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Abstract. A real hyperbolic system is considered that applies near the onset of the oscillatory 
instability in large spatial domains. The validity of that system requires that some intermedíate 
scales (large compared with the basic wavelength of the unstable modes but small compared 
with the size of the system) remain inhibited; that condition is analysed in some detail. The 
dynamics associated with the hyperbolic system is fully analysed to conclude that it is very simple 
if the coefficient of the cross-nonlinearity is such that — 1 < a ^ 1, while the system exhibits 
increasing complexity (including period-doubling sequences, quasiperiodic transitions, crises) as 
the bifurcation parameter grows if a > 1; if a ^ — 1 then the system behaves subcritically. Our 
results are seen to compare well, both qualitatively and quantitatively, with the experimentally 
obtained ones for the oscillatory instability of straight rolls in puré Rayleigh-Bénard convection. 
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1. Introduction 

This paper is concerned with the following hyperbolic system 

ut — ux = 2u{X — u — av) vt + vx = 2v{X — v — au) (1-1) 

in - \ < x < \ and í > 0, with boundary conditions 

v = Ru atx = - i and u = Rv at x = \ (1.2) 

and initial conditions 

u = w0(x) > 0 v = v0(x) > 0 in — | < x < ^ (1.3) 

that are assumed to satisíy the compatibility conditions 

v'0 + Ru'0= 2(ct - l)(R - l)Ru2
0 atx = - i (1.4) 

u'0 + Rv'0=2(ct-l)(l-R)Rvl atx = i . (1.5) 

These conditions prevent the formation of singularities that would propágate along the 
charactenstics of (1.1) (see, e.g. [1]). The problem depends on the bifurcation parameter 
X, on the coupling parameter a and on the reflection coefficient R > 0. 



Let us now briefly explain how this real hyperbolic system is obtained as a sub-model 
of the following coupled, complex Ginzburg-Landau equations 

AT = cAxx + bAx + dfiA - (ex\A\2 + e2\B\2)A (1.6) 

BT = cBxx - bBx + dfiB - (e,\B\2 + e2\A\2)B (1.7) 

where A and B are the complex amplitudes of a pair of counter-propagating wavetrains that 
appear at the onset of the so-called oscillatory instability on a dissipative physical system 
that is invariant under spatial translation and reflection, see [2]. The state variable w of the 
physical system may be written in terms of those wavetrains as 

w = A(X,T)W+exp(iQT + ikX) + B(X, T)W~ exp(iQt - ikX) + ce. + HOT (1.8) 

where £2 > 0, k and W^ are the frequeney, the wavenumber and a pair of eigenvectors 
associated with the marginally unstable counter-propagating modes, and ce. and HOT stand 
for the complex conjúgate and higher-order terms respectively. Equations (1.6) and (1.7) are 
derived by a weakly nonlinear analysis whose consisteney requires the complex amplitudes 
A and B to be small and to depend weakly on space and time, and the bifurcation parameter 
\x to be small, i.e. essentially that 

N « l | A x x l « | A x | « | A | « l | B x x l « | B x l « | B | « l . (1.9) 

The real coefficient b (i.e. the group velocity) and the real and imaginary parts of the 
complex coefficients c, d, e\ and e2 (accounting for diffusion, dispersión, linear growth and 
nonlinearity) are assumed to be bounded away from zero, as is the case generically (see 
remark (b), in section 7). In addition, it is assumed that 

c + c > 0 e 1 + e 1 > 0 and d + d>0 (1-10) 

where the overbar stands hereafter for the complex conjúgate. If the first condition does not 
hold then either: (i) a fully nonlinear description of the underlying physical system must 
be considered (if \c + c\ ~ 1) or (ii) higher-order derivatives must be added to (1.6) and 
(1.7) to obtain the correct normal form (if |c + c| <§C 1); the second condition comes from 
the requirement that the bifurcation is supercritical (supercriticality will also require that 
e\ +e\ > — (e2 + <?2), as it will be seen below). The last condition always holds if the 
sign of the bifurcation parameter is appropriately chosen (for the instability to appear as \x 
increases). 

If equations (1.6) and (1.7) are considered in a large but finite interval, - L / 2 < X < 
L/2, with 

L » l (1.11) 

then four boundary conditions must be imposed. Two of them were first introduced by 
Cross [3] 

B=rA atX = -L/2 A = rB at X = L/2 (1.12) 

and account for the linear reflection of the wavetrains at the end-walls; they depend only on 
the complex reflection coefficient r =¿= 0. The other two boundary conditions are nonlinear 
if e\ T¿ e2 and \r\ ^ 1, 

b{Bx+rAx) = {e2-el)r{\r\2-\)A\A\2 at X = -L/2 (1.13) 

b{Ax+rBx) = {e2-el)r{\-\r\2)B\B\2 at X = L/2 (1.14) 

and were first calculated in [4], where conditions (1.12) were also justified with great 
generality. In addition to being the correct boundary conditions, any other boundary 



conditions different from (1.13) and (1.14) would lead to inconsistencies, as it will be 
explained below (remark (c) in section 2). 

The model posed by (1.6), (1.7), (1.12)—(1.14) applies to a large variety of physical 
problems, including at least binary fluid convection, isothermal double-diffusive convection, 
puré Rayleigh-Bénard convection (as a secondary instability of rolls), (spiral waves in) the 
Taylor-Couette system, (transversal waves in) several thermocapillary flows, electrodynamic 
convection in nematic liquid crystals and several combustión systems (see [4,5]). 

Note that, according to (1.9), equations (1.6) and (1.7) contain terms that are not of the 
same order. This fact allows further simplifications in two distinguished limits (or regimes), 
that are briefly described now. To this end, first note that the basic steady state of (1.6), 
(1.7), (1.12)-(1.14) becomes unstable as 

p > pc = -2L-lb{d + dyl log \r\ + 0(L-2). (1.15) 

This shift in the instability limit is due to the presence of non-perfectly reflecting boundanes, 
as first pointed out by Cross [3] to explain some experimental results. 

The first distinguished regime corresponds to 

| /x- /x c | ~ Z.-2 \A\~\B\~L~1 (1.16) 

and its analysis requires considering one spatial scale, X ~ L, and two time scales, T ~ L 
and T ~ L2, to obtain a non-local, complex Ginzburg-Landau equation for the evolution 
of the wavetrains in the slowest time scale. In the particular case of perfectly reflecting 
boundaries, \r\ = 1, the first non-local equation seems to have been obtained by Chikwendu 
and Kevorkian [6] in a related setting, and by Knobloch and De Luca [7] and Alvarez-
Pereira and Vega [8] in the analysis of the oscillatory instability of steady states in one 
dimensión and of travelling wavefronts in two dimensions respectively; see also [9] for a 
rigorous derivation of the equation, [10] for the analysis of inertial manifolds and related 
global-dynamics properties, and [11] for related conservative equations. The derivation 
of this non-local equation in the (much more subtle) case \r\ ^ 1 is given in [4]. The 
equation has an intrinsic interest and exhibits a quite rich variety of complex dynamic 
behaviours resulting from the interplay of the modulational instability and end-wall effects, 
see [4,12,13]. Nevertheless, this limit applies only in a quite narrow región near the 
instability limit (see (1.16)) and thus it is less interesting from the practical point of view 
than the second limit, that is now considered. 

In the second distinguished regime, corresponding to 

I M - M c l - M - Z T 1 \A\~\B\~L-^2 (1.17) 

we rescale the space and time variables and the complex amplitudes as 

x = X/L t = \b\T/L 
_ (1.18) 

(Ai, B{) = J(e, + -e{)L/(2\b\)exp[(d - d)T/2](A, B) 

to rewrite (1.6), (1.7) and (1.12)-(1.14) as 

Alt = e(l + iax)Alxx + (b/\b\)Alx + [k - (1 + ia2)\Ax \2 - (a + ia^B, \2]AX (1.19) 
Bu = e(l + iai)Blxx - (b/\b\)Blx + [X - (1 +ia2) |fi1 |2 - (a + ia3)IAx|

2]¿?! (1.20) 
B1 = pemA1 at x = - \ Ai = pemB1 at x = \ (1.21) 

Blx + pem*Alx = pe ia4(l - p2)(b/\b\)[l -a+ i(a2 - a3)]Ai |Ai |2 at x = - \ 

(1.22) 

AJx + p e r f i l , = PQm\p2 - l)(b/\b\)[l -a+ i(a2 - a3)]Bi |Bi |2 at x = \ (1.23) 

file:///A/~/B/~L~1


where the rescaled bifurcation parameter, the real coefficients a\,..., a4, a and p > 0, and 
the small parameter e > 0 are defined as 

1 + ÍCÜI = 2c/(c + c) \ + ia2 = 2e\/{e\+e\) a+ia3 = 2e2/(e\ + e\) 
(1.24) 

X = {d + d)pL/{2\b\) r = pe""4 e = (c+ c)/(2\b\L). 

Then we only need to neglect the O(e) terms in (1.19) and (1.20) and to define the variables 
u and v and the parameter R > 0 as 

u = \Al\
2 v = IfiJ2 R = p2 if b > 0 

(1 25) 
M = |Bj |2 u = | Ai |2 fl = 1/p2 if b < 0 

to obtain (1.1) and (1.2) from (1.19) and (1.21). 
This paper is organized as follows. In section 2 we shall give some comments on this 

second regime and some preliminary results concerning the real hyperbolic system (1.1)-
(1.3). The steady states of (1.1) and (1.2) and their linear stability will be considered in 
section 3, while the global dynamics will be numerically analysed in section 4 by means of 
dynamical systems techniques. The validity of (1.1)—(1.3) as an approximation of (1.19)— 
(1.23) (as e -> 0) will be analysed in section 5. Finally, in section 6 some qualitative and 
quantitative comparisons with experiments will be made, and in section 7 some concluding 
remarks will be drawn. 

2. Some additional preliminaries 

The derivation of the real hyperbolic system (1.1)—(1.3) from the rescaled normal form 
(1.19)—(1.23) (as e -> 0) exhibits several subtleties that should not be ignored. Some 
remarks on this derivation and the physical interpretation of the solutions of (1.1)—(1.3) are 
now in order. 

(a) Those terms accounting for diffusion and dispersión in (1.19) and (1.20) have been 
ignored. We must assume that these terms are initially small and check that they remain 
small as time proceeds. This is a stability question; namely, we must ascertain that small 
perturbations, depending on intermedíate scales, with a characteristic length of the order of 
*/e (such that the neglected terms are of the order of nonlinear terms) are damped out as 
time proceeds. According to (1.18), the characteristic size of these scales is inbetween of 
the basic O(e) wavelength of the counter-propagating wavetrains and the 0(1) length of the 
domain. We shall study these intermediate scales in section 5. 

(b) If, according to (1.25), the phases of Ai and B\ are defined as Ai = ^/we1" and 
Bl = ^JQ'V if b > 0, and A1 = Vüe1(0 and Bl = JUQ10 if b < 0, then the following 
equations for 0 and <p are obtained from (1.19)—(1.21) in first approximation 

&t - 6X + a2u + a3v = <pt + cpx + a2v + a3u = 0 (2.1) 

(p = e + a4b/\b\ atx = - i 0 = <p + a4b/\b\ at x = \. (2.2) 

Once u and v have been calculated from (1.1)—(1.3) and inserted into (2.1) and (2.2) we 
obtain a linear problem whose solution depends on an arbitrary function (associated with 
the solution of the homogeneous problem) that evolves in a still slower scale. When 
considering higher-order terms, a nonlinear equation may be obtained for this evolution that 
exhibits chaotic dynamics (corresponding to phase turbulence) for appropriate valúes of the 
parameters. That equation will be derived and analysed elsewhere. 



(c) The second pair of boundary conditions (1.22), (1.23) have not been used to derive 
the hyperbolic problem (1.1)—(1.3), and may be written as 

vx + Rux =2(a - l)(R- l)Ru2 at x = - \ 

ux + Rvx = 2(a - 1)(1 - R)Rv2 a tx = ±. 

These conditions are precisely the compatibility conditions of the hyperbolic problem, that 
are assumed to hold initially (see (1.4) and (1.5)) and consequently they also hold for 
all í > 0 (insert (1.1) into (2.3) and take into account that vt = Rut at x = —\ and 
ut = Rvt at x = \, according to (1.2)). This fact is essential for the consistency of 
our weakly nonlinear description because, if the second pair of boundary conditions was 
not satisfied by the hyperbolic problem, then two boundary layers should be added near 
x = ± i to take care of them; in these boundary layers we would have e|Aixx| ~ \A\X\ 
and/or e\B\xx\ ~ \B\X\ or, in the original variables, \AXx\ ~ \Ax\ and/or \BXx\ ~ \Bx\, 
and thus the consistency requirements (1.9) would be violated. Thus, the second pair of 
boundary conditions, (1.13), (1.14), are the natural ones, as anticipated above. 

(d) Note that, according to (1.25), u > 0 and v > 0. In fact we have assumed that the 
initial conditions for u and v are strictly positive (see (1.3)) and thus u > 0 and v > 0 for 
all í > 0 (see [14]). If instead the initial conditions (1.3) are allowed to vanish then the 
number of zeros of u and u i n - i < x < ^ remains constató as time proceeds (the zeros 
propágate along the characteristics); but this property is non-generic (a small perturbation 
on the initial conditions eliminates the zeros) and spurious as approximation of (1.19)— 
(1.23) (the neglected second-order spatial derivatives preclude the zeros of | Ai |2 and \Bi |2 

to remain as time proceeds). 
(e) The reflection coefficient of the hyperbolic problem R deserves some attention. Its 

relation with the original complex reflection coefficient r is given by (1.25). Then, even 
in the frequent case of absorbing boundanes, p = \r\ < 1, R may be larger than 1 if the 
group velocity b is negative (as in the Taylor-Couette system, see [15]). Then we shall pay 
the same attention below to the cases R > 1 and R < 1; the (non-generic without further 
restrictions) case of perfectly reflecting boundaries, p = R = 1, will be also considered in 
some detail. 

In order to plot the counter-propagating wavetrains associated with the solutions of 
(1.1), (1.2), we considerthe state variable 

w = ^¡el(at+kx)L + ^el(a'-kx>L + ce. if R < 1 (2.4) 
w = ^Ql(Qt+kx)L + ^¡Ql(Qt-kx)L + ce. if R > 1 (2.4') 

where we are taking into account (1.18) and (1.25) and for illustration we are considering 
particularly simple valúes of the coefficients of the amplitude equations (1.6), (1.7) and 
(1.19), (1.20) (i.e. d — d = a2 = a3 = a4 = 0) and of the phases of the complex amplitudes 
(i.e. 6 = q> = 0, see (2.1), (2.2)). In addition, we are ignoring the scaling factor for 
the complex amplitudes in (1.18) and we are assuming the end-walls to be either purely 
reflecting or absorbing (as is frequently the case in practice) and thus we are taking the 
group velocity b in (1.25) to be positive if R < 1 and negative if R > 1, according to 
remark (e) above. The plots will be made for the following particular valúes of the scaled 
frequeney Í2L and wavenumber kL 

ílL = kL= 15TT. (2.5) 

The problem (1.1)—(1.3) was analysed in [14] by means of comparison methods based on 
coupled sub- and supersolutions. In particular, the following global existence and stability 
results were proven (see figure 1 for illustration). 
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Figure 1. Sketches of the bifurcation diagrams for the hyperbolic system (1.1)—(1.3). 

(i) If w0 and v0 are continuously differentiable and satisfy (1.4), (1.5) then the problem 
(1.1)—(1.3) has a unique, continuously differentiable solution such that u > 0 and v > 0 in 
— i < x < ^ , 0 < í < r < o o , where T is maximal in the following sense, either T = oo 
or u + v becomes unbounded as t / T. 

(ii) If a < - 1 , X < Xc = -(logR)/2 and u0 and u0 are sufficiently small, then the 
solution of (1.1)—(1.3) converges uniformly to w = u = 0 as í ^ oo. If a < —1 and either 
X < Xc and u{) and u0 are sufficiently large, or X > Xc then the solution of (1.1)—(1.3) 
becomes unbounded at some finite t = T. 

(iii) If a = - 1 and X < Xc (resp. X > A.c) then every solution of (1.1)—(1.3) converges 
uniformly to u = v = 0 (resp. becomes unbounded) as í ->- oo. 

(iv) If a > - 1 then every solution of (1.1)—(1.3) is uniformly bounded in —\ < x < \, 
0 < í < oo. If, in addition, X < Xc, then every solution of (1.1)—(1.3) converges uniformly 
to u = v = O as t —>- oo. 

(v) If - 1 < a < 1 and X > Xc then (1.1), (1.2) has a unique steady state such that 
us > O and us > O in —\ < x < ^, and every solution (1.1)—(1.3) converges uniformly to 
(us, vs) as t —>- oo. 

Note that, according to properties (ii) and (iii), our weakly nonlinear description is 
subcritical iía < —1 and critical if a = — 1 (figures l(a) and (b)) and thus supercriticality 
requires that a > - 1 , or e\ + e\ > — (e2 + e-i) according to (1.24), as anticipated right 
after equation (1.10). In the subcritical case a fully nonlinear description is required, while 
in the critical case higher-order (quintic, . . .) terms must be added to (1.6), (1.7). Also, 
according to properties (iv) and (v), the dynamics of (1.1)—(1.3) is trivial (i.e. every solution 
converges to a steady state as t ->- oo) if either - 1 < a < 1 or « ^ 1 and X < Xc 

(figures l(c) and (d)). If instead a > 1 and X > Xc then we only know that the solutions 
are bounded; the main objective ofthispaper is to analyse the dynamics of (1.1)—(1.3) in this 
case. In particular (see figure \{d)) we shall see that a branch of stable, symmetric (under 
the transformation x —>- —x, u ^> v) steady states bifurcates supercritically at X = Xc from 
the basic steady state u = v = O, and exhibits a supercritical, pitchfork, symmetry-breaking 



bifurcation at some k = kSB > kc. The resulting branch of stable, non-symmetric steady 
states exhibits a Hopfbifurcation at some k = XH > A.SB- These three biñircations are 
always present. The remaining part of the bifurcation diagram depends on the parameters 
a and R, but always exhibits additional transitions to chaotic attractors that altérnate with 
non-chaotic ones. Among these additional bifurcations, the system exhibits period-doubling 
sequences, crises associated with collisions of periodic attractors through symmetry-gaining, 
intermittency and quasiperiodic transitions. 

3. The steady states and their stability 

The physically meaningful steady states of (1.1), (1.2) are given by 

dws/dx + 2us{k — us — avs) = dus/dx — 2vs{k — vs — aus) = 0 (3.1) 

vs = Rus at x = — i us = Rvs at x = ^ (3.2) 

us > 0 vs > 0 in - \ < x < \. (3.3) 

The linear stability of a steady state (us, vs) is analy sed by first linearizing (1.1), (1.2) around 
(us, vs) and then introducing the ansatz (u, v) = (us, vs) + Qmt{U{x), V(x)), to obtain 

U' - (co-2k + 4us +2avs)U -2ausV = 0 
(3.4) 

V + {co-2k + Avs +2aus)V + 2avsU = 0 

V = RU atx = - i U = RV at x = \. (3.5) 

The problem (3.1), (3.2) always possesses the trivial solution us = vs = 0; the 
associated eigenvalues and eigenfunctions of (3.4), (3.5) are co = 2{k — kc) + ikn and 
U(x) = (—l)kV(—x) = CRX exp(i^7tx), where C ^ 0 is a constant, k is an integer and 

kc = -{\ogR)/2. (3.6) 

Thus, the trivial steady state is exponentially stable if k < kc and exponentially unstable if 
k > kc. At k = kc there is a supercritical bifurcation to a new branch of steady states that 
is locally given by 

us(x) = vs(-x) = eRx + 0(e2) k = kc + e(a + l)(R - l)/(VRlogR) + 0(e2) 

(3.7) 

where 0 < £ « 1 and (R - l ) / log/ í must be replaced by 1 if R = 1. Note that the 
bifurcated solutions are symmetric, i.e. they are invariant under the transformation 

x —>• —x us ^> vs. (3.8) 

There are other branches of bifurcated and periodic solutions of (1.1), (1.2), associated with 
the eigenvalues co = ikjr, with k ^ 0, but those solutions cannot be accepted because they 
do not satisfy (1.3) (which implies that u > 0 and v > 0 for all í > 0, as remarked at the 
end of section 1) because the solutions associated with these eigenvalues oscillate around 
u = v = 0. 

Let us now consider the remaining solutions of (1.1)—(1.3), which are such that 

us > 0 and vs > 0 in — ^ < x < ^ (3.9) 

because if either us = 0 or vs = 0 at some x, then us = vs = 0 for all x, as obtained from 
uniqueness properties of the ODEs (3.1) and the boundary conditions (3.2). If a = —1, 0 or 
1, then the general solution of (3.1) may be found in closed form; the associated solutions 
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Figure 2. Phase portraits for the system (3.1). Heavy curves correspond to possible solutions 
and broken lines indícate the boundary conditions (3.2). 

of (3.1), (3.2) are given in the appendix. l í a > - 1 and R = 1 then (3.1)—(3.3) possess the 
branch of spatially constant solutions 

us{x) = vs{-x) = k/{\ + a). (3.10) 

In the general case, R ^ 1, system (3.1) still has the first integral 

\us + vs-k\l-a = Cusvs (3.11) 

where C > 0 is an arbitrary constant. Then (3.1)—(3.3) may be solved by quadratures, but 
this solution (is not quite useful because it) requires considering several cases that must 
be analysed separately. Instead, the bifurcation diagrams below will be obtained by means 
of a continuation method (based on the ideas in, for example [16]) that is initiated on the 
approximate solutions (3.7); the problem (3.1), (3.2) is solved by a shooting method at each 
step in the continuation process. 

In order to discuss the solutions of (3.1)—(3.3) we consider the phase portrait of (3.1), 
which is readily obtained (by means of the first integral (3.11)) to be as plotted in figure 2, 
where only the first quadrant us > 0, vs > 0 is considered; the arrows indicate increasing 
valúes of x. Note that the origin is always a critical point that behaves as a saddle. If A. > 0 
then system (3.1) also has the critical points (us, vs) = (A./(l + a), A./(l + a)) (a saddle 



if — 1 < a < 1 and a centre if a > 1), (us, vs) = (X, 0) and (ws, us) = (0, X) (which are 
nodes if — 1 < a < 1 and saddles if a > 1); if a = 1, then all points in the line us + vs = X 
are degenerate critical points. The solutions of (3.1)—(3.3) correspond to segments (plotted 
with heavy curves) of the orbits of (3.1) joining the straight lines vs = Rus and us = Rvs 

(which are plotted with broken curves) as x vanes from —\ to \; note that this condition 
determines the actual solution. Several cases are now considered. 

(a) If — 1 < a < 1 then all solutions of (3.1)—(3.3) are symmetric and correspond (in 
figures 2(a), (b) and (d)) to the segments AB and CD forR<\ and R > 1 respectively; 
if R = 1 then the solutions are given by (3.10) and correspond to the critical point in 
the bisector of the first quadrant. These solutions amount to a monotonous branch in the 
bifurcation diagram, as sketched in figure l(c), and all ofthem are globally, asymptotically 
stable as steady states of (1.1), (1.2) (as analytically proven in [14] and numerically checked 
here for — 1 < a < 1 and a = 1 respectively). 

(a.l) If /f < 1 then as X vanes from Xc(> 0) to oo the segment AB moves from 
the origin upwards in figure 2(a).Thus, for modérate valúes of X - Xc > 0, us and vs 

dominate in - \ < x < 0 and 0 < x < \ respectively, and the associated x — t plot of the 
state variable w, defined by (2.4), (2.5) is a symmetric chevron, as that in figure 3(a). As 
X -> oo the segment AB approaches the heteroclinic orbits joining the critical points (X, 0), 
(A./(l + a), X/(l + a)) and (0, X), and thus the trajectory AB spends the most part of the 
spatial domain —\ < x < \ near the critical point (X/(l + a), X/(l + a)); the resulting 
x — t diagram of the state variable w shows a standing wave in the most part of the domain 
— \ < x < i (except near the end-walls x = ± | ) , as in figure 3(6). 

(a.2) If R > 1 then as X varíes from Xc (< 0) to 0 the segment CD moves in figure 2(d) 
from the origin upwards, and as X varíes from 0 to oo the segment CD moves downwards 
in figure 2(a). Thus, for modérate valúes of X — Xc > 0 the x - t diagram for the state 
variable w shows a symmetric chevron, as in figure 3(c). As X ->- oo, the segment CD 
approaches the trajectories passing through the critical point (A./(l + a), X/(l + a)) and 
thus spend the most part of the spatial domain, —\ < x < \, near the critical point, the 
associated x — t diagrams for the state variable show a standing wave in the most part of 
the spatial domain, as in figure 3(d). The main difference with the case R < 1 is that now 
the zones near the end-walls where the system exhibits travelling waves are much smaller 
and the valúes of the amplitudes of the wavetrains in these zones are much larger. Both 
differences are concerned with the extreme valúes of the reflection coefficient (R = 10~2 

and 102) and the fact that as R ->- 0 the ends of the segment AB in figure 2, (uA, vA) and 
(uB, vB), approach the critical points (X, 0) and (0, X), while as R ->- oo the ends of the 
segment CD are such that (uc/X, vc/X) ->- (oo, 0) and (uD/X, vD/X) ->- (0, oo) (and the 
points (oo, 0) and (0, oo) do not behave as critical points in the phase plañe of (3.1)). 

(a.3) If R = 1 then the solution is given by (3.7) and the x - t diagram for the state 
variable w always shows a standing wave, as in the first plot in figure 5(c). 

(b) If a > 1 then the symmetric steady states considered above are asymptotically stable 
and amount to a monotonous branch in Xc < X < XSB, where XSB will be calculated below. 
In addition, if XSB < X < XH (for some XH corresponding to a Hopf bifurcation point that 
will be considered below) then there are two non-symmetric, asymptotically stable steady 
states that correspond in figure 2(c) to the segments A'B' and CD' for R < 1 and R > 1 
respectively, and to their symmetric ones under the reflection us ^> vs; if R = 1 then 
these steady states correspond to the segments EF and FE. In addition, if X is sufficiently 
large then there are other branches of symmetric and non-symmetric steady states that 
correspond in figure 2(c) to travelling along a closed orbit in a non-simply way; but they 
are unstable. The bifurcation diagram is always as sketched in figure l(c). For illustration, 
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Figure 3. Spatial profiles of u and v and the corresponding x — t diagrams of the state variable 
(2.4), (2.4') for representative valúes of the parameters —l<a<l,R and l. 

in figure 4 we give a part of the bifurcation diagrams for three representative pairs of valúes 
of the parameters a and R. For completion we have also plotted a part of the branch of 
periodic solution that bifurcates from the Hopf bifurcation point at X = A.H. This branch 
will be completed in section 4 and has been calculated by a continuation method based 
on the discretization of the time-dependent problem (1.1), (1.2) described at the beginning 
of section 4. The x — t diagram of the state variable w (defined by (2.4), (2.4') and 
(2.5)) is plotted in figure 5 for three representative points of each bifurcation diagram in 
figure 4. Note that symmetric and non-symmetric steady states correspond to symmetric 
and non-symmetric chevrons if R ^ 1 (figures 5(a) and (b)), and to standing waves and 
almost-pure travelling waves if R = 1 (figure 5(c)); limit cycles are non-symmetric, and 
correspond to beating states (around the formerly stable non-symmetric steady solution) in 
the three cases. Again, there are qualitative differences between the steady states in the 
cases R < 1 and R > 1, which may be explained in terms of the phase portraits of figure 2 
as follows. The points in the segments A'B' and C'D' where us = vs approach the critical 
point (us, vs) = (0, 0) if R < 1 and the ordinary point (us, vs) = (A./2, A./2) if R > 1. 
Consequently that part of the spatial domain where both counter-propagating wavetrains 
coexist (with similar activity) is much larger if R < 1 than ií R > 1, and the valúes of 
the amplitudes of the wavetrains there are much smaller if R < 1 than if R > 1 (compare 
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Figure 4. Bifurcation diagrams of the solutions of (1.1)—(1.3) for three representative sets of 

valúes of the parameters a > 1 and R. 

figures 5(a) and (b)). In addition, since the periodic solutions are oscillations around the 
steady states, there are also qualitative differences between the periodic solutions. The 
non-steady nature of these solutions is appreciated mainly in that part of the spatial domain 
where the amplitudes of the wavetrains are smallest; namely, it is appreciated in the time-
dependence of (the size and position of) the región where both counter-propagating waves 
dominate if R < 1 (as in figure 5(a)), and in the quantitative time dependence of both 
amplitudes near the end-wall where they are smallest if R > 1 (as in figure 5(6)). 

Let us now consider the bifurcation valúes XSB and A.H, associated with symmetry-
breaking and Hopf bifurcation. 

If R = 1 then symmetry breaking takes place when the constató solutions (3.10) lose 
stability; since the coefficients in (3.4) are constató in this case, the linear problem (3.4), 
(3.5) is readily solved in closed-form to obtain 

XSB = (7r/2)[(a + l)/(a - 1)]1/2. (3.12) 

If R =¿= 1 then symmetry breaking takes place (when symmetric and non-symmetric 
solutions coalesce, that is) precisely when symmetric solutions are such that the associated 
segment (AB or CD, depending on whether R < 1 or R > 1) in figure 2(c) is tangent to 
the straight line us = Rvs. When using this tangency condition, the first integral (3.11) and 
equations (3.1) and (3.2), the valué of the bifurcation parameter at symmetry breaking is 
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found to be as given by 

-̂SB í 1(l-z)"1F(z)-1/2dz 
Jza 

(3.12') 

where 

F(z) = z 2 - á | l - z r a 

á = 4R(a - l f _ 1 / [ ( ^ + 1)2(« + l) a + 1] 
zo = 2/(a + 1) 

while z\ is defined as follows. If R < 1 then z\ is the smallest positive root of F(z) = 0 
and if R > 1 then zi is the largest root of F(z) = 0 such that z\ < 1; note that XSB is 
always positive. Also, as R ->- 1 XSB is seen to converge to that valué given in (3.12), that 
was obtained by a somewhat different definition of symmetry breaking. For convenience 
we also give the following asymptotic expressions, that are obtained from (3.12'), 

XSB = [- logR + (a + l) log((a + l) /(a - 1)) + o(l)]/2 as R -+ 0+ 

XSB = [log /? + ( « + ! ) log((a + l)/2) + o(l)]/(a - 1) as /? -^ oo. 

(3.13) 

(3.14) 
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Figure 5. (Continued) 

The Hopf bifurcation point is calculated as the upper instability limit of the branch 
of non-symmetric solutions. The associated valué of the bifurcation parameter, A.H, is 
numerically calculated in terms of R and a by means of a continuation method [16] applied 
to the equation Re co = 0, where Re stands for the real part, co is an eigenvalue of (3.4), (3.5) 
and (us, vs) is a non-symmetric solution of (3.1), (3.2). At each step in the continuation 
process the problems (3.1), (3.2) and (3.4), (3.5) are solved by a multiparametric shooting 
method. In order to initiate the process, the problem (1.4), (1.5) is discretized by a finite-
differences scheme to obtain sufficiently good approximations of the eigenvalue whose real 
part is largest (this discretization is also used to analyse the stability of the steady states of 
(1.1), (1.2)); then the parameter X is varied (for fixed valúes of R and a) until the real part 
of the eigenvalue is conveniently small. 

Now, the three bifurcation valúes considered above, A.c, >-SB and A.H, are plotted versus 
R, for representative valúes of a, in figure 6; for convenience, the (limiting valué of the) 
period T of the bifurcated solutions at the Hopf bifurcation point is also given Note that 
0 < XSB < A.H as indicated above, and that both \SB/logR and A.H/log/f converge to a 
constató as R ->- 0 and R -+ oo (this behaviour was to be expected for XSB, see (3.13), 
(3.14)). 

Finally, let us point out that if the end-walls were amplifying then u and v should be 
interchanged in (2.4) and (2.4')), and some of the x — t diagrams in figures 3 and 5 (i.e. 
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those corresponding to steady states of (1.1), (1.2)) would essentially stand after reversing 
the time variable. 

4. More complex dynamics (a > 1) 

Let us now analyse the dynamics of (1.1), (1.2) for larger valúes of the bifurcation parameter 
X than those considered in section 3. This will be done as follows. The problem (1.1)—(1.3) 
will be numerically integrated by using a standard explicit, second-order, predictor-corrector 
method along the characteristics, with Ai = Ax/2. Then we shall calcúlate the sections of 
the orbits, for a sufficiently large time, on the hyperplane H defined as 

II«IIL, + l lal l i , 
/ . 

1/2 

1/2 
(u + v)áx = (2X + log/?)/(! + a). (4.1) 

This hyperplane has been chosen because the periodic orbits of (1.1), (1.2) intersect H in 
each period. In order to prove this assertion, divide the first and second equations in (1.1) 
by u and v respectively, intégrate in —\ < x < \, add and take into account the boundary 
conditions (1.2) to obtain 

I d 
2dí / . 

1/2 

1/2 
log(wi;)dx = 2X + log R - (1 . « ) / 

1/2 

(u + v)áx. (4.2) 
1/2 
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Figure 6. Bifurcation valúes le, ^SB a nd ^H versus R for three different valúes of a. Upper 
plots show the period of the solution, Tu, at the Hopf bifurcation. 

Note that the right-hand side of this equation vanishes precisely on H. Assume for 
contradiction that a periodic orbit does not intersect H. Then the right-hand side of (4.2) 
has a constant sign and the function í -> J'_[ „ log(uv) dx is strictly monotonous. But this 
cannot happen because this function is periodic. 
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Figure 6. (Continued) 

Now the problem (1.1), (1.2) is invanant under the symmetry 

x -> —x u o v (4.3) 

that results from the spatial reflection symmetry of the underlying physical problem, which 
was mentioned right after equations (1.6) and (1.7). Then this symmetry has a physical 
interest. It is also relevant from the mathematical point of view because several transitions 
in the bifurcation diagrams below will be associated with symmetry-breaking and symmetric-
gaining processes. In order to appreciate this symmetry we shall use the following coordinate 
on the hyperplane (4.1) to plot the attractors (see figure 7) 

,.1/2 
dp = (\\v\\Ll-\\u\\Ll)/V2= / (v-u)/V2dx. (4.4) 

J-\/2 
Note that when plotting the intersections of an orbit on the hyperplane with this coordinate, 
the resulting set of points is symmetric on the origin if and only if the orbit is invanant 
under the symmetry (4.3). 

Periodic orbits exhibit a finite number of intersections on the hyperplane, and aperiodic 
orbits associated with chaotic attractors exhibit infinitely many intersections, which 
accumulate on a Cantor-set-like structure. In order to plot chaotic attractors, an appropriately 
large (but of course finite) number of intersections will be plotted (for the structure of the 
attractor to be somehow appreciated), after integrating (1.1), (1.2) in an appropriately large 
initial interval, to eliminate the initial transient when the orbit approaches the attractor. In 
order to ascertain chaotic dynamics, the first few Lyapunov exponents will be numerically 
calculated as usual [17], by integrating (1.1), (1.2) once and integrating the associated 
linearized problem for several, linearly independent initial conditions, and applying a Gram-
Schmidt re-orthonormalization procedure at t = T, 2T,..., for some fixed T. Finally, some 
unstable branches of periodic solutions will also be needed to complete some parts of the 



Figure 7. Intersection of a periodic orbit with the hyperplane H showing the coordínate used, dp. 

bifurcation diagrams. These branches are calculated by means of a numencal continuation 
method [16]. 

Now, for larger valúes of the bifurcation parameter than those considered in section 3, 
the problem (1.1), (1.2) exhibits a fairly large variety of transitions whose details depend on 
R and a. We do not intend on classifying the bifurcation diagrams, as we did in section 2. 
Instead we shall only consider three cases, namely, those considered in figure 4. 

The bifurcation diagram for a = 2 and /? = 0.001 is given in figure 8 where all attractors 
are non-symmetric and the following main features are observed. If AH = 6.53 < A < Ai ~ 
8.38 then there is a branch of non-symmetric stable periodic solutions (i.e. the continuation 
of that plotted in figure 4) that exhibits a flip (period-doubling) bifurcation at A. = A.]. For 
larger valúes of A there is a period-doubling sequence, at A = 9.52, . . . , that accumulates 
at A = A2 ~ 9.64. If A2 < A < A3 ~ 11.17 there is a chaotic attractor that alternates with 
periodic windows, as is usually the case after a period-doubling sequence. At A = A3 the 
chaotic attractor collides with an unstable branch of non-symmetric periodic solutions and 
disappears. A second branch of stable, periodic solutions exists for A4 < A < A5, where 
A4 ~ 11.11 and A5 ~ 11.69, that exhibits a new period doubling sequence that accumulates 
at A = A6 ~ 12.18. Note that if A4 < A < A3 then there is a hysteresis between the branch of 
periodic solutions and the chaotic attractor. For A > A6 a new chaotic attractor appears that 
(again alternates with periodic windows and) collides with the unstable branch of periodic 
solutions at A = A7 ~ 12.63, and enlarges. Note that the new branch that appears (in the 
upper part of the plot in figure 8) at A ~ 8.9 is just due to an additional intersection of the 
attractor described above with the hyperplane H, and not to new dynamical features (i.e. 
period doublings or qualitative enlargement of the attractor). The spatio-temporal picture of 
the (periodic or chaotic) attractors plotted in figure 8 is always qualitatively similar to the 
third picture in figure 5(a); the main difference is that the behaviour is now more complex. 
As an example, the x — t diagram of the periodic (period ~ 3.06) attractor at A = 11.5 is 
given in figure 9. 

The bifurcation diagram for a = 3 and R = 1 is given in figure 10. If AH — 3.58 < 
A < Ai ~ 5.46 then there is a branch of non-symmetric, stable, periodic solutions (i.e. 
the continuation of that plotted in figure 4) that loses stability through a subcritical period-
doubling bifurcation at A = Ai (a part of the branch of unstable period-doubled solutions 
is plotted as a broken curve in figure 10). For A > Ai the system jumps to a new branch 
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Figure 8. Poincaré sections of the solutions of (1.1)-(1.3) for a = 2 and R = 0.001. 

of stable, symmetnc solutions, with a period about four times the period of the formerly 
stable non-symmetnc solutions. If A. is decreased from A.] then the new symmetnc branch 
exhibits a symmetry-breaking bifurcation at A = X2 — 5.42 (< Ai), and the bifurcated 
non-symmetnc solutions become unstable at X = A3 ~ 5.41 (< X2) through a saddle-node 
bifurcation. Note that there is a hysteresis between the above-mentioned stable branches 
in the range A3 < X < Xi. For larger valúes of X the symmetric branch loses symmetry 
at X = X4 ~ 9.12 and subsequently exhibits a first period-doubling at X = X5 ~ 9.62 and 
then a period-doubling sequence that accumulates at X = X6 ~ 9.77. The resulting chaotic 
attractor (that alternates with periodic windows as usual) gains symmetry at X = A7 ~ 9.89. 
The spatio-temporal picture of the non-symmetnc solutions in AH < X < Xi is always 
qualitatively similar to that in third plot in figure 5(c). The attractor in A3 < X < X7 

exhibits a spatio-temporal picture that is always (albeit of whether it is symmetric or non-
symmetric, periodic or chaotic) similar to that plotted in figure ll(a), conesponding to 
X = 7.4. For X7 < X < 12 the attractor exhibits an intermittent behaviour that is similar to 
that in figure 1 l(a), except for some sudden excursions to a qualitatively different dynamics; 
the x — t diagram of one such excursión for X = 11 is plotted in figure 11(6). Again, this 
chaotic behaviour alternates with periodic windows. 

Finally, the bifurcation diagram for a = 4 and R = 1000 is plotted in figure 12, where 
again the lower branch of non-symmetric, stable, periodic solutions in 7 < X < Xi ~ 8.44 
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Figure 9. x — í diagram for k = 11.5 in figure 8. 

is the continuation of that plotted in figure 4. That branch exhibits a saddle-node 
bifurcation at X = Ai and the resulting (reversed) branch of unstable solutions bends 
again at A = A2 ~ 7.24 < Ai, and becomes stable. That stable branch loses stability 
at A = A3 ~ 7.42, where an invariant, stable, non-symmetric toras bifurcates supercritically. 
In A3 < A < A4 ~ 10.74 the toras exhibits several symmetry-gaining and symmetry-breaking 
bifurcations (see figure 12) and the associated solutions appear as quasiperiodic except in 
some periodic windows, some of them (e.g. that in 10.4 < A < 10.6) exhibiting fairly large 
periods. Note that inA2 < A < M the system exhibits hysteresis, between a periodic attractor 
and either a periodic or a quasiperiodic attractor. The toras exhibits a qualitative change at 
A = A4; the new (periodic or quasiperiodic) behaviour in A4 < A < A5 ~ 10.92 corresponds 
qualitatively to oscillations around the clearly non-symmetric solutions that disappeared at 
A. = A.1 and their symmetric ones, while the former (periodic or quasiperiodic) behaviour 
in A3 < A < A4 may be qualitatively seen as an oscillation around the more symmetric 
periodic solutions that existed and were stable in A2 < A < A3. The toras breaks down 
at A = A.5 where a new, more complex attractor appears, the associated solutions being 
chaotic, with two positive Lyapunov exponents, except in some periodic windows. The 
spatio-temporal picture of the periodic solutions in the lower branch, in 7 < A < Ai, are 
qualitatively similar to that in the third plot in figure 5(6), while the x — t diagrams of 
other, qualitatively different, representative solutions are given in figure 13. Note that the 
periodic solution in figure 13(a) (corresponding to the upper periodic branch at A = 7.25) is 
approximately symmetric. Also the quasiperiodic solution in figure 13(6) is symmetric, and 
may be seen as the result of a symmetry-gaining process from the solution in figure 13(a). 



Figure 10. Poincaré sections of the solutions of (1.1)—(1.3) for a = 3 and R = 1 (inset: 
enlargement of the región near l = 5.4). 

The chaotic solution in figure 13(c) may be qualitatively seen as an altemating state, between 
the non-symmetric periodic solution in figure 5(b) and its symmetric one. 

A remark about the numerical results described above for a > 1 is now in order. As 
indicated above, the first three bifurcations in figure 4 are always present. For X > XH 

instead, the qualitative shape of the bifurcation diagram largely depends on the specific 
valúes of the parameters R and a. Thus, we do not claim that the results in figures 8, 10 
and 12 are representative of those for other valúes of the parameters; they are just examples 
of the complex behaviour of the solutions of (1.1), (1.2) as X increases. It is fairly costly 
to obtain bifurcation diagrams and thus we have been unable to obtain sufficiently many 
of them to get precise general conclusions. Nevertheless, some additional númenes not 
presented here allow us to draw two conclusions. First, chaotic dynamics is the rule (and 
not the exception) as X increases, and the mechanisms for the appearance of chaos are 
the usual ones. Namely, period-doubling sequences, intermitteney and bifurcation to ton, 
the first two of them being the most frequent ones if R < 1 (i.e. if the group velocity is 
positive for absorbing boundaries, as indicated above), while quasiperiodic solutions seem to 
appear most frequently if R > 1 (negative group velocities). A second conclusión is that the 
symmetry (4.3) plays an essential role in the bifurcation diagrams, which frequently (but not 
always, see figure 8) exhibit several symmetry-gaining and symmetry-breaking bifurcations. 
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Figure 11. x — í diagrams for A. = 8 and 11 in figure 10. 

Finally, note that the complex dynamics described above is entirely due to the interplay 
of the coupling nonlinear eífects (i.e. the terms —lauv in equations (1.1)) and the interaction 
with the end-walls (i.e. the reflection of the wavetrains that leads to the linear boundary 
conditions (1.2)). This is so because a third complexity-leading mechanism (associated with 
the intermediate scales that are considered next), resulting from dispersión, is absent in the 
hyperbolic model (1.1)—(1.3). 
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Figure 12. Poincaré sections of the solutions of (1.1)—(1.3) for a = 4 and R = 1000. 

5. The intermedíate scales 

As pointed out in section 2, the hyperbolic system (1.1), (1.2) is derived from the amplitude 
equations (1.19)—(1.23) under the assumption that the terms containing second spatial 
derivatives, which account for diffusion and dispersión, may be neglected. In this case 
the complex amplitudes A and B never vanish (provided that they do not vanish initially) 
according to property (i) at the end of section 2, and the number of wavelengths associated 
with both wavetrains is conserved. In addition, the phases of A and B behave quite 
regularly in the timescale associated with (1.1), (1.2), according to remark (b), right after 
equation (2.2). The situation is completely different when dispersión and diffusion come 
into play through intermedíate scales, whose size is in between the basic wavelength of the 
wavetrains and the size of the domain. Then both the amplitudes and phases of A and B 
may exhibit complex spatio-temporal behaviour, and the number of wavelengths can change 
as time proceeds yielding dislocations in spacetime diagrams. 

The incipient evolution of intermedíate scales will be analysed in section 5.1, where 
we shall derive a linear equation giving the evolution of a generic (small) perturbation 
containing intermediate scales (added to a solution without these scales). That equation will 
allow us to inquire into whether the intermediate scales are exponentially damped out as 
time proceeds or whether they grow exponentially; to this end we shall both (a) rely on 
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some analytical results from [4] and (b) numerically intégrate the equation to obtain the 
associated Lyapunov exponents. Our results will allow us to conjecture that the sign of 
the first Lyapunov exponent coincides with that of the quantity - ( 1 + a\a2), where «i and 
a2 are as defined in (1.24), independently ofthe basic solution (not containing intermediate 
scales) of (1.1), (1.2) we are perturbing. That simple condition for the appearance of the 
intermediate scales, namely 

1 + a\a2 < 0 (5.1) 

coincides with the condition for the modulational instability of non-zero, constant-amplitude 
solutions of the standard complex Ginzburg-Landau equation [2,3], and this coincidence 
may be explained as follows. When analysing the evolution of a rapidly oscillatory 
perturbation added to each complex amphtude, neither the convective term associated 
with the group velocity, ñor the cross-nonlinearity associated with the counter-propagating 
wavetrain ñor the spatiotemporal evolution of the basic solution need to play any role. But 
this is of course an aposteriori explanation and, in fact, we shall see that the spatio-temporal 
evolution of the basic solution cannot be eliminated from the equations giving the linear 
evolution of the intermediate scales. 

When condition (5.1) holds the solutions ofthe hyperbolic system (1.1), (1.2) are not 



good approximations of the solutions of the amplitude equations and the complete parabolic 
system (1.19)—(1.23) must be numencally integrated to obtain the evolution of the counter-
propagating wavetrains. This will be done in section 5.2 where it will be numencally seen 
that the consistency conditions (1.9) are not violated (even though equations (1.19)—(1.23) 
contain terms that are not of the same order) because the smallest scales, with a wavelength 
of the order of L_ 1 in the x variable (or of order unity in the original X variable) are still 
damped out as time proceeds. 

5.1. Linear evolution ofperturbations containing intermediate scales 

Let Ai = A°(x,t), Bx = B°(x,t) be a solution of (1.19)-(1.23) not depending on the 
intermediate scales, and let us look for solutions of (1.19)—(1.23) of the form 

A i = A ¿ ( l + C7) fíi=fí¿(l + V) i f fc>0 

A i = A ¿ ( l + V) fii=fi¿(l + C7) i f & < 0 

where U and V depend on x, t and the fast space and time variables 

f = x/^/e and x = í A/e (5.2) 

which are associated with the intermediate scales. Here e = 0(L~l) is as defined in (1.24). 
To the linear approximation, the evolution equations for U and V are given by 

Ur-UH + V¿[(tft - Ux) - (1 + i a i ) % + (1 + ia2)u(U + Ü) 

+(a+ia3)v(V + V)]=HOT (5.3) 

Vr + Vf+ V¿[(Vt + Vx) - (1 + i « i ) % + (1 + ia2)v(V + V) 

+(a + ia3)u(U + Ü)] =HOT (5.4) 

U = V at x = ±\ and f = ± 1 / ( 2 ^ ) (5.5) 

where definitions (1.25) have been taken into account, the boundary conditions (1.22), (1.23) 
are not written because they will not be used below and HOT = 0{e\U\ + e\V\). If the 
perturbations U and V are expanded as 

U = U0 + s1/2U, + • • • V = V0+£1/2Vi + --- (5.6) 

then U0 and V0 are readily seen to satisfy the following linear wave equations U0r - U0^ = 
Vbr + Vbj = 0, whose solution may be found as a superposition of normal modes, of the 
type 

(U0, V0) = (Uk(x, t)ék(r+t\ Vk(x, f )e*(r_íí)) 

with 0 < k2 < oo. If this solution (to the 0(1) problem) is inserted into the equations 
giving U\ and Vi and secular terms are eliminated, that is, if U\ and V\ are required to 
be bounded in the timescale x ~ 1 (or, equivalently, the right-hand sides of the equations 
giving U\ and V\ are required to exhibit no resonant terms, that is, no terms depending on 
the fast space and time variables as exp[i£(r + f)] and exp[i£(r - f)] respectively) then 
the following equations result 

uí - UL = -*2d + i«i)̂ o* - d + i«2)"(̂ 0* + Üok) (5-7) 
uotk ~ u0x = - ^ C 1 + iai)^o~* - í1 + ^2MU-k + Ük) (5.8) 
V¿, + V0

k
x = -k2(l+ iota)V0

k - (1 + ia2)v(Vk + V-k) (5.9) 
votk + \ k = - * 2 d + i « i )V* - (1 + i«2)w(V* + ô*) (5-10) 



with O < k < oo. These equations must be integrated with the following boundary 
conditions that are readily obtained from (5.5) 

[7±* = y±* exp(±ivt) at x = - \ (5.11) 

y0
±fc = U±k exp(±ivt) at x = \ (5.12) 

where vk is equal to 2n [fractional part of k/(2jr^/e)]. For convenience we shall use the 
following new variables 

U+ = (Uk + Ü-k) exp[ivt(í + x)] U¡ = -i(Uk - IJ-k) exp[ivt(í + x)] 

V+ = (Vk + V-k) exp[ivk(t - x)] Vk- = -i(Vk - V-k) exp[ivk(t - x)] 

to rewrite (5.7)-(5.12) as 

K - K = -{k2 + 2u)U+ + aik
2Uk- (5.13) 

Ukt ~ Ukx = -(a,k2 + 2a2u)Uk
+ - k2Uk- (5.14) 

V¿ + Vk
+

X = - (k2 + 2v) V+ + a,k2 Vk- (5.15) 

V¿i + V¿ = -(*ik2 + 2a2v)V+ - k2Vk- (5 .16) 
C/Jfc

± = y t
± atx = ±\ (5.17) 

with O < k < oo. Note that the phase shift in the boundary conditions has been eliminated 
and that all coefficients are now real. 

Now, by collecting the results of the formal analysis above and assuming that nonlinear 
terms do not change linear, exponential stability properties, we may state the following 
property. Let (u, v) be a solution o/"(l.l)-(1.3). If, for each k > O, every solution of 
(5.13)—(5.17) is damped out exponentially as t —>- oo then the intermedíate scales can be 
ignored and (u, v) provides a good approximation ofa solution of (1.19)—(1.23). If instead, 
there is a positive valué ofk and a solution of (5.13)—(5.17) such that 

liminf Q-St[\U+(x, í)| + \Uk-(x, t)\ + \V+(x, t)\ + \Vf(x, í)|] > O 
|x|<l/2,í^oo 

for some 5 > O, then the intermedíate scales cannot be ignored and the solution of (1.1)-
(1.3), (u, v), does not provide a good approximation of (1.19)—(1.23). Note that when 
checking this property we may consider only real solutions of (5.13)—(5.17) because, since 
the coefficients are real, the real and imaginary parts of any complex solution of (5.13)— 
(5.17) also satisfy the same problem. 

Now, the system (5.13)—(5.17) may be solved in close-form only if u and v are constant, 
and this can only happen if the modified reflection coefficient is equal to 1. In this case we 
readily obtain that the intermediate scales can be ignored if 

l + a1Q!2>0 (5.18) 

and that they cannot be ignored if 

l + aia2<0. (5.18') 

In the general case the system (5.13)—(5.17) may still be qualitatively analysed [4, appendix 
B] to show that if (5.18') holds then the intermediate scales cannot be ignored, while they 
can be ignored ifeither 

0 < 1 + a\a2 < 1 

or 

1 + a\ a2 > 1 and k^k\ 



for some constant k\ depending on (u, v). Note that all these properties are independent 
of (u, v) (except for the constant k\). Unfortunately we have been unable to prove that 
every solution of (5.13)—(5.17) is exponentially damped out if (5.18) holds, without further 
restrictions on the scaled-wavelength k, associated with the intermedíate scales, but our 
numerical results below made us to conjecture that this property also holds. 

In order to ascertain this conjecture and to quantify the incipient role of the intermediate 
scales we have numerically integrated (1.1)—(1.3), (5.13)—(5.17) for several valúes of the 
coefficients A, a, R, a\ and a2, and a set of valúes of the scaled wavelength k, and 
have calculated the first few Lyapunov exponents associated with (5.13)—(5.17) as usual 
[17], by considering several, linearly independent initial conditions and applying a re-
orthonormalization procedure at í = T, 2T, 3T, . . . , for some fixed T. As expected, 
the Lyapunov exponents do not depend on the initial conditions (1.3); they depend only on 
the asymptotic behaviour of (u, v) as t -> oo. The first Lyapunov exponent associated with 
the intermediate scales is plotted in terms of the scaled wavelength k in figure 14, for several 
valúes of the quantity 1 + a\a2 and several representative attractors of (1.1)—(1.3) (namely, 
a steady state, a limit cycle, a quasiperiodic attractor and two chaotic attractors) of the 
bifurcation diagrams in figures 8, 10 and 12. The transition has been checked to be always 
at 1 + a\a2 = 0, and to be associated to a long-wave instability (namely, the instability of 
the intermediate scales first appears near k = 0). That property must be taken into account 
when deriving a nonlinear equation giving the incipient, weakly nonlinear evolution of the 
intermediate scales, for - 1 - a\a2 positive and small; we do not pursue this matter any 
further because it is somewhat apart from the main scope of this paper. Instead, we shall 
only consider below several cases when - 1 — a\a2 is positive and of order unity. 

5.2. Solutions ofthe complex amplitude equations with intermediate scales 

Let us now consider the case when 1 + axa2 < 0 and the approximation leading to the 
hyperbolic system (1.1)—(1.3) fails. Inthis case we must numerically intégrate the complete 
problem (1.19)—(1.23). This is done below by a standard (except for the nonlinear boundary 
conditions (1.23) that must be handled with some care) implicit, finite difference scheme. 

For the sake of brevity, and because numerics is not cheap if e is small and the problem 
(1.19)—(1.23) depends on so many parameters, we cannot pretend any completeness. Instead, 
for illustration we only consider a case when the solution without intermediate scales is as 
simple as possible, namely, a perfect standing wave (this requires the reflection coefficient 
p to be equal to 1). Then any complexity of the resulting solutions of (1.19)—(1.23) is 
entirely due to the intermediate scales, and their role will be somehow uncovered. A piece 
ofthe large time evolution ofthe modulus ofthe rescaled complex amplitudes, A\ and Bu 

is plotted in figure 15 (plots (a)-(c)) for three sets of valúes ofthe parameters. Note that: 
(a) The size of the structures are of the order of */e = 1/V500. Smallest structures, of 

the order of e are damped out and the consistency conditions (1.9) hold. This is appreciated 
in figure 15 and has also been quantitatively checked through the Fourier spectra of Ai and 
Bi. 

(b) The structures approximately evolve with the group velocity (that equals one in the 
present scaling) and are purely reflected at the end-walls, as was to be expected. 

(c) As dispersión (\a\ |) increases the separationbetween nearby solitary waves increases, 
while nonlinearity (|OÍ2 |) leads to the opposite trend. 

(d) The number of solitary waves travelling in opposite directions is not constant. The 
system sometimes exhibits creation and annihilation of waves, pairing of nearby waves 
and splitting. 



Figure 14. First Lyapunov exponents of (5.13)—(5.17) for the solutions of (1.1)—(1.3): (a) R = 
0.001, o- = 2, k = 6 (steady); (b) R = 1, o- = 3, k = 4 (periodic); (c) R = 0.001, o- = 2, k = 10 
(chaotic); (d) R = 1000, o- = 4, A. = 9 (quasiperiodic) and (e) R = 1000, o- = 4, k = 11.5 
(hyperchaotic). Labels are the corresponding valúes of 1 + 0102-



(e) Both Ai and B\ vanish at some particular valúes of x and t. This means that the total 
phase shift of Ai and B\ between the end-walls is not constant and yields dislocations in the 
x — t diagrams when both wavetrains are plotted simultaneously and the basic wavelength, 
of the order of e, is also considered as we do now. To this end, in figure \5(d) we plot the 
x — t diagram of \w\, where w is the state variable 

w = Ale
l(Qt+kx)L + B ie

l(£2í-*X)L + ce. (5.19) 

where Ai and B\ are as in figure 15(c) and, for illustration, we take Í2L =kL = 40JT. That 
plot contains too much information and only overall properties are clearly appreciated. We 
just point out two of them. First, the spatial order is lost (compare with the plots in, for 
example figures 11 or 13) and, secondly, spacetime defeets appear. 

6. Comparison with experiments 

Let us now discuss several experimental results concerning the oscillatory instability on 
the light of our theoretical results in sections 3 and 4. We shall consider three physical 
problems, namely, a secondary instability of rolls in puré Rayleigh-Bénard convection, the 
transversal instabilities of two-dimensional thermocapillary flows and of the now between 
counter-rotating cylinders. Unfortunately the degree of precisión of the experimental results 
in the literature is not always good enough near threshold and some comparisons can only 
be qualitative. 

6.1. A quantitative comparison in puré Rayleigh-Bénard convection 

The oscillatory instability appears as a secondary instability on straight convective rolls at 
low Prandtl number, in (puré Rayleigh-Bénard convection in) a fluid layer heated from 
below. Here the bifurcation parameter is the Rayleigh number. 

We shall consider some experimental results by Croquette and Williams [18,19] who 
used pressurized Argón gas (at 60 atm) between two rectangular, parallel plates, with 
horizontal sizes 24d x 31 .Id, where d = 1 mm was the distance between them. The Rayleigh 
number was controlled quite precisely through the temperature shift between the plates, 
that was regulated within 0.002 °C. Their experimental results concerning the oscillatory 
instability in a 20-roll pattern may be summarized as follows. In terms of a critical valué of 
the Rayleigh number, Rac, corresponding to the first appearance of convective rolls. The 
oscillatory instability first appeared at Ral = 3.929Rac via a supercritical bifurcation to 
a pair of wavetrains that counter-propagated along the axis of the rolls from the centre to 
the end-walls; the associated wavelength was well defined and independent of the Rayleigh 
number (eight wavelengths were always seen along the axis of the rolls). In the range 
Ral < Ra < Ra3 = 4.2&3Rac the complex amplitudes of the counter-propagating waves 
were steady; the complex amplitudes were calculated by digital filtering and Fourier analysis 
techniques to first sepárate the two waves and then remove the fast spatial and temporal 
variations. The pattern was symmetric in Ra1 < Ra < Ra2 = A.\2Rac and non-symmetric 
in Ra2 < Ra < Ra3, after exhibiting a supercritical symmetry-breaking bifurcation at 
Ra = Ra2. At Ra3 they observed a Hopf bifurcation to a monoperiodic behaviour of 
the complex amplitudes, and the bifurcated branch exhibited a supercritical period-doubling 
bifurcation at Ra = Ra4, with 4.366Rac < Ra4 < AA\lRac. For higher valúes of Ra 
the pattern became chaotic and still essentially one-dimensional, but when Ra was further 
increased the phase coherence from roll to roll was lost and the pattern became clearly 
two-dimensional (and thus out of the present analysis). 



Figure 15. Solutions of the parabolic problem (1.19)—(1.23) for e = 555, i> > 0,p = l,k = 
1.5, a = 3,a?3 = 0, a\ = 0 and: (a) ai = \,ai = —3, (b) ai = \,ai = —12 and 
(c) ai = 6,a2 = —3. The x — t diagram of the state variable (5.19) for the case in (c) is 
plotted in (d). 
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Figure 15. (Continued) 

Now, the end-walls were clearly absorbing and the group velocity is known to be 
positive for this experiment [18-20]. Thus, according to equation (1.25) above, the modified 
reflection coefficient R = p2 is smaller than 1. In addition, the coupling coefficient a is 
known to be approximately equal to 2 [21] and quantitative companson with our results in 
sections 2 and 3 would be at hand if the modified reflection coefficient R were estimated. 
But before proceeding further, note that the critical Rayleigh number associated with the 
onset of the oscillatory instability in infinite domains, Ra° (corresponding to the valué 
X = 0 of our bifurcation parameter) is not known and, in addition, there is an unknown 
factor between Ra - Ra° and X. Then we only may compare quotients of differences of 
bifurcation valúes such as 

(Ra3 - Ral)/(Ra2 - Ra1) = (A.H - A.C)/(A.SB - A.c). (6.1) 

The authors of [18,19] did some experiments to obtain the linear dispersión relation and 
the critical Rayleigh number in infinite domains to obtain (through the shift Ra1 — Ra°) 
the reflection coefficient p, that they estimated it to be p = 0.183. With that valué of p, 
R = p2 = 0.0335, and a = 2 our analysis above predicts a valué of the quotient (6.1), 
2.07, which compares reasonably well with the measured valué, 1.85; but a glance at the 
complex amplitudes profiles in [19, figures 10 and 18] shows that p must be much smaller. 
It might be, in fact, as small as 0.03, and thus R = 0.001 = p2 may be a good choice for 
the modified reflection coefficient. That valué of R (with a = 2) provides a much better 
estimate of the quotient (6.1), namely, 1.863; infact, as R -> 0 the quotient (6.1) converges 
to a constant (see figure 6), precisely, 1.82, that compares also well with the measured valué. 
If we take R = 0.001 then the calculated bifurcation diagram is as given in figures 4(a) 
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Figure 15. (Continued) 

and 8 and exhibits the same bifurcations as in the experiment described above. In order to 
obtain a more accurate valué of R we compare the measured profiles in [19, figures 10(a) 
and (£)], corresponding to a steady symmetric and steady non-symmetric solutions, with 
our theoretically obtained ones. The experimental profiles correspond to the ratios 

(Ra - Ral)/{Ra2 - Ra1) ~ 0.56, 1.53 

respectively, and the associated valúes of our bifurcation parameter X are readily obtained 
from the relation 

X = Xc + (XSB - Xc)(Ra - Ral)/(Ra2 - Ra1). 

Then the theoretical profiles depend only on R = p2 (recall that a = 2 is fixed) and on 
an unknown scaling factor that is not given in [19]. By using a least squares method we 
find that the best approximation occurs for R = 0.006, and the fitting of the profiles is 
quite good (see figure 16). For this valué of R, the quotient (6.1) is readily obtained from 
figure 6 to be equal to 1.91, and also compares well with the experimental valué, 1.85. Also, 
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Figure 16. Comparison with experimental results from [19]. Broken curves: experimental 
profiles, full curves: solutions of (1.1)-(1.3) for the indicated valúes of the parameters. 

the theoretical bifurcation diagram (plotted in figure 17) exhibits the same main transitions 
as those reported in [19]; namely, the primary bifurcation, a symmetry breaking, a Hopf 
bifurcation, a period doubling sequence and a transition to a chaotic dynamics. 

To conclude, we have selected the valué R = 0.006 for comparison with experimental 
results. With this valué of R the theoretical bifurcation diagram exhibits the same transitions 
as those observed experimentally; the associated valúes of the bifurcation parameter and the 
solutions compare reasonably well with experiments. But we do not claim any precisión 
in the estimated valué of the modified reflection coefficient (R = 0.001 gives equally 
acceptable results) because at these small valúes of R the quotient (6.1) is quite insensitive 
to changes in R. In addition: (a) we do not know how good the approximation a = 2 is; (b) 
the large parameter L is only of the order of 10 and thus higher-order terms, not considered in 
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Figure 17. Poincaré sections of the solutions of (1.1)—(1.3) for a = 2 and R = 0.006. 

sections 2 and 3 could have a non-negligible effect in quantitative comparisons; and (c) our 
results must worsen as the bifurcation parameter grows (essentially, their validity requires 
k/L <C 1). In connection with the last remark, note that the authors of [18,19] reported 
a more complex two-dimensional behaviour, suggesting a fully nonlinear evolution when 
X is significantly increased. Finally, the wavelength of the counter-propagating wavetrains 
is essentially independent of the bifurcation parameter in the experiment, as predicted by 
our theory in sections 2 and 3. This would not be trae if smaller, intermediate scales 
were present, as seen in section 5, where we have conjectured the condition \ + a\a2 > 0 
(with a\ and a2 as defined in (1.24)) as necessary and sufficient for the small scales to be 
inhibited. And in fact, the constants a\ and a2 are predicted in [19] to be a\ ~ -0.86 and 
a2 ~ -1.15; thus the above-mentioned condition holds. 

6.2. Qualitative comparisons 

The remaining comparisons here are necessarily qualitative because of the lack of precise 
quantitative experimental results near the threshold of the oscillatory instability. 

(a) Oscillatory thermocapillary flows have received great attention in the literature due to 
their interest in float-zone crystal growth; the associated experiments are generally performed 
in cylindrical geometries and involve complex spatio-temporal two- and three-dimensional 



patterns [22]. Some simpler one-dimensional patterns have also been obtained in simpler 
geometries that are considered now. 

(a.l) Daviaud and Vince [23] used a container 20 cm long and 1 cm wide filled with 
silicone oil of viscosity v = 0.0065 Stokes and Prandtl number Pr = 10, up to a height 
h ranging from 0 to 10 mm. They applied a horizontal temperature gradient along the 
smaller dimensión of the container by fixing the temperatures of the walls. In the range 
0 < h < 2.8 mm they increased the temperature difference AT and observed that there 
was a threshold valué (depending on h) such that if 0 < AT < (AT)C then only a steady, 
two-dimensional thermocapillary flow was observed, while for AT > (AT)C a pair of 
wavetrains appeared that counter-propagated perpendicularly to the temperature gradient 
from a source to the end-walls. From the results reported in [23] we can see that the end-
walls are absorbing and the phase velocity of the waves is fairly independent of A T near 
the threshold if h > 1.42 mm, while a clear dependence is observed for h < 1.1 mm. The 
patterns were steady and qualitatively similar to those in the first two plots in figure 5(a), 
suggesting a valué of the coupling coefficient a such that a < 1; but spacetime dislocations 
were reported that could be due to intermediate scales if they appear cióse to the threshold 
or to fully nonlinear effects, not included in our theory, otherwise. Unfortunately a precise 
description is not given near the threshold and direct comparison with our results above is 
not possible. 

(a.2) A somewhat similar experiment was performed by Vince and Dubois [24] (see 
also [25]) who created a symmetric, horizontal temperature gradient in the cross section 
of the container by setting a long, hot wire just below the free surface, the heat power 
being electrically supplied to the wire. The observations were presented in terms of two 
parameters, the distance h from the wire to the free surface and the heat power Q supplied 
to the wire. For a given valué of h a threshold valué Qc (depending on h) was observed 
such that for Q < Qc only a two-dimensional steady flow was observed, while for Q > Qc 

a pair of counter-propagating waves appeared parallel to the wire. Unfortunately no precise 
description is given near the threshold and quantitative comparison is again not possible. 
The main observed feature was that for h smaller than a critical valué h0 the propagative 
pattern (consisting of a source of waves inside the container and two sinks near the end-
walls) was quite ordered, while for h > h0 the pattern exhibited a continuous wavenumber 
distribution and spacetime dislocations. Then we are led to conjecture that this second 
regime corresponds to the appearance of intermediate scales; note that a different conjecture 
to explain this regime, associated with noise amplification, was made in [26]. 

(b) The oscillatory instability is also the pattern-formation mechanism in experiments 
dealing with, for example Taylor-Couette convection between counter-rotating cylinders 
[27], isothermal double-diffusive convection [28] or double-diffusive convection [29]. 
But although some of the x — t diagrams in this paper are qualitatively similar to the 
experimentally observed ones, a precise comparison is not possible because of the lack of 
appropriate experimental results near the onset. 

7. Concluding remarks 

We have considered a hyperbolic system that applies near the onset of the oscillatory 
instability in appropriately large spatial domains when only the scales of the order of the 
spatial domain come into play. That system is real and depends only on the bifurcation 
parameter X, the coefficient of the cross-nonlinearity a and a modified reflection coefficient 
R. If - 1 < a < 1, the system exhibits only symmetric steady states, which are always 
globally, asymptotically stable. If a > 1 instead, the system always exhibits, at least, two 



secondary bifurcations, a symmetry-breaking and Hopf bifurcation; for larger valúes of the 
bifurcation parameter the bifurcation diagram is much more complex, and strongly depends 
on the specific valúes of R and a. 

When smaller, intermedíate scales come into play, the hyperbolic system no longer 
applies. A linear system has been derived for the incipient evolution of the scales, and a 
simple (necessary and sufficient) condition has been conjectured for the intermediate scales 
to come into play. This condition (seems to apply with great generality and) coincides with 
that giving the onset of the modulational instability of the simplest, non-trivial standing wave 
solutions that appear when spatial periodicity is imposed. The complete set of amplitude 
equations was numerically integrated in a case when the intermediate scales cannot be 
ignored. 

Finally, a comparison with experiments was performed in the only case when we were 
able to find precise, quantitative experimental results near the onset of the instability. Some 
comments on qualitative comparisons were made in other cases. 

In addition to the comments made above on the hyperbolic model (section 2) and on 
specific results (sections 3-5), some additional remarks are now made for convenience. 

(a) Our theory above (and in [4]) is based on rational (rather than phenomenological) 
approximations and, consequently, it is expected to explain, both qualitatively 
and quantitatively, experimental results provided that the assumptions justifying the 
approximations hold. Some of those assumptions have already been commented in sections 1 
and 2, and some others are considered now. All of them should be considered when 
comparing with experiments. 

(b) We assumed that the group velocity is of order unity. If it is small, then a different, 
codimension-two limit must be considered; see [30,26] for analyses of this limit in the 
stationary and non-stationary cases, and [5] for further references. The wavenumber-
selection phenomenon mentioned in [26,30] comes from particular source and sink solutions 
that are only acceptable when diffusion, dispersión and convection are of the same order. 
In our case, instead, stable sources or sinks (depending on the sign of the group velocity 
and on whether the reflection coefficient is smaller or larger than 1, see our discussion in 
remark (e) of section 2) appear only as solutions of the hyperbolic system, as a balance of 
convection, nonlinearity and the effect of the end-walls, when the intermediate scales are 
inhibited. 

(c) Our theory is one-dimensional as the experimental results are quite frequently, 
sometimes (but not always) due to anisotropy properties. The extensión of our theory 
to cover the multidimensional case is expected to be highly non-trivial, with the spatial 
isotropy properties and the shape of the domain playing an essential role. 

(d) Our theory is asymptotic and should apply at least for sufficienty small valúes of the 
parameters and variables that are assumed to be small. In practice, small numbers are just 
small, not 'sufficiently small'. But, as any asymptotic theory, that presented here should 
apply provided that the neglected terms are in fact small compared with the considered ones, 
and this is expected to apply quite frequently in practice near the onset of the instability 
(that is, for not too large valúes of the scaled bifurcation parameter X). 

(e) Our theory assumes that the primary bifurcation is supercritical and, according to 
several comments in sections 1-4, this requires three conditions on the coefficients of the 
amplitude equations (1.6), (1.7) 

Re c > 0 Ree! > 0 Re(ei + e2) > 0 

where Re stands for the real part. If one of these assumptions fails then a fully nonlinear 
analysis should be applied except in the non-generic case when subcriticality is weak, 



namely, when the term with the wrong sign is small enough and can be balanced with a 
higher-order term whose coefficient has the right sign to prevent blowing-up in the weakly 
nonlinear description. Note that this condition is concerned with relative orders of magnitude 
of, at least, two terms in the amplitude equations. For instance, if Re e\ < 0, then the validity 
of a weakly nonlinear description does not require just that | Re e\ \ <-¿ 1, but rather it requires 
that | Re ei | <C |Ree'j|, where e\ is the coefficient of the quintic terms (A| A|4 and B\B\4) 
that should be added in equations (1.6) and (1.7) to prevent blowing up. 

(f) We have not considered annular domains, that is, periodic boundary conditions. As 
explained in [4, section 6], the extensión of our theory to this case is quite straightforward. 
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Appendix. Closed-form solutions of (3.1)-(3.3) 

If a = - 1 and X = — (log/f)/2 then (3.1)—(3.3) have the one-parameter family of solutions 

us(x) = vs(-x) = (logR)Rx/2(c-Rx - R-x) if R =é 1 (A.l) 

where the parameter c varíes in the interval —oo < c < 2 if R < 1, and in the interval 
RI/2 + R-\/2 < c < 0 o i f J R > l . lfR = \, then 

us{x) = vs(x) = c (A.2) 

with the parameter c suchthatO < c < oo. lía = - 1 and A ^ -(logR)/2, then(3.1)-(3.3) 
have no positive solution. 

If a = 0 and X > -(logR)/2, then (3.1)—(3.3) have a unique solution, that is given by 

us(x) = vs(-x) = X(Rek - Q-X)/[RQX - e"A - (R - l)e2Ax] (A.3) 

if X ± 0, while if X = 0 then 

«*(*) = vs(-x) = (R- 1)/[R + 1 - 2x(R - 1)]. (A.4) 

If a = 0 and X > -(logR)/2, then (3.1)—(3.3) have no positive solution. 
If a = 1 and X < -(log R)/2 then (3.1) and (3.2) have a unique solution, that is written 

in terms of the parameter 5 as follows. If R < 1 then 

X = f(S) coth(2á) us(x) = vs(-x) = [X- f(S) tanh(/(á)x + á)]/2 (A.5) 

for tanlT1 ((1 - */R)/(l + */R)) < 5 < OO, where 

f(8) = 2tanh-1[(l - V^ ) /U + V^)tanhá]. 

If R > 1 and -(logR)/2 < X < -(VR - l)/(</R + l), then 

X = -g(S) coth(2á) us(x) = vs(-x) = [X + g(S) coth(á - g(S)x)]/2 (A.6) 

for 0 < 5 < oo, where 

g(á) = 2 t a n l T 1 [ ( y ^ - l ) t a n h á / ( V ^ + l ) ] . 

If R > 1 and X = -(-/R - l)/(-/R + 1), then 

us(x) = vs(-x) = [(VR + 1)/2(VR - 1) - x ] - 1 - (VR - \)/(VR + 1). (A.7) 



If R > 1 and k > -(*/R - 1)/(V# + 1) then 

X = -h(S) cot(2á) us(x) = vs(-x) = [X + h(S) cot(á - h(S)x)]/2 (A.8) 

for O < 5 < TT/2, where 

/z(á) = 2 t a n - 1 [ ( V ^ - l ) t a n S / ( V ^ + l ) ] . 

If R = l, then 

Ms(x) = vs(-x) = A./2. (A.9) 

If a = 1 and X < — (log/f)/2 then (3.1)—(3.3) have no positive solution. 
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