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Abstract 

Weakly dissipative parametrically excited (by vertical vibration) surface gravity-capillary waves in a two-dimensional, 
horizontally periodic container are considered. A set of equations is derived for the coupled evolution of the left- and 
right-traveling surface waves and the associated mean flow, in the case when the container depth is small compared to its 
length but large compared to the wavelength of the excited waves. The stability of the spatially uniform standing waves (SWs) 
is first analyzed and then the large time spatio-temporal behavior of the system beyond threshold is numerically studied. The 
viscous mean flow is found to drastically affect the dynamics of the system and the resulting surface wave patterns. 

PACS: 47.20.Ky; 47.20.Ma; 47.35.+i; 47.54.+r 
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1. Introduction 

Faraday waves [1,2] are excited on the fluid surface upon vertical vibration of the container when the forcing 
amplitude exceeds a threshold valué. These waves show a large variety of complex spatio-temporal behaviors [3-5], 
especially in large aspect ratio containers [6], and have received a great deal of attention. Unfortunately, several 
basic issues remain unclear in the weakly nonlinear limit, especially at low viscosity. Among these, no systematic 
theory is available for the associated mean flow, namely the flow generated by slowly varying (as compared to 
the vibrating period) forcing terms. Viscosity has a more profound effect [7-11] than that assumed in the usual 
approaches of the small viscosity limit, where viscous effects only come through a viscous dissipation term added a 
posteriori to the classical Hamiltonian formulation [3]. Nonzero time-averaged Reynolds stresses in the oscillatory 
boundary layers attached to the solid walls and the free surface are able to forcé a significant secondary viscous 
mean flow in the bulk, outside the boundary layers. The mean flow affects the dynamics of the primary waves at 
leading order, and thus cannot be ignored. The main object of this paper is to derive a set of equations accounting 
for this coupled evolution, in a limit that is both realistic and suitable for a not too complex description of the mean 
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Fig. 1. Sketch of the fluid domain. 

flow. In addition, in order to elucídate the role of the mean flow in the surface wave dynamics, the derived equations 
will be analyzed by analytical means (when possible) and by direct numerical simulation. 

In order to avoid additional difficulties and to clarify the role of the mean flow, we consider the simplest geometry 
allowing one-dimensional propagation, namely a slender annulus, and for simplicity in the presentation we shall 
consider a ID model of that, namely a laterally unbounded layer with periodic boundary conditions (Fig. 1). Results 
for this geometry could apply even quantitatively to a 3D annular container whose length is large compared to width, 
and the latter is large compared to the wavelength of the surface waves, provided that width is not too large for the 
natural frequencies of eigenmodes exhibiting different radial wavenumbers be conveniently separated. In this case, 
the forcing frequency can be selected such that only one radial mode is excited and propagation is one-dimensional. 
If, instead width is of the order of wavelength then this latter condition is easily achieved, but the companson with 
our theory could only be qualitative due to the effect of the lateral walls. 

The remaining of the paper is organized as follows. In the next section we briefly outline the derivation in [8] 
of a general system of equations for the coupled evolution of the amplitudes of the surface waves and the mean 
flow. These equations are then simplified in Section 3 for the particular limit case studied in this paper. The simplest 
nonflat solutions (spatially uniform standing waves (SWs)) and their linear stability are considered in Section 4, and 
the equations are numencally integrated in Section 5 for representative valúes of the various parameters to obtain 
the large time behavior of the system away from threshold. Finally, the main results of the paper are summarized 
and discussed in Section 6. 

2. Formulation and other preliminaries 

We consider a two-dimensional fluid layer (Fig. 1) above a horizontal píate that is vibrated vertically with 
an appropriately small amplitude. The layer is laterally unbounded with periodic boundary conditions. We use 
a Cartesian coordinate system with the x-axis along the unperturbed free surface and y vertically upwards, and 
nondimensionalize space and time with the unperturbed depth h and the gravity-capillary time [g/h + T/(ph3)]~1^2, 
where g is the gravitational acceleration, p the density and T the coefficient of surface tensión. The nondimensional 
equations governing the system then are 

fxx + fyy = Í2, í?í - fy^x + fx^y = CÁÍ2XX + Í2yy) (1) 

in - 1 < y < / , with boundary conditions 

ft-fx- fyfx = (fyy ~ fxx)(\ ~ fx) ~ ^fxf. xy o, 

(1 - S)fx - s 
fx 

,^Tl 
fyt + fxtfx ~ (fx + fyfxW 

(fÍ + f2y)x (fÍ + f2y)yfx 2 
1 4/x£y¿/x sin2íyí 



-CgXhfxxy + fyyy ~ {fxXX + fxyy)fx\ + ^Cg 

ifxxy - fyyy)fx ~ fxyyi^ - fx)fj 

2fxyfx + (fxx ~ fyy)fx 

1 + fx2 

2 C g l l ^ ryyy^x ^ r^yy- ,^^_ ^ y = f, (2) 

Jo 

1 + A2 

fiydx = f = x¡ry = 0 aty = - l , (3) 

f{x + L,y, t) = f{x,y,t), f(x + L,t) = f(x,t), / f dx = 0. (4) 
Jo 

Here x¡r is the streamfunction, such that the velocity (u,v) = (—iry, i¡rx), Í2 is the vorticity, and / is the free 
surface elevation required to satisíy volume conservation recalled in the third condition of (4). First condition of 
(3) is necessary in order that the pressure be periodic in x. The remaining equations and boundary conditions are 
standard. The resulting problem depends on the aspect ratio L, on the nondimensional vibration amplitude \x and 
frequency Ico, onthe capillary-gravity number Cg = v/\gh3 + Th/p]1^2, where v is the kinematic viscosity, and on 
the gravity-capillary balance parameter S = T/(T + pgh2). Note that Cg and S are related to the usual Onhesorge 
number C = v[p/(Th)]^2 and the Bond number B = pgh2/T by Cg = C/(l + B)1'2 and S = 1/(1 + B). Thus 
0 < S < 1, and the extreme valúes, S = 0 and 1, correspond to the purely gravitational (T = 0) and the purely 
capillary (g = 0) limits, respectively. 

As a starting point to derive the relevant equations governing the coupled evolution of the surface waves and the 
mean flow, we shall use a set of general coupled amplitude-mean flow (GCAMF) equations, first obtained in [8], 
which apply under the assumptions: (a) viscosity is small, (b) the aspect ratio is large, (c) the evolution is weakly 
nonlinear, which requires that the wave steepness be small, and (d) the relevant Fourier modes in the horizontal 
coordinate are concentrated around a discrete set of valúes of the wave number. These four assumptions are collected 
here for convenience 

ÍC \ 1 / 2 

(1+«MJ «1, L»l, | ^ | + |Vr,|«l, l / l « l . (5) 

The spatial Fourier transforms of x¡r and / peak for all time around the wavenumbers 

± mko, withm = 0, 1, . . . , (6) 

and require in particular that Cg <c 1. Here &o denotes the wavenumberof the parametrically excited surface mode, 
defined in terms of the forcing frequency Ico as 

co = co(ko), (7) 

where co(k) is the inviscid dispersión relation of the surface waves 

co(k) = [(l-S + Sk2)ktanhk]1/2, (8) 

whose associated eigenfunctions are proportional to (x¡r, f) = (&o, 1), with 

% = ^ s i n h [ ^ + D ] 
^sinh^ 

For convenience, below we shall always use the basic wavenumber k defined as 

2TTN 
(10) 



where N y> 1 is an integer such that 

-71 < k0L - 2nN < 71. (11) 

This selection shifts the wavenumber ko to the nearest wavenumber commensurate with the imposed spatial peri-
odicity and leads to periodic boundary conditions for the amplitude equations. Note that 

| * - * o l ~ £ - 1 « l . (12) 

Now, according to assumptions (5) and (6), the streamfimction (and vorticity) in the bulk and the free surface 
elevation can be decomposed into three parts, namely (i) two counter-propagating wavetrains associated with the 
surface modes that are parametrically excited; these are slowly modulated both in space and time around a basic 
frequency co and wavenumbers ±k; (ii) a meanflow, which depends weakly on time but can exhibit significant 
dependence on the space variables x and y; and (iii) the remaining part of the solution, which will be called 
nonresonant. Thus, the solution in the bulk can be written as 

/ = Qimt(A+Qikx + A-Q-'íkx) + Y\ A+Á-Q2ikx + Yi e2iü)t[(A+)2 Q2ikx + (A")2 Q-2ikx] 

+ ce . + HOT + fm + NRT, (13) 

f = % eiwt(A+eikx - A-e-ikx) + y3^22e2iít,í[(A+)2e2ikx - (A-)2e"2ifoc] + ce. + HOT + fm + NRT, 

(14) 

Í2 = ico'1 Qia"[(A+ékx - A-Q-^)^™ - ik(A+ékx + A-Q-ikx)n^y] + c e + HOT + Í2m + NRT. 

(15) 

Here the superscript m denotes the meanflow variables, and NRT and HOT stand for nonresonant terms and higher 
order terms, respectively. &0 is as defined above, in (9), and the complex amplitudes A± depend weakly on í and 
x, while fm, -<¡rm and Í2m depend weakly on í but strongly on x (and y), i.e. 

iA±i + iAfi« A ± I« I , i /r i«i .n«i, iiAri«i<n«i, ^ « ^ « í . 
The coefficients Yi,Y2, K3 and the function ^22 in (13) and (14) are givenby 

_ (a2 + l)o? _ (3 - a2)k(l - S + Sk2) 
Yl~ a2(l-S + 4Sk2)' Y2~ 2a[(l-S)a2 - Sk2(3 - a 2 ) ] ' ( ' 

= 3t»[(l-^)(l-a2)+^2(3-a2)] = sinh[2k(y + 1)] 
Y3 2a[(l-S)a2-Sk2(3-a2)] ' 22 sinh(2k) ' C ' 

where a = tanh£, as obtained by solving two nonresonant problems at order \A±\2. Note that Y2 and YÍ diverge 
at (1 - S)a2 = Sk2(3 - a2), i.e., when the strictly inviscid eigenfrequeney (8) satisfies co{2k) = 2co{k). In the 
present paper we do not pursue this 2:1 resonance further; see [12,13] for a strictly inviscid analysis, and [14-16] 
for nearly inviscid descriptions that ignore the mean flow. 

The complex amplitudes A± and the mean flow variables x¡rm', Í2m, and fm evolve (in a timescale that is large 
compared to the basic period of the waves In/co) according to some equations that are obtained as solvability 
conditions for the equations giving the resonant terms at higher order. This requires, as a previous step, to analyze 
the oscillatory boundary layers attached to the supporting píate and the free surface, to obtain the appropriate 
boundary conditions for the solution outside these layers, where the expansions (13)—(15) apply. All these have 
been done in [8] to obtain the following evolution equations, called GCAMF equations, which apply under the solé 



assumptions (5) and (6). To the approximation relevant here, the complex amplitudes are givenby 

At T vgAx — laA^ (á + \d)A± + i(a3\A
±\2 - aA\A¥\2)A± + « 5 / 1 ^ 

•L- cm\x A ± ±ia6 I g(y)(f;}xáyA± + ia7(f
mrA" 

A±(x + L,t) = A±(x,t), 

and the mean flow is given by 

fZ + f% = í2m, S2? [f; + (\A+\2 - \A-\2)g(y)]í2? + fT^7 = Cg{QZ + Í2") 

in - 1 < y < 0, with boundary conditions 

Í?-fr=Pi(\A-\2-\A+\2)x, fl = P2(\A+\2-\A-\2), 
ryy 

ir™ , (1 _ S)f™ -Sf^- ir; + Cg(^yy + 3 V O = -M\A+\2 + \A-\\ aty = 0, 

Jo 
Í2™áx = x¡rn 0, \\r 

y 
-/34[iA+A-e2lfoc + c.c. \A-\2-\A+\2] aty 

fm(x + L,y,t) = fm(x,y,t), 

L 

fm(x + L,t) = fm(x,t), 

I 
Jo 

fm(x,t)áx = 0. 

The horizontal mean valué (•) is defined as 

(G(x, y,t))x = (2l)~l / G(z, y,t)dz w i t h l « £ « L , 
Jx-t 

5 > 0 and d are the (linear) damping ratio and the effective detuning, respectively, and are given by 

5 = a\Cg + a2Cg, 
i / 2 {2jrN 

d = a\Cg - I — fe0 ) %, 

where 

«1 
k{co/2)1'2 

sinh (2fe) ' 
«2 

1 + tanh2fe' 
k2. 

4sinh2fe 

The group velocity vg and the dispersión a are calculated from the dispersión relation (8) as 

, . , . oJ'(k) 
Vg = a) (k), a = . 

The remaining coefficients in (18), «3 , . . . , wj, and the function g are 

cok2[(l - S)(9 - cr2)(l - a2) + Sk2(l - cr2)(3 - a2)] [8(1 - S) + 5Sk2]cok2 

«3 

«4 

4a2[(l - S)a2 - Sk2(3 - a2)] 

cok2 |~U - S + Sk2){\ + a2)2 4(1 -S)+lSk2' 

4(1-S + Sk2) 

(l-S + 4Sk2)a2 1-S + Sk2 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

1 These coefficients are taken from [17], except for an error in the expression of a?2 (cf [18]); we are indebted to Elena Martín for pointing 
out this to us. 



ka cok(l — a ) 
«5 = cúka, «6 = — , a-¡ = , 

2a> 2a 

2cokcosh[2k(y+ 1)] 

sinh2£ 

And the coefficients j3\,... ,fa in (21) and (22) are 

Ico &cok2 (1 - a2)co2 

a a aL 

Note that 

04 = 
3(1 -a2)íy/fc 

a 2 

(31) 

(32) 

(33) 

x: «6 / gOO dy = k 

as required from invariance of (18)-(21)undertheactionx -> x + ct, \\r -> ^¡r+cy,A± -> A±e=Flfe,whichresults 
from Galilean invariance of Eqs. (1) and (2) in the original problem. 

The GCAMF equations (18)-(24) are valid in the general limit (5) and (6), which allows several sub-limits 
depending on the relative valúes of Cg, L and k. For simplicity, we assume that the forcing amplitude is such 
that the forcing and damping terms are of the same order in (18). In this case, the dissipation time, 5 _ 1 , is the 
characteristic time for the slow evolution of the complex amplitudes. The limit considered in [8] was 

V„ 

5 « j-, (34) 

in which the dissipation time is large compared to the residence time of the surface waves when they travel with the 
group velocity, ÍR = L/vg. In this limit, the wave envelopes just travel undeformed with the group velocity in the 
timescale ÍR; and in the longer dissipation timescale each counter-propagating wave only "sees" a spatial average 
of the other wave and of the mean flow, and thus its evolution is coupled only through these spatial averages and 
the resulting equations are nonlocal. Also, the coupling between the surface waves and the mean flow is somewhat 
weak [8], and the complex amplitudes of the surface waves can be decoupled (upon a change of variables) from the 
mean flow; see [19] for the analysis of these decoupled equations. This decoupling is fortúnate because the mean 
flow equations include a Navier-Stokes-like equation whose study by analytical means is quite limited. Moreover, 
the mean flow exhibits a 0(l)-wavelength in the x-direction, which makes numerical calculations quite costly [10]. 
This is due to the forcing terms resulting from the oscillatory boundary layer attached to the lower píate, and could 
be avoided by considering the limit k ~s> 1, but then the mean flow becomes unforced and dies out for large time. 

Here we consider the case 5 ~ vg/L and, in order to avoid that the streaming flow exhibits a 0(l)-wavelength in 
the x-direction, we assume that the wavenumber of the surface waves is somewhat large. Since the lower boundary 
layer (which was responsible for the forcing term exhibiting a 0(1) wavelength, see the third condition of (22)) 
produces a forcing term that decays exponentially as k -> oo, this can be neglected and the mean flow is forced 
only at the boundary layer attached to the free surface. But in order to avoid convective terms in the streaming flow 
momentum equation (see below), we do not allow k being too large. In fact, for simplicity we consider the limit 

Cg ~ \d\ ~ |¿i| ~ L"1 « 1, k-logL (35) 

andtreat logarithmically large terms (in particular, k) as 0(1). Infact, whentaking into accountthe numerical valúes 
of the parameters that are either of order unity or logarithmically large, assumptions (35) become 

5 ~ |d| ~ \a5fí\ ~ j « 1- (36) 

As is usually the case, the large depth limit only requires in practice that exp(-2^) be numerically small, which is 
already satisfied at k = 2, even though the wavelength of the surface waves is 2n/k = n>\ = depth in this case. 
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3. Coupled amplitude-mean flow (CAMF) equations 

In the limit (35) the container depth is logaritnmically large compared with the basic wavelength. The parameters 
a-¡, PJ and fi\ are small compared to one (see (31) and (33)) and can be set to 0 in the GCAMF equations. In 
particular, the right-hand side of the third boundary condition of (22) disappears and, since this was responsible for 
the strong dependence of the mean flow in x, we may assume that the mean flow depends slowly on x, i.e. 

I / « I « 1/71 « l / m l « 1 , W l « l ^ l « i r i « l , | Í2™|« |Í2™|« |í2m | « 1 . (37) 

If in addition we anticipate that 

|A±|2 _ |yi»| _ |^.m | _ i^m | _ L-l <<; 1 (38) 

then convective terms are small compared to diffusive terms in the second momentum condition of Eq. (20) and can 
be neglected. Using all these, the GCAMF equations (18)-(24) can be simplified to 

Af TvgA± = iaA±-(8+id)A±+i(a3\A
±\2-a4\AT\2)A± + a5i¿ÁT±ia6 / g{yyK áy A±, (39) 

A±(x + L,t) = A±(x,t) (40) 

and 

Í2m = ir™, Í2T = CKÍ2™ 
y y i 6 y y 

in — 1 < y < 0, with boundary conditions 

^ - tf = pl{\A-\2 - \A+\\, f™y = fr(\A+\2 - \A~\\ 

(1 — S)f™ — Sf¡?xx — ir™t + Cgir™ = 0 aty = 0, (41) 

ÍL 
Q™ dx = \\rm = ir™ = 0 aty = — 1, (42) 

o 
fm(x + L,y,t) = fm(x,y,t), fm(x + L,t) = fm(x,t), (43) 

/ / m ( x , í ) d x = 0, (44) 
o 

where we have taken into account that, according to (37) 

Or"1)* = ir™ 

in first approximation. In addition, the inviscid dispersión relation (8) can be approximated as 

co(k) = [(1 — S + SIc)k]' (45) 

and Eqs. (26)-(33) simplify to 

7 /2jtN \ . oJ'{k) 
S = 2k Cs, d = — kr> v„, v„ = co (k), a = , (46) 8 L s s 2 

3Scok4 [8(1 — S) + 5Sk2]cok2 cok2 [4(1 — S + Sk2) 4(1 — S) + 7Sk2~\ 
«3 = ~ -\ ~ , «4 = =—I =— , (47) 

1 — S — 2Sk¿ 4(1 — S + Sk¿) 2 1 — S + 4Sk¿ 1 — S + Sk¿ 



k 
a5=oA, a6 = — , Pi=2co, p2 = %oA2, (48) 

Ico 

g(y) = 4cokexp(2ky). (49) 

For convenience we use the re-scaled variables 

A +
 n

 A~ f"1 ^ smr r* , X 

— rW B = 7AT2> V=^~, F = rL, x = Cgt, $ =-, (50) 

which are of order 1 in the limit we are considering here, to rewrite (39)-(44) as 

r° 
At - AA¡: = ieaA^ - (2k2 + id)A + i(a3\A\2 - aA\B\2)A + ¡IB + 2ik2 / e2ky(pydyA, (51) 

2 4 - i ^ R 4 - i ^ o l R I 2 -m,\A\2\n -I- ñ A - J\h2 I p2ky, ¡: Bt + AB¡: = Í £ a % - {2k¿ + \d)B + \{a3\B\¿ - aA\A\¿)B + ¡xA - 2\kL / e¿lcy(pydyB, (52) 

<Pyyr = Vyyyy (53) 

in - 1 < y < 0, with boundary conditions 

n-Ft=2(o{\B\2-\A\2)í:, <Pyy = 8aA2(\A\2-\B\2), cpyyy - <Pyt + FF¡: = 0 a ty = 0, (54) 

L 
i 

(Pyyy di; = (p = (Py = 0 at V = - 1, (55) 

A(£ + 1, r ) = A{i;, x), B{i; + \,x) = B{i;, r ) , 

cp{i; + \,y,x) = (p{i;,y,x), F(É + 1,T) = F(£,T), (56) 

i F ( f , T ) d f = 0 , (57) 

Jo 

where the re-scaled forcing amplitude and detuning are 

uoA ~ d 
ix =^—, d = ~^- (5 8) 

^-g ^-g 

These are the control parameters of the system, and can be selectedby means of the forcing amplitude and (slight 
variations oí) the forcing frequency. Invoking (11) and (46), the control parameters are subject to the following 
limitations 

jl > 0, -Ait < d < Ait. (59) 

In addition, the problem depends on &>, k, a-i, «4 and the following additional parameters 

v„ 1 - S 1 
A = —§- ~ i, r = 2 ~ !' e = —2 « L ( 6 0 ) 

These latter parameters are readily calculated, using also (45)-(47), in terms of a>, S, Cg and L. 
The remaining part of the paper is devoted to the analysis of Eqs. (51)—(57). But some remarks about these are 

now in order. 

• We are including higher order terms in (51) and (52) that result from dispersión. As we shall see in Section 4, 
dispersive terms cannot be ignored a priori because they can produce intermediate scales that are not present in 
the hyperbolic approximation of (51) and (52), obtained when e is set to 0 [20]. 



The streamfunction of the mean flow <p can be seen as resulting from a Eulerian temporal mean of the original 
streamfunction xjr in the shortest timescale. For convenience we also consider the streamfunction obtained by a 
Lagrangian mean. The associated velocity (wmt, umt) is also called mass transport velocity [21], and equals the 
Eulerian velocity plus the Stokes drift [22]. Both are purely horizontal in first approximation, and 

umt =-[<p™ + (\A\2 - \B\2)g(y)]. (61) 

Note that the Eulerian mean flow is of the same order as the Stokes drift, although the former is usually ignored 
inthe analysisof convectionof passive scalars in the Faraday system at low viscosity [23,24], which should not 
be done. 
The mean flow is forced by the surface waves in two ways. They produce a normal velocity at the free surface 
(right-hand side of the first condition of (54)), which is responsible for the inviscid mean flow in the Davey-
Stewartson equations [25], and also a shear stress forcing (right-hand side of the second condition of (54)) that 
involves viscous effects in an essential way. 
Eqs. (51)—(57) are invariant under the following actions 

<p^ -<p, A±+ B, f -> -f; (62) 

A^Q~ÍC1A, B^eiclB; and f -> f + c2, (63) 

which come from invariance of the original equations (l)-(4) under horizontal translation and reflection. Note 
that invariance under translation splits into two actions, which are not expected to apply independently at higher 
order. Thus some additional higher order terms should be added to break this spurious symmetry. These could 
affect the dynamics in a still slower timescale, which is ignored here. 
The simplest reflection symmetric solutions of (51)—(57) are the spatially uniform SWs without any mean flow, 
\A\ = \B\ = constató, <p = F = 0, analyzed in Section 4. It can be seen that these are the only possible attractors 
of (51)—(57) without mean flow; any other wave pattern will involve a nonzero mean flow. 

4. Spatially uniform SWs and their linear stability 

Eqs. (51)—(57) admit the flat steady state A = B=cp = F = 0, which is stable only if 

This marginal instability curve is the typical resonance tongue associated with parametrically excited waves [5]. At 
fx = ¡lo there is a pitchfork bifurcation to a new branch of spatially uniform steady states, which correspond to spa­
tially uniform SWs of the original problem. In fact, there are infinitely many branches of these, which are of the form 

A = Am = Rm e
i e»+ i 2 j rm^ B = Bm = Rm é^-'l2nm^, <p = F = 0 (64) 

with Rm >O,0m, and <f>m givenby 

(65) 

[RÍ(a4 -a3) + dm]2 + 4k4 = ¡l2, 

sin(0m + <pm) = ^ : 

\x 
in terms of the extended detuning 

dm = d — InmA 

eos (6m +4>m) = 
2k2 

¡1 

(66) 



Fig. 2. Bifurcation diagram of the spatially uniform SWs, given by (65). 

and bifúrcate from the fíat state at 

¡1 = jlm = y 4&4 + (d — InmA)2 foreachintegerm. 

According to (59) and (65), jlm > ¡lo if m ^ 0 and the bifurcation at ¡1 = jlm is supercritical ifdm/(o¿4 — oti) > 0 
and subcritical otherwise. In the latter case, the bifurcated branch is C-shaped (Fig. 2), with a saddle-node at 

* » = — • (67) 
0&4 — C¿3 

The linear stability of these steady states is analyzed by first rewriting Eqs. (51)—(57) in terms of the new variables 
a and b, defined as 

A = A m ( l+f l ) , B = Bm(\+b) 

and then linearizing around a=b = (p = F = 0. For convenience we use the new variables 

r± = (a + a) ± (/? + ¿), ^ = (a - a) ± (b - b) 

to rewrite the resulting linear problem, after some algebra, as 

r+ - Ar^T = ieas^ + 2i[^(of3 - a4) - ¿ m > + , 

rT — Ar^ = isotStt 4k2r~ 

s+ - As^ = isar^ - 4k2s+ + 2i/^(c*3 - o?4)rH 

yT - As^ = iear^ + 2i(7?mof3 - ¿/m)r 

%yT = <%>>y Ül - 1 < J < 0, 

e^^y dy, 

<p$ - FT - IcoR^r^ — q>yy - Scok^-R^r^ — (pyyy - <pyT + rF¡= = 0 aty = 0, 

./o 
^ y df = <p = <py = 0 at y = — 1, 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

r±(f + 1, T) = r±(f, T), ^ ( f + 1, T) = ^ ( f , T), 

ío(f + 1, j , T) = <p(£,y,x), F(M + \,x) = F(M,x), (76) 



i F ( f , T ) d f = 0 . (77) 
Jo 

In order to proceed we must distinguish two diíferent cases depending on the relative size of the wavelength of the 
perturbations compared to the small dispersive length */e, see (69)-(72). 

4.1. Long-wave perturbations 

These perturbations exhibit a wavelength that is large compared to e1/2. Thus dispersive terms are small in 
(69)-(72) and can be neglected. We seek normal modes of (69)-(77), of the form 

(r± , s±, <p, F) = (r±, j±, (pn(y), Fn) e
kt+i2jTn^ withn = integer « e"1 / 2 (78) 

and obtain the dispersión relation as follows. From (73)-(77) we calcúlate 

<P„ = co(Dln[cosh(Vx(y + 1)) - 1] + D2„[sinh(Vx(y + 1)) - Vk(y + l ) ] ) ^ " , (79) 

where 

_ 8£2A2VA + 87rVr[4/fc2VX - (X + 4£2) sinhVX] 

X2VXcoshVX + 47r2«2F(VXcoshVX — sinhVX) 

8;r2«2r[(X + 4£2) cosh V I - 4k2] 
D2n = 1= 1= 1= 1= 1=- , (81) 

A2VAcoshVA + 4;r2w2.r(VAcoshVA — sinhVA) 
and invoking (78) we obtain the integral appeanng in that term accounting for coupling with the streaming flow in 
(72) as ¡ \ Q2kycpny áy = a)R2

mr-Dn{X), where 

Ik sinh \pk — \fk cosh VA + */ke~2k 

D„ = -= D\n 

Jl{\k2 - A) 

2/fccoshVX-VIsinhVX-2/fc + X(l - Q~2k)/{2k) 
+ V A ( 4 ¿ 2 - A ) D 2 - ( 8 2 ) 

Note that e~2k should be neglected according to (35), but we do not do that to avoid a spurious singularity at 
VA = 2k. And we only need to use Eqs. (69)-(72) to obtain 

A.(A. + 4£2)[A(A + 4k2) + 2{2nnA)2] - 4A(A + 4£2)tf2 («3 - a4)[dm + R2
m{a4 - a3)] + {2nnA)A 

- 4(2jrnA)2[dm + R2
m{a4 - a3)](dm - 2R2

m\a3 + 2cok2Dn(X)]) = 0. (83) 

Now we analyze this dispersión relation, with some emphasis on the effect of the mean flow, which comes through 
D„(X). 

Under spatially uniform perturbations, n = 0, marginal instability occurs as 

Rí = - ^ - . (84) 

which corresponds to the saddle-node in Fig. 2. This instability yields the straight line labeled Ai in Fig. 3. 
Under spatially nonuniform perturbations (n ^ 0) marginal instability appears as either: 

(a) A = 0 (steady instability), which occurs as 

[dm + R2
m{aA - a3)][dm - 2R2

m(a3 + 2a>k2Vxj\ - {2ltnA) > 0 , (85) 
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Fig. 3. Stability diagram for the spatially uniform SWs under long-wave perturbations for r = 1, k = 2 and (a) S = 0.5, (b) S = 0.29, (c) 
S = 0.11, (d) S = 0.05. The stable región is that in between of the axis Rm = 0, the straight line Ai, and the curves HQ and either C\ (in cases 
a, c and d) or Ci (in case b). 

where 

Vi =Vn(0) 
(3+2£ 2 ) ( l -2k Q~2h) 

2k2 + 
3(1 + 2¿2)(1 - 2¿ + 2k2 - Q~2k) 

4*3 ' 

Note that we have infinitely many marginal instability curves, one for each integer n. But the most dangerous 
instability is seen to be that for n = 1, which is the hyperbola labeled HQ> in Fig. 3, whose asymptotes are A\ 
(given by (84)) and A2, which is given by 

Ri 2(o¿3+2cük2Vx)' 
(86) 

Depending on the relative position of A\ and A2, we can have four qualitatively different configurations of 
the marginal instability curves A\ and Ho, which are like those plotted in Fig. 3a, c and d (Fig. 3a and b are 
qualitatively similar), and the one obtained from Fig. 3a under the reflection symmetry dm -> — dm; here we take 
into account that the various coefficients appearing in (83) are not independent, see Eqs. (46)-(49) and (60). This 
well documented instability [4] yields stationary, spatially nonuniform complex amplitudes like those in Fig. 10a. 

(b) X = \Q ^ 0 (oscillatory instability), which occurs as 

Rl Gn(í2) —^2 Rm(<X4-Ct3) (87) 



for certain functions En and G„ that are not given here for the sake of brevity. These two equations come from the 
real and the imaginary parts of the dispersión relation, and provide the curves labeled C„ in Fig. 3, which always 
have the asymptote Ai; other asymptotes are associated with singularities of the function En. We do not try to 
classify the several relative positions of these curves, as we did in case (a) above, because now the classification is 
too involved. This oscillatory instability involves a double eigenvalue (associated with ±n, because (83) depends 
on the wavenumber n through its square, n2), and yields either symmetric or nonsymmetric patterns, which could 
be seen as either traveling waves (TWs) or SWs for the wave envelopes, like those in Figs. 6a and 8a below, see 
[4,26] and references therein. Note nevertheless that the resulting reconstructed patterns for, e.g., the free surface 
elevation using Eq. (96) below are much more involved than TWs or SWs. 

Some remarks are now in order: 

(i) The three instabilities considered above (namely, saddle-node, steady, and oscillatory, see Eqs. (84), (85) and 
(87)) are usually present. 

(ii) If the contnbution of the mean flow to amphtude equations is not considered (namely, if Dn (X) is set to 0 in 
(83)), then the curves C„ that yield oscillatory instabilities disappear. Thus the mean flow drastically reduces 
the stability región, 

(iii) The oscillatory instability is usually the one giving the first instability of the spatially uniform SWs as the 
forcing amphtude is increased. 

(iv) The most unstable mode at threshold is frequently (but not always, see Fig. 3b) the first mode, n = 1. 

4.2. Short-wave perturbations 

These are associated with dispersión, exhibit a wavenumber of order e ~ l / 2 , and, in first approximation, propágate 
with the group velocity A, see (69)-(72). Thus we seek normal modes of (69)-(77) of the form 

(r± , s±) = [(r*, s±) + ^~e{rf, í f ) + • • • ] e(WV?+^i+-)r+iA:f/V5) 

(«£>, F) = [(My), F0) + V¿(n(y), f i ) + • • . ] e ^ / v ^ + M + - ) r + i ^ / ^ 

where K ~ 1. Replacing these into (69)-(72) we obtain, at orders 0(e)~1 / 2 and 0(1) 

X0 = ±iAK, r~ = ±r+, s~ = ± Í + , (88) 

2Fo,R2
mr-(y + l) ±Acp,(0) 

<Po = —ñ > ^o = ^-, (89) 
^ F - A2 F - A2 J 

and 

iAK(±r+ - r~) = -Xir+ - i[K2a - 2R2
m(a2 - a4) + 2dm]s+, (90) 

iAK(±r~ - r+) = -(A.x + 4k2)r~ - iK2as~, (91) 

iAK(±s+ - s7) = -(A.1 + 4k2)s+ - i[aK2 - 2R2
m{a3 - a4)]r+, (92) 

iAK(±s- - Í + ) = -XlS~ - i[aK2 - 4Rla3 + 2dm - SR^coV2]rQ, (93) 

where 

V2 = -F[k(F - A2)]'1 

is the limit, as X ~ 2wnA and n -+ oo, of Dn(X) (after neglecting 0(e~2í:)-terms). Note that X>2 diverges at 
the (excluded) resonance F = A2, which occurs when the group velocity A coincides with the (re-scaled) phase 



velocity of the inviscid long wave modes F 1 / 2 . And we only need to require that Eqs. (90)-(93) possess nontrivial 
solutions, invoking (88), to obtain the asymptotic dispersión relation 

(M + 2k2)2 + [dm + OLK2 - RÍ(2a3 - a4 + 2cok2V2)]
2 = RA

m(c¿3 + 2cok2V2)
2. (94) 

Marginal instability is readily seen to only occur along the curve X\ = 0, which yields 

R^(a3 + 2cúk2V2)
2 = [dm + OLK2 - tf2 (2a3 - OÍA. + 2cok2V2)]

2 + 4£4. (95) 

The instability región in the plañe 7?2 vs. dm is the envelope of the curves (95) as K varies from 0 to oo. This is 
obtained upon translation of the curve for K = 0, H°°, towards positive dm if a < 0 and towards negative dm if 
of > 0. Note that H°° exhibits two asymptotes, A\ (given by (84)) and A3, which is given by 

D 2 _ ^n 
m ~ C¿3 - a4 + 2(«3 + 2cok2V2)' 

The curve H00 is qualitatively similar to either one of those plotted in Fig. 4 or those obtained from these by a 
reflection symmetry dm ->• — dm; in particular, that for S = 0.5 is qualitatively similar to that in Fig. 4a, but with 
the asymptotes A\ and A3 so cióse to each other that the curve is hardly seen in any reasonable plot. 

This is again an oscillatory instability with a nonzero wavenumber. The involved short-wave wavetrains counter-
propagate with the group velocity A and, as in Section 4.1 (case b), the bifurcated solutions are either symmetric 
or nonsymmetric for the wave envelopes, like those in Figs. 5a and 7a below. 

Fig. 4. Stability diagram for the spatially uniform SWs under short-wave perturbations for 7" = 1, k = 2 and (a) S = 0.5, (b) S = 0.29, (c) 
S = 0.11 and (d) S = 0.05. The stable región is that below the minimum of the curve H°° and the straight line E. 
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Fig. 5. Space-time plots of \A\ and \B\ for some attractors at CgL = 1, s = 5 x 10~3, S = 0.05, d = -2 .5 , and (a) \± = 8.04 and (b) ¡l = 8.12. 

5. Large-time dynamics beyond threshold 

In this section we numerically intégrate (51)—(57) to explore the attractors that appear when the forcing amplitude 
is increased above the SW stability limits calculated in the previous section. As representative cases, we consider 
those indicated with vertical dashed lines in Figs. 3 and 4, in which the first instability of the spatially uniform 
SWs (64), with wavenumber m = 0 is (A) a short-wave instability, (B) a long wave, oscillatory instability with a 
wavenumber n = =bl, (C) a long wave, oscillatory instability with a wavenumber n = ±2, and (D) a long wave, 
steady instability (which always occurs with n = =bl). For simplicity, all patterns are described below in terms of 
the complex amplitudes A and B. The reconstructed pattern for, e.g., the free surface elevation is obtained using 
(13) and(50), tobe 

/ = C¡/2[A Q^t+kx) + B ¿{cot-hc) + QC] + . . . (96) 



Case A At S = 0.05 and d = —2.5, we nave do = —2.5 (see (66)), and the primary instability of the spatially 
uniform SW given by (64) with m = 0 is dispersive, see Figs. 3d and 4d. Thus the primary bifurcated 
patternsfor the wave envelopes at threshold, ¡i = 8, are reflection symmetric pairs of dispersive wavetrains 
(one of the two possibilities anticipated at the end of Section 4.2), like that in Fig. 5a. Note that the two 
counterpropagating wavetrains travel at the group velocity, which is A ~ 0.51 in the present case. In the 
range 8.03 < ¡i < 8.13, various oscillatory instabilities take place that yield quasi-periodic waves; one of 
them exhibiting a near-homoclinic behavior is plotted in Fig. 5b. At ¡i = 8.13 the system jumps to a spatially 
uniform SW with wavenumber m = — 1, which is stable; this can be seen as an Eckhaus instability. This 
steady state is stable in the range 8.13 < ¡i < 8.36, where the system exhibits the oscillatory instability 
described in Section 4.1, with d-\ = 0.71, see Eq. (66) and Fig. 3d. The bifurcated solutions (Fig. 6a) 
are not reflection symmetric (one of the two possibilities anticipated at the end of Section 4.1). Now, the 

\M \B\ 
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Fig. 6. Space-time plots of \A\ and \B\ for some attractors at CgL = 1, s = 5 x 10 3, S = 0.05, d = —2.5, and (a) fi = 8.36 and (b) fi = 9.05. 



whole pattern (in particular, both A and B) travels with a constant speed 0.9, which of course is not the 
group velocity, A ~ 0.51. These solutions have been reported experimentally in [27] and could in principie 
appear as surprising if one expects that the envelopes A and B counterpropagate with the group velocity; 
this is necessarily true for patterns that exhibit small dispersive scales, but not for patterns that only exhibit 
the transport scale. In the range 8.36 < ¡i < 9.10 the system progressively exhibits a more complex spatial 
and temporal structure, yielding pulsating waves, in which the propagation velocity slightly oscillates, as 
in Fig. 6b. At ¡i = 9.10 the system suffers a new Eckhaus instability and jumps to the spatially uniform SW 
with wavenumber m = — 2 (thus d-2 = 3.92, see Eq. (66) and Fig. 3d), which loses stability at ¡i = 9.11, 
where it exhibits a standard oscillatory instability (like that in Section 4.1, case b); this yields again TWs 
for the wave envelopes, like that in Fig. 6a. In the range 9.11 < ¡i < 11.21, the system exhibits again 
various oscillatory instabilities, gains spatial structure, and loses temporal periodicity. At ¡i = 11.21, a 
new Eckhaus instability takes place, and the system jumps to a new propagating state that bifurcated (for a 
smaller valué of ¡i) from the branch of spatially uniform SWs with wavenumber m = — 3 and ¿L3 =7.13. 
None of the patterns above is reflection symmetric. Thus, because of invariance under (62) the system 
also has in each case that pattern obtained form the one described above by reflection symmetry, which in 
particular travels in opposite direction. 

Before proceeding further, two questions are relevant. First, the plots in Fig. 6a and b suggest that in 
the traveling patterns described above the dispersive scales are absent. This has been checked by repeating 
the calculations above for (a) decreasing valúes of the small parameter s and (b) for s = 0, obtaining 
in both cases the same transitions and attractors, albeit some small quantitative differences, at least for 
8.36 < ¡1 < 10.01. Secondly, these traveling patterns are born from spatially uniform SWs through 
oscillatory instabilities that would not be present if the mean flow were absent, as explained in Section 4.1. 
This has been checked by eliminating the integral term from Eqs. (51) and (52), and then integrating 
numerically the resulting equations with the same valúes of the coefficients. Now, the spatially uniform 
SW losses stability at /x = 8.39, where the system bifiírcates supercritically to a nonsymmetric pair of 
dispersive wavetrains for the wave envelopes like that plotted in Fig. 7 (cf. Fig. 5a); this is just the second 
possibility anticipated at the end of Section 4.2. This wavetrain remains stable up to ¡1 = 8.72, where the 
system gains reflection symmetry and the solution becomes qualitatively similar to that in Fig. 5a, which 
in turn suffers a oscillatory instability and yields a more complex dispersive pattern that remains stable up 
to \x = 8.78. Note that now, without mean flow, dispersive scales are not inhibited, which is in accordance 
with the results in [20]. 

\A\ \B\ 

Fig. 7. Space-time plot of \A\ and \B\ for a attractor at CgL = 1, s = 5 x 10 3, S = 0.05, d = —2.5, fi = 8.5, and no mean flow coupling. 



Case B At S = 0.5, d = 0.5 the spatially uniform SWs with m = O exhibit a long wave oscillatory instability with 
wavenumber n = \ (thus ¿o = 0.5, see Eq. (66) and Fig. 3a) at fx = 9.55, where the system bifurcates 
supercritically to a reflection symmetric pattern (the first possibility anticipated the end of Section 4.1, case 
b), plotted for fx = 9.56 inFig. 8a (cf. Fig. 6a). These canbe seen as beating states and are reminiscent of the 
ones observed experimentally [27]. As fx increases, these attractors gain spatial structure but remain stable 
up to fx = 10.3, where the system exhibits a subcriticalbifurcationandjumps to a new reflection symmetric 
spatially periodic state with wavenumber n = 2, which in turn gains spatial structure as fx increases; it first 
loses reflection symmetry and then (at fx = 11.2) becomes temporally chaotic; an example of this chaotic 
attractor is given in Fig. 8b. Again, we have checked that dispersive scales are absent in all these solutions, 
at least for/i < 11.8. 

Case C At S = 0.29, d = - 1 , the spatially uniform SWs with m = 0 remain stable for fx < 9.4, where they 
exhibit a long wave oscillatory instability (with ¿o = - 1 , see Eq. (66) and Fig. 3b), and the system 
bifurcates supercritically to a branch of reflection symmetric patterns (the first possibility anticipated at the 
end of Section 2) with wavenumber n = 2, like that plotted in Fig. 9a for fx = 9.5. These remain stable 
for fx < 9.8, where the system exhibits a subcritical Eckhaus instability and jumps to a new branch of 
reflection symmetric patterns (Fig. 9b), which in turn remain stable and reflection symmetric in the range 
9.8 < fx < 10.45, albeit gaining some spatial structure and loosing temporal periodicity. At fx = 10.45 the 
pattern also lose reflection symmetry, which is not regained, at least for fx < 14.75, but remains otherwise 
qualitatively unchanged. Again, dispersive scales are absent in all solutions described above, at least for 
fx < 11. 

Case D Finally, at S = 0.11, d = -0 .5 , the primary instability of the spatially uniform SWs with m = 0 occurs 
at fx = 8.17 and is stationary (now d0 = -0 .5 , see Eq. (66) and Fig. 3c). But the bifurcated branch 
of reflection symmetric steady states (Fig. 10a) exhibits an oscillatory instability at fx = 8.26, where the 
system bifurcates supercritically to abranchof reflection symmetric patterns similar to those in Case B above 
(Fig. 8a), which subsequently gain spatio-temporal structure (Fig. 10b) but remain reflection symmetric 
and without dispersive scales, at least for fx < 9.49. 

Summarizing the results above, after destabilization of the spatially uniform steady states, the solutions of the 
system can either be reflection symmetric or not, and either exhibit small dispersive scales or not. When gravity 
dominates, reflection symmetry is lost from the outset, and the system exhibits a pattern that travels undistorted to 
either side (like some of the drifting patterns reported in [27]), depending on initial conditions. This is a source of 
drifting patterns that are fundamentally different from the ones encountered in [10], althoughboth are essentially 
due to the presence of the viscous mean flow. Those in [10] exhibit a spatially uniform amplitude, the surface 
waves being thus reflection symmetric, and broken reflection symmetry (which is essential for the existence of drift 
[26]) manifests itself in the viscous mean flow, and not in the surface wave pattern (in first approximation). Here, 
instead, the drift of the patterns is pushed by the broken reflection symmetry of the surface wave envelopes, whose 
spatial modulation is thus essential. Eckhaus instability (another global feature reported in [27]) is also frequent. 
The patterns exhibit temporal chaos as fx is increased, but not spatio-temporal chaos, which would require the 
presence of dispersive scales, as in [20], at least for the (realistic, but not too large) range of fx and the valúes 
of k, S, and d checked above. Dispersive scales (which are paramount in the amplitude equations without mean 
flow [20]) seem to be inhibited by the viscous mean flow, even in cases when these are the most unstable scales in 
the primary instability of the spatially uniform steady states (Case A above). Thus, in most simulations above we 
could have neglected dispersión and consider the hyperbolic approximation of the amplitude Eqs. (51) and (52). 
But unfortunately, this cannot be done a priori because (a) dispersive scales could have been destabilized, as in [20], 
and (b) dispersive scales do appear for larger valúes of fx than those considered above, where complex dispersive 



Fig. 8. Space-time plots of \A\ and \B\ for some attractors at CgL = l ,g = 5 x 10~3, S = 0.5, d = 0.5, and (a) fi = 9.56 and (b) fi = 11.5. 
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Fig. 9. Space-time plots of |A| and |B| for some attractors atCsL = l,s = 5x 10-3, S = 0.29, d = - 1 , and (a) /i = 9.5 and (b) fi = 9.9. 
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Fig. 10. Space-time plots of | A\ and \B\ for some attractors at CgL = 1, s = 5 x 10"3, S = 0.11, d = -0 .5 , and (a) fi = 8.2and(b)/x = 8.71. 
Note that time has been reversed in this plot. 



solution not presented here are obtained. The stabilizing effect of the mean flow is far from evident, even though it 
exhibits viscous effects. Note that viscous diífusion is absent in the horizontal direction, in which dispersive scales 
exhibit fast oscillations. 

5.1. Mean flow pattems 

Let us now turn to the structure of the mean flow associated with some of the attractors described above, namely 
the simplest ones. The time dependent mean flow pattems associated with more complex attractors exhibit a lot of 
unsteady structure, whose description and interpretation is subtle, and outside the scope of this paper. 

In order to somewhat visualize pattems we shall plot color maps of the vorticity associated with the mass transport 
velocity (61), namely 

ttmt = (p™+8cok2e2ky(\A\2-\B\2). (97) 

Note that the forcing shear stress in the second condition of (54) and the Stokes drift are both proporcional to 
\A\2 - \B\2. Thus we must expect that the flow exhibits counter-rotating eddies below those regions of the free 
surface where \A\ > \B\ and \A\ < \B\. But for unsteady pattems the interpretation of vorticity contours requires 
some care. Because of unsteady effects, neither the strength of each eddy needs to be as suggested by the vorticity 
valúes, ñor its size needs to correspond, even approximately with the región where the vorticity exhibits a constant 
sign. 

The mass transport vorticity below the surface waves in Fig. 5a is plotted in Fig. 11, and is periodic in time; in 
fact, only a half of the period is considered in Fig. 11, the pattem in the second half being obtained from the plotted 
one by reflection symmetry. The period and horizontal wavenumber are much shorter than their counterparts in the 
remaining periodic pattems below, which only exhibit the much larger transport scales. The pattem consists of an 
array of counter-rotating eddies (inthatpart of the period suchthat | A\2 - \B\2 alternativeiy exhibits opposite signs 
as f increases), which subsequently merge (when \A\2 - \B\2 vanishes), and rotate in opposite direction. 

The mass transport vorticity associated with the TW in Fig. 6a travels undistorted to the left (at a velocity c ~ 0.9) 
with the primary pattem, and is plotted in Fig. 12. According to the scaling (50) and (60), in the original variables 
used in (l)-(4) the propagation velocity of the pattem (c/{CgL) ~ 1) is much larger than the local fluid velocity 
(i/f™ ~ Cg <C 1). Thus we do not plot the streamlines in a reference frame moving with the pattem, which are 
horizontal in first approximation. 

The mass transport vorticity below the reflection symmetric pattem in Fig. 8a is plotted in Fig. 13. Note that these 
are somewhat similar to those in Fig. 11, the main difference being that the spatial wavelength is much larger now. 

The mass transport vorticity produced by reflection symmetric pattem in Fig. 9a is similar to that in Fig. 13, 
except for the fact that the spatial period of the mean flow pattem is now one-half of that in Fig. 13. 

Finally, the steady mass transport vorticity and streamlines associated with the pattem in Fig. 10a are plotted in 
Fig. 14a and b. 

In the remaining of this section we briefly explain the numerical method used to intégrate Eqs. (51)—(57). The 
solution is first expanded in Fourier series in f 

/ A ( £ , f ) \ ~ (An{t)\ 

¿] e ' (98) 
B(M,t) „ ^ c o \ f i „ ( í ) . 

(99) 
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Fig. 11. Mass transport vorticity color (red—positive vorticity, blue—negative vorticity) maps produced by the periodic surface wave pattern in 
Fig. 5a. 

The resulting equations for the wth mode of the mean flow are 

<Pnyyr = (Pnyyyy Ül ~ 1 < J < 0 , 

2 r i A\2 (2nn)cpn - Fnt = 2co(27rn)[\B\¿ - \A\%, cpnyy = 8cok¿[\A\¿ - \B\% 

fflyyy ~ ^«j,, 4" ^\2jlTi) F'„ = 0 dt )> = 0, 

(100) 

(101) 

Fig. 12. Mass transport vorticity color map produced by the surface wave pattern in Fig. 



Fig. 13. Mass transport vorticity color maps produced by the periodic surface wave pattern in Fig. 8a. 

Fig. 14. Mass transport vorticity color maps (a) and streamlines (b) produced by the steady surface wave pattern in Fig. 10a. 



'POyyy = <Pn = <Pny = O SÍ y = ~\, (102) 

F0 = 0. (103) 

This is a linear nonhomogeneous problem and its general solution can be expressed as 

(Ff\)=£,'*&( FJ,)+p»v( F7\V < i o4> 
\<Pn(y,t)/ ~¿ \<PnjÍy) i \<Ppn(y) i 

where (F„j, <pn¡) are the eigenfunctions of the homogeneous (i.e., [\A\2 - \B\2]n = 0) versión of (100)-(103), 
(Fpn, <pPn) is the steady particular solution of the system (100)-(103) with the right-hand side of the first condition 
ofEq. (101) settoO, and the right-hand side of the second condition ofEq. (lOl)setto l,and/?„(í) = 8&>£2[|A|2-
\B\2]„. 

Now, by inserting the expansions (104) into (100)-(103), and inserting (98), (99) and (104) into (51)-(57), an 
infinite system of ODEs is obtained for the evolution of the coefficients A„(í), Bn(t) and c„;(í). This system is 
truncated (nmax = 256 and j m a x = 32, typically) and numerically integrated using a fourth-order Runge-Kutta 
method with time step Ai = 0.001. 

6. Concluding remarks 

We have derived a system of CAMF equations for the evolution of two counterpropagating wavetrains (with 
opposite phase velocity) and the associated viscous mean flow. The starting point was a more general system of 
coupled equations derived in [8]. The main simplification is seen in the mean flow equations, which are linear here 
because the mean flow is almost parallel. 

In order to Alústrate the feasibility of the theory described here, we describe an experimental realization. As in 
[27], we consider an annular container with a 110 mm diameter and 4 mm depth (a half of that in [27], to obtain an 
appropriately large aspect ratio), filled with extremely clean water (see [28]) and vertically vibrated with a 36.6 Hz. 
Using T = 72dyn/cm, the capillary-gravity time is 0.017 s and henee co = 1.93. The remaining nondimensional 
parameters are L = 86.4, S = 0.31, Cg = 1.04 x 10"3, k = 2, á = 0.011, d = -0.04 and vg = 1.17. Note in 
particular that vg/L = 0.014 ~ 5, and that the remaining assumptions (36) hold. 

The simplest nonflat solutions are (as alway s in the Faraday system) spatially uniform S Ws, whose linear stability 
has been analyzed in Section 4. Two essentially different instabilities have been identified. Namely, (i) long wave 
instabilities that only exhibit transpon scales and yield either stationary waves or oscillatory waves; the latter can in 
turn either be reflection symmetric or not, and would be absent if the effect of the mean flow on the surface waves 
were ignored; and (ii) short wave, dispersive instabilities that are convected at the group velocity. 

For still larger valúes of the forcing frequeney we have integrated the CAMF equations to obtain several repre-
sentative large-time attractors. The simplest ones are (a) dispersive wavetrains (Fig. 5a) and (b) patterns that only 
exhibit the transpon scales, which for the wave envelopes are either (b-1) time-periodic and reflection symmetric 
(Fig. 8a), (b-2) nonreflection symmetric, which travel undistorted at a constató speed (Fig. 6a), or (b-3) stationary 
and nonuniform (Fig. 10a). The system also exhibits more complex, chaotic patterns for larger forcing amplitudes, 
but these have not been analyzed. Instead we have concentrated in those simpler patterns that could be easily identi­
fied in experiments, in an attempt to stimulate experimental visualizations and measurements, with special attention 
on the associated mean flow, which has not been paid so far. 
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