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Abstract 

We consider a horizontal liquid layer supported by air in a wide (as compared to 
depth) container, which is vertically vibrated with an appropriately large frequency, 
intending to counterbalance the Rayleigh-Taylor instability of the fíat, rigid-body 
vibrating state. We apply a long-wave, weakly-nonlinear analysis that yields a gen-
eralized Cahn-Hilliard equation for the evolution of the fluid interface, with appro-
priate boundary conditions obtained by a boundary layer analysis. This equation 
shows that the stabilizing effect of vibration is like that of surface tensión, and is 
used to analyze the linear stability of the fíat state, and the local bifurcation at the 
instability threshold. 
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1 Introduct ion and formulation 

The Rayleigh-Taylor instability [1] appears when a heavy fluid is accelerated towards a lighter one and 
has a basic interest in Fluid Mechanics. The simplest configuration exhibiting this instability is that 
in which a horizontal heavy fluid layer (e.g., water or mineral oil) is supported by a lighter fluid (e.g., 
air); the destabilizing acceleration is provided by gravity. In this configuration, the instability can be 
counterbalanced by an imposed vertical vibration of the container, as already shown experimentally 
[2] and theoretically [3]-[4]. The main object of this paper is to provide a weakly nonlinear theory 



of this stabilizing effect in the limiting case when both the aspect ratio of the container and the 

vibrating frequency are appropriately large. In addition, we assume that the lower fluid (e.g. air) has 

negligible density and viscosity and thus can be neglected. See [5] for the general case. 

Under the assumptions above we consider a wide cylindrical container with a horizontal size i and 
depth h, which is placed in inverted position, with gravity acting downwards, and is vertically vi-
brated. We use the viscous time h2/v and the depth h for non-dimensionalization and a Cartesian 
coordínate system attached to the vibrating container, with the z = 0 plañe on the unperturbed free 
surface, assumed to be horizontal. The nondimensional governing equations are 

V • u + dzw = 0, (1.1) 

dt{u,w) + (u>V+wdz){u,w) = -{V,dz)p + (A + d2
zz)(u,w), (1.2) 

if (x, y) £ O and f(x, y, t) < z < 1, with boundary conditions 

u = 0, w = Q iíz = l andif (x,y) edil, (1.3) 

w = dtf + u-Vf, dzu + Vw = 0(\Vu¡\Vf\ + (\dzu\ + \Vw\)\Vf\2) iíz = f, (1.4) 

- p + aw2f cos(wí) + BC~2f + C~2V • [ V / / ( l + | V/ | 2 ) 1 / 2 ] 

= -2dzw + 0(\Vu\ + (\dzu\ + \Vw\)\Vf\) i£z = f, (1.5) 

Vf>n = -D9tf or / = 0 if (x,y) e 3Í2, / f(x,y,t)dxdy = 0, (1.6) 
Ja 

and with appropriate initial conditions, where u and w are the horizontal and vertical velocity, p — 

pressure + [au2 cos(wí) +B/C2]z is a modified pressure, a and w are the amplitude and frequency of 
the imposed vibration, V, V- and A are the horizontal gradient, divergence and Laplacian operators 
and / is the vertical free surface deflection, assumed along the paper to be such that | V / | -C | / | . 
íí is the transversal cross-section of the container, assumed to be large and homothetic to a fixed 
bounded domain, dfi is its boundary and n is the outward unit normal to díl. The aspect ratio (or 
dimensionless characteristic size of fü) is L = l/h, and B = pgh2/a and C = v^p/(ah) are the 
Bond number and the capillary number respectively, where g is the gravitational acceleration and a 

is the surface tensión coefficient. In the boundary condition (1.6a) we assume that either the contact 
line is moving or fixed. In the former case we assume that the static contact angle is 90° and employ 
the usual phenomenological law (see, e.g. [6] and references given therein) to account for contact line 
dynamics; the phenomenological constant D is positive and thus the motion of the contact line is 
dissipative. 

The limit considered in this paper is 

L » 1, w » 1, a < 1, BL2 = É~1, auC = Ó ~ 1, a2ui2D ~ L3, (1.7) 

where we are anticipating the appropriate valúes of the parameters to obtain a distinguished limit, 

namely a limit in which all terms appearing in the evolution equation obtained below are of the same 
order. This equation will allow us to analyze the Rayleigh-Taylor instability, which is a long-wave 
instability namely the wavelength of the most unstable mode is of the order of the aspect ratio. In 



addition, we must avoid the Faraday (parametric) instability [7] which would give short waves (with 
a wavelength small as compared to depth) along the free surface. If in addition to (1.7a-c), it is 
satisfied that BC~2 <C uizl2 and C~2 -C w1/2, as we will assume hereafter, the Faraday instability 
is avoided if CI2LJ < 2.79. . . , see [8]. 

2 Asymptotie derivation of the nonlinear equation for the evolution of the free 
surface 

Here we use the scalings (1.7d-f), the scaled horizontal coordinates {x,y) and the slow time variable 

T, defmed as x = X/L, y = y/L, T = a2w2t/LA, and seek solutions of the form 

/ = a£ - 2 / 0 e i w í + a2L-AHOA + ce . + / , + . . . , 

where uo, WQ, Po, /o5 us, w¡¡, ps and fs only depend on x, y, z and on the slow time variable T, 
ce . denotes the complex conjúgate and HOA stands for higher order harmonios, depending on the 
fast time variable as e1™"*, with m ^ 0, ±1 . When these expansions are replaced into the original 
nonlinear problem (1.1)-(1.5), then we obtain 

V • «o + dzwo — 0, iu0 = - Vpo» dzpo = 0, (2.2) 

V • us + dzws - 0, -Vps + d2
ziis = («o* V)u0 + wodzUQ + c.c, dzps — Q, (2.3) 

if (x, y) e Ü and fs < z < 1, and 

us - 0, wa = ws - 0 if z - 1; w0 = i/o + u0 Vfs, ws = &rfs + us • V / s , (2.4) 
dzus=0, po = / . A Ps = (fo + fo)/2 + BC-2fs + C-2Áfs if « = / , ; (2.5) 

dñfs = -£>&rfs or / s = 0, / u 5 - ñ ^ = 0 onSfi. (2.6) 
Jo 

Here the overbars stand for the complex conjúgate and O, V and Á are the cross-seetion, the V and 
A operators written in terms of the re-scaled variables í and y, ñ is the unit outward normal to dQ, 

ñ is a coordinate along ñ and D = 2a2u2D/[(2 + <z2w2C2)L3]. These apply outside two thin viscous 
boundary layers, with 0 (w - 1 ' 2 ) thicknesses, attached to the free surface and the upper píate and 
outside a lateral boundary layer, of 0(1) thickness, near the lateral walls, whose analysis provide the 
boundary conditions above, see [5] for details. On the other hand, we consider the following overall 
continuity equations, which are obtained upon integration of (2.2a) and (2.3a) in fs < z < 1 and 
substitution of the boundary conditions (2.4c,d), V • ( / . «o dz )=ifo, V • ( / , us dz)=drfs- Using 
these, we may intégrate (2.2b,c), (2.3b,c)„ (2.4d), (2.5a) and (2.5c) to obtain 

« , = (* " fs)2 ~ ( 1 ~ fs)2V[4Ps + (|V/S[2)], ^ / 5 = _ V . [ ^ ^ V ( 4 P s + |V/ s | 2 ) ] , (2.7) 

Pa = BC~2fs + [C~2 + (1 - fs)/2}Afs - |V / s | 2 / 2 in ñ, (2.8) 



where we have taken into account that ( V / s • V) V / s = V( | V/ s | 2 ) /2 . The evolution equation we are 
looking for is given by (2.7b)-(2.8). Also, invoking (2.6), the volume conservation condition (1.6b), 
(2.7a), re-scaling the time variable and dropping the subscript s we obtain 

3 T / = - V - [ ( l - / ) 3 V Í / ] , with C/ = A/ + ( l - a / ) Á / - a | V / | 2 / 2 , in ñ, (2.9) 

dñf = -pdrf or / = 0, dñU = 0 aadñ, í f dxdy = 0, (2.10) 
Jñ 

where (see also (1.7d-f) and remind that T = a2oj2t/LA) 

X = 2É/(2 + C2), a = C2/(2 + Ó2), ¡3 = Í)(2 + C2)/(6Ó2), r = (2 + C2)T/(6C2). (2.11) 

3 Analys i s of the evolut ion equat ion 

Eq.(2.9) is somewhat similar to the Cahn-Hilliard equation. Since 0 < a < 1, the problem (2.9) is 
uniformly parabolic and thus has a unique solution satisfying given initial conditions [9] whenever 
| / | = bounded and / < 1; this latter condition means that no dry spot appears at the upper píate. 
Note that the first boundary condition is somewhat non-standard, but it is dissipative because ¡3 > 0 
and thus standard results for Dirichlet and Neumann boundary conditions are somewhat straightfor-
wardly extended when this condition applies. Also, (2.9)-(2.10) admits a Lyapunov function which, 
using general results from [10], allows to show that for large time the solutions either develop dry 
spots or converge to the set of steady sates, see [5] for details. 

The linear stability of the simplest steady state of (2.9)-(2.10), / = 0, is analyzed as usually, by 
first linearizing around / = 0 and then replacing f(x, y, r) by F{x, y)e' í r in the resulting problem, to 
obtain the linear eigenvalue problem 

-AU = fiF, AF + XF = U inü, (3.1) 

dñF = -fi¡3F or F = 0, dñU = 0 on dü, Fdxdy = 0. (3.2) 
Jñ 

For convenience we consider the linear problem posed by (3.1a) and (3.2b), which uniquely provides 
U in terms of F, in the form U = t¿G(F) + constant, where G is the Green operator associated with 
the problem — ÁU = F in Q, d^U = 0 on dQ, fó U dxdy = 0. Eqs. (3.1)-(3.2) can be rewritten as 
the following generalized eigenvalue problem 

AF + XF = ¡J,G(F) + const. in ñ, dñF = -/j,f3F or F = 0 on dCl, ¡ F dxdy = 0. (3.3) 
Jñ 

Thus (j, can be also calculated as a generalized eigenvalue of this problem. Since G is compact, 
selfadjoint and positive (i.e. f^FG(F)dxdy > 0) in the space Y¡_ defined below, the spectrum of 
(3.3) is readily seen to be real, discrete and bounded above [11]. And using standard variational 



arguments [11], the largest eigenvalue of this problem is found to be given by 

fki iV.FI 2 -Aí^láráy , - f 
-¡¿o = min . l " ' ' . — A r>-> J w i t h Yi = {F £ H1^) : / F dxdy = 0} (3.4) 

FeY1¡ñFG(F)dxdy + ^ldñF^ds x ' Jñ 

if the first boundary condition in (3.3b) holds, where s is an axch length parameter along dñ. If 
the the second boundary condition in (3.3b) holds, the largest eigenvalue of (3.3) is obtained from 
(3.4) replacing ¡3 by 0 and the space Yi by Y2 = {F e Hl{Q) : j^F dxdy = 0, F = 0 on dü}. Note 
that because /3 > 0 and fó FG(F) dxdy > ko fó \F\2 dxdy the functionals that are minimized in (3.4) 
are bounded and continuous (in fact, analytic). Since the lowest eigenvalue of the problem obtained 
taking p, = 0 in (3.3) is given by 

. ¡ñ\VF\2dxdy , s 
X° = ¥£? JñF*dxdy forÍ=lor2' <3-5) 

depending on which boundary condition of (3.3b) applies, we obtain the foüowing 

P r o p e r t y 3.1. If \ < \Q then all eigenvalues of (3.1)-(3.2) are strictly negatíve, and if X > ÁQ then 

(3.1)- (3.2) possesses a strictly positive eigenvalue. 

Proof. The first assertion follows from (3.4) and (3.5). And the second assertion follows from the 

first one because, according to the charaeterization (3.4), ¡J,Q (i) depends continuously on A and (ii) 

strictly increases as A increases. 

This property and the definitions (1.7d-f) imply that the flat state is linearly, asymptotically stable 

if and only if the Bond number is such that 

B<BC = A0[l + CVo; 2 /2] /L 2 , (3.6) 

where XQ is as defined in (3.5). This expression yields the Rayleigh-Taylor instability limit of the flat 
state under vertical vibration. When taken into account the non-dimensionalization in §1, we readily 
obtain that the first term (namely, the 1) in the bracket in the right hand side of (3.6) is due to 
the effect of surface tensión, and the second term is due to vibration. Thus, eq.(3.6) shows that the 

stabilizing effect of vibration is like that of surface tensión. 

Let us analize the non-flat steady states of (2.9)-(2.10) without dry spots. These steady states are 

given by 

( l - a / ) Á / + A / - a | V / | 2 / 2 = constant, / < 1 in O, (3.7) 

dñf = 0 or / = 0 o n d ñ , ¡fdxdy = 0. (3.8) 

The following global result gives sufficient conditions for non-existence of non-flat steady states with­
out dry spots. 

http://fkiiV.FI2


Property 3.2. Let A0 > 0 be as defined in (3.5). If a < 2/3 and A < A0(l - 3a/2) then (3.7)-(3.8) 
only possesses the fíat solution / = 0. 

Proof. The solutions of (3.7)-(3.8) satisfy ¡ñ[(l - 3af/2)\Vf\2-\f2]dxdy = 0, as readily obtained 
upon multiplication of (3.7a) by / , integration in Q, integration by parts and substitution of (3.8). 
And we only need to use the variational definition (3.5) of Ao to obtain the stated result. 

As seen in Property 3.1 above, the basic steady state / = 0 is stable provided that A < Ao- Local 
bifurcation at A = Ao is readily analyzed by the Lyapunov-Schmidt method. It is seen that the 
bifurcation from the trivial branch of (3.7),(3.8) at A = Ao is transcritical if J^FQ ^= 0, and is of 
pitchfok type if fó FQ = 0, where ib is the function that minimizes the functional (3.5). In particular, 
if the domain fí, is a rectangle or a circle then the bifurcation at A = Ao is a subcritical pitchfork one. 
See [5] for details. 
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