’ di = 0. (4.2)

Now they observed that for sufficiently large viscosity and fixed forcing frequency
(in our notation, €, > 1 and o fixed) the function ¥ 15 well-approximated by ils
second-order Taylor expansion at s = 0, namely ¥(s) ~ ¥{0) +s¥(0) + ¥ (0)/2
over a wide range in s (not just that at small 5). This means that the inverse Laplace
transform of {4.2) is approximated by a Mathicu cquation. In our notation, this
gquation is

Bi(l)E” + Bo(k)F + (1 = § + SKN/C2 + ad’ cos(@D)| 7 = 0, {4.3)
where

Bi(k) = (3sinh 2k — 6k — 4k*) cosh® k + k*(sinh 2k — 2k)/ [k(sinh 2k — 2k)*], (44)
Ba(k) = 2k(coshk + 2k* + 1)/(sinh 2k — 2k). '

Before proceeding we note that (4.3) does not reduce to (3.4} as C, — 0, which means
that (4.3) does not apply as w 3» C, — 0. Observe that (4.3) does not come from any
asymptotic limit; instead it should be seen as a numerical approximation. We have
thoroughly checked (4.3) and have found that il provides (numcrically) rcasonably
goad results over a wide range of the parameter values, whenever & is not too large.
This is illustrated in figure 3. Finally, we can obtain a second-order approximation
in the application of the WK B method to (4.3) {Bender & Orszag 1978), namely the
following approximation of the marginal instability curve of (4.3):

2m
cOs (c’b' / Im (z(r))dr)
0
as @ — 0, where 1 is that root of

Bi(K)2* + Bay(k)A + |(1 — 8 + Sk°)/CZ + ad’ cos(di )| FF =0, {4.6)

/gn Re () dr = —®1n [2
0

}_,_... (4.5

with the largest real part. With this approximation we calculate the threshold accel-
eration that 1s plotted with dotted lines in figure 3.

Summarizing, the two-lcrm approximation m (A9} and that resulting [rom the
Mathicu equation (4.3) together provide the whole threshold curve, as is apparent in
figure 3.

5. The effect of distant sidewalls

These effects were neglected above, but they can be larger than expected due to
contact ling dynamics; they have been estimated at large aspect ratio by Milner
{1991), and are considered below for convenience. In the viscous regime considered
in §2, the validity of the approximation only requires (hat the aspect ratio of the



container, L (the ratio of width to depth), be large compared to the non-dimensional
wavelength &, that is
Lk > 1 (5.1

And the same condition applies in the nearly inviscid limit considered in §2.1 if the
contact line is either fixed or completely free {ie. if either the first boundary condition
(1.6) applics or i the sccond docs with D = o2); this is in accordance with the facl
that the contact ling itself produces no dissipation at leading order in these two cases.
But il the second boundary condition (1.6) applics and D is neither too small nor oo
large, then contact ling dynamics has 2 more profound effect on viscous dissipation
and thus on the instability threshold calculated in $3. as we show now. With the
notation in (1.1)-(1.6), the mechanical cnergy cquation 18 wrillen as

dH/dt = =Py — &y 4 P4,
where H, @, @, and @, are given by

] .
H= / (Ja)* +wHdxdydz + / [(1 =8} + 8|VfP ] dxdy,
JE S =1 JZ
o
¢ = 2Cg/ / (IVal* + |, + [Vw]* + whdxdydz + 4C, / u-u, dxdy,
rJ—1 5

@, = 25D~ / f2ds = 28D / (Vf-n)tds, @;=2aw’cos ot / Ifedxdy.
JI r z

H and &; result from mechanical energy and the work due to forced vibration,
respectively, @) accounts for viscous dissipation in the liquid, which results from
dissipation in both the bulk and the Stokes boundary layer, and was accounted for
in (3.5) (or (3.7)); &, comes (rom dissipation at ithe contact line. A straightforward
orders-of-magnitude analysis using (3.12) and (3.14) yields

@ ~ C,’K LY+ k)" and  |&#,] ~ SLmin{ D w?, DY,
and the clfect of viscous dissipation at the contact hine can be neglected only if
|92 _ 51 + k)min!{ 1, D*k* /e
|21] C,DkL
or equivalently, only if D is either sufficiently small or large, namely if either

D < &*C,L/[S(1 + k)] or D> S(1+k)/(CKL).

< 1, (5.2)

IT nonc of these conditions hold then the cffect of contact line dynamics can be of
the same order as {or even large compared to) that of viscous dissipation. This could
be the case in some of the experiments by Bechhoefer er al. (1995) and Christiansen
el al. (1993),

6. Comparison with experiments

Most experiments in large-aspect-ratio containers gither deal with the viscous limit
or with the short-wave limit, which are considered now.

6.1, Highly viscous limit
As is frequently the case in fluid mechanics, the high-viscosity limit provides good
rcsults for modcerate viscosity. In order to illustrate this we plot in figure 9(a) the



P v T h o’
Symbol in figure 9(b)  (gem™)  (em?s7!')  (dynem™)  (cm) (11z) C, 5
FaN 0.8 (.8 30 0.13 4080 0.30 (.69
* 0.8 (.8 30 0.15 4080 0.27 (.63
+ 0.8 0.38 30 0.1 30 70 0.27 0.75

Tanrk 1. Experiments at large viscosity by Lioubashevski et al. (1997).

threshold aceeleration for representative values of ¢, = 0.3 and S (cl. figurc 3c.d).
Note that for C, > 0.3 and @ > 10 (or C, = 0.5 and ® > 3), all curves are quite
close to that obtained for C, = cc. This explains the ‘universal scaling” found by
Lioubashevski et al. (1997). who performed a large number of experiments at high
viscosity and small depth, and showed that the results were fairly independent of
gravity and surface tension. In our notation, these results were all on the same
curve of the plane a. vs. @, in accordance with figure 9(a). In fact, by empirical fit,
Lioubashevski et al. obtained the curve

a,®" = (r/2)(1 = SHC;” + 0059 »° + 21.46 ), {6.1)

which 18 plotied with dot-dashed line in figurc 9(a, b). This curve viclds rcasonably
goad results in the range 5 < @ < 10, which (as 1t must) includes the range where
it fitted the experiments by Lioubashevski et al. Note nevertheless that it cannot
(and docs not) give good results outside this range; in particular (as cxpected in a
purely empirical fit} it does not meet the asymptetic behaviour (2.8) for large ®. Tor
illustration we have added in figure k) some experimental results by Lioubashevski
el al. (see table 1 for the physical parameters). Note that C, ~ 0.3 and § ~ 0.7 in
all cases, and that the fit is quite good with both the exact curves and the empirical
approximation (6.1) for C; =03 and 5§ =0.7.

0.2, Short-wave Himir

Now wc consider (he cxperimental results summarized in table 2. These are compared
in figure 9c) with the results obtained in §2.2. Note that condition (2.26) applies in
all cascs. Most results (exeepl some by Hellman & Woll 1974 and Bechhocfer et al.
1995} fit the curve S = o, which suggests that gravity plays no much role here. But a
closer look at the theoretical curves for the different values of S shows that the eftect
of gravity (and surface tension) is as indicated in the last column in table 2. Somc
remarks are now in order.

(i} The experimental points are above the theoretical curves in most plots, which
suggests that (despile cxperimental crrors) some additional source of damping could
be present. The effect of the lower plate, which was ignored in the theoretical curves,
could also play 4 minor tole when e is only moderately large (say o < 06).

(i} Some of the second group of experimental points by ITolman & Wolf {(namely,
those above the curve § = o) were obtained with the container in the inverted
position, which conlirms the small role of gravity.

(i1} Kudrolli & Gollub (1996} do not give the surface tension ceeflicient, which
has been taken from Bechhoefer er al. (1997), because both seem to have used the
same type of silicone oil.

(iv) We have only taken a few from the many experimental points by Wernet et al.
(2001), namely those points in which the wavclength of the cxcited waves was small



Experiment [symbol in figure 9¢|

Hollman & Woaoll (1974} [*]
[offman & Wolf (1974) | x|
Ldwards (1994) |&]
Bechhoefer et al. (1995) [A]
Bechhoefer et al. (1995) [V]
Kudrolli & Gollub (1996) [+]
Kudrolli & Gollub (1996 [O]
Kudrolli & Gollub (1996} |@]
Lioubashevski et al. {1997) [»]
Lioubashevski et al. {1997) [e]
Wernel et al. (2001) [<]

p

{gem 7)

0.9
0.9
1.22
0.80
0.84
0.85
0.85
0.85
0.8
0.8
~ 0.94

v

(cm?s ')

1.1
4.3
1.02
1.24
0.25
0.1
0.5
L
0.48
0.41
~0.75

a

{dynem ")

10
10
67.6
28.9
20.2
27
27
27
an
30
~19.9

h
{cm)

0.25
0.3

¥

@
(11zZ)

50-170
50-110
51-100
0 75
54 137
42-178
42-57
47-38
66 80
52-102
80-140

TaBLE 2. Experiments in deep containers. In the last column we indicale whal ellects (V
in gach experiment; G between parentheses indicates that gravity plays a small role. The data for Tdwards (1994) are unpublished and are taken from
Kumar & Tuckerman (1994), Kumar (1996) and Cerda & Tirapegui (1998).

C, % 107

§2.5
~ 140

§x 10}

0.31

0.31
400
33
31
265
265
265
465
380
~ 193

o

25-84
25-55
4.3-54
6.0 15
11 27
3.9-16
4.0-5.4
4.5-5.3
45 53
4.1-8.1
7.9-14

A

S

1.00
0.16
4.58
2.40
19.7
62.6
7.27
2.90
8.16
10.6
~ 27

Dominant

effects

= viscous, G = gravilational, 8 =surlace lension) play a role
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FiGure 9. Comparison with experiments, (o) Joint plot of the right-hand sides of figure 3(¢,d) and
their counterparts for C, = 0.3 and § = 0.7 {(——), and the corresponding empirical approximation
{6.1) (— —-—): the values of C, and S associated with cach empirical curve are readily guessed taking
into account that «.@” increases as (1 — S)/C;“ increases. (h) Comparison of the exact curves (—)
and the empirical approximation (6.1) (—- —" —) for C, = 0.3 and § = 0.7 with some experiments
by Lioubashevski er al. (1997), sec table 1. (¢) A plot of some of the curves in figure 6(¢) and some
experimental results (see table 2),

compared with the container depth. The parameters p, v and ¢ vary in small ranges
for these experiments, and we only give an intermediate value in each case.

7. Conclusions

We have considered the linear problem giving the instability threshold amplitude,
a., for the appearance of Faraday waves in large-aspect-ratio containers. We have
identified all distinguished limits, which are listed in §1. These results allow us
to cxplain the shapc of the curve a.w? vs. w, depending on the non-dimensional
parameters C,, which is 4 measure of viscous effects (compared to the combined
effect of gravity and surface tension) and §, which is the ratio of surface tension
to its combined effect with gravity. These curves always show the same asymptotic



behaviours for small and large frequency. A sequence of alternating harmonic sub-
harmonic scgments appears for small frequency, as w € 1 —§ + C,; the practical
interest of this limit is limited because it involves a quite large forcing amplitude. As
w3 Cp and 1 =5 + Sw/C, < ©¥2¢C,’* viscous effects dominate both gravity and
surface tension and we have a{w/C,}"? ~ 1.672. Two cases can be distinguished for
the intermediate part of the curve:

In the basic viscous case. considered in §2.1, C, is at least of order unity and there
is only one intermediate region, obtained as o/C, ~ 1. As a practical recipe for this
limit, we have found in §6.1 that as €, > 0.5 and w/C, > 5 ([or arbitrary §) all curves
acar’ [C; vs. w/C, approach that curve obtained for €, = co. This wide validity of
the highly viscous limit explained some observations by Lioubashevski et al. (1995).

In the nearly inviscid casc, as C, < 1, the curve (scc figure 7b,¢} shows scveral
distinguished regions in addition to the two considered above. As w ~ C, and 1 —
S+ Sw/Cy > cr)?’-"'ZC,'gl"f2 (in fgure 7b, w; < w < @y, where w; = 0.1 for § =0,0.5,
w =05 for § =1, and w2 =5 tor § =0, wy, =100 for § = 0.5,1), viscous effects
arc wecak cxcept in boundary layers and g, can be approximated in closed lorm.
As 1 — S +Sw/C, ~ 0¥?C,"" viscous cffccts cannot be neglected, even in a first
approximation, because they are of the same order as the combined effect of gravity
and surface tension; this corresponds to the transition from small to dominant viscous
clleets, and yicld the change in slope at @ ~ w, in fgure 7(b). I 1 —8 » C, (§ =0
and 0.5 in figure 7h) there are no additional regions but if 1 — 8§ = O(C,) (§ =1 in
[igurc 7b) there is an additional viscous region, as o ~ C, (w ~ wy, in figurc 76) where
the eigenfunction at threshold exhibits a long wavelength {(compared to depth), which
is intermediate between the nearly inviscid region and the harmonic sub-harmonic
sequence. Most experiments in the literature for small C, correspond to the short-
wave part of the curve and were compared in figure 9(¢) with the results obtained in
§2.2. We have clucidated the roles of gravity and surface tension in cach ¢xperiment.

In addition wc have thoroughly checked two approximations in the litcrature,
introduced by Kumar (1996) and Cerda & Tirapegui (1998), which together describe
reasonably well the threshold acceleration for all values of the parameters. The former
yiclds good results on the first resonance tongue, i most of the curve agm?® vs. o,
except at small @, And the latter applies at small frequency, so that the scope of both
approximalions overlaps and covers the whole curve,

‘The results above show that €, and § are usciul paramcters [or the description and
understanding of the several regimes. We showed that there is a variety of essentially
different regimes, some of which have not been explored experimentally. We have
tricd to obtain a complcle description of all regimes and the scope of cach. We
hope this will help as a prerequisite to understanding weakly nonlinear dynamics of
Faraday waves, which is a major open problem.

"This rescarch was partially supporicd by DGI and NASA, under Grants BFM2001-
2363 and NAG3-2152, The authors are indebted to Tr Carlos Martel for some useful
discussions.

Appendix. Numerical calculation of the marginal instability curves

I'or the sake of brevity we only give complete expressions for the basic limit con-
sidered in §2.1.1, and for convenience we consider the non-dimensional equations

(2.3)-(2.6). 'The Floguet exponents are denoted as £ and defined such that there



is 4 non-zero solution of {2.3) (2.6} such that (W (D), P(i), F(i ) exp(—Af) is peri-
odic, of period 2r/d. The Fourier cxpansion of this periodic solution will converge
exponentially, Accordingly, as in Kumar & Tuckerman (1994), if the expansion
(W(D), P), (D)) = exp(2D) Y (W, By, Fyyexplindl ) (A1)
H=—:0
is substituted into (1.9} (1.11} then several equations and boundary conditions result

that allow a unique detcrmination of W, and £, in tcrms of F,. A [urther substitution
into (1.12) yields

24, F, = ad*{(F,_ 4+ F,1), (A2)
where
4 - (g2 + k) + 4k*g, — [(g> + k> + 4¢2k’ )k tanh ¢, tanh k)
e kg, tanhk — ktanh g,)
B 4q,k{gy + &) 1 -5+ Sk (A3)
¢, cosh g, sinh k — k sinh g, coshk Cg ’

gy = (K2 + 1 + in®)) /2,

il 7+ in®d # 0, and 4y = (1 — § + Sk?)/C2 if 2 =0. Here we arc assuming that
the real and imaginary parts of the Floguet cxponent satisly Rei + k> = 0 and
0 < Imd £ ®/2, Now, the Flogquet exponents are readily calculated by imposing that
the system (A 2) has a non-trivial selution, i.c. after truncation, by imposing that the
associated tridiagonal matrix is singular, This condition can be writien in terms of
a continued fraction (Chen & Vifals 1997; Miles 1999). But that condition is also
imposcd quile cllcctively by solving uicratively the iridiagonal system (A 2) as lollows.
Split the system (A 2) into the sub-systems corresponding to » positive and negative,
and the equation corresponding to n = 0, and rewrite these three problems as

24 =a®’ (1 + [ f7) if nz1, (Ad)
24y = ald*(fF + £, (A5)
in terms of the new variables
S =Fiwn/F 1 {A6)
Since Ay = —@>N?/(k tanhk) + O(N) — = as n — o0, the cxpression
fv =ad* /(24 n4), (AT)

is exact up to a factor 1+ O(|_f§|2) as N — oo, ITere we are disregarding the spurious
bchaviour fx ~ 24.x/(6%a). Now, fi,..., fy arc uniquely determined by (A 4) and
(A 7). And substitution of f7 into (A 5) provides the characteristic equation to calculate
the Floquet exponent A The system (A 4) is further simplified in two cases

fo=f, it =0, f;,=f, and [ffl=1 if i=i0/2,  (A8)

as is rcadily scen,

For convenience we consider in particular a two-term truncation in the sub-
harmonic case. From (A 5), (A7) and (A 8), we obtain 24, = a®*(ff + f, ), f§ =
a@’/(24,) and |f | = 1, which lcad to the following approximation of the threshold



amplitude:

@it = 2[AgA; + e+ AP — V(e Ar Foe AR — 4 AP1A ], {A9)

where A, and A, are given by (A3), with 4 = i®/2. This approximation coincides
with that by Kumar (1996) modulo notation dillcrences.

The problems (2.11)-(2.13), (2.293-(2.32) and (2.29)-(2.31), (2.35) arc solved in a
completely similar way, Equations (A 4)—(A 8) remain unchanged, while (A 2) must be
replaced by the following expressions, which are obtained by substituting the scalings
(2.2), (2.10) and (2.34) nto (A D-{A2), (A4)~(A7) and ncglccting higher-order terms.
For (2.11) (2.13) we have

Ay = 3;/1(y + DR (@, —tanh @,)] + 7 + (7 + D, (A10)
where g, = (2 4 in®)Y2; for (2.29) (2.32) we obtain
A, = (‘;';21 + I:'Z)z/ﬁ - 4'7);261}77 G = (”23 + i + ind)'"* > (A1)

and for (2.29)—(2.31) and (2.35) we obtain
Ay =+ RV k— 4, + (148 %0 V4 SPU+ 8 e V2 (A12)
with 4, as defined in (A 11).
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