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An analysis of the quasi-stcady strecaming of the liguid in a vertically vibrated
horizontal soap film is reported. The air around the soap filin is seen to play a variety
of roles: il transmils normal and tangential oscillaiory stresses to the film, damps
out Marangoni waves, and forces non-oscillatory deflection of the film and tangential
motion of the liquid. Non-oscillatory volume forcing originating inside the liquid is
also analyscd. This forcing dominatcs the quasi-stcady streaming when the cxcitlation
frequency is close to the eigenfrequency of a Marangoni mode of the soap film,
whilc both volume [orcing in the liquid and surface lorcing of the gas on the liquid
are important when no Marangonm mode resonates. Different manners by which the
combined forcings can induce quasi-steady streaming motion are discussed and some
numerical simulations of the quasi-sticady liquid {low are presented.

1. Introduction

Liquid flow in stationary soap films is essentially two-dimensional owing to the
cxlremely small thickness of these ilms. This led Gharb & Derango (1989) and others
to propose that soap film systems may provide a means for experimentally simulating
two-dimensional hydrodynamics, Analysis, however, has shown that the Quid moltion
in soap films is much more complex than standard hydrodynamics, due to a number
of peculiar phenomena that nclude surfactant transport through evaporation, finite
disturbance propagation speeds connected with the not-fully-understood propertics
of surfactants, and the possibility of irreversible formation of regions of black film
where the two micelle interfaces come into contact. Studies of the physical properties
and the statics of soap films date back to the pioneering works of Plateau (1873)
and Gibbs (1931), and soap filims have received recurrent attention in the literature
cver since, duc to their value as a simulating tool and (o the richness of their own
dynamics, Vortical motion in thin films, in particular, has been very much studied,
beginning with the work of Couder (1981}, Many different types of forcing and How
configurations have been considered, including laminar and turbulent wakes behind
obstacles or arrays of obstacles in relative motion to the film (Couder 1984; Couder
& Basdevanl 1980; Rutgers, Wu & Bhagatula 1990; and Martin, Wu & Goldburg
1998}, motions induced in the liquid by the impingement or shear of a surrounding air
stream (Rabaud & Couder 1983; Chomaz er al. 1988), and flows due to the combined
action of gravity and surface tension (Couder, Chomaz & Rabaud 1989). Reviews of
the known physics of soap films and descriptions of the impressive variety of flows
that they can sustain are given by Rusanov & Krotov (1979) and Couder et al, (1989).



Vibrating soap films were observed by Taylor (1878), who reported coloured
fringe paticrns and steady vortical metions in (ilms cxcited by sound waves, and by
Bergmann (1956), who obtained very clean photographs of a film excited by a loud-
speaker and subject to rotation to make its thickness uniform. More quantitative
cxperiments were carried out by Airiau (1986) and Alenchenko et al. (1998) using
different excitation devices. In both of these experiments the frame holding the film
was rigidly and symmctrically attached o the lateral walls of a cavily, in order (o
reduce evaporation and contamination of the film, and shield the film from external
disturbances. In the experiments of Airiau the excitation was provided by a loud-
speaker fitied to the bottom of the cavily, which was otherwise open. 11 was observed
that the mode of the film excited by the loudspeaker depends on the frequency, and
that in narrow transition ranges where two modcs cocxist with comparable amplitudce,
their phases are different and shift with changing frequency. Liguid accumulates in
the crests of the modes a short time after starting the vibration, and this leads to the
accumulation of nterlerence fringes when the Olm is iluminated with monochromatic
light, Recirculation of the liquid begins shortly afterwards in the regions of small
thickness surrounding the crests, where patches of black {ilm are cventually formed.
The migration of liquid toward the crests was explained as a secondary motion due
to surface tension forces.

The cavily contaming the soap lilm in the cxperiments of Afenchenko er al
{1998) was closed and mounted on an ¢lectro-mechanical vibrator, While this setup
minimizcs cvaporation and unwanted disturbances, it lcads (o some uncertainly as
to the excitation mechanism. These authors concluded that the strength of vor-
tices in a given vortex pattern increases with increasing external forcing and with
decrcasing [ilm thickness, In their visualizations, initially thick flms produced in-
coherent light interference which provided shadowgraph images of the planform
structure of transverse oscillations, while organmized interference patterns, consist-
ing of coloured fringes, appeared when the film thinned by evaporation. Vortex
motion was observed in regions of low fringe density, which is where the film
is thinnest, and these regions cocxist with “bladders’ of much larger thickness. A
theoretical description of the vortical motion was proposed based on the assump-
tion of viscous diffusion from the perimeter of the film, where standard results on
steady streaming generated by relative oscillatory motion between a fluid and its
solid boundary (see, for example, Schlichting 1951 and the recent review by Riley
1997} were supposced 1o be applicable (o the Stokes layer associated with Marangoni
waves in the liquid. Afenchenko ef al. (1998) recognized, however, that this diffu-
sive model could not explain the spontaneous appearance, at the film’s interior, of
vorlices pinned to specilic points on the planform patiern ol fcxural mode vibra-
tions.

In this paper a systematic qualitative analysis is presented of the gencration of
steady or quasi-steady vortical motions in vertically vibrated horizontal films, As we
shall see, the air surrounding the film plays an important role in typical experimental
conditions (a fact alrcady pointed out by Airiau 1986) and this will make the analysis
somewhat involved. T'or the sake of clarity, we restrict ourselves to the case when the
oscillating [lows in the air and the liguid obey lingar problems and are decoupled from
the quasi-steady motions. Some of the complex behaviours observed by Afenchenko
et al. (1998) are thereby excluded from the analysis.

"The problem is formulated in § 2. Equations governing the lcading-order oscillatory
flow both in the air and in the liquid, and the leading-order quasi-steady non-
oscillatory low in the liquid are set forth in § 3. Numcrical selutions cxhibiling some



of the vibration-induced vortex motions in the film are presented in § 4 and concluding
remarks arc given in § 5.

2. Problem formulation

Consider a thin soap (ilm of thickness ¢ stretched on a plane, horizontal ramc,
The film is forced to oscillate vertically with frequency o, either by a vibration of the
frame, as in the cxperiment of Alenchenko er gl (1998), or of the surrounding air,
whose motion ¢an be due to the vibration of a nearby solid, as in the experiment
of Airlau (1986), or to an acoustic wave impinging on the film, as in the early
obscrvations of Taylor (1878). The oscillations of both the air and the liquid arc
assumed to be essentially linear and monochromatic which, according to the ensuing
analysis, is justificd il the amplitude of the cxcitation is suflicicntly small and highcr-
order harmonics of integer multiples of «w do not resonate. Liquid evaporation and
the formation of black film are not accounted for in the analysis.

The motion of the air around the film obeys the incompressible continuity and
Navier—Stokes equations with no-siip conditions at the surfaces of the film and either
no-slip conditions at the vibrating or stationary solid walls bounding the film and
the surrounding air, or conditions of zero velocity far away from the film and the
source of the oscillations if they are not fully enclosed by solid walls. An exception
to this latler condition is when the oscillation of the lm 1s forced by an acoustic
wave propagating in the air, in which case the flow far from the film is that of the
oncoming wave plus the waves reflected and transmitted by the film. In any event,
the oscillatory motion of the air and the associated oscillatory deflection of the film
can be straightforwardly calculated, at least in principle, and their effect on the liquid
phasc, lcading to the generation of stcady or quasi-sicady structurcs inside the film,
may then be analysed.

In order to formulate the problem in the liquid phase let x = (x, ) be Cartesian
coordinaltes in the planc of the unperturbed film, V = (&/dx, &/8y) the corrcsponding
horizomtal gradient operator, » = (u,v) the horizontal coordinate velocities of the
liquid avcraged across the film, and z the distance from the centreplane of the
unperturbed film, The deflection and thickness of the film, f(x,7) and e(x, ), are
defined such that the interfaces lie at z = f + ¢/2 and will be supposed to satisfy
e € f < I, where [ 1s the characteristic length of the How along the film. To an
approximation sufficient for our purposes, the continuity and momentum equations
describing the motion of the liquid are

(Te +V-(ev) =0, 2.1
of
Eﬁv Yoeon- Vo — QVJ N i + Vi + 1v- "+ 29V (eV - p) + ! (2.2)
o p “Nag 78 A P -
and
22 At
pe (Lﬁt{ +g+20- V%) = 26V'f — Ap,. (2.3)

The subscript g is attached to stresses produced on the filim by the gas phase. The
surface tension coeflicient o is a function of the local surface concentration of soap,
which in turn depends only on the local thickness e of the filim if the concentration
is initially uniform; sce Rusanov & Krotov (1979) and Couder et al. (1989). In (2.2),



(8 f /6> +g)V | is the projection of the vertical acceleration of the liquid on the tangent
to the film, with g the gravitational acccleration; t; = plev +v*)(3u:/dx; + dv;/0x;)
is the overall viscous stress tensor containing contributions from the bulk liquid and
its interfaces, with respective viscosities pv and pv® (see Rusanov & Krotov 1979 and
Couder et al. 1989); 2v¥V(eV + v} is the gradient of the pressure variation appearing in
the liquid to balance the normal viscous stress associated with the straining of the
film (scc Jenkins & Dysthe 1997); and ¢, is the sum of the shear stresses of the air on
both sides of the film. The term 20V /ot in (2.3) is a Coriolis-like acceleration due
to the local rotation of the film, and Ap, = p, — p, 1s the difference of air pressures
above and below the film,

Equations (2.1) and (2.2) rescmble the continuity and momentum cquations of a gas
of bulk viscosity %ev, with e and —2a(e)/p playing the roles of density and pressure,
and a = |=2(do/de)/p|"? playing the role of the speed of sound. In what follows
the ‘relation of barotropy’ ¢ = gy — ce/(e + k), where gy, ¢ and & are constants, will
be used. This relation is valid for dilute soap solutions, with concentrations smaller
than the critical micelles concentration, and oscillation periods shorter than the bulk-
surface thermodynamic relaxation time; again sce Couder et @l (1989) and Rusanov
& Krotov (1979) for details. Typical values are k = § pm and a = 1-10m s7!,

Fquations (2.1)—(2.3) can be derived by writing their fully three-dimensional coun-
terparts in a curvilinear coordinate system attached to the film and averaging across
the film or, cquivalently, by cstablishing the mass and momentum balances for a
control volume bounded by the interfaces and the cross-section along a closed curve.
In either way, both the averaging process and the projection on the horizontal plane
lead to further terms of order |V/|> + (e/1)* < 1 relative to the ones displayed.
Other small effects neglected in (2.2) are the pressure gradient tangent to the filin, the
dillfcrence of surface tension forces between the two interfaces, and some small tcrms
associated with the curvature of the film, Tinally, the gas viscous stresses normal to
the interfaces have been left out of (2.3).

The velocity and pressure in the air and the deflection of the film will be decomposed
into oscillatory and non-oscillatery parts as

(1"?,'7 W?," p!{) = (V},’J Wga P},’)ei“” + ce + (1)}{37 ng_, p?z,'-\') + ]I()II: } (2 4)

f=Fe" +ec+ f, + TTOT,

where complex notation is used, with cc denoting complex conjugate, and TTOTT means
higher-order harmonics at integer multiples of o, which will be assumed to be small
comparcd to the lcading oscillatory term. The subscript s denotes a non-oscillatory
flow component. The horizontal and vertical gas-phase velocity components are e,
and w,, and the gas-phase pressure is p,. V,, W,, P, and v,.. w,,, p,s depend on x
and =z, and F and f, depend on x only, These quantities also may depend on time,
in a characteristic time scale much larger than « !, and consequently these terms are
described as being quasi-stcady or non-oscillatory throughout the paper. Similarly,
the thickness of the film and the liquid velocity are decomposed as

{2.5)

e =Ec“ 4+ cc+ e, + HOH,
v= Ve +ec+ v, + HOH,

with the same notation as above. Again the quantities on the right-hand sides depend
on x and arc allowed to vary slowly with time,



3. Analysis

The linear problems describing the leading oscillatory flows in the air and in the
liquid. and the equations governing the quasi-steady, non-oscillatory flow in the liquid
will be derived in $3.1 and §3.2, respectively. The range of non-oscillatory flow
regimes cncompasscd by these latter cquations will be discussed in §3.3. We have not
introduced a particular scaling at this point becaunse of the numerous characteristic
length and time scales involved in the problem, some of which span several orders
of magnitude in realistic experimental conditions. This makes the analysis somewhat
subtle, but inconsistencies will be avoided by carefully ensuring, at each step, that
ncglecled 1erms are in fact small comparced to those retained, under assumptions
that will be invoked when needed. After appropriate scalings are introduced in the
equations derived below, several dimensionless parameters will appear in a natural
way.

3.1 Oscillatory flow

Consider first the leading oscillatory terms of expansions (2.4) and (2.5). These terms
salisfy the lincarized forms of the continuity and momentum cquations in the air, the
lingarized forms of equations (2.1) and {2.2) in the liqmed. and of equation (2.3) across
the film, as well as conditions of continuity of the velocity at the film surfaces. In
what follows all these equations will be linearized around the quiescent state, which
is admissible if the conditions w[F| 4 |v,| + |wy| < ol and |¥| + [v,| < ol are
salisfied.

The linearized problem in the air can be simplified in the realistic case wi® > v,
for which the eftfect of the air viscosity is confined to Stokes layers of characteristic
thickness ¢ = (vy/w)'"* < 1 on both sides of the film and on the solid walls. Tf, in
addition, the thickness of the film is sufficiently small (recall that e < {), then the
ascillations of the film and the air outside the Siokes layers obey

aw,
VeV + =L =0, (3.1)
ip,wolV, = —VP,, (3.2)
AP,
ip,0W, = —(a_”, (3.3)
0 { WF =ioF, (3.4a)
P; —-P, = pean’ F 4 26.VF, (3.4h)

plus the inviscid conditions (V,, W,}* n = V. at a solid wall vibrating with velocity
Viear explicor)+ce in the direction of its normal #, and (¥, W,, P,) — O as (x.z) — w0,
il the [ilm is not e¢nclosed by selid walls, Here the superscripts + denote conditions
above and below the film, The two terms on the right hand side of boundary
condition (3.4b) reflect the intluence of the film on the oscillations of the air through
the inertia of the liquid and the surtface tension of ihe interfaces, respectively.

Equations (3.2) or (3.3) along with (3.4a) yield the estimate P, = O(p,*|F|I} and,
conscquently, peqw’F/P, = Olpe/p,l) and 20V’ F/P, = O(a/p,w’l*). For typical
values of the magnitudes involved (namely p/p, = 10°, I ~ 1-5¢cm, ¢ ~ 20-60 dyn
cm ! and @/2x ~ 30 100 Hz), the first of these ratios ranges from order one for
thick films (e > 10 um) to small values, and the second ratio is of order one. Thus the
frertia of the liquid never dominates over that of the air. and hence the air cannot be
ignored in the analysis of the oscillations.



Once V f is known from the solution of the inviscid gas-phase problem, the
ascillatory low in the Stokes layers can be determined. In terms of the distances (o
the interfaces, n = z — (f = ¢/2), the horizontal oscillatory velocities of the air in the
layers above and below the film are

Wi+ (V—V3) exp(F/in/8) e +ce, (3.5)

where ¥ = V,(x,y,0%) and, as defined above, 8 = (v, /)2,

Problem (3.1)-(3.4) with homogeneous boundary conditions at the solid walls
determines the flexural modes of the air film system for which the balance of the
incrtia of the liquid and the air with the restoring surface tension force yiclds the
estimate w?l* = 0|20 /(pe + pDi[; see Couder et al. (1989) and Taylor (1959). The
damping rate of a flexural mode of frequency @ due to viscons dissipation in the
Stokes layers is v, = O(wd/I), which is also the order of the frequency window of
linear resonance. Thus the characteristic amplitudes of the oscillation (4 = max |F|,
say) and of the lorcing (A4y = max |V,a|/w) satisly A = O(Apw/y,) if the difference
between the forcing frequency and the frequency of a flexural mode is of order v,
and 4 = O(A4y) otherwise.

Equations (3.1) (3.4) are invariant under the symmetry transformation z — —z,
Ve = =V, P, - —PF,. Il thc boundary condiiions arc also mvariant under (his
transformation (as is the case in the experiment of Afenchenko e al. 1998) then the
solution 1s invariant. This means that non-degenerate flexural modes are invariant
under the above transformation if the container and far-field boundaries are symmetric
in z. As a consequence, the solution in the resonant case when the forcing frequency
is closc Lo an inviscid cigenlrequency s, 1o a first approximation, invariant under this
transformation even if the forcing device is not symmetric. A similar discussion is
applicable to the transtormation z — —z, W, - —W,, F — —F, which also leaves
equations (3.1)~(3.4) invariant. Now, however, invariance of a solution under this
second transformation implies that F = 0, a condition that no flexural mode can
[ulfil,

We note for future reference that the solution of (3.1) (3.4) is a wave with a
spatially uniform phase unless (&) there is more than a single forcing device (e.g. more
than one vibrating wall) with phase shifts different from 0 and n and their frequency
is not closc to any cigenfrequency of the system, or (k) the forcing frequency is closc
to that of a degenerate or nearly degenerate eigenmode.

The linearized forms of equations (2.1} and (2.2), determining ¥ and I& (cf. {2.5)),
are

ik +V-{e,V)=0, (3.6a)

. 50 T, ,
iwe,V = -V (a;b) + T: +wle(VIGF — geVF, (3.65)

where @2 = a’(e,) = —2[da(e,)/de]/p and T, + ce, with Ty = \fi(p,v, /WY, +
V. —2V¥), is the oscillatory viscous stress of the gas on both sides of the film. Viscous
terms, of order (v + v¥/e)/w!® relative to the inertial terms, have been left out of
equation {3.6h). A term —gEV/f, has been also omitted in the right-hand side of
this equation because we are assuming that g|Vf,| < a2/I, which is usually the case
in practice. For (he same reason, a term —pgkE was omilted n the right-hand sidc



of linearized boundary condition (3.45). From equation (3.6a) the relative thickness
variation 18 E/e, = O(|V|/wl) < 1. Elimination of E from the latter two cqualions
and substitution of T, yields

. 1 P P Vo
iwe, ¥ — @V [(J_;V ey V)] + 2@‘1%% vV

= u‘j—);—*’( VeV +0ledVIF —geVF,  (37)
to be solved with appropriate conditions around the perimeter of the {ilm, dependent
on the mode of attachment of the film to its suppert frame.

The operator acting on F in the left-hand side of (3.7) describes the Marangoni
waves in the film which owce their cxistence (o spatial variations ol surlace tension
with film thickness. The phase speed of these waves is a, in the absence of damping,
The third tcrm on the left-hand side represenis the damping by dissipation in the
stokes layers that the Marangoni waves generate in the air. The damping rate of
waves of frequency w is y,, = Rw//2, where R = (p,8)/(pe.} is the ratio of the mass
of air in the Stokes layers to the mass of liquid in the Glm when e, 15 the characteristic
value of the film thickness. This ratio is moderately small for typical frequencies, in
the range 30-100 Hy, and for all but very thin (lms less than 0.1 pm. I the lorcing
frequency differs by an amount of order y,, from the frequency of a Marangoni mode
then (3.7) gives |[¥| = O {|F] + ¥V, |+ [VAIIVII/R+ gV |/(0’IR}}; otherwise |V
is R times smaller. It is also worth noting that flexural and Marangoni modcs may
resonate simultaneously for some forcing frequencies, because the phase speeds of the
two kinds of waves arc of the same order and some of the resonances arc not very
Narrow,

The three terms on the right-hand side of (3.7) reflect the excitation of Marangoni
waves by lexural oscillations of the air and the film. In the order given, these tcrms
represent the viscous tangential stress of the gas on the interfaces, the projection of
the vertical oscillatory acccleration of the liquid on the time-averaged, quasi-sicady
film, and the projection of the gravitational acceleration on the oscillatory film,
respectively. The ratios of the second and third terms to the first one, of orders
|Vfsl/R and g/(w’IR), arc [requently small except for thick films and low [requencics.
These two terms, however, provide the only mechanism forcing Marangoni waves in
the symmetric casc ¥, + ¥, = 0.

3.2, Quasi-steady sireaming flow

We turn now to the non-oscillatory terms of expansions (2.4) and (2.5), which are due
to 1he nonlincarity of the governing cquations and will be denoted by a subscript s.
Consider first the gas phase, where the only nonlinear terms are the convective terms
of the momentum equations. Outside the Stokes layers the leading-order oscillatory
velocitly 1s potential, and so arc the convective terms when cvaluated with this velocity,
leading only to the non-oscillatory pressure variation Ap,, = —p (|V,|* + |[W,?).
Then the non-oscillatory pressures in the gas just above and below the film arc
ph. = —pe IV ;1P + @?|FI*) — pygf, in the first approximation. Substituting this result
into (2.3) and collecting non-oscillatory terms yields

20V f, = —p, (W, P — 1V, ) — pge, — poo [iFV - (e,V) + 2ie,V - VF + oc],  (3.8)

where, as above, V7 = ¥V (x,y,04), with ¥, given by the solution of (3.1)-(3.4), and



E has been eliminated using equation (3.6a). In (3.8) and hereafter an overbar denotes
complex conjugate. The pressure variation across the Stokes layers above and below
the film have been omitted singce they are R times the pressure variation in the ligquid
across the film, as given by the last two terms on the right-hand side of (3.8), which
themsclves come [rom the last two torms on the lefi-hand side of (2.3). This simplifi-
cation is valid if R 1s small, which happens for all but very thin films as noted in the
discussion following (3.7). Even for such thin ilms, the simplification is valid because
the pressure variation in the liquid across the film and the omitted term can be
neglected altogether.

Consider next the quasi-steady streaming of the liquid. Non-oscillatory forcing
terms appear in the momentum equation (2.2} due to the tangential stress of the gas
on the mterfaces, t,, and to the nonlinear terms of this cquation involving products
of gquantities pertaining to the liquid film. These two types of forcing will be discussed
in turn.

In order to evaluate the non-oscillatory part of ¢,/p the motion of the air inside
and outside the Stokes layers surrounding the film must be analysed separately. Inside
these layers, where oscillatory vorticity parallel (o the imterlaces cxists, the oscillatory
vertical velocity, obtained from the continuity equation, is

{in —Vifi+e/2) - [VE+(V — VI exp(Fin/d)]

5 o ;
-V VgLr; +— [exp{+ Jin/dy— ]] VeV — Vgl)}e"'” + ¢,
N

where § = z — (f & ¢/2), as above, and use has been made of expression (3.5) for the
horizontal oscillatory velocity.

Using this result, the variation of the tangential stress across each Stokes layer
can bc computed by writing the gas momentum cgquation in the variables x and »,
collecting non-oscillatory terms, and integrating the resulting expressions across the
layers. The result is, after some algebra,

e e
. O g Lok L
o8 LHE | 3
6}? ;f:(‘}t 5}7 B=_1in

p5 : i . . i .
:i%[vg VOV +1V) =V -VAVE+ V) + (Vy — VIV (iFE+ V) 4 e

where #,, = ¥,(x, 0, t) is the horizontal non-oscillatory velocity in the Stokes layers.
Outside the Stokes layers, recalling that v, = r,(x,z,1) is the non-oscillatory

air velocily, we have {0vy/02).c = (OFys/INy 20 — [(7V g /OWF + o] .,
the latter term of which is of the order of |At,|d/(lp,v,). with At = At — At
Therefore, the non-oscillatory stress acting on the film is 7, = T.0 + Aty
where

1l il
v, vgs

o |(22) () )
€z /o w €Z /5 0

is the sum of the non-oscillatory viscous stresses at the outer cdges of the Stokes



layers. In what follows the decomposition ¢ = t,./p = t40/p + G + G2 + G5, with

G, :%&[if’; (V¥ + IV (VP ) +ec+2V(F] 1+ 1V, 1),
() o 1. = _ = .
(1‘2:—_&[1(1/0'+Vg)'VV—1V°V(V;+V.T)+(V,T+V;)(V°V)
G s : : (3.10)
RIAMISER A TR
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G20

will be used. Here we have taken into account that Vn— derives from a potential.
Notice that the first two terms in the expression for ) vanish if the oscillatory flow
in the bulk has a spatially uniform phasc, as we shall assume in what [ollows lor
simplicity. Also, G identically vanishes in the symmetric case for which V, +V, =0.

A number of non-oscillatory contributions arise from time averaging the 1101'11111c‘,dr
terms in the momentum cquation for the liquid (2.2}, Leaving outl the contributions
of the viscous terms, which are generally small, the leading-order terms are

A2

L= <—f3( fo> = e, FVF + ¢,
L;={ev Vo) =e WV -VF +cc, (a1

a ) _ —
L; = <e%> =wkV tec=—VV-(e¥F)+c,

where angular brackets denote time averages over an oscillation period. Tere L, due
to the projection of the vertical oscillatory acceleration of the liquid on the oscillatory
[ilm, is rclated (o the surface tension force inveked by Adriau (1986) (o cxplain the
accumulation of liquid in the crests of the waves. The interpretations in terms of
surface tension and of liquid acceleration are cquivalent if the effect of the air is
neglected.

With L = L, + L, + L, the equations governing the quasi-steady streaming in the
liquid are

Lé‘s

) = 0, (3.12a)

1
P Vo, = —a Ve, + ;V T+ 2vV(e Ve v) + G+ L (3.128)

In summary, the non-oscillatory evelution of the dellection and thickness of the
film, fy and e,. and of the liquid velocity, v, is given by equations (3.8) and (3.12).
Here V should be obtained from (3.7) and ¥, and F from (3.1) (3.4) (plus boundary
conditions), while 7.0 depends on the non- or,ullalory air How outside the Stokces
layers, which will be discussed below briefly. Tn addition, (3.8) and (3.12) must be
supplemented with appropriate initial and boundary conditions, which depend on the
mode of film attachment to the frame and will not be discussed here.

Consider now the limits of validity of the analysis leading to (3.8) and (3.12). A
detailed scrutiny of neglected terms shows that these limits are

e yy Vel
R L N L (R+ R o <l (3.13)



where again R = (p,6)/(pe,). The first limit comes from neglecting convective terms in
the lincar approximations (3.1)—+(3.4) and (3.7}, as previously noted. Conveclive lcrms
should be added to these linear problems if |v,| = Q{enl) or larger, while the oscillatory
motions of the air or the liquid become fully nonlinear if | F,] = O(o!l) or [V | = O{w!).
The other two conditions, establishing lower bounds en |v|, stem from requiring that
the largest neglected terms in the expressions for L and & be small compared to the
convective terms in equation (3.124), The first of these conditions is a conscquence of
neglecting. in L, and Ls. terms of the type E (0, VV+V-Vo, e (V- VF+V V¥V )}+cc.
where V(18 the second approximation to the oscillatory flow in the liquid, of order
[ |eel/(e0l]). The sccond lower bound on |v,] is the resull of neglecting similar (crms
in the Stokes layers.

The non-oscillatory three-dimensional flow ol the air outside the Stokes layers
should be computed in order to determine 7,,. We now estimate the order of this
term and the condition under which its effect can be neglected in (3.12). The non-
ascillatory air [ow is driven by the quasi-sicady velocitlics cxtant at the outer cdges
of the Stokes layers on the solid walls and on the film. These velocities are of orders
|V ?/(wl) and |v,| + |V, |* /{wl). respectively, and typically lead to a high Reynolds
number gas flow with non-oscillatory boundary layers on the walls and on the
film. The latter have a thickness of order [|o;| + |V, */(w)]) 173 (v, 1)}, and therefore
Ten = O{p,ve [|os] + |V, 2/ (@h)]2 /142 This term can be neglected relative to the
convective lerms in (3.12) when

|Vg|3;'2
(col}t/2

This condition is compatible with {(3.13) only if the parameter R is small. The effect
of T, cannol be neglected when R is of order unity, which happens [or sulliciently
thin films, of the order of 0.1 pum, Txperimentally it is observed that thin films
display interesting features which could well be explained by this effect. However,
7.0 depends on the presence and location of the walls, and thus such [caturcs arc
somewhat peripheral to the main theme of our work. Consequently, we shall focus
on the casc when (3.14) is satisficd and the effect of the outer non-oscillatory gas flow
can be neglected.

R*wl + R'? < v, (3.14)

3.3, Orders of magnitude and discussion

Granted that (3.13) and (3.14) are satisficd, the following remarks can be made. First,
inspection of (3.10) and (3.11} immediately shows that G, = 0(e.R|V,*/1). G, =
ORIV IV |/D), Gy = O(eRIVIP/1), and Ly = O(e|V,|* /). (L2, L3) = O(e |V /).
ITere use has been made of the relation w|F| = Q(]F,|) in the estimate of L; and e,
is the characteristic value of the film thickness, as mentioned before, while a. = aie,)
will be uscd below as the characieristic speed of the Marangomi waves, Since R is
small, &) is smaller than L, and &5 is smaller than I, and ;. Second, both G
and L, /e, are gradients of scalar functions if the oscillatory gas flow has a spatially
uniform phase, as we are assuming here. Third, some asymmetry is necessary to excite
Marangoni waves in the liquid, because f, = 0 and ¥ = 0 in the purely symmetric
casc when V7 + V. =0 and gravity is neglected (cf. (3.7) and (3.8)).

Two cases arise depending on the amplitude of the escillations of the gas:

(A) Assume first that [V,| < a., which in the realistic case of = O(a,) amounts
to [V,| < ml, as required in (3.13). The balance of the largest forcing terms, of
order e.(|V,|* + |¥|*)/1, with the Marangoni force —a’Ve, in (3.12) yields Ae,/e, =
O [(1¥V, P+ |V]?) /a’], where Ae, is the non-oscillatory thickness variation duc Lo



the motion of the liquid. The order of magnitude of ¥, which was obtained in
the paragraph following cquation (3.7), depends on whether a Marangom modc
resonates and on the order of |Vf,| + g/(w?]), but in most cases V < a. and
therefore, Aey/e, < 1. This implies that, in the absence of mechanisms to vary the
film thickness other than the non-oscillatory motion of the liquid, e; can be replaced
by a constant everywhere in (3.12} except in Ve, appearing in the Marangoni term,
and these cquations then reduce Lo those describing the (wo-dimensional motion of
an incompressible fluid.

Experiments (Airiau 1986; Afenchenko er al. 1998}, however, show that large spatial
variations of thickngss often ¢xist in vibrating films displaying vortical motion. These
variations may be initially present or may be generated by differential soap water
cvaporation in the presence of air streaming, or by other causcs (sce also casc B
below). Insofar as the thickness variations are not due directly to the non-oscillatory
maotion of the liquid, the time derivative in equation {3.12a) can be neglected, which
amounts to climimating acoustics {rom the non-oscillatory Oow, A possible additional
complication brought about by the mechanism leading to thickness non-uniformities
is that it may also changc the surfactant concentration in such a way that ¢, and «a,
are not only functions of e, but depend explicitly an x, a possibility not accounted
for in the present formulation.

The order of magnitude of |v,| depends on whether a Marangoni mode resonaltes
or not. The two cases are now discussed in turn.

(A1) If w 15 closc Lo a Marangem cigenlrequency ihen [F] is of the order of [V,
or even larger than |V, if [Vf |+ ¢/(w*1) 3 R, which may happen for thick films.
In this case V 15 a Marangoni eigenfunction in the first approximation, which can
bc writlen as V' = e, ' V@ for some peotential @. Since R is small, the largest [orcing
terms, of order e (|V|* + |¥,[*)/1, come from L which can be written as

L=¢ [0 V(F]") + e, V(VOF) — (e, (V' OWVD + cc}| — 2]¢ + Dy]7e, Ve, (3.15)

This forcing would derive from a potential if e; were strictly uniform. Then it ¢could
be absorbed into the Marangoni term and would not lead to any motion of the liquid.
The flow in this case, therefore, is closely associated with thickness non-uniformitics.
It the only non-uniformities are due to the non-oscillatory motion of the liquid,
substitution of (3.15) into (3.125) vields |v,| =0 {(|V|2 + |V P ah 1T Aeyfe, = O(1),
on the other hand, much larger velocities, of order |[F| + |F,], are generated. This
difference may explain the noticeable motion observed by Afenchenko et afl. (1998)
around rcgions of black film, where e, is small and rapidly incrcasing away rom such
regions,

(A4.2) If no Marangoni mode resonates then the estimate of | V] in the paragraph
following equation (3.7) implies that [F| < |F,|, provided that g < w?l, as is the case
in most experiments. For these conditions |Ly| 3 ([Lz), |L3]) and |G| 3 |Gh] 3 |G
T'he largest forcing term in (3.125) 18 Ly, but il can be absorbed into the Marangoni
term and does not lead to any motion of the liguid. The next largest forcing terms
not given by the gradient of a potential are > and L;, and their sum generates a
non-ascillatory motion in the film with velocity |o,| = O {|V] +(R|V||V[)'/*}, where
V| = 0{R|V§ +V I+ VS + g/ (W D]V}, with f, as given by equation (3.8).
Notice that this motion does not rely on thickness non-uniformities, and that it is
lairly weak, such that |v,| < |V,| < a.. (Recall that the present analysis breaks down
it the consistency requirements (3.13) and {3.14) are violated.)

The reason ncither &5 nor L; can be derived from a potential may be worth



mentioning here. Equation (3.7} shows that even it ¥ = V@ for some potential @,
which would be the casc if the sccond lerm on the right-hand side of this cqualion
were neglected and ¢, and a, are constant, that potential is not proportional to its
own Laplacian because neither F nor the potential of Vg +V, (when Vg‘ +V, £0)
satisfy this condition for a film of finite size. As ¢an be verified using (3.10) and (3.11),
this prevents &, and Ly from being potential

(B) Assume now that |V,| & a. which in the framework of the present weakly
nonlincar analysis can happcen only if ol is somewhat larger than @, rendering
Marangoni modes difficult to excite. The forcing L; leads 10 Ae,/e, = O(1) but does
not generate any motion by itself. The terms Ly and Lz would be much larger than
G if a Marangoni mode could still resonate, leading to |v,| = O(a,), a condition
apparently never observed experimentally. If there are no resonances, then L, and L;
arc likcly to be smaller than the potential part of G, so at lcading order the lorcing
in (3.12) is of the form e, V@, + V& _, where ¢, = w?*|I']* = O(|V*) (from L;) and
B, = (20p,/ IV P+ V1)) = Ole.RIV ) < e®, (from G). This combination
of volume and surface potential [orcing cannot be absorbed by a Marangoni force
alone if @, and @, are not functions of each other, and leads to v = Q(RY|V,|).

The mechanism of volume plus surface potential forcing also exists for small values
of |V¢|/a.. Then each of the forcing terms can be separately absorbed into small
changes of thickness Aeg, but these changes lead to the small term Ae;Vd,, which,
though formally of higher order in expansions (2.4) and (2.3), can still induce an
obscrvable motion in the liquid, along with oiher higher-order terms not included
in (3.11).

4. Numerical solutions

Numerical solutions of (3.12) are now presented and discussed. These computations
arc not intended to reproduce the results of any specilic cxperiment, butl to gencrate
insight into the type of flows allowed by (3.12) with typical forcing terms. Such
an approach permits a number of simplifications. First, equations (3.12) are solved
with periodic boundary conditions, which at best amounts to describing the flow
in a limited region of the film away from the frame. This is possible, in principle,
because the forcing described in the previous scetion acts on the whole film, so that
the quasi-steady streaming need not be dominated by boundary effects. Moreaver,
any other boundary condition, reckoning the finite extent of the film, would require
an analvsis of the How in the vicinity of the frame, which is both complicated and
problem dependent. Second, simplified forms of & and L will be used mnstead of the
full cxpressions (3.10) and (3.11). Again, cvaluation ol (3.10} and (3.11) would require
knowledge of the oscillatory fields, which depend on the geometrical configuration
of the frame and the cavity and on details of the mechanism used to excite the
vibrations, Wc have alrcady pointed out that some important [caturcs of the [orcing
depend on properties of the oscillatory fields related to the finite extent of the film,
but these features can be casily taken into account in the simplificd forms of G and L.

Equations (3.12) arc rewrillen in non-dimensional form by scaling (x,t, e, v,) with
(I,1/v.e.,v), where [ is the spatial period of the flow, the same in both horizontal
directions, e, is a characteristic thickness, and v, = [2c/ ple. + k)] 2 In these variables,
@ = K(1+K)/(e+K), with K = k/e,, and the non-dimensional parameters Re = u.l/v
and N = v*/e.v appear. Parameter values K = N = 1 and Re = 500 are chosen unless
othcrwisc noted. The non-dimensional cquations are discrctized using a sceond-order
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Figure 1. Solution of (3.12) with L = eV® and G = 0.2(¢P, /iy, -, /ix), where
@, = 0.5 sin{2rx} sin{2ny). Plotted are six equispaced contours of ¢, between 0,15 and 2.02 (dotted),
six contours of the vorticity (m,) between —20 and 10 (solid for w, > 0 and dashed for wm, < 0), and
velocity arrows.

finite difference scheme with artificial viscosity, and marched in time with a fourth-
order Runge—Kutta method: see Hirsch (1990).

A number of computations have been carried out with different forcing terms {non-
dimensionalized with ev?/1). The large potential forcing L, = ¢,V®, was represented
using @, = A sin(2zmx) sin(2Zany), with A = 0.5 and m = n = 1 in most of the
cascs. As was discussed in § 3.3, this forcing does not induce any motion by itself,
but lcads to a spatial thickness variation that cnables or enhances the action of other
terms. Moreover, it is assumed that the potential forcing may also approximately
simulate thickness variations whose real onigin 1s a variation of surface tension not
duc to any quasi-stcady forcing, a fecature not included in our formulation. Thus,
in order to mimic the strong recirculations sometimes observed in variable thickness
regions around patches of black film (which, strictly, are outside the framework of the
present model), a non-potential forcing G = (¢@,,/éy, —¢@,,/dx), with @, = 02 |
was added to L. & is taken orthogonal to L, because an additional ¢ with a
component parallel to the larger forcing Ly gencrates only a weak perturbation to the
motion, one partially masked by L,. Contours of constant thickness (dotted} and of
vorticity (solid for m, > 0 and dashed for w, < (), along with some velocity arrows,
are displayed in figure 1. The thickness is maximum in the ridge at the centre of the
figure and in four other ridges on the sides. These ridges connect passages of relatively
large thickness (in the first and third quadrants of the figure) and leave valleys of
small thickness (in the second and fourth quadrants). As can be seen, the clockwise
circulation around the two valleys is stronger than the counterclockwise ¢irculation
around the two passages. Increasing f produces a time-periodic Hlow, with a thickness
maximum moving back and forth along each ridge. In the figure, four maxima would
converge alternatively onto the passages in the first and third quadrants and the
circulations would pulsate in counterphase.
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FiGgure 2. Solution of (3.12) with L = ¢,V®, and & = V@ where @, = 0.5 sin(2rx) sin(2ry) and
@ . =01 sini2zax + 7/2) sin(2zy + =/2). Plotted are cight equispaced contours of ¢, between 0.44

’(lIElld 5.83 (dotted), cight contours of the vorticity between —4 and 4 (solid for w, > 0 and dashed

for m, < 0), and velogity arrows,

The mechanism of volume plus surface forcing is illustrated in figure 2 for the same
@, of the previous casc and @, = B sin(2nx 4+ n/2) sin(2ry + =n/2), with B = 0.1. As
can be seen, four vortices of alternate signs appear around each of the two ‘bladders’
of large thickness on the main diagonal; two vortices with positive circulation at the
left and right and two with negative circulations above and below. Again the velocity
is higher outside the bladders than inside. The centres of the vortices are not far from
the extremes of the vorticity source term Ve, ' x V@, , with e, roughly proportional to
®,. Replacing ®, with &7 the flow develops eight vortices around each bladder.

These configurations, in particular the one with four vortices per bladder which was
studicd more intensively, proved fairly robust. No stability analysis has been carried
out, but all the velocity and thickness perturbations that were tried, including both
harmonics and sub-harmonics of the forcing, were observed to decay in time when
the values of A and B of the previous simulation were used. The stationary structure
becomes less stable when A is decreased. Decreasing 4 reduces the thickness variation
due to the potential forcing L, and the strength of the vorticity source, but at the same
time renders the thickness variation duc to the motion comparatively more important,
so the flow ceases to be pinned to specific locations on the film. A non-stationary tlow
was sefup by adding sub-harmonic perturbations, of wavelength equal to two non-
dimensional units, to the stationary flow with A = 0.2 and Re = 2000. The increase
of Re is required to keep viscous cffects small, because the non-dimensional velocity
decreases rapidly with decreasing values of A. In the transient solution the peaks of
maximum thickness oscillate smoothly along the main diagonal of figure 2 whilst the
surrounding vortices suffer very large deformations, Moreover, the Marangoni waves
do not disappear with the present periodic boundary conditions, but instead lead to
fast oscillations that coexist with the slower evolution of the vorticity in the film.

As was mentioned in § 3.3 (case A), the governing equations reduce to a description



FiGure 3. Eight equispacad vorticity contours between —3 and +3 from the numerical solution of
{4.1) with 7687 Fourier modes. A thin shell of modes around |k| = 10 are forced with amplitude
0.05, and Re/{1 + N) = 5000 based on the r.m.s. velocity.

of two-dimensional incompressible flow when the velocities involved are much smaller
than the speed of Marangoni waves and only the small thickness variations due to
the motion of the liqgmd are present. In this case (3.12) can be rewritten in the
vorticity—stream function form

. cy, Oy,
Vip, = —o,, with (u,0) = —,——=—},
ay ¢x

. (4.1)

Ceuy

ét
where w, = (V x ;). = (Cv,/6x — du,/0y) 1s the vorticity and Q = [V x (G + L)]..
Here the velocity has been non-dimensionalized with Q('./zl, where Q. is a characteristic
value of the vorticity forcing term. Equations (4.1} were solved with a spectral method.
The stationary solution for 2 = sin(2nx) sin(2ry) and Re/(1 4+ N) = 500, consisting
of a lattice of counter-rotating vortices not very different from the ones of figure 2, is
unstable to sub-harmonic disturbances, which induce vortex pairings in a well-known
fashion (sce, c.g., Batchelor 1969 and McWilliams 1990). The vorticity distribution for
Re/(1 4+ N) = 5000 (based on the resulting r.m.s. velocity} is shown in figure 3 after
about ten large eddy turn-over times, when several pairings have already occurred.
This computation was carricd out with 768° Fourier modes, a shell of modes around
|k| = 10 being isotropically forced with amplitude 0.05. The results resemble some of
the visualizations of Afenchenko et al. (1998) of thin large square films.

[+N_,
+ o, Vo, = LV'wS + €,
Re

5. Conclusions

An analysis has been carried out of the quasi-stecady strcaming in a vibrated
horizontal soap film. The salient features of the oscillatory and quasi-steady flows arc
recapitulated below.



The air surrounding the film is often the vehicle transmitting the vibration from
the cxcilation source, and the mertia of this air 15 almost always important to the
dynamics of the oscillations. Stokes layers existing in the air on both sides of the
soap film transmit an oscillatory shear stress which causes oscillations of the liquid
tangent o the film in all but special cases characienzed by a symmetry that prevents
the existence of such oscillatory stress. The amplitude of the tangential oscillation of
the liquid may be large il a Marangoni modc is ¢xciled by this means,

In general, the oscillatory velocity of the air at the outer edges of the Stokes layers
on the soap film will be neither parallel nor perpendicular to the film, but at an angle
that depends on the local position on the {ilm, "T'he component of this velocily normal
to the unperturbed film is continuous across the Stokes layers in first approximation,
and is cqual to the velocity of the oscillatory deflection of the film. In turn, this
velocity is much larger than the velocity of the liguid tangent to the film, except
when a Marangoni mode resonates. Marangoni waves may of course be excited by
an oscillatory motion of the air cverywhere tangent 1o the film, a type of cxcilation
that would not lead to fHexural oscillations, This particular forcing would require
a specifically designed acoustic device., The analysis of §3.3 applics (o this type of
motion with the only modification that the deflection of the film, being z¢ro, can no
longer be used as a measure of the amplitude of the air oscillation, and should be
replaced by Ay appeanng in the paragraph following (3.5). Yet another possibility is
to excite Marangoni waves without recourse to the air, by vibrating the film support
[rame tangentially (o the [ilm. The cificicncy of this mcthod, however, should be
expected to depend on the conditions of attachiment of the film to its frame, and will
not be discussed here.

Duc 1o the nonlincarity of the problem, the oscillation of the air gencraics a non-
oscillatory pressure variation that leads to a non-oscillatory normal force on the film,
T'his lorce, along with the weight of the liquid and another normal force gencrated
by nonlingar effects inside the liquid, are balanced by surface tension in a manner
that produces a non-oscillatory, quasi-steady deflection of the film.

A non-oscillatory motion of the liquid tangent to the film is induced by non-
oscillatory volume forcing due to nonlinear effects inside the liquid, and by non-
oscillatory surface shear stresses due to nonlinear effects in the Stokes layers in the
air, In addition, these layers and the ones on the solid walls confining the film in
a closed cavity induce a non-oscillatory flow in the air which exerts an extra shear
stress on the film, Explicit cxpressions lor the forcing terms duc to the liquid and the
Stokes layers in the air, in terms of the oscillatory velocities in both phases and the
oscillatory deflection of the film, are worked out. The stress due to the streaming of the
air, which depends on the geometrical configuration of the film and the surrounding
walls, 18 estimated.

Bulk forcing 1s larger than surlace [orcing when the excitation {requency is closc Lo
the eigenfrequency of a Marangoni mode of the film. Then the former forcing leads
to a non-oscillatory liquid flow only in the presence of variations of the film thickness,
which may bc duc to the motion of the liquid or 1o other causcs. Il no Marangoni
maode resonates, a weaker motion is induced in the hiquid both by volume and surface
lorcing, which arc not crucially dependent on the non-uniformity of flm thickness.
Several possible ways in which the combined action of the different forcings may
induce vortex motion are identified, and thres numerical simulations of the flow in
the liquid film arc presented which rely on simplificd [orms of the lorcing terms.

Owing to the complex rheology of soap films, it is likely that variations of thickness
cxist in the soap [ilm duc to causces not accounted [or m the present formulation, and



in some cases such variations bear on the efficiency of the forcing to generate motion
in the liquid. In somec of the simulations presented here, the nccessary thickness
variations have been obtained by means of an exaggerated potential forcing,

The effect of an inclination of the film support frame to the horizontal is of interest,
After an initial transient, an inclined film reaches a nearly stationary state with a
thickness that decreases with upward distance (Couder er al. 1989). Subscquently the
film thins down due to marginal regeneration (Mysels, Shinoda & Frankel 1959),
but this process is probably too slow to mattecr much here. The influence of the
component of gravity tangent to the film on the flexural and Marangoni oscillations
comes through its contribution to the coefficients ¢, and o, in (3.4) and (3.7). These
cocllicients are detlermined by cquations (3.12), which should be augmented by adding
a new term to L, equal to e, times the projection of the gravitational acceleration
on the surface of the lilm. Equations (3.12) with this new lorcing tcrm alone would
give the evolution of the film toward the nearly stationary state mentioned above,
The characteristic time of this evolution may be similar to the characteristic time of
the quasi-stcady streaming which cquations (3.12} arc intended 1o describe so that,
depending on the experimental set up, both processes could occur simultaneously.
Morcover, the relative thickness variation duc to gravity in a sufliciently large inclined
film may be Ae,/e, = G(1), in which case the ability of the other forcing terms to
generate vortical motions would be very much enhanced, as discussed in §3.3.

We gralelully acknowledge the help of A, Pinelli and C. Vasco with the numerical
solution of (4.1). This work was partially supported by DGICYT grants PB95-0008
and PB97-0556, and by NASA grant NAG3-2152.
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