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Abstract . The existence and linear stability of a uniformly propagating plañe front in solid 
combustión are considered under the assumption of a large heat of reaction, which is of interest in 
pyrotechnic mixtures. The Zel'dovich number is not necessarily large, and the chemical reaction is 
not confined to a reaction sheet for typical valúes of the parameters. Thus the effective calculation 
of the fronts and the analysis of their stability rely on qualitative methods and on some numerics. 
It is seen that there is always a minimum burning rate and that the front is stable only if the 
heat of reaction is sufRciently large. A comparison is made with analytical results obtained from a 
phenomenological delta-function model. 
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1. Introduction. This paper deals with the linear stability of plañe fronts in 
solid combustión at large activation energy and large reaction heat, such that the 
Zel'dovich number is not necessarily large. This limit is of interest in wave propagation 
in pyrotechnic mixtures (see [1] and references given therein), which are frequently 
used in delay detonators [2]. 

If reactant diífusion and heat losses are ignored, then the conservation equations 
in dimensional form are 

pcp^ - KAT = QAcn exp ( ^ j , 

i~~-(aO 
in — oc < x < oc, — oc < ¿i < oc, with boundary conditions 

(1.3) T = Ti, c — Ci as x —> — oo, T = Tf, c — 0 as x —> oo, 

(1.4) T and c bounded as \y\ —> oo, 

where the usual notation is employed. A is the Laplacian operator in terms of dimen
sional space variables; T¿ and c¿ are the "initial" temperature and reactant concen-
tration, assumed to be such that the chemical reaction is frozen at the cold boundary 
but not at the ñame, which requires that 

PTj_ ^ Ejff-fj) >> 1 

Ti Rfiff 
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where /? = E(ff-fi)/(Rfj) is the Zel'dovich number; and ff is the "final" temper-
ature, which is assumed to be such that the total (chemical + thermal) enthalpy is 
conserved across the front, namely, 

(1.6) QCÍ + pcpfi = pcpff. 

Thus condition (1.5) is satisfied either if the Zel'dovich number is large (the usual 
limit) or if 

(1.7) T-l » 1, 

which requires that the heat of reaction be appropriately large (namely, Qci/(pcpTi) ^> 
1) according to (1.6), and which is the limit considered below. In typical pyrotechnic 
mixtures [1] the activation energy ranges from 13 to 23 kJ mol - 1 , with final tem
peraturas on the order of 1,800°K. Then, for an ambient temperatura of 300°K, the 
ratios E/(RTi) and E/(RTf) ~ (3 range from 5.20 to 9.25 and from 0.86 to 1.54, 
respectively; thus the assumptions (1.5) and (1.7) hold. Note in particular that the 
Zel'dovich number can hardly be considered as large. 

Conditions (1.5) and (1.6) are necessary to allow (approximately) uniformly prop-
agating fronts. 

If the temperature, the reactant concentration, the space and time variables, and 
the heat of reaction are nondimensionalized as 

rr RT c , , {QEAc?\1/2,„ ^ 

(18)
 T"> c=*- ( ^K~^n {x^ 

_ QEAcf ~ __ RQCJ 

pcpR ' Epcp' 

and assumptions (1.5)—(1.6) are taken into account, then (1.1)—(1.4) are rewritten as 

in— o c < x < o c , — o o < 2 / < o o , with boundary conditions 

(1.10) c = l , T = 0 a t x = -cx), c = 0, T = q at x = oc, 

(1.11) T and c bounded as \y\ —> oc, 

where the boundary condition T = 0 at the cold boundary comes from assump-
tion (1.5); thus (1.9)—(1.11) does not exhibit the cold boundary difnculty [3]. That 
problem depends only on the nondimensional parameter g, which can be seen as a 
nondimensional heat ralease and, according to (1.6), can also be written as 

Ríff-fj) _ ( l - T - / f / ) 2 

q~ E ¡3 

in terms of the Zel'dovich number (3 defined above. The evolution problem (1.9)—(1.11) 
could always be treated numerically by an adaptive method to efnciently resolve the 
moving thin reaction región if q is small [4]. 

In the limit g « l , the Zel'dovich number is large, and large-activation-energy 
asymptotics applies. This limit was considered by Matkowsky and Sivashinsky [5] for 



first order reactions in the restricted one-dimensional (1-D) case through the following 
model: 

/. ..̂ x du d2u du . „ , . , , 

^ 0-r=W'di ***** 
(1.13) u = 0 a t f = -oo , [u]=0, -

du 
l + 0' = exp( ^ - ^ ) a t e 

where [/] = / ( £ + , 77, r) — /(£~, 77, r) denotes the jump across the reaction sheet, which 
is located at £ = (¡>{r). This model gives the solution in the preheated zone, which is 
such that the new variables 

T / 1 \ (\ 
(1.14) u — —, £ = xexp I —- ) — ¿, and r = ¿exp -

Q V 2 < ?y V<? 
are of order unity. The reactant concentration is given by c — 1 if £ < 0, and 
c = 0 if £ > 0. The jump condition across the reaction sheet results from matching 
conditions with the (unique) steady state of the appropriate 1-D rescaled (according to 
1—u ~ £—</> ~ q and c ~ 1) versión of (1.9)—(1.11) that applies in the reaction zone; see 
(3.8)-(3.9) below. This quasi-steady approximation in the reaction zone relies on the 
implicit assumption that the steady solution in this zone is asymptotically stable, for 
otherwise small perturbations in this zone will grow exponentially in its characteristic 
time-scale, r ~ q~2, which in fact is much shorter than that considered above. This 
assumption fails, as can be anticipated from well-known results of Peters [6] (see also 
[7, 8, 9]) on the stability of premixed reaction zones for finite Lewis numbers. In fact, 
plañe fronts have been recognized as inherently unstable in solid combustión [3] for 
infinite activation energy. Matkowsky and Sivashinsky considered a finite activation 
energy in (1.12)—(1.13), which can be considered a phenomenological model, sometimes 
called a delta-function model [10], for large-but-finite Zel'dovich numbers; see [11] for a 
discussion of this model. In fact, this model yields results that are in good qualitative 
agreement with some experiments [5]; a further comparison is made below. Here we 
will just mention that (1.12)—(1.13) has a unique steady state, which corresponds to 
a traveling front of (1.9)—(1.11) with a velocity (see (1.14)) v = exp[— l/(2q)] in a 
first approximation. The normal mode solutions of the linearized problem around 
this steady state lead to the following characteristic equation (see [5]): 

(1.15) A[16<?2A2 + (4<?2 + 8q - 1)A + 2q] = 0, 

which gives the rescaled (according to (1.14)) growth rate A in terms of q. The root 
A = 0 results from invariance under translations, and the remaining two roots yield 
an oscillatory instability at the instability limit 

0.118, 
2(2 + ^ ) 

with an eigenfrequency OJC = (8g c) - 1 /2 ~ 1.03; the front is linearly stable if q > qc 

and unstable otherwise. All these agree qualitatively with the exact results obtained 
numerically below, despite the fact that this can be seen as only a phenomenological 
model. Additionally, as q —• 0, when the model really applies, (1.15) yields two 
unstable real eigenvalues, namely, 

(1.16) \ = 2q + 0{q2) and A = — ^ + O 
16q2 \q 



of which the first can make sense as an approximation of an eigenvalue of the original 
problem (see below) but the second is spurious because its order of magnitude is such 
that the associated solution in the reaction zone (implicit in the model (1.12)—(1.13)) 
cannot be considered as quasi-stationary; in fact, there is an eigenmode whose growth 
rate behaves as in the second equality in (1.16), but it is completely associated with 
the dynamics in the reaction zone; see below. 

For further comparison, it is convenient to consider the extensión of (1.12)—(1.13) 
to higher dimensions. Such an extensión would consist of (i) allowing u and 0 to 
depend on transversal variables 

(1.17) 7] = yexpl — ) and ( = ¿ e x p í — 

(ii) replacing d2u/d(s
2 by the Laplacian operator in (1.12), and (iii) replacing du/d^ 

and 1 + 0' in (1.13) by the derivative of u along the unit normal to the reaction sheet 
(pointing towards the burnt side) and replacing 1 4- <p; by the normal velocity of the 
reaction sheet. The characteristic equation (1.15) must be replaced by the dispersión 
relation 

(4Xq + l ) ^ l + 4(A + fc2) = 2A + 1 

in terms of the rescaled (according to (1.17)) transversal wavenumber /c, which co
incides modulo notation differences with that in [10, p. 74] and yields two branches, 
namely, (a) a real branch satisfying A < 0 if /c > 0, A ~ —k2/(2q) as k —> 0, which 
corresponds to the zero eigenvalue of (1.15), and (b) two complex conjúgate branches, 
which yield an oscillatory instability at the marginal instability curve, with an eigen-
frequency G¿ that is also indicated, 

1 + 4A;2 „ _ / l + 4¿2 

2 [2 + 6¡fc2 4- (1 4- 2fc2)v/5 4- 16Ífc2] ' V 8<? 

These are plotted (and labelled BL) in Figure 1. 
Against this background, the main object of this paper is to analyze the plañe 

fronts of (1.9)—(1.11) and their linear stability for finite g, without further assumptions 
or approximations. For simplicity we consider below only first order reactions, namely, 
we take n — 1, but the results below are extended, somewhat straightforwardly, for 
n > — 1. Note that if n < 0, the right-hand sides of the first two equalities in (1.9) 
must be replaced by zero when c — 0, and if n < 1, then the relevant solutions are 
such that c = 0 if x > x(y, £), where the position of the free boundary x(y, t) must be 
determined as a part of the solution. 

2. Uniformly propagating plañe fronts. Now we seek solutions of (1.9)-
(1.11) of theform 

(2.1) T = T(£), c = c(£) with£ = x + vt, 

where the burning rate v must be determined as a part of the solution. Substitution 
of (2.1) into (1.9)-(1.11) yields 

(2.2) T" - vT' = - cexp ( ^— J , ve = -g _ 1 cexp ( ^ r ) i n - o c < £ < o c , 

(2.3) T = 0, c = 1 at f = -oo , T = q, c = 0 at f = oo. 
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FiG. 1. Neutral instability curve (a) and the associated eigenfrequency ( b ) . 



FiG. 2. 
v — .5 < v*. 

Phase plañe of (2.5) for q = 1 and (a) v = 1 > v* ~ .5707, (b) ?; = i>*; ana (c) 

This problem is the particular case for an infinite Lewis number of the problem treated 
numerically by Mikolaitis [12]. The exact relation 

(2.4) T' -vT = qv(c - 1) 

accounts for conservation of the total enthalpy through the front and is readily ob-
tained from (2.2)-(2.3). This relation, the second equality in (2.2), and a further 
elimination of the space variable allows us to reduce (2.2)-(2.3) to 

(2.5) 

(2.6) 

dT _ -qv2[T + q(c-l)} 

de "~ cexp ( - l /T ) 

T = q at c = 0, T = 

in 0 < c < 1, 

0 at c = l . 

This problem is readily analyzed by phase plañe methods as follows (see Figure 2). The 
relevant trajectories join the critical points pi : (c,T) = (0, q) and p2 : (c, T) = (1,0). 
Point pi is a saddle with two incoming trajectories, namely, the c = 0 axis and a 
trajectory with a negative slope of the form 

(2.7) T = q-
2 2 

q^vzc as c 0. 
gi;2 +exp(-l/q) 

In contrast, P2 is a degenerate node, with infinitely many incoming trajectories which 
exhibit one of the following behaviors: 

- 1 
(2.8 T = q(l -c)+v~2exp 

( 7 ( 1 - c ) J + • 



or 

(2.9) c=l-(qv)-2 í u^expí—j du 

a s c - > 1. Note that the former behavior yields trajectories that are tangent to the 
straight line 

(2.10) qc + T = q. 

Now, the problem (2.5)-(2.6) has a solution if and only if the nonvertical trajec-
tory leaving the critical point pi, hereafter called T(v), passes through the critical 
point £>2- The following properties are readily proven (see Figure 2): 

(a) T(v) is above the straight line (2.10). This is so because T(v) leaves pi along 
a direction with a higher slope than that of the straight line (see (2.7)) and 
cannot cross because the trajectories crossing this line exhibit zero slope. 

(b) If, for some v = VQ > 0, the trajectory T(vo) passes through p2, then that 
trajectory also passes through p2 for all v > vo • This is so because the right-
hand sides of (2.5) and (2.7) strictly decrease as v increases above the straight 
line (2.10). Thus T(v) leaves p\ between the straight line and V{VQ) and can 
cross neither of them afterwards. 

(c) For sufficiently large v, the trajectory T(v) approaches the straight line (2.10) 
uniformly in 0 < c < 1 and passes through p2. That trajectory is given by 

(2.11) T = q(l - c) + v~2cexp ( ( ~ \ ) + 0(v~4). 

(d) For sufficiently small v > 0, the trajectory T(v) approaches the horizontal 
trajectory T = q uniformly in 0 < c < 1. Thus this trajectory does not pass 
through p2. 

(e) / / T(vi) does not pass through p2, then neither does T(v) for v\ < v < v\ +e 
for some e > 0. This is a consequence of the continuous dependence on v 
near p2 of the trajectories that do not pass through p2-

As a consequence of these properties, there is a critical valué of the nondimensional 
burning rate, v = v*, such that the problem (2.5)-(2.6) has a solution if and only if 
v > v*; for v > v* the solution of (2.5)-(2.6) is unique. Note that, among the two 
possible asymptotic behaviors (2.8) and (2.9), the second one applies at the minimum 
burning rate v*. And for each solution of (2.5)-(2.6), T = T(c), there is an associated 
solution of (2.2)-(2.3), whose concentration and temperature profiles are given by 
c = c(£) and T = T(c(£)), where c = c(£) is defined, up to translations, by 

= qvl £ = qv / c exp 
T(c) 

de. 

Thus there are infinitely many plañe fronts, one for each nondimensional burning rate 
in the range v* < v < oo. 

If the nonlinearity in the right-hand side of (1.9) is slightly perturbed such that 
it vanishes if 0 < T < e for some e > 0, then, according to the phase plañe arguments 
above, the resulting problem has a solution for one and only one valué of v, v£; also 
v£ —• v* as e —* 0. Note that the situation is quite similar to that in adiabatic, 
premixed flames at unit [13, 14] and nonunit [15, 16, 17] Lewis number; see also [18] 
for the nonadiabatic case. Therefore, only that plañe front with the slowest burning 



*> 0.5 

FIG . 3. The slowest burning rate of plañe fronts in terms of the nondimensional heat of reaction; 
the asymptotic behaviors (2.12) and (2.13) are indicated with dotted Unes. 

rate v — v* survives under small perturbations of the problem, and thus only that 
solution will be considered below. 

The burning rate v* is plotted vs. q in Figure 3, and some representative tem-
perature and reactant concentration profiles are given in Figure 4. Those curves are 
obtained by a standard shooting method from the cold boundary; the second equation 
in (2.2) and (2.4) are numerically integrated by a fourth order Runge-Kutta method 
with variable step, and the asymptotic behaviors (2.7) and (2.9) are used. The limits 
q —> 0 and q —> oc deserve some attention. 

As q —> 0, the nondimensional burning rate is calculated by large-activation-
energy asymptotics, as indicated in section 1, to be 

(2.12) v*=exp(zL) (l + 0(q)). 

As q —> oc we have 

(2.13) 

2q 

v*=v¿+0 

where v$ is uniquely given as the smallest valué of v* such that the following problem 
has a solution: 

(2.14) 

(2.15) 

T" - v*T' -exp 
-1 

in 

T = 0 at £ = -oo , T - l 

oc < £ < oo, 

= bounded at £ = oc. 
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FlG. 4. Temperature and reactant concentration pro files for the plañe fronts at the indicated 
valúes of the nondimensional reaction heat. 

This problem applies in a first reaction zone where |£| ~ 1 and reactant consumption 
can be ignored. In addition there is a reaction tail, as 0 < £ ~ q where the reactant is 
consumed and the temperature increases to its final valué T — q. v$ ~ 0.903 is well 
defined, as obtained by phase plañe arguments on the first order problem 

p% ~v*p = - exP (Y) in ° < T < °°' 
p = 0 at T = 0, P = — at T = oc, 

v* 

to which (2.14)-(2.15) is reduced when defining P = dT/d£. 
The asymptotic behaviors (2.12) and (2.13) are plotted with dotted lines in Figure 

3. Note that the former is a fairly good approximation for not-so-small valúes of q. 

3. Linear stability of the plañe front. We linearize (1.9)—(1.11) around a 
plañe propagating front, T = T(£), c — c(£), and consider only normal modes with a 
horizontal wavevector k (and wavenumber k = |fc|) of the form 

f = 0(t)e Xt+ik-y c = <p(£)e' Aí+ifc" 

with £ as defined in (1.14) and y = (y,z), and 6, (/?, and A as given by the linear 
eigenvalue problem 



(3-1) 

(3.2) 

(3.3) 

9 ^ - ^ + | | e x p ^ + ^ e x p ^ , ) = ( A + ^ , 

c6 
qvtp - ^ exp 

- 1 
cpexp i —- ) =q\<p, 

O, ip —>• O as £ —>• ±oo. 

Here we consider only the point spectrum of (3.1)-(3.3). The continuous spectrum 
(under the reasonable assumption that 9 and ip are square integrable in — oc < £ < oo) 
is readily seen using general results from [19] to exhibit negative real part; thus it does 
not lead to any instability. If (seeking for instability) we assume that the real part of 
A is nonnegative, 5RA > 0, then the eigenfunctions decay exponentially as £ —» ±oo, 
and both 9 and <p are in L2OR). Then, from (3.2)-(3.3) we obtain 

<¿>(0 = -(<lv) exp 
-A£ fei(Q 

J —< 
exp 

Az foi(¿) 

- 1 

where 

hi(0 = / exp 

Hólder's inequality yields 

(3.4) b ( 0 l < M - ^ 3 ( £ ) | ^ | | L 2 T O 

T(z)\ 

c(f) 
dz, ft2(0 = ^77^2 exp 

h2{z)9(z)dz, 

- 1 

ño 

where 

\ J — ( 
exp 

2fei(s) 
qv 

v 1/2 

ti2 (z)2 dz 1 exp -^i(C) 

On the other hand, multiplication of (3.1) by 0 (the complex conjúgate of 9) and 
integration on — 00 < £ < 00 yields 

/

OO /»C 

l*l2d£= / 
-00 J — ( 

- |0 ' | 2 - t ;00 ' + |0|2/i2+fy>exp 
- 1 
" j 7 dC, 

where we have taken into account that |0(£)l + 1^(01 ~~* 0 exponentially as £ —>• ±00. 
Since K / ^ 0'0d£ - ¡^(0'6 + 0'6) d£/2 = 0, we need only to take the real part and 
the modulus in (3.5) and apply Hólder's inequality and (3.4) to obtain 

(3.6) 

where 

5RA + k2 < ¿1 V62 
qv 

\X + k2\<-+ó1 + 
qv 

¿>i = max |/i2(£)l f° r £ e • -í 
J — c 

exp 
- 2 

r(0J 
/i3(o2de-

Here we have taken into account that SRA -f k2 > 0, that | |0||L2(R) 7̂  0, and the 
inequalities 

/

oo _ I / poo /»oo \ 1/2 /»oo 2 /»oo 

e'edi\<{ \d'\2dU v\e\2dú < \efd^ + ^- \e\2dt. 
-00 I \J—00 J — oo / J — 00 ^ J—00 



Now, according to (3.6), both the real and the imaginary parts of A are bounded if 
the former is nonnegative. The first estimate in (3.6) provides an upper bound of the 
wavenumber at the instability threshold 

/ fc~\ 1/2 

0<fc<fc*=(¿i + ^ 
V qv 

In addition to giving bounds on the unstable eigenvalues, the estimates (3.6) show 
that the eigenvalues of (3.1)-(3.3) can come into the right-hand side of the complex 
plañe only by crossing the imaginary axis. Note that this is trivially satisfied for finite 
Lewis number when the thermo-diffusive evolution equations are parabolic, but not 
here. The linear eigenvalue problem (3.1)-(3.3) is discretized by finite differences in 
the nonuniform mesh in which we calculated the steady state. We obtain the neutral 
instability curve (labelled "this paper") in Figure l(a), whose points correspond to 
a pair of purely imaginary eigenvalues ±iu; the eigenfrequency UJ is also given in 
Figure l(b). Note that the critical nondimensional heat reléase q* ~ 0.1597 is fairly 
small and not far from the threshold valué in the strictly 1-D case, q$ ~ 0.152. As a 
consequence (see Figure 3), the associated burning rate is quite small, v* ~ 0.0428, 
which is in accordance with the asymptotic behavior (2.12). Also, the eigenfrequency 
at threshold UJ* ~ 3.03 • 10~3 and the associated wavenumber k* ~ 2.0 • 10~2 are 
quite small. This is due to the fact that (q* is fairly small and) both |A| and k2 

depend exponentially on — 1/q as q —• 0 (cf. (3.7)). Also note that the "exact" 
marginal instability curve, labelled this paper in Figure 1, significantly differs from 
that obtained by Buckmaster and Ludford using a delta-function model (labelled BL 
in Figure 1), albeit the comparison can be considered as qualitatively reasonable. 

Let us now consider the large-activation-energy limit q —>• 0 when there are exactly 
two eigenvalues with positive real part, which in fact are real and behave as 

(3.7) Ai t f -V/ 9 -* 2 and X2q
2e1/q -* A0 ~ 0.095 as q -* 0, 

where for simplicity we are considering only the restricted 1-D case. These two ex-
pressions are compared in Figure 5 with the exact unstable eigenvalues, numerically 
obtained as indicated above; in this figure we have plotted only real eigenvalues. In 
(3.7), Ai is obtained, after taking into account the rescaling (1.14), from the first 
equality of (1.16). Additionally, A2 is obtained from the reaction-zone equations 

/o ON 9v d2v _v dw dw _v . (3-8) Ta = de~we ' ^ = ~^c'we in-°°<c<°c, 
(3.9) v + ( — bounded, w = 1 as ( —• — 00, v —• 0, w —• 0 as ( —• 00, 

in terms of the inner variables 

v^-t—rr-, ( = , and a - tq~2e1/q. 
q2 q 

The boundary conditions (3.9) result from matching conditions with the outer solu-
tion, assumed stationary here. Equations (3.8)-(3.9) possess the steady state ws = 
dvs/d(, with vs = ln[l + exp(—£)], which is unique up to translations. And we need 
only to linearize (3.8)-(3.9) around this steady state, seek modes in normal form, 
and sol ve numerically the result ing linear eigenvalue problem, whose growth rate is 
precisely the constant A0 appearing in the second equation of (3.7). Note that A2 is 
associated with the dynamics in the reaction zone, as anticipated right after (1.16). 



FiG. 5. Exact ( ) and approximate ( ) , according to (3.7), unstable eigenvalues for small q. 

4. Concluding remarks. We have considered a solid combustión model that 
applies in the limit of large heats of reaction. The problem depends only on one 
parameter, a conveniently nondimensionalized reaction heat q, which has been con
sidered to be of order unity; the reaction is confined to a reaction sheet only in the 
limit q —> 0, which corresponds to a large Zel'dovich number. We have analyzed 
in section 2 the uniformly propagating plañe fronts via phase plañe arguments and 
shown that for each q > 0 there is a critical valué of the nondimensional burning 
rate v* such that for each v > v* there is exactly one (up to translations) front with 
a burning rate v, while for v < v* no front exists. Also, we have argued that only 
the slowest fronts (with a burning rate v*) remain under perturbations of the reaction 
rate. The linear stability of the slowest front has been numerically analyzed in section 
3. We have seen that this front is stable for q > q* ~ 0.16 and unstable otherwise, the 
instability being an oscillatory one, with a nonzero wavenumber. Thus, transversally 
propagating wavetrains (see, e.g., [20]) are to be expected near threshold. 

Acknowledgment. We are indebted to Professor Amable Liñán for some useful 
discussions. 
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