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Abstract

Weakly dissipative parametrically excited (by vertical vibration) surface gravity-capillary waves in a two-dimensional,
horizontally periodic container are considered. A sct of ¢quations is derived tfor the coupled cvolution of the left- and
right-iraveling surlace waves and the associated mean flow. in the case when the container depth is small compared to its
length but large compared to the wavelength of'the cxcited waves. The stability ot the spatially uniform standing waves (SWs)
is first analyzed and then the large lime spatio-temporal behavior of the system beyond threshold is numerically studied. The
viscous mean flow is found to drastically atfect the dynamics of the system and the resulting surtace wave patterns,

PACS: 47.20 Ky, 47.20.Ma; 473541, 4754 4+r
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1. Introduction

Faraday waves [1,2] are excited on the fluid surface upon vertical vibration of the container when the forcing
amplitude exceeds a threshold value. These waves show a large variety of complex spatio-temporal behaviors [3-5].
especially in large aspect ratio containers [6], and have received a great deal of attention. Unfortunately, several
basic issues remain unclear in the weakly nonlinear limit, especially at low viscosity. Among these, no systematic
theory is available for the associated mean flow, namely the flow generated by slowly varying {as compared to
the vibrating period) forcing terms. Viscosity has a more profound effect [7—11] than that assumed in the usual
approaches of the small viscosity limit, where viscous effects only come through a viscous dissipation term added a
posteriori to the classical Hamiltonian formulation [3]. Nonzero time-averaged Reynolds stresses in the oscillatory
boundary layers attached to the solid walls and the free surface are able to force a significant secondary viscous
mean flow in the bulk, outside the boundary layers. The mean flow affects the dynamics of the primary waves at
leading order, and thus cannot be ignored. The main object of this paper is to derive a set of equations accounting
for this coupled evolution, in a limit that is both realistic and suitable for a not too complex description of the mean
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Fig. 1. Sketeh of the fluid domain.

flow. In addition, in order to elucidate the role of the mean flow in the surface wave dvnamics, the derived equations
will be analyzed by analytical means (when possible) and by direct numerical simulatio.

In order to avoid additional difficulties and to clarify the 1ole of the mean flow. we consider the simplest geometry
allowing one-dimensional propagation, namely a slender annulus, and for simplicity in the presentation we shall
consider a 2D model of that, namely alaterally unbounded layer with periodic boundary conditions (Fig. 1). Results
for this geometry could apply even quantitatively to a 3D annular container whose length is large compared to width,
and the latter is large compared to the wavelength of the surface waves. provided that width is not too large for the
natural frequencies of eigenmodes exhibiting different radial wavenumbers be conveniently separated. In this case,
the forcing frequency can be selected such that only one radial mode is excited and propagation is one-dimensional.
If. instead width is of the order of wavelength then this latter condition is easily achieved, but the comparison with
our theory could only be qualitative due to the effect of the lateral walls.

The remaining of the paper is organized as follows. In the next section we briefly outline the derivation in [8]
of a general system of equations for the coupled evolution of the amplitudes of the surface waves and the mean
flow. These equations are then simplified in Section 3 for the particular limit case studied in this paper. The simplest
nonflat solutions (spatially uniform standing waves (SWs)) and their linear stability are considered in Section 4, and
the equations are numerically integrated in Section 3 for representative values of the various parameters to obtain
the large time behavior of the system away from threshold. Finally, the main results of the paper are summarized
and discussed in Section 6,

2. Formulation and other preliminaries

We consider a two-dimensional fluid laver (Fig. 1) above a horizontal plate that is vibrated vertically with
an appropriately small amplitude. The layer is laterally unbounded with periodic boundary conditions. We use
a Cartesian coordinate system with the x-axis along the unperturbed free surface and y vertically upwards, and
nondimensionalize space and time with the unperturbed depth 7+ and the gravity-capillary time [¢/ h+ T/ (ph™3]~1/2,
where g is the gravitational acceleration, o the density and 7" the coefficient of surface tension, The nondimensional
equations governing the sysicmn then are
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Here 4 is the streamfunction, such that the velocity (u, v) = (=1, ), £2 is the vorticily, and f is (he [ree
surlace clevation required to salisly voluine conscrvation recalled in the third condition of (4). First condition of
(3) is nceessary in order that (he pressure be periodic in x, The remaining cquations and boundary conditions arc
standard. The resulting problem depends on the aspect ratio ., on the nondimensional vibration amplitude g« and
frequency 2a, on the capillary-gravity number C, = v/|gh® + Th/p|'/?, where v is the kinematic viscosily, and on
ihe gravity-capillary balance paramcier § = /(7 4 pgi®). Nolc that ', and § arc related 1o the usual Onhesorge
number € = v|p/(74)]'/? and the Bond number B = pgh?/ 1 by €, = C/(1 + BY/?and § = 1/(1 + B). Thus
0 = § = 1, and the extreme valucs, $ = 0 and 1, correspond 1o the purcly gravitational (77 = 0) and the purcly
capillary (g = ) limits, respectively.

As a slarling point to derive the relevant cquations governing the coupled cvolution of the surface waves and the
mean llow, we shall usc a st of general coupled amplitude-mean llow (GCAMF) cqualions, first oblaincd n |8],
which apply under the assumplions: (a) viscosily 1s small, (b) the aspect ratio is large, (¢} the cvolution is weakly
nonlincar, which requires ihat the wave sicepness be small, and (d) the relevant Fourier modes in the horizontal
coordinale are concentrated around a discrele set of valucs ol the wave numbcer, These lour assumplions arc collecied
here for convenienice
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The spatial Fouricr transforms ol o and f peak [or all time around the wavenumbers
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and require in particular that ¢, < 1. Here ky denotes the wavenumber of the parametrically excited surface mode,
defined in terms of the forcing frequency 2 as

o = orikp), (7N
where (k) is the inviscid dispersion relation of the surface waves
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For convenience, below we shall alwavs use the basic wavenumber k defined as
2o N .
k= ——, (10)

L



where N 3> 1is an integer such that

—m < kol.—2aN < m. (1)
This sclection shifls the wavenumber kg 10 the nearest wavenunber comimensurate with the imposed spatial peri-
odicity and lcads to periodic boundary conditions for the amplitude equations. Note that

k—ko| ~ L7V <« 1. (12)
Now, according o assumplions (3) and (6), the sircamfunction (and vorticity) in the bulk and the free surlace
clevation can be decomposced into three parts, namely (i) two counter-propagating wavelraing associated with the
surface modes that are parametrically excited; these are slowly modulated both in space and time around a basic
frequency o and wavenumbers tk; (i) a mean flow. which depends weakly on time but can exhibit significant

dependence on the space variables x and y; and (iii) the remaining part of the solution, which will be called
nopresonant. Thus, the solution in the bulk can be written as
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Here the superscript m denotes the mean flow variables. and NRT and HOT stand for nonvresonant terms and higher
order terms. respectively. ¥, is as defined above, in (9), and the complex amplitudes A* depend weakly on  and
x,while /™ ™ and §2™ depend weakly on / but strongly on x (and ). i.e.
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The coefficients y1, ¥z, ¥z and the function ¥2> in (13) and (14) are given by
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where & = tanh &, as obtained by solving two nonresonant problems at order |Ai|2. Note that y» and 44 diverge
at (1 — $)o? = Sk*(3 — &%), ie.. when the strictly inviscid eigenfrequency (8) satisfies o (2k) = 2e (k3. In the
present paper we do not pursue this 2:1 resonance (urther; sce [12,13] for a strictly inviscid analysis, and | 14-16]
Tor nearly inviscid descriptions that ignore the mean [low,

The complex amplitudes A™ and the mean flow variables ™, £27, and £ cvolve (in a timescale that is large
compared to the basic period of the waves 27 /o) according 1o some cquations (hat arc oblaincd as solvabilily
condilions for the equations giving (he resonant icrms at higher order, This requires, as a previous sicp, 10 analy/c
the oscillatory boundary layers atlached (o the supporting plaic and the [rec surface, to obiain the approprialc
boundary conditions for the solution outside these layers, where the expansions (13)-(15) apply. All these have
beendone in [8] to oblain (he following cvolution cquations, called GCAMF cquations, which apply under the sole



assumptions (5) and (6). To the approximation relevant here, the complex amplitudes are given by
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The horizontal mean value {.} is defined as
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The group velocity v, and the dispersion « are caleulated from the dispersion relation (8) as
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U These coefficionts are taken from [17], except for an error in the expression of an (of. [1#]), we arc indebted to Elena Martin for pointing

out this to us.
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as required from invariance of (18)—(21) under the action x — x +ef, 4 — ¥ +cv, AT — AT ¢F%_ which results
from Galilecan invariance of Egs. (1) and (2) n the original problem.

The GCAMF cquations (18)—+(24) arc valid in the general linut (5) and (6), which allows scveral sub-limilts
depending on the relative values of Oy, 7. and k. For simplicily, we assume that the lorcing amplitude is such
that the forcing and damping terms arc of (he same order in (18). In (his casc. the dissipation time, §7', is the
charactenistic tine for e slow cvolution of the complex amplitudes. The limit considered in [8] was

b2 (34)

7

in which the dissipation time is large compared to the residence time of the surface waves when they travel with the
group velocity, tr = L/vs. In this limit, the wave envelopes just travel undefonmed with the group velocity in the
timescale fr; and in the longer dissipation fimescale each counter-propagating wave only “sees” a spatial average
of the other wave and of the mean flow, and thus its evolution is coupled only through these spatial averages and
the resulting equations are nonlocal. Also, the coupling between the surface waves and the mean flow is somewhat
weak [8], and the complex amplitudes of the surface waves can be decoupled (upon a change of variables) from the
mean flow; see [19] for the analysis of these decoupled equations, This decoupling is forfunaie because the mean
flow equations include a Navier—Stokes-like equation whose study by analytical means is quite limited. Moreover,
the mean flow exhibits a O 1}-wavelength in the x -direction, which makes nnmerical calculations quite costly [10].
This is due to the forcing terms resulting from the oscillatory boundary layer attached to the lower plate, and could
be avoided by considering the limit £ >3 1, but then the mean flow becomes unforced and dies oui for large time,

Here we consider the case 8 ~ vg /L and, in order to avoid that the streaming flow exlubits a O(1)-wavelength in
the x-direction, we assmng ihat the wavenumber of the surface waves is somewhat large, Since the lower boundary
layer (which was responsible for the forcing term exhibiting a Q(1} wavelength, see the third condition of (22))
produces a forcing tenn that decays exponentially as & — oo, this can be neglected and the mean flow is forced
only at the boundary layer attached to the free surface. But in order to avoid comvective terms in the streaming flow
momentumm equation (sce below). we do not allow & being too large. In fact, for simplicity we consider the limit

Cor~ldl ~ [ul~ L&), k~logl (35)

and treat logarithimically large terms (in particular, £) as O(1). In fact, when taking into account the mumerical values
of the parameters that are either of order unity or logarithmically large, assumptions (35) become

.
&~ |d| ~ |orspe| ~ f & 1. (36)

As is usually the casc, the large depth limit only requires in practice that exp(—24) be numerically small, which is
already satisficd at &£ = 2, cven though the wavelength of the surface waves is 2z /k = 7 > | = depth in this case.
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3. Coupled amplitude-mean flow (CAMF) equations

In the limit (35) the coniainer depth is logarithmically large compared with the basic wavelength. The paramelers
a7, A5 and B4 arc small compared 1o onc (sce (31) and (33)) and can be set (o O in the GCAMF cquations. In
particular, the right-hand side of the third boundary condition of (22) disappears and, since this was responsible lor
the strong dependence of the mean low in x, we may assume that the mean flow depends slowly on x| ic.

Rl A <M <], gl ™ L 2] 027 1927 &« L (7)
If in addition we anticipate that
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then conmvective terns are small compared to diffusive terms in the second momentum condition of Eq. (20) and can
be neglected. Using all these, the GCAMF equations (18)—(24) can be simplified to

0

AT F o AT = ie AL, — 0 1AL Filo| AT — oy AT AT + osp AT £ f g dy AS, (39)
: :

AT+ Lo = At 6 (40)
and
QT =N QP = C

in —1 < y < 0, with boundary conditions

Yy = = BUAT P = 1A e = At - 1A,

X

(L= S = =W+ Cebfy =0 aty = 0. @
L
[0 20de =" =4 =0 aty = —1. 42)
Y Loty = ¢ v, Ffra Loy = M, (43)
1.
f S, dx = 0, (44
0

where we have taken into account that, according to {37)
W =y
in first approximation. In addition, the inviscid dispersion relation (8) can be approximated as
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and Eqgs. (26)-(33) simplify to
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where the re-scaled forcing amplitude and detuning are
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These are the control parameters of the system, and can be selected by means of the forcing amplitude and (slight
limitations

variations of) the forcing frequency. Invoking (11) and (46), the control parameters are subject to the following

=0, —Am < d < Am.

In addition, the problem depends on e, &, o3, «oq and the Tollowing addilional parameicrs
[
A —

(59)
1-5 1
g \
= —= ~ [, = — ~ 1, £ = — < 1. 60
oL L) , C.12 < (60)
These latter parameters are readily calculated, using also (43)—(47), in terms of w, 8, ¢, and L.
now in order.

The remaining part of the paper is devoted to the analysis of Egs. (531)—(37). But some remarks about these are

¢ We arc including higher order tcrms in (51) and (52) that resull from dispersion. As we shall sce in Scction 4,

dispersive (crms cannoi be ignored a priori because they can produce inlermediate scales {hat are not present in
the hyperbolic approximation of (51) and (52), oblained when 2 is sct Lo 0 [20],



s The streamlunction of the mean flow ¢ can be scen as resulling from a Eulerian temporal imean of the original
streamlunction ¥ in the shortest timescale. For convenicnee we also consider the sircamfunction obtained by a
Lagrangian mecan. The associated velocity (™, v™ is also called mass transport velocity |21], and cquals the
Eulerian velocity plus the Stokes drifl |22]. Both arc purcly horizontal in first approximation, and

L — 7[‘[);5.' T (]A]2 _ ]Blz)g(_‘y’ﬂ- (61)

Note that the Eulerian mean flow is of the same order as the Stokes drift, although the former is nsually ignored
in the analysis of convection of passive scalars in the Faraday system at low viscosity [23,24], which should not
be done.

o The mean flow is forced by the surface waves in two ways. They produce a normal velocity at the free surface
(right-hand side of the first condition of (54)), which is responsible for the inviscid mean flow in the Davey—
Stewartson equations [25], and also a shear stress forcing (right-hand side of the second condition of (54)) that
imvolves viscous effects in an essential way.,

o Egs. (51)(57) are invariant under the following actions

w = —p. A B, £ — =&, (62)
A o4, BB, and £ £+ oo (63)

which come from invariance of the original equations {1)—(4) under horizontal translation and reflection. Note
that imvariance under translation splits into two actions, which are not expected to apply independently at higher
order. Thus some additional higher order terms should be added to break this spurious svmmetry. These could
affect the dynamics in a still slower timescale, which is ignored here.

e The simplest reflection symmetric solutions of (51)—(57) are the spatially uniform SWs without any mean flow,
|A| = | B[ = constant, ¢ = F = 0, analvzed in Section 4, It can be seen that these are the only possible attractors
of (51)—(57) without mean flow; any other wave pattern will imvolve a nonzero mean tlow,

4. Spatially uniform SWs and their linear stability

Eqs. (51)—(57) admit the flat steady state A = B = ¢ = I' = 0_ which is stable only if

< g = y 45+ + 6?2.

This marginal instability curve is the typical resonance tonguc associated with parametrically exciled waves |5]. Al
f = frg there is a pitchflork bifurcation 1o a new branch of spatially uniform stcady states, which correspond 1o spa-
tially uniform SWs of the original problem. In lfact, there are infinitcly many branches of these, which arc ol the form

A=A, =R, ei()m +i2ﬂ}1%é, B=2R8,=R, eid)m —iZeré. @ = F—=0 (64)

with Ry, > 0, 8y, and ¢, given by
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in terms of the extended detuning
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FFig. 2. Bilurcation diagram of the spatially uniform SWs, given by (65).

and bifurcate from the flat state at

o=y = -\/4!(4 + (d —2mmA)?  foreach integer m.

According to (59) and (63), ft,, > jio if m # 0 and the bifurcation at &t = f&,, is supercritical if dy /(g — 3) > 0
and subcritical otherwise. In the latter case, the bifurcated branch is C-shaped (Fig. 2), with a saddle-node at
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(67)

The linear stability of these steady states is analyzed by first rewriting Eqs. (51)+(57) in terms of the new variables
a and b, defined as

A=Ayl +a), B=258,(1+b)

and then linearizing around « = b = ¢ = F = 0. For convenience we use the new variables
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to rewrite the resulting linear problem, after some algebra, as
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In order to proceed we must distinguish two different cases depending on the relative size of the wavelength of the
perturbations compared to the small dispersive length /e, see (69)-(72).

4.1, Long-wave perturbations

These perturbations exhibit a wavelength that is large compared to ¢'/>. Thus dispersive terms are small in

(69)—(72) and can be neglected. We seek normal modes of (69)—(77). of the formn

t st Fy= (r,fit, sni, @nl¥), F) M2 i = inleger < & /2 (78)
and obtain the dispersion relation as follows. From (73)-(77) we calculate

on = (D[ cosh (VA(y 4+ 1)) — 1]+ Dy, [sinh (Vaiy + 13) — vValy + DDRZ s, (79)
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2n = .
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and invoking (78) we obtain the integral appearing in that term accounting for coupling with the streaming flow in
(72) as jfl ¥ dy = wRZ 1 Dy()). where
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Nole that ¢=%* should be neglecled according (o (33), but we do nol do that to avoid a spurious singularity at

V'h = 2k. And we only need o use Egs. (69)—(72) 1o oblain
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Now we analyze this dispersion relation, with some emphasis on the effect of the mean flow, which comes through

Dy, (0.
Under spatially uniform periurbations, n = (), marginal instability occurs as
2 d”’]

R, = v s (84)

which corresponds to the saddle-node in Fig. 2. This instability vields the straight line labeled A; in Fig. 3
Under spatially nonuniform perturbations (» # Q) marginal instability appears as either:

(a) & = 0 (steady instability), which occurs as

. ” - (2:1'n/1)2 -
[dw + Ry (g — c3)][d — ZRm (03 + 2k >Th ¥ — — = 0, (83)
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Fig. 3. Stability diagram for the spatially uniform SWs under long-wave perturbations for ' = 1. & = 2and (a) § = 0.5. (b) § = 0.29, (¢)

5 =0.11,(d) § = 0.05. The stable region is that in between of the axis R, = 0, the straight line A;, and the curves Hy and either Cy (in cases
a, ¢ and d) or C» (in casc b).

where

G+ 2001 — 2k —e 2y 3(142k5)(1 — 2k +2k2 — e 2y
22 + a3 '

Dy =D,(0) =

Note that we have infinitely many marginal instability curves, one for each integer #». But the most dangerous
instability is seen to be that for 1 = 1, which is the hyperbola labeled Hy in Fig, 3, whose asymptotes are A
(given by (84)) and Az, which is given by

2 dp

R, = 86
M 2as + 2wk2D) (86)

Depending on the relative position of A; and A;, we can have four qualitatively different configurations of

the marginal instability curves A and Hp, which are like those plotted in Fig. 3a, ¢ and d (Fig. 3a and b are

qualitatively similar), and the one obtained from Fig. 3a under the reflection symmetry J,,, — —J,,,; here we take

into account that the various coeflicients appearing in (83) are not independent, see Eqs. (46)}-(49) and (60). This

well documented instability [4] yields stationary, spatially nonuniform complex amplitudes like those in Fig. 10a.
(b} A =82 # 0 (oscillatory instability), which occurs as

E,(£2)? -~ Ei(8D)

4 ! 2

- d= — Ry (ag — 87
" G 2 i (g — o3) (87}

h




lor certain [unctions £, and G, that are nol given here [or the sake ol brevity. These two equations come [rom the
rcal and the imaginary paris of the dispersion relation, and provide the curves labeled €, in Fig, 3, which always
have the asvmpiole Ay, other asymploles are associaled with singularitics ol the function £,. We do nol try 1o
classily the several relative positions ol these curves, as we did incase (a) above, because now the classification is
too involved. This oscillatory nstabilily involves a double cigenvalue (associaled with +#, because (83) depends
on the wavenumber n through its square, %), and yields cither symmetric or nonsy mmetric patterns, which could
be scen as cither traveling waves (TWs) or SWs [or the wave cnvelopes, like those in Figs. 6a and 8a below, sec
|4.26] and references therein, Note nevertheless that the resulling reconstructed paticrns for, ¢.g., the ree surface
elevation using Eq. (96) below are much more involved than TWs or SWs.

Some rcmarks arc now in order;

(1) The three instabilities considered above (namely, saddle-node, steady, and osciliatory, see Eqs. (84), (83) and
(87)) arc usually present.

(i1) If the contribution of the mean flow to amplitude equations is not considered (namely, if D, (1) is set to O in
(83)), then ihe curves C,, that vicld oscillalory instabilitics disappear. Thus (he mean flow drastically reduces
the stability region.

(iii) The oscillalory instabilily is usually (he onc giving the first instability of the spatially uniform SWs as (he
lorcing amplitude is incrcascd.

(iv) The most unstable meode at threshold is frequently (bul not always, scc Fig, 3b) the first mode, n = 1.

4.2, Short-wave perturbations

These are associated with dispersion, exhibit a wavenumber of order ¢ ~'/2_and. in first approximation, propagate
with the group velocity A, see (69—(72). Thus we seek normal modes of (69)—(77) of the form
rt, 55 = [('réb, SGI:) + ﬁ(:;t sit) + - 'JC(RQ/V'TH“'-"”"JTHK'E’{"E,
(7. F) = [{oo(y). Fo) + Vel (y), Fi) 4 -« [eho/Verhitar ke Ve

where K ~ 1. Replacing these into (69)—(72) we obtain. at orders O{e)~ /2 and O(1)

aw=LidK. g =2 sy =Lt (88)

oo 2 ‘wf]\:,?ﬂk?jg LA 7?115:0/(‘2)1 (89)
and

AK(Lr =) = —hard —i[K*0 — 2R5 (a3 — aa) + 2dy1s] (90)

IAK (L —rh) = =0 + 45y — 1K e, . (91)

IAK (ks — s7) = —(h1 + D)t — i[eK? — 2R (s — a)lry, (92)

IAK (dsT —s7) = —hsy —i[oK? —4R2 03 +2dy, — 8RE0Da)ry (93)
where

Ty = — k(I — A%)]™!

is (he limil, as A =~ 2iza A and n — oo, of D,(L) (aller neglecting O(e™>)-terms). Note ihat T diverges al

ihe (cxcluded) resonance 7' = A2, which occurs when ihe group velocity A coincides with the (re-scaled) phase



velocity of the inviscid long wave modes I"'/2. And we only need to require that Eqs. (90)-(93) possess nontrivial
solutions, invoking (88), to obtain the asymptotic dispersion relation

(A 4265 + [dy + @K? — R Qa3 — 0 + 20k* D) = R (3 4+ 20k’ Da)°. (94}
Marginal instability is readily seen to only occur along the curve A, = 0, which yields
R} (a3 + 20k°D1)* = [dy + «K? — R2 (203 — ag 4 20k D) + 4k (95)

The instability region in the plane Rﬁ, vs. dy, is the envelope of the curves (95) as K varies from 0 to oc. This is
obtained upon translation of the curve for K = 0, H™, towards positive J,” if ¢ < 0 and towards negative J,,, if
a > 0. Note that H > exhibits two asymptotes, A (given by (84)) and Az, which is given by

R f}m
M wy — o+ 2o 4 20k2Dsy)’

The curve H™ is qualitatively similar to either one of those plotted in Fig. 4 or those obtained from these by a
reflection symmetry d, — —d,,; in particular, that for § = 0.5 is qualitatively similar to that in Fig. 4a, but with
the asymptotes A| and Az so close to each other that the curve is hardly seen in any reasonable plot.

This is again an oscillatory instability with a nonzero wavenumber. The involved short-wave wavetrains counter-
propagate with the group velocity A and, as in Section 4.1 (case b), the bifurcated solutions are either symmetric

or nonsymmetric for the wave envelopes, like those in Figs. Sa and 7a below.
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Fig. 4. Stability diagram for the spatially uniform SWs under short-wave perturbations for 7 = 1, & = 2and (a) § = 0.5. (k) § = 0.29.(c)

5 =0.11and (d) § = 0.05. The stable region 1s that below the minimum of the curve #™ and the straight line £.
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5. Large-time dynamics beyond threshold

{57) to explore the attractors that appear when the forcing amplitude

In this section we numerically integrate (51)
is increased above the SW stability limits calculated in the previous section. As representative cases, we consider

those indicated with vertical dashed lines in Figs. 3 and 4,

in which the first instability of the spatially uniform
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[A ei(wt+."oc) +B ei(mt—kx) -+ C.C.] 4.
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Case A At § = 0.05and d = —2.5, we have dy = —2.5 (see (66)), and the primary instability of the spatially
uniform SW given by (64) with m = 0 is dispersive, see Figs. 3d and 4d. Thus the primary bifurcated
patterns for the wave envelopes at threshold, fi = 8, are reflection symmetric pairs of dispersive wavetrains
(one of the two possibilities anticipated at the end of Section 4.2), like that in Fig. 5a. Note that the two
counterpropagating wavetrains travel at the group velocity, which is A =~ (.51 in the present case. In the
range 8.03 < ji < 8.13, various oscillatory instabilities take place that yield quasi-periodic waves; one of
them exhibiting a near-homoclinic behavior is plotted in Fig, 5b. At 2 = 8.13 the system jumps to a spatially

uniform SW with wavenumber m = — 1, which is stable; this can be seen as an Eckhaus instability. This
steady state is stable in the range 8.13 < 1 < 8.36, where the system exhibits the oscillatory instability
described in Section 4.1, with 4_; = 0.71, see Eq. (66) and Fig. 3d. The bifurcated solutions (Fig. 6a)

are not reflection symmetric (one of the two possibilities anticipated at the end of Section 4.1). Now, the

4] 18]

0 1 by g 1

Fig. 6. Space—time plots of [A| and | 8| for some attractorsat C, L = 1. e =5 x 10 3.85=005d=-254and(2) 1 = 8.36 and (b) j1 = 9.05.



whole pattern (in particular, both A and B) travels with a constant speed 0.9, which of course is not the
group velocity, A =~ 0.51. These solutions have been reported experimentally in [27] and could in principle
appear as surprising if one expects that the envelopes A and B counterpropagate with the group velocity;
this is necessarily true for patterns that exhibit small dispersive scales, but not for patterns that only exhibit
the transport scale. In the range 8.36 < 1 < 9.10 the system progressively exhibits a more complex spatial
and temporal structure, vielding pulsating waves, in which the propagation velocity slightly oscillates, as
in Fig. 6b, At i = 9.10 the system suffers a new Eckhaus instability and jumps to the spatially uniform SW
with wavenumber m = —2 (thus d_» = 3.92, see Eq. (66) and Fig. 3d), which loses stability at 7 = 9.11,
where it exhibits a standard oscillatory instability (like that in Section 4.1, case b); this yields again TWs
for the wave envelopes, like that in Fig. 6a. In the range 9.11 < i < 11.21, the system exhibits again
various oscillatory instabilities, gains spatial structure, and loses temporal periodicity. At &t = [1.21,a
new Eckhaus instability takes place, and the system jumps to a new propagating state that bifurcated (fora
smaller value of /) from the branch of spatially uniform SWs with wavenumber m = —3 and d_3 = 7.13.
None of the patterns above is reflection symmetric. Thus, because of invariance under (62) the system
also has in each case that pattern obtained form the one described above by reflection symmetry, which in
particular travels in opposite direction.

Before proceeding further, two questions are relevant. First, the plots in Fig. 6a and b suggest that in
the traveling patterns described above the dispersive scales are absent. This has been checked by repeating
the calculations above for (a) decreasing values of the small parameter ¢ and (b) for £ = 0, obtaining
in both cases the same transitions and attractors, albeit some small quantitative differences, at least for
8.36 < i < 10.01. Secondly, these traveling patterns are born from spatially uniform SWs through
oscillatory instabilities that would not be present if the mean flow were absent, as explained in Section 4.1.
This has been checked by eliminating the integral term from Eqs. (51) and (52), and then integrating
numerically the resulting equations with the same values of the coefficients. Now, the spatially uniform
SW losses stability at 2 = 8.39, where the system bifurcates supercritically to a nonsymmetric pair of
dispersive wavetrains for the wave envelopes like that plotted in Fig. 7 (cf. Fig. 5a); this is just the second
possibility anticipated at the end of Section 4.2. This wavetrain remains stable up to ;i = 8.72, where the
system gains reflection symmetry and the solution becomes qualitatively similar to that in Fig. 5a, which
in turn suffers a oscillatory instability and yields a more complex dispersive pattern that remains stable up
to ;4 = 8.78. Note that now, without mean flow, dispersive scales are not inhibited, which is in accordance
with the results in [20].

Fig. 7. Space-time plot ot |A| and |B| foraattractorat C, L = 1. e =5 x 10 .5 =005d=—-25,7 =85 and no mean flow coupling.



Casc B ALS = 0.5, d = 0.5 {he spatially uniform SWs with z = 0 exhibit a long wave oscillatory instability with
wavenumber n = 1 (thus dp = 0.5, see Eq. (66) and Fig. 3a) at i = 9.55, where the system bilurcales
supercritically to a reflection symmetric pattern (the first possibility anticipated the end of Scction 4.1, case
b). ploticd for /1 = 9.36 1 Fig. 8a (cl. Fig. 6a). These canbe seen as beating states and arc reminiscent of the
oncs observed experimentally [27]. As j increases, these allractors gain spatial structure bul remain stable
up lo g = 10.3, where the system exhibits a subcritical bifurcation and jumps (o a new reflection symmetric
spatially periodic state with wavenuiuber # = 2, which in turn gains spatial structure as jz increases; it first
loses reflection syminetry and then (at i = 11.2) becomes temporally chaotic; an example of this chaolic
attraclor is given in Fig. 8b. Again, we have checked that dispersive scales are absent in all these solutions,
at least for ;i < 11.8.

Case C At S = 0.29, d = —1. the spatially uniform SWs with m = 0 remain stable for /i < 9.4, where they
exhibit a long wave oscillatory instability (with dy = —1, see Eq. (66) and Fig. 3b), and the svstem
bifurcates supercritically to a branch of reflection symmetric patterns (the first possibility anticipated at the
end of Section 2) with wavenumber n = 2. like that plotted in Fig. 9a for 7 = 9.5. These remain stable
for i <« 9.8, where the system exhibits a subcritical Eckhaus instability and jumps io a new branch of
reflection symmetric patterns (Fig. 9b). which in turn remain stable and reflection symimetric in the range
9.8 < i « 10.45, albeit gaining some spatial structure and loosing temporal periodicity. At i = 10.45 the
pattern also lose reflection symmetry, which is not regained, at least for ft < 14.75, bui remains otherwise
qualitatively unchanged. Again, dispersive scales are absent in all solutions described above, at least for

i< 11
Case D Finally, at $ = 0.11, d = —0.5, the primary instability of the spatially uniform SWs with m = 0 occurs
at © = 8.17 and is stationary (now dy = —0.5. see Eq. (66) and Fig. 3c). But the bifurcated branch

of reflection synmmnetric steady states (Fig. 10a) exlibits an oscillatory instability at g = 8.26, where the
system bifurcates supercritically to abranchof reflection symmetric patterns sinilar to those in Case B above
(Fig. 8a), which subsequently gain spatio-temporal structure (Fig, 10b) but reimnain reflection symmetric
and without dispersive scales, at 1east for 1 < 9.49,

Summarizing the resulis above, alier destabilization of the spatially unilorm sicady siates, the solutions of the
system can cither be rellection symmetric or nol, and cither exhibil small dispersive scales or not. When gravity
dominates, reflection symmeiry is lost [rom the outset, and the svstem cxhibits a pattern that travels undistoried to
cither side (like some of the drifting paticrns reporied in |27]), depending on initial conditions. This is a source ol
drifling paticrns that are fundamentally differcnt from the ones encountered in [10], although both arc essentially
duc 1o the presence of the viscons mean {low. Those in [10] exhibil a spatially uniform amplitude, the surlace
waves being thus redlection symnetric, and broken rellection symmetry (which is cssential for the existence of drifl
[26]) manifests itself in the viscous mean llow, and nol in the surface wave patlern (in first approximation). Here,
insicad, the drift of the paticrns is pushed by the broken rellection symmelry of the surface wave civelopes, whose
spatial modulation is thus essential. Eckhaus instabilily (another global [eature reporied in |27]) is also Trequent.
The patterns exhibit temposal chaos as f¢ is increased, but not spatio-temporal chaos, which would require the
presence of dispersive scales, as in [20], at least for the (realistic, but not too large) range of & and the values
of k. S, and d checked above. Dispersive scales (which are paramount in the amplitude equations without mean
flow [20]) seem to be inthibited by the viscous mean flow, even in cases when these are the most unstable scales in
the primary instability of the spatially uniform steady states (Case A above). Thus, in most simulations above we
could have neglected dispersion and consider the hyperbolic approximation of the amplitude Eqs. (51) and (32).
But unfortunately, this cannot be done a priori because () dispersive scales could have been destabilized, as in [20],
and (b) dispersive scales do appear for larger values of 4 than those considered above, where complex dispersive



13

A ..\ 7
s
\b\v \\\\\\&\

3
3
3

SR
,/m,//////

W
R

N
B

N

(a)

AN
R
e

B

|

Gand (b)Y /i = 11.5.

9.5

it

.d = 0.5, and {a)

=05

§

3

l.e =3x 10

A

¢ allractors al £, [

or som

|A| and | B| (i

‘ig. 8. Space—time plots of



B

A

B

A

95and (b)Y /i =9.9.

it

1079, 8 =0.29.d = —1.and (a)

3 x

l.&

A

C, L

pace—time plots of |A| and | B| for some atiractors at

Fig. 9. §



|B]

///ﬂ_//_/// \ SRR N /_//:// ////NWM///M// T

//////, R

\

L i 2 \M& Y

o S
7 \W\\\\\\\\\ iy

B

s

and(ayji =8.2and (by ;1 = 8.71.

—0.3,

0.11, 4

.S =

3

4]

//// //,,/, // 3 AR /// .
/U/////,// //7//// ///////// ////M////ﬂ///w/. S //// 7 //
A
_///%%////7//72%///”#/ SN

N

A

T’ @ 4
v o i

/
Iy i

45
4
3.5
3
2.5
2
15
1
0.5
0

Fig. 10. Space—time plots of |A| and | B[ for some attractors at Cp, L. = 1,5 = 5 x 107

Note that time has been reversed in this plot.



solution not prescnted here arc obtained. The stabilizing clTect of the mean low is far [rom cvident, even though it
cxhibits viscous clfects. Note that viscous dilTusion is absent in the horizontal dircetion, in which dispersive scales
cxhibit fast oscillations.

3.1 Mean flow patierns

Let us now turn 1o the structure of the mean flow associaled with some of the attractors described above, namely
the simplest oncs. The time dependent mean (ow patierns associated with more complex attraciors exhibit a lot of
unsieady structure, whose description and interpretation is subtle, and oultside the scope of this paper.

Inorderto somewhat visualize patterns we shall plot color maps of the vorticity associated with the mass transport
velocity (61), namely

2™ = @t + 8ok A" — |BI"). (97)

Note that the forcing shear stress in the second condition of (54) and the Stokes drift are both proportional to
|A]? — |B|*. Thus we must expect that the flow exhibits counter-rotating eddies below those regions of the free
surface where |A| > |B] and |A| < |B|. But for unsteady patterns the interpretation of vorticity contours requires
some care. Because of unsieady effects, neither the strength of each eddy needs to be as suggested by the vorticity
values, nor its size needs to correspond, even approximately with the region where the vorticity exhibits a constant
sign.

The mass transport vorticity below the surface waves in Fig. 3a is plotted in Fig. 11, and is periodic in time; in
fact, only a half of the period is considered in Fig. 11, the pattern in the second half being obtained from the plotted
one by reflection symmetry. The period and horizontal wavenumber are much shorter than their counterparts in the
remaining periodic patterns below, which only exhibit the much larger transport scales. The patiern consists of an
armay of counter-rotating eddies (in that part of the period such that | A|* — | B|? altematively exhibits opposite signs
as & increases), which subsequently merge (when |A|? — | B|? vanishes), and rotate in opposite direction.

The mass transport vorticity associated with the TW in Fig. 6a travels undistorted to the left (at a velocity ¢ =~ 0.9)
with the primary pattern, and is plotted in Fig, 12, According to the scaling (50) and (60}, in the original variables
used in (1)~4) the propagation velocity of the pattern (¢ /(C, L) ~ 1) is much larger than the local Auid velocity
(i’ ~ Cy < 1) Thus we do not plot the streamlines in a reference frame moving with the pattern, which are
horizontal in first approximation.

The mass transport vorticity below the reflection symmetric pattern in Fig, 8a is plotted in Fig, 13, Note that these
are somewhat similar to those in Fig. 11, the main difference being that the spatial wavelength is much larger now.

The mass transport vorticity produced by reflection symmetric pattern in Fig, 9a is similar fo that in Fig, 13,
except for the fact that the spatial period of the mean flow pattern is now one-half of that in Fig, 13,

Finally, the steady mass {ransport vorticity and streamlines associated with the patternt in Fig, 10a are plotted in
Fig. 14a and b.

In the remaining of this section we brieily explain the numerical method used to integrate Eqgs. (51)-(57). The
solution is [irst cxpanded in Fourier scrics in £

A1) = A
( & )_ Z ( ( )61271':1&, (98)

B£, 1) e \ Bnll)

F(&.1) S F N e Fy Fy
— Z e1 T , —_ ) i (99)
(f’(i;', v, 0 n=—mx \ ¥n (v, ) n ¥ —n
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Fig. 11. Mass transport vorticity color (red  positive vorticity, blue  negative vorticity) maps produced by the periodic surface wave pattern in
Fig. 5a.

The resulting equations for the nth mode of the mean flow are

Prigyr = Preypyy m—1l<y<0, (100)
(QJTWJ')‘PM - Fn; = 2(0(27”1)”8‘2 - ‘A‘zlﬂ’ Pryy = 8(“'(72“[\'2 - |B|2]ns
Gny — Py + TQamdFy =0 aty =0, (101)
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Fig. 12. Mass transporl vorlicily color map produced by the surface wave patlem in [ig. 6.
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Py =0 =@, =0 aly = -1, (102)
Fy=0. (103)

This is a linear nonhomogeneous problem and its general solution can be expressed as

FH(I) > . ﬁn] F:[)H
=Y e T )+ : (104)
Py, 1) e i (¥) Gonl¥)

where (I, ¢y,;) are the eigenfunctions of the homogeneous (i.e., [[A]2 — |BI*], = 0) version of (100)—(103),
{(Fpn, oo 1s the steady particular selution of the system ( 100)-(103) with the right-hand side of the first condition
of Eq. (101) set to 0, and the right-hand side of the second condition of Eq. (101) set to 1, and p,, (r) = 8wk2[|A|* —
|B|*1n.

Now. by inserting the expansions (104) into (100)—(103), and inserting (98), (99) and (104) into (31)—(57), an
infinite system of ODEs is cbtained for the evolution of the coefficients A, (£), By (r) and cp(2). This system is
truncated (fgmax = 2536 and jpae = 32, typically) and numerically integrated using a fourth-order Runge—Kutta
method with time step At = 0.00].

6. Concluding remarks

We have derived a system of CAMF equations for the evolution of two counterpropagafing wavetrains (with
opposite phase velocity) and the associated viscous mean flow, The starting point was a more general system of
coupled equations derived in [8]. The main simplification is seen in the mean flow equations, which are linear here
because the mean flow is almost parallel.

In order to illustrate the feasibility of the theory described here, we describe an experimental realization, As in
[27], we consider an annolar container with a 110 mn diameter and 4 mm depth (a half of that in [27], fo obtain an
appropriately large aspect ratio), filled with extremely clean water (see [28]) and vertically vibraied with a 36.6 Hz,
Using T = 72 dyn/cm, the capillary-gravity time is 0.017 s and hence @ = 1.93, The remaining nondimensional
parameters are L. = 860.4, § = 0.31, €, = 1.04 x 1073k =2,8=0011,d = —0.04 and 1y = 1.17, Note in
particular that v /L = 0.014 ~ 3, and that the remaining assumplions (36) hold,

The simplest nontlat solutions are (as always in the Faraday system) spatially uniform SWs, whose linear stability
has been analyzed in Section 4. Two essentially different instabilities have been identified. Namely, (i) long wave
instabilities that only exhibit transport scales and yield either stationary waves or oscillatory waves; the latter can in
turn either be reflection symmetric or not, and would be absent if the effect of the mean flow on the surface waves
were ignored; and (i) shori wave, dispersive instabilities that are conmvected at the group velocity,

For still larger valucs of the forcing requency we have inlegraled the CAME cquations (o obiain scveral repre-
scnlative large-time altraciors, The simplest oncs are (a) dispersive wavcetrains (Fig. 5a) and (b) patterns (hat only
cxhibil (he ransport scales, which for the wave envelopes are cither (b-1) time-periodic and reflection symmetric
(Fig. 8a), (b-2) nonrcllection symmetric, which travel undistorted at a constant speed (Fig. 6a), or (b-3) stationary
and nonuniform (Fig, 10a). The sysicm also exhibils more complex, chaolic patlerns for larger [orcing amplitudes,
but these have not been analvzed. Insicad we have concentrated in those simpler paticrns that could be casily identi-
fied in experiments, in an atticmpt (o stimulale experimental visualizations and icasurcinents, with special atiention
on the associated mean flow, which has not been paid so (ar.
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