INVARIANT REGIONS AND GLOBAL ASYMPTOTIC STABILITY
IN AN ISOTHERMAL CATALYST*
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Abstract. A well-known model for the evolution of the {space-dependent} concentration and (lumped)
temperature in a porous catalyst is considered. A sequence of invariant regions of the phase space is given,
which converges to a globally asymptotically stable region B. Quantitative sufficient conditions are obtained
for (the region B to consist of only one point and) the problem to have a {unigue) globally asymptotically
stable steady state.
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1. Introduction. This paper is concerned with a well-known model (Aris [1]) for
the evolution of a single reactant concentration ¥ and of the uniform temperature o
in an isothermal catalyst

1.1 oujat=A2Au—¢*flu,v) InQ, oufan=o(l—u)  ondQ,
(1.2) dv/dr=,\p(l—v)+.{qb2j flu, v} dx.
L1

Here, A is the Laplacian operator and n is the outward unit normal to the boundary
of the bounded domain Q< R? (p=1,2, or3). The parameters ¢°, o, A, and u are
strictly positive.

As it has been frequently pointed out in the literature ([1] and references given
therein), the isothermal model (1.1), (1.2) is not unrealistic because temperature is
often lumped in practice, due to the high conductivity of the solid catalyst. In fact,
such a model is a first approximation, as 8 —» 0 and v - 0, of the nonisothermal model, -
in which temperature is spatially distributed, and given by

(1.3) L av/at=Av+ B¢ f(u, ) inQ, av/an=v{1—1v) on 3.

In this limit, the parameters A and p of (1.2) are A = 8L/ V,, and p = v/ 5,8, where
V,, and S, are the volume and the external area of the domain ( (see [2]).

The following basic assumptions will be made:

(H.1) The domain @ < R” is bounded and (if p>> 1) it is uniformly of class C**°,
for some 0 << o < 1, Then, it satisfies uniformly the interior and exterior sphere properties:
there are two constants, p, >0 and p,> 0, such that, for every point ¢ of 3, two
hyperspheres, S, and S,, of radius p, and p,, are tangent to 32 at ¢ and satisfy: S, < Q,
§5,N0=1{q)}.

(H.2) The function f:[0, oo X [0, oo[ - R is of class C' and there is a continuous
function F:[0, «o[->R such that: (i) f(0, v) =0 for all v € [0, co[; (ii) 0< f(u, v) = F(u),
| £.(u, v} = F(u), 0<f,(u, v} for all (x, v)€ 10, o[ X ]0, oof.



Assumption {H.1} is made for some existence and comparison theorems to be
applicable. Assumption (H.2) is satisfied by

(14) Silu,v)=u"exp(y-y/v), m=zl, y=x0,
(1.5) Sluv)y=u"(k+u) "exp(y—y/v), mzl, y=0, k>0,

(1.6} Flu, v)=u"[kexp (va—va/v)+u] " exply—y/v),
m=z1, y=ry,=0, k>0

The Arrhenius reaction rate function f; is most frequently used to model thermal
effects on the reaction rate (see [1]). The Langmuir-Hinshelwood functions £, and f,
have received a considerable attention in the literature. Function f; was first proposed
to model carbon monoxide oxidation over platinum catalysts, which is the main reaction
in automotive pollution-abatement devices. Further experimental evidence showed that
several hydrocarbons, such as ethylene and propylene, follow similar rate laws when
oxidized over noble metal catalysts (see [3]).

In this paper, some global asympiotic stability properties of the steady state of
(1.1}, (1.2) will be obtained. Of course, results in the literature for model (1.1), (1.3)
(see [4]-[6]} apply to (1.1), (1.2) after small changes; unfortunately they are rather
mild: the steady state of (1.1), (1.3} is globally asymptotically stable (and hence, it is
unique) if the parameter ¢° is small enough. A slightly stronger result was proven in
[5], but it requires the function f to satisfy f(u, 0) >0 for u >0, and this property does
not hold if £ is given by (1.4)-(1.6). The results of [4] were obtained by means of a
generalized Gronwall inequality. The results of [ 5], [6] were established by constructing
sub- and supersolutions converging to the steady state; the same idea has been used
also in the analysis of related reaction-diffusion problems (see, e.g., [7]1-[10]).

Our approach is somewhat different, although it is also based on comparison
theorems. We shall construct a sequence {B,,} of invariant, stable regions of the phase
space of (1.1}, (1.2}, such that every region B,, traps the transient state of the system
in a finite time for arbitrary initial conditions. If the sequence {B,} converges to a
region of the phase space B in an appropriate uniform sense, then such region is
globally asymptotically stable for {1.1), (1.2). Therefore, B contains the nonwandering
set of (1.1}, (1.2) (i.e., the set of points {(u, v) of the phase space of {1.1), (1.2} such
that, for every neighborhood of (&, v), U< C{(2) xR, and every T>0, there are a
constant £> T and a point (#,, 25} € U that are such that the solution of (1.1}, (1.2),
with initial conditions (u(0), v{0}) = (u,, v,), satisfies (u(r), v(¢}))e U (see Hirsch
[11])). In particular, B contains every (stable or unstable) steady state, periodic, or
quasiperiodic solution, - - -, of (1.1}, (1.2). If B consists of only one point, then such
point is a globally asymptotically stable (and hence, a unique} steady state of (1.1),
(1.2). This method of finding globally asymptotically stable invariant regions for
nonmonotone flows is similar to that used by Leung [12] in his study of some
prey-predator problems; in some sense, the ideas are in the spirit of the work by Keller
[13] and Sattinger [14] on semilinear elliptic problems.

[n §2 we shall prove some basic results and state some definitions. In § 3, a
sequence of invariant regions of the phase space of (1.1}, (1.2), of the type described
above, will be obtained. The results of §3 will be applied in §4, to obtain some
quantitative sufficient conditions for the steady state of (1.1), (1.2} to be globally
asymptotically stable for a function f of a rather general type: flu, v)=
g(u) exp {y—v/v), which includes the particular instances of (1.4) and (1.5). In
particular, we shall obtain global asymptotic stability of the steady state if ¢~ is



sufficiently small or large, or if the function g is increasing and v is sufficiently small.
As a corollary, some sufficient conditions for the steady state of (1.1}, (1.2} to be
unique will be obtained. For results on existence and uniqueness of the steady state
of (1.1), (1.3), see [4], [6], [15], [16]. It should be pointed out that to prove uniqueness
for large ¢ is not an easy task (see [16]).

The following notation will be widely used in the sequel. If ( is defined as above,
and if u,, u,€ C(Q), then u, = u, will mean that u,(x) = u,(x) for all xe £, and u, < u,
will mean that u, = u, and u, # u,. If u,(x) < u,(x) for all xe£), then we shall write
TR

2. Preliminary results and definitions. Let us first consider some basic results
concerning the evolution problem (1.1), (1.2), with initial conditions

(2.1) u(x,0)=1(x)=0 forall xefl, p(0)=6=0,

where de C*({}) and satisfies the boundary condition (1.1). By a (classical) regular
solution of (1.1), (1.2}, (2.1) we shall mean a couple of functions

ue CY(Ox[0,0)NCH(Rx]0,00)), ve CY[0,00]),

which satisfy (1.1), (1.2}, (2.1) poiniwise, and are such that u(-, t)=0, p(1)Z 0 for all
t>0. Here, u € C"® means that the functions (x, ¢) - u and (x, {} > Du are continuous.
ue C*' means that e C"* and the functions (x, )~ D*u and (x, t)->au/ar are
continuous, where Du and Du are the matrices of first- and second-order x-derivatives
of u. Observe that negative concentrations and temperatures are not allowed since they
do not make sense from the physical point of view.

The following consequence of maximum principles will be widely used in the
sequel.

LeMMA 2.1. Let Q be as in assumption (H.1), and let W be a function of C"%({} x
[0, o) N C*Y x 10, oof), such that

{a) W(x,0)Z0 for all xe{.

(b) aW/at> AW for all (x,t)e¥x]0, [ such that W(x, ) <0.

{¢) aW/an=>0 for all (x, t)eal) x 0, oo such that W(x, 1) <0.

Then W(x, 1)Z0 for all (x, 1) x[0, oof.

Proof. The result follows by standard arguments, using maximum principles
(Protter and Weinberger [17]).

Global existence and uniqueness of solution of (1.1), (1.2), (2.1) will be a con-
sequence of the following a priori bound.

LEemMma 2.2. Under assumptions (H.1) and (H.2), let u=u(x, t), v=0v(1), be a
regular solution of (1.1), (1.2), (2.1). Then, there is a constant a >0 and a function
o e CHQ), such that

u(x, =1+ g(x)exp(—at) for all (x, 1) e x[0, [.
Proof. As is well known, the problem
(2.2) Ag+ayp=0 in ), dr/an+ogr=0 on 3,

has a smallest eigenvalue a > 0, and eigenfunctions ¢ such that ¢ > 0. Hence, ¢ may
be chosen to be such that ¢=2(ii—1), ¢ »0 and the function W= W(x, )=
1—ulx, t)+[2 exp (—af)—exp (—2at)]¢(x)/2 satisfies W(-,}=0 for all :t=0, as it
comes out when Lemma 2.1 is applied.



THEOREM 2.3. Under assumptions (H.1) and (H.2), the problem (1.1}, {1.2), (2.1}
has a unique regular solution if i € C*(}) and i satisfies the boundary condition.

Proof. Forgiveniiand &, let y beasin Lemma2.2andletk =1-+max {¢(x): x e Q).
Then, no regular solution of {1.1), (1.2), (2.1} is affected when fis replaced, in (1.1,
(1.2), by another function, f :R>~ R, that is defined by: f(u, ) =0 for u <0, f(u, v} =
flu,|o]) for 0= u=k, f(u, v)=f(k |v]) for u>k Any solution of (1.1), (1.2), (2.1),
with { modified as above, is a regular solution of the original problem (the converse
is trivially satisfied). That is, if v € C (£ x [0, o) N C>'(}, 10, [}, v e C'([0, o) is
a solution of the modified problem, then u(-, )=0 and v{¢)=0 for all +>0. Since
flu, v)=0 for all (1, v)cR?, (1.2) yields dv/dr = Au(1—v) and (1) =0 for all +>0;
aiso, u(-, )=0 for all +>>0, as it comes out when Lemma 2.1 is applied to W=
u exp (—t), and it is taken into account that f(u, v) =0 for u <0. Then, we only need
to prove the conclusion of the theocrem when f is replaced by £, and this comes out
from standard theory on semilinear equations (e.g., from [18, Cor. 3.3.5] and [19,
Lemma 4.2]), when taking into account that f is locally Lipschitz and globally bounded.

The following & — & stability definitions of the Lyapunov type will be used in the
sequel. They are given in terms of the distance d, associated with the norm

(G, ©)|| = max {Ju(x)|: xe Q}+|v] for (u, v) e C()xR.

The distance between (u, v)e C(Q)XR and B< C(f1)xR is defined as usually
d[(u, v), B]=inf {||(z —u', v—v")|: (&', v")c B}. Observe that C(Q) xR includes the
phase space of (1.1), (1.2}, (2.1).

DeriniTioN 24, Let B< C(1) xR, B is said to be an invariant region for the
problem (1.1), (1.2}, (2.1) if, for any regular solution of the problem, (u(-,0), v(0))e B
implies (u(-, £), v(¢)}e B for all £>0. An invariant region B is said to be stable if,
for every >0, there is a § >0 such that for every regular solution of the problem
d{(u(-,0), v(0)), B]< & implies d[{u(-, 1), v(#)), Bl<e for all t+>>0. A region B is
said to be globally asymptotically attracting if every regular solution of the problem
satisfies d[(u(-, t), v(¢)), B] >0 as ¢ > 0. An invariant region B is said to be globally
asymptotically stable if it is stable and globally asymptotically attracting. A region B
is said to be globally finitely attracting if, for every regular solution of the problem,
there is a constant T < <0 such that {(u(-, ), v{(¢t))e B forall ¢= T,

The concept of globally finitely attracting region and the following lemma will be
used in § 3.

Lemma 2.5. Let the sequence of regions {B,,} and the region B=N{B,,: me N},
of C({1) xR, be such that

(a) Every B,, is invariant, and globally finitely attracting for (1.1}, (1.2), (2.1);

(b) For every meN, there are two constants, ¢, >0 and 8, >0, such that
N(B,8,)c B, < N(B, ¢,,), where

N(B, 8) ={(u, v}e C(§}) xR: d[(y, v), Bl < 8};

(c) £,~0 as m- o,

Then the region B is invariant and globally asymptotically stable for the problem,

Proof. Since B =1 {B,,: meN}, the region B is clearly invariani. B is stable since
for every € > 0 there is an m € N such that &, < £; then the definition of stable region
is satisfied with & = §,,. Finally, B is globally asymptotically attracting since for every
& >0 there is a constant T such that d[(u(-, ¢}, v(t)), B} <& for all 1= T. To see that,
take m such that £, < ¢ and take into account that B, is globally finitely attracting
and B, c N(B, &,)c N(B, e).



3. Invariant regions. In this section, we obtain a sequence of regions satisfying
the hypothesis of Lemma 2.5, which leads to a globally asymptotically stable region
of the phase space of (1.1}, (1.2), (2.1).

Let {a™} be a strictly decreasing sequence of real numbers, such that a™ > 1 as
m -0 and a’(a'~1)= M 'a'f(a’ 1/ %), where the constant M > 0 is defined below.
Let the sequence {a,,} be defined by a,, = 1/a™ for all me N. From assumption (H.2)
(see Introduction), it turns out that there is a constant M > 0 and a function k :[0, ¢°] x
[&o, of > R, of class C' and bounded, such that 2= 0, 9h/3u =0, 3h/ov =0, —3h/ou=
af/ou < M for all (u, v) €[0, a”]x [a, .

We consider the sequence of regions {B,,} = C({}) xR, defined by

(3.1} Bm={(u,v)e CIH*R: y, Susu™, G, =v+A I ude=G™, vmgvgu”'},
2]

where Uy, uo! GO, GO, vy, and vo are

(3.2) =0, Go=ag—pu '0Sa(a’~1), vo=ay, u’=a",

(33) G°=a’(1+AVp)+p™'0S,,
33
v°=a’+pu '@ Vo sup {f(a® v)+ h(a® v): vZ ag)

(Vo and g are the volume of () and the area of (), respectively), and where u,,, u™,
G, G", v, and ¢™ (m= 1) are defined, inductively, by

Att,, — ¢ Mty = 0 [ f oy, v™ ") — Mu,,_;] inQ,

(3.4)
ou,,/on=ola, —u,) ondfl,
(35) Au™ — d*Mu™ = a"p [ f(u™ ", v ) - Mu™ '] inQ,
’ auTjan=o(a™—u™) on 3},
Gm=am+AI umdx+u'lof (1—u™)ds,
L1 ALl
(3.6)
G"=a™+A J. u”dx+p"aj (1-u,,) ds,
o a0

3.7 vm=max{am,Gm—AI u™ dx, wm}, u”’=min{G"’-)¢J. u,, dx, w'”}
a

o

with

(3.8) W = e+ ' 7 I [f by Ot} F B2ty Oy} — B, ™)) dix,
En3

(3.9) wh=a"+pu @’ J LA™, 0™ ) +h(u™, o™ ") =~ Bt 0n1)] dx.
1y
LeMmMa 3.1. Let m=0 be an integer. If a regular solution of (1.1), (1.2), (2.1)
satisfies, for all t =0,
(3.10) o= u(-,1)=u’, ay=u(t) ifm=0, or

(3.11) UpSu(-, =" v, =v()E0™' ifmz1,



then there is a constant T such that forali t = T,
(3.12) G,=v(t)+A J ulx, 1) de=G", v, S 0{)= "™
{3

If, in addition, the inequalities (3.12) hold for ¥ =0, then they also hold for ali t > 0.
Proof. By using (3.10) or (3.11}, the time derivative of G(¢) =ov{t) + A [n ulx, t) dx,

il

dedr=Au(1—G)+A2pI udx+/\aj {1—u)ds,
o

and dv/dt are easily seen to satisfy, for all t=0,
Ap (G, —G+1—a, ) =dCG/dt 2 Ap(G"—G+1—a™) formz=0,
ap(l—v)=do/dt=apn(®—v+1-a,
Ap(w,—v+1—a ) sdv/di=Ap(w"—v+1-a™) form=z=1.

From these inequalities, the conclusion of the lemma readily follows.

Lemma 3.2. The sequences defined by (3.1)-(3.7) satisfy, for all me N;

Aty S U "< U™, Gy < G <G < G™, 0y < Oy <™ 0™,

B. B, is an invariant region for the problem {1.1), (1.2), (2.1).

C. B,, is a globally, finitely attracting region for (1.1}, (1.2), (2.1).

Proof. An induction argument will be used in the three cases. It will be proved
that the required property holds for m =0 and that it is satisfied for m = p if it holds
form=p—1.

A. Both steps of the induction argument are easily accomplished by means of
maximum principles.

B. To prove that B, is invariant, observe that if a regular solution of (1.1), (1.2),
(2.1) is such that (u(-, 0), v(0)) € B,, then it satisfies, for all +=0: (i) u(-, )= 1u,=0
(definition of regular solution);, (ii) v{f)=Zv;=a, (use the inequality dv/dt=
Al —)); Gii) u(-, ) =u’=a® (apply Lemma 2.t with W =a’—u); and (iv) G, =
v(t)+A fq u(x, £) dx = G®, o(1) = v” (Lemma 3.1). In the same way, if B,_, is invariant
and if (u(-,0), v(0))e B, B,_,, then for all r=0, (u(-, 1), v(1}}c B,_, and (i) u, =
u(-,t)=u’ (apply Lemma 2.1 with W=u—u, and with W=u”—u), and (ii} G, =
p()+afoulx ) dx=G? v,S0(t)S 0" (Lemma 3.1).

C. To prove that B, is globally finitely attracting, observe that any regular solution
of (1.1}, (1.2), (2.1} satisfies, for some finite constants, T,, T;, and T, {i} O=u,=
u(-, t})=u’=a’ for all t= T, (Lemma 2.2); (ii) v(¢) = vy=a, for all 1= T, (use the
inequality dv/df = Au(i—p)); and (iii} Go=v()+A Iﬂ u(x, ) dx = G°, vo=v(1) ="
for all t= T; (take the time variable t =r—max {7, T>} and apply Lemma 3.1).

Now, we assume that B,_, satisfies property C and prove that B, also satisfies it.
Let (4, v) be a regular solution of (1.1), (1.2), (2.1). By taking an appropriate origin
of the time scale, we may assume that w,_, = u(-, )= u?~ and v Ep(1)= v?! for
all t=0. Then there are finite constants, T, and T, such that (i) w, =u(-, {}=u” for
all t= T, (apply Lemma 2.1 with W=u+ ¢, exp(—at}—a’u, and with W=a,u’+
¥ ¥ exp (—at) —u, where & > 0 is the smallest eigenvalue of (2.2), and ¢y, Z0and ¢ =0
are eigenfunctions such that ¢, = a”u, —u(-,0) and ¢ " Zu(-,0) - au’); (il) G, =
(1) +A Jo u(x, 1) dx = G? v, S 0(1)S v” for all = T, (take the time variable t =t — T,
and apply Lemma 3.1).



THEOREM 3.3, A. The sequences defined by (3.2)-(3.7) satisfy u,, > u,, u™ > u*,
uniformly in Q; G, » Gy, G™ > G*, v, > v, 0™ > v*, as m > 0, whereu,, u* ¢ C}(Q),
G,, GY, v,, and v* satisfy

(3.13) Au, = ¢ f(u,, v*) in Q, oujon=0(l—u,) ondQ,
(3.14) Au*=¢*f(u*, v,) in(}, ou*fon=a(l—u*) on a0,

G*=1+AJ oy dx+,u."o*f (1—u*) ds,
o

i

(3.15)
G*=1+,\J. u*dx+u_'aj (1—u,) ds,
o a0
v*=max{1,G*—AJ w* dx,
(3.16) ?
1+H-_I¢ZJ [f(“*; U*)"'h(“*» 1’*)_ h(u*, v*)] dx},
1
v*=min{G*—.\J w, dx,
(3.17) ?

1+p'e’ I LA(u*, ™)+ h(u™, 0*) — h(uy, v,)] dx},
1

(3.18) Oxu,=u*«l, 12G,=G*<w, 1=2p,sv*<w,

B. The region

B={{u, v)e C{A)XR: w,su=u* G, Sv+A J udx=G* v, Ev= v*}

it
is invariant, and globally asymptotically stable for the problem (1.1), (1.2}, (2.1).

Proof. A. The monotone, bounded sequences {G,.}, {G"}, {v.}, and {v™} are
convergent, and their limits satisfy (3.18) (Lemma 3.2A). In the same way, the
monotone, bounded sequences {u,,} and {u"™} are pointwise-convergent to some func-
tions u, and u* satisfying 0« u, = u*. By means of elliptic estimates, it may be seen
that u, and u* are twice continuously differentiable and satisfy (3.13), (3.14), and that
the convergence is uniform in € (only slight modifications are necessary in the proof
of Theorem 2.1 of [14], or in the proof of Theorem 10.3 of [20]). Then (3.15)-(3.17)
are obtained as limits of (3.6), (3.7). The inequality u®*« 1 is easily obtained when
maximum principles are applied to (3.14).

B. The sequence {B,,} satisfies the hypothesis (a} of Lemma 2.5 (Lemma 3.2).
Hypothesis (c) is also satisfied if 5,, and £, are

(1+A V)8, =min {min {u, — 1,,: x€ Q}, min{#” -u*: xe 0},
Gy =Gy G" = G*, 0= Uy, 0" = 0%},

£m = 3(1+ A V) max {max {u, — u,,: x €}, max {u™ —u*: xe 0},
G,—-G,, G"-G* v,—v,, v"—v*}.

Observe that 8,,>0 for m=0,1,- - -, as it comes out from the inequalities u,, « u, =
wr<u”, G, <G, =2G*<G", v, <o, Sv¥<o” (for m=0,1, - - -), which are easily
obtained from Lemma 3.2A.



Then, we only need to prove that hypothesis (b) is also satisfied. To this end,
observe that.
(i) If (u, v) e N(B, 5,,), then there is (v, v’) € B such that

d[(u, v), (', )] =max {ju—u'|: xe Q}+|v~ 0| <8,
Hence, u, Sw'=u*, G, =v' +A [ v’ dx=G* v, sv'=v* and

W —uz(u” - u) (W) i = (1+AVy)6,, +0-6,,20,

G"’—U—AJ udxé(G’"—G*)+(G*—v'~z\ I u’dx)
113 11

—(|v—v’|+)l L Ju—'| dx)

Z(1+AVy)8, +0-(1+AVy)8,, =0,
V- pZ (0™ - o)+ (0¥ =) — o~ v Z(1+A V)8, +0-5,,=0.

Similarly, it is easily seenthat u—u,, =0, v+ A _[n udx— G, =0and v—uv, =0. Hence,
(u,v)c B,,. ~
(ii) If (u,v)< B, and if (&', v")e C{}) xR is given by

w'{x) =max {u,(x), min {u(x), u*(x)}} for xef},

u’ dx, min {v, v, GF -\ I u' dx}},
1]

then (u', v’} e Band d[(u, v), (u', 0 )} =2¢,,/3 < ¢, as is easily seen. Therefore, (1, v) €
N(B, ¢,,).

Remark 3.4, Some remarks about the results above are in order,

A. It is easily secen, by means of an induction argument, that for every solution
of (3.13)-(3.18), (u,, u*, Gy, G¥, vy, v*), the sequence defined by (3.2)-(3.7) satisfies

v'=max{v*, G*—AJ

1]

(3.19) u,<u,sur¥<u” G.<G,=G*<G", U < Uy S 0¥ <0,

for all m € N. Therefore, the solution of (3.13)-(3.18) that is approached as m - <0 by
the sequence (3.2}-(3.7), (d,, 4%, é*, G+, b, 0%), is maximal in the following sense:
any other solution of (3.13)-(3.18) is such that 4, = u, = u*=4*, G, = G, = G*= G*,
i, = v, = v* = ¢*. Since such maxima! solution of (3.13)-(3.18) is necessarily unique,
the region B of Theorem 3.3 is independent of the choice of the sequence {a™} and
of the constant M. Furthermore, if one takes a,,=a™ =1 for all me N in (3.1)-(3.9),
the following sequence of regions is obtained

(3.20) B,,,=*|[(u, Ve CIIXRu, Eus=u™ G, =v+A I udx=G", vmévév’"},

1
where u,, u°, G,, G°, vy, and v° are
(3.21) =0, Go=vo=1, u’=1, G’=1+AVa+pu'o8,,

(3.22) =1+ 1" Vo sup {f(1, v} + (1, 0): 021},



and where u,,, u”, G, G", v,,, and ™ (m=1) are defined inductively by
Aum - ¢’2Mum = ¢2[f(um—! ] vm—l) - Mum—l] iﬂ Q’

(3.23)
duy,fon=c(1 —u,) onafl,
Au"— @’ Mu™ = [ f(u™7, v, ) - Mu™'] in 2,
(3.24)
gu™fan=co(l—u"} on 3,
G,=1+2 J umdx+p,'10'J (1-u™)ds,
(3.25) ? -
G"‘=l+j u'"dx+,u."crj (1—u,,) ds,
1) al}
Uy = max{l, G.—A J u"™ dx,
(3.26) “
1+p7'g? J [ty Oy} + (8, O} = B (U™, 0™ 7)) dX},
I1]
™ = min {G"’—)\ j u,, dx,
(3.27) “

1+p7'¢? J L™, o™ )+ (u", 0™ ) = h(uy,, 0)] dx}-
Y]

The sequence defined by (3.21)-(3.27) is such that (i) it approaches a solution of
(3.13)-(3.18) as m > (since it is seen to satisfy Lemma 3.2A and Theorem 3.3A),
and (ii) it satisfies (3.19) for ali m € N and for every solution of (3.13)-(3.18) (to prove
it, use an induction argument, as above). Hence such sequence also approaches the
maximal solution of (3.13)}-(3.18) as m - %, and the region B of Theorem 3.3 may be
obtained as the limit of the sequence of regions defined by (3.20), which may be easily
computed (numerically in general) from the linear problems {3.23)-(3.27).

B. As it was mentioned in § I, since the region B of Theorem 3.3 is globally
asymptotically stable, it contains the nonwandering set of {1.1), (1.2), (2.1}, and the
same is true for any of the regions B,, defined by (3.20}-(3.27) (since B< B,, for all
mecN, as it was seen in remark A above). In particular every (stable or unstable}
steady state of (1.1), (1.2} is included in B.

C. If every solution of (3.13)-(3.18) satisfies u, = u* and v, = v*, then the region
B of Theorem 3.3 is a singleton, B = {{x«,, v,}}, and (u,, v} is a globally asymptotically
stable steady state of (1.1), (1.2}; in addition, (u,, v,) is the unique steady state of
{1.1), (1.2), as it comes out from remark B above. Observe also that (3.13)-(3.18) has
a unique solution in this case. This result will be used in the next section to obtain
quantitative, sufficient conditions for global asymptotic stability and uniqueness of the
steady state of (1.1), (1.2).

4. Global asymptotic stability of the steady state. In this section, we shall obtain
sufficient conditions for global asymptotic stability of the steady state of (1.1}, (1.2),
(2.1}, when the function f is given by

{4.1) S(u, v)=g() exp (y—v/v),
where g:[0,00[ =R is a C'-function satisfying
{4.2) g(0)=0, g{u)>0 forall u>0.



Particular instances of such form of f are those in (1.4), (1.5). Some additional
assumptions about the function g will be considered below, when needed.

In order to avoid too many involved expressions, we shall obtain only reasonably
good sufficient conditions for global stability (and not the best ones that can be obtained
from the results of § 3).

The role of the parameters ¢, A, and o deserves some attention. The Damkohler
number ¢7 is the basic parameter; the steady-state solutions of (1.1), {1.2), for example,
are usually represented by the curve 5 — ¢, where 7 is a significant functional of the
steady state, i.e.,

n= J.nf(us{x); U_,) dxi( Vﬁf(l, l)’

which is called the effectiveness factor (see [1]). Below, we shall prove that the steady
state is globally asymptotically stable (i) if ¢ is sufficiently small or large, for fixed
values of the remaining parameters; and (ii) for arbitrary values of ¢7 if the parameter
vy is sufficiently small and the function g is increasing. The parameter A is a Lewis
number; increasing values of A are expected to make any steady state of (1.1}, (1.2)
more and more linearly unstable (i.e., to increase the growth rate of the linear stability
analysis). This has been shown to be true for lumped chemically reacting systems (see
{21]), and for some distributed systems (such as (1.1), (1.2} if f{u, v) = u exp (v —y/v);
see [2]). Observe that the steady-state solutions of (1.1), (1.2) do not depend on A.
Some of the results below will be independent of A (they will be valid for 0 < A < ),
and some others {depending on A) will be gquite useful for small values of A. The
Sherwood number o is usually fairly large (see [1]}). Some emphasis will be put on
obtaining results that are significant as o - oo (see, e.g., Theorems 4.4 and 4.5).

Let us assume that the domain (} satisfies assumption (H.1) (see Introduction).
If the function f is as defined by (4.1), then Theorem 3.3 applies. The system (3.13)-
(3.18) may be written as

{43) Aw,=¢’g(u)exp(y—7y/v*) inQ, g fn=o(l—u,) onol,
(4.4) Au*=¢’g(uM exp(y—v/v,) in}, ou*/on=c(l-u*) onsQ,

v, = 1 +max {0, —A I

el

(w*—uw)dx+u"'o J (1-u*) ds,

ol
(4.5) u“dbz[up(}'—v/v*) L (g(u,) + h(uy)) dx
—exp(y—vy/v") L h(u*) dx]}

v*=l+min[AJ (u*+u*)dx+p“oj (1—u,) ds,
o a0

(4.6) ﬂ"«bz[exp(?—wv*)I (g(u*)+ h(u*)) dx

—exp (y—y/0vy) L h{u,) dx]}

(4.7) <, =ut«], 1=sp,S0v* <00,
where 5 =[0,1]-R is a C'-function satisfying
{4.8) )= 0, g+ A (u)z=0 forallO=u=1.



The function & may be chosen to be such that
(4.9) ki=max {0, max {—g'(u): 0= u=1}}=max{h'(u):0=2u=1}

The main idea to be used in the sequel is the following. According to Remark
3.4C, if every solution of (4.3)-(4.7) satisfies

(4.10) = u*, vy = v*,
then (1.1), (1.2}, (2.1) possess a unique steady state, which is globally asymptotically
Stabl;:HEOREM 4.1 (Global asymptotic stability for small $°). Under the assumptions
above, (1.1), (1.2), (2.1) has a unique steady state, which is globally asymptotically stable
if §° satisfies
(4.11) dlexpy<afk,,
and one of the following inequalities:

YValko(2k + ks)[ ks + kikod® exp v/ (@ — ki¢* exp ¥)]¢”

cexp y+k,+2k}p  exp y = i,

(4.13) Yk, (2ApVo+0So)ky+ kiked’ exp y/(a —k ¢ exp y)]d  exp y = p,

vh, Vo{1+ (2Ap + ks¢” exp y)[ ks + ki kudp” exp y/(a — kid” exp y)]o”

CeXpYE H,

(4.12)

(4.14)

where a, ky, k;, k;, and k, are as in Lemma A.l1 (see Appendix), and
ks=max {g{u):0=u=1)}, ke=max{h(u):0=u=1).

Proof. We shall prove that if (4.11) and one of the inequalities (4.12}-{4.14) hold,
then every solution of (4.3)-(4.7) satisfies (4.10). To this end, observe that if (4.11)
holds, then w, and u* satisfy (Lemma A.1)

(4.15)  u*—u = kolks+ kKo’ exp y/(a — ki@’ exp v)]¢” exp y[1 —exp (—y£)),

where

(4.16) £=1/v,~1/v*
is such that
(4.17) 0=¢=1, &/(1-&svpé/(l-v.8)=v*—v,,

as it comes out from (4.7). Subtraction of (4.5) from (4.6) yields

v*-p, = #“¢2[6Xp (v=vy/v") J (g(w*)+2h(u*)) dx
(4.18) o
—exp (¥ — v/ vy) L (g(u,)+2h(n)) dx],

{4.19) v*—v*EZAJ (u*—u*)dx-kp"aj (u*—u,) ds.
il

aft

Integration over (& in (4.3) and (4.4} and application of Green's identity yield

(4.20) O‘I (1—uy) ds=¢zexp(y—y/v*)J g(u,) dx,
a0t i

(4.21) UIQ(]—u*)ds=¢2exp(-y—y/v*) L g(uw*) dx.



Substraction of {4.21) from (4.20) and substitution in {4.19) lead to

p*—p,=2A J (u*—u*)+,u."¢2[exp (y—v/v%) j glu,) dx
(4.22) i ¢
hexp(}'—y/v*)j g(u*)dx].
1]

Finally, after substitution of (4.15)-(4.17) in (4.18), (4.19), and (4.22}, the following
inequalities are obtained:

(4.23) &/{(1-&)=A[l—exp(—y£)] fori=1,2, and 3,

where yuA,, yuA,, and yuAd, are the first members of (4.12), (4.13), and {4.14). If
one of the inequalities (4.12)-(4.14} is satisfied, then £ =0 (i.e., v, = v™), as it comes
out from (4.23), u, = u* (Lemma A.1) and the conclusion of the theorems follows.

Remark, Condition (4.12) does not depend on A, and it is more stringent than
(4.14) if k, # 0 and A is sufficiently small. If ¢ is sufficiently small, condition (4.14) is
more stringent than (4.13).

THEOREM 4.2 (Global asymptotic stability for all $*=>0). If, in addition 1o the
assumptions of Theorem 4.1, the function g satisfies condition (A.6) of Lemma A.2 (see
Appendix}, then, jor all $*>0, (1.1), (1.2), (2.1) have a unique steady state, which is
globally asymprotically stable, provided that y satisfies one of the following inequalities
(see Fig 1)

(4.24) krvoSa/u =1/(1+2AuVo/ 08y),
(4.25) yoSa/ i 21/(1+ k:AuVa/0Ss),

ol
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Fii. 1. Global asymptotic stability for all $*=0. Plots {a)-(d) correspond to conditions {4.24)-(4.27).



(4.26) y=4/(1+4kA V),
(4.27) y=H({(u/208,).

Here, k; is as defined in Lemma A2, and the positive, nondecreasing function H,:[0, oo »
R is defined by H\(y)=2 for 0=y =2, H\(y) =y for 2<y=y,, and H,(y) = bl b7 '(y)]
Jory, <y <o, where (i) y, = h,(z,}) =4.2488 - - - and z, = 2.6761 - - - is the unigue positive
solution of the equation z°> =sinh z tanh z, and (ii) the strictly increasing functions, h,,
hyi[z;,00[ = [y, [ are given by

h,(z)=sinh z tanh z/(z —tanh z), ho(z)=z"/(z —tanh z).
Proof. If Lemma A.2 is applied to {(4.3), (4.4), one obtains
(4.28) 0= u* —u, <t—exp(—kyvé),
where £ is given by (4.16) and satisfies (4.17) and
Vo 0*s1-¢ (v, -1}/ v, 0 <{1-£Y/4,
(0* =1/ (0, D2 A+ £)Y/(1-¢Y,

as is easily seen when taking into account (4.7).
When using (4.20}, (4.21), the following inequalities are obtained from (4.5), (4.6),
upon subtraction or division,

(4.29)

(4.30) v¥— v, Z2A J (u*—u*)derp"o-J (u*—u,) ds,
a

a0

{4.31) v*—v*éhj (u*-u*)dx+p“a[l—exp(—y§)]J (1—u,) ds,
n 0

(1—u*) ds—exp (—y¢) j (1—u,) ds],
0

3

(4.32) v*-0v,=(o/n) [eXP {(y¢) J

21

(4.33) (v*—l)!(u*—l)éexp(ny)[J (l—u*)ds]/[I (l—u*}ds].
af} i)

{Recall that the function h identically vanishes since g'(u) >0 for all 0 < u =1, accord-
ing to condition (A.6} of Lemma A.2.} A further substitution of (4.5}, (4.20} into (4.31)
yields

(4.34) v¥-p, = A In (u*—u,) de+ (v, — Dlexp (v&) —1].

When taking into account (4.7), (4.16), (4.28), (4.29), the following inequalities
are obtained from (4.30)-(4.34}:
(435)  &/(1—-&=Q2AVataSa/p)ll —exp (—k;¥E)],
(4.36)  &/(1-E)=AVa[l—exp (~k;¥6)]+(oSa/ p)[1-exp (—¥£)],
(437) O -8)<Q2oSo/p)sinh (v§), (1+£)/(1-€)<exp(y€) if £>0,
(4.38)  £/(1-£)=AVo[1—exp (—yl)]+(1 - &)exp (v} - 1]/4.

If inequality (4.24) ({4.25} or (4.26), respectively) holds, then (4.35) {(4.36) or (4.38),
respectively) yields § =0 (i.e., v, = v*); then u, = ™ (apply Lemma A.1 and take into
account that k, =0) and the conclusion of the theorem foliows. If (4.27) holds, then
£ =0 and the conclusion of the theorem follows again. Use the second inequality (4.37)



if ¥ =2 to proveit, and observe that if ¥ > 2 and £ > 0, then (4.27) and the first inequality
(4.37) yield

H7y)<(1/£-1) sinh (y¢);

but this inequality cannot be satisfied for any &> 0 since the maximum of its second
member, in 0= £=1,is H'(y).

THEOREM 4.3 (Global asymptotic stability for large ¢°). In addition to the assump-
tions of Theorem 4.1, let the function g satisfy conditions (A.7) and (A8} of Lemma
A3. Then, (1.1), (1.2), (2.1) have a unigue steady state, which is globally asymptotically
stable for

(4.39) ¢’z ¢i=clo+p/m)/ G(3),

if 8 is such that 0< & = a and satisfies one of the following inequalities:
(4.40) y=y.=(1—-8)Hyla,(1-8)/2+1/2a,(1-8)),
(4.41) 8 =max {(1+1/a,)/[1+ yks(1+2a,)], 2a,/[as+V ai—4a,]},

where (i) the strictly increasing function G and the constants p,, a, and kg are as in
Lemma A.3, (ii} the strictly increasing function H,:[1,00[ »[2, o[ (see Fig. 2) is given
by Hy(v)=1+yfor 1=y =2, Hy(y)=h[hi'(y)] for 2 <y <oo; (iii)} the strictly increasing
Junctions h;: [0, 0] > [3, 0] and h,:[0, o[ = [2, [ are defined by

hy(z) = z* sinh z/(z cosh z —sinh z), h4{z} = (sinh z cosh z — z)/(z cosh z —sinh z);
and (iv) the parameters a,, a,, a,, and a, are
a,=oSafp, a=ApVa/oSy, a;=(1+1/a})/(1+a,),
a,=[(1+a,)(2+ a,) + ykg(1+2a,)1/ a:{1+ a,).
Proof. 1f (4.39) holds and 0 < § = q, then (Lemma A.3)
(4.42) O<u,=u*<d=q, 0= u™*—u, =5[1—exp (—yks£)],

1 0 o w w* y

FIG. 2. The function H, of Theorems 4.3 and 4.4.



where £=1/v,—1/v*=1. Then if the function % is chosen to be such that A(u)=0
for 0= u=gq (this may be done, with A satisfying (4.8), (4.9), since the function g
satisfies (A7)},

(4.43) h(u,(x))=h(u*(x))=0 forall xel.

Let us first assume that ¢ and & satisfy (4.39), (4.40) and prove that £=0. To
this end, we define

Ay=1+p""gexp (—yé) J (1-u,) ds,

(4.44) o

A*=1+p "o exp (y¢) j (1—u*) ds.
a4t

A =v, and A*Z v*, as it comes out from (4.5), (4.6}, (4.20), (4.21), (4.43). Hence,
if £ were different from zero, it would satisfy

E=1/v,—1/0*=(A*— A, )/ A A"

(4.45)
< 2ay sinh (y€)/[1+a,(1—8) exp (— €)1 +a,(1 -8} exp (¥€}],

or
1>(1-68Y[a, (1 —8)/2+1/2a,(1—8)+cosh y£]/sinh ¥¢,

as obtained from (4.42), (4.44). But this inequality cannot hold for any &> 0 since the
minimum of its second member, in 0= £ < 00,is (1 - §)H,(a,(1-8)/2+1/2a,(1-8))/ v,
and vy satisfies (4.40). Then, £=0 (i.e., v, =v*), u, = u™* (Lemma A.3) and the con-
clusion of the theorem foliows.

If ¢ and & satisfy (4.39) and (4.41), then

(4.46) v,y =max {1, 1+a,(1-8-a,8)}, o*> 1+ a,(1-8),

as it comes out from (4.5), (4.6), (4.21), (4.42). If £ were different from zero, (4.30),
{4.42), (4.46) would yieid

1<a,(1+2a)8[1 —exp (—ks¥£))/ é[1+a(1— 8} max {1,1+a,(1 - & —a,8)}.

But this inequality cannot hold for any £>0 if & satisfies (4.41), as is easily seen.
Therefore, £ =0 and the conclusion of the theorem follows again.

Remarks. If ¢? is calculated by means of (4.39), (4.40), then it does not depend
on A, while if it is obtained from (4.39), (4.41), then ¢2->c0 as A 00,

It is easily seen that, for fixed values of the remaining parameters, the functions
8- ¢2(8) and 8- y,(8) are strictly decreasing in 0< 8 < 1. Therefore, if

(4.47) y<H)ia/2+1/2a,),

then the maximum value of & satisfying (4.40), 8, is the unique solution of the
equation y = ¥.(8). Then, the best value of ¢2 provided by (4.39), (4.40) is o(o+
p/p)/ G(8), with § =min {a, 8,:}. If (447) does not hold, then (4.40) is not satisfied
for any >0, and Theorem 4.3 does not provide a value of ¢2 uniformly valid in
0<A <oo. Although Theorem 4.3 provides only sufficient conditions for global
asymptotic stability of the steady state, it may be seen, as a converse of Theorem 4.3
in a ceriain sense, that for first-order Arrhenius kinetics (i.e., for g{u)}=u) and large
values of o (see [2]), the upper linear instability bound (i.e., the supremum of the set
of values of ¢ such that the steady state of (1.1), (1.2), (2.1} is linearly unstable), ¢2,
satisfies @2 > p2o< o0 if ¥ <(1+a,)*/a, and ¢+ otherwise as A > 0,



Any ¢2 provided by (4.39), (4.40), or by (4.39), (4.41), is such that ¢’ as
a-+00. In order to calculate a value of ¢? uniformly valid in 0 < g <0, which is
expected to exist under mild assumptions on the function g, one would need the
following result, which is stronger than that in Lemma A.3 and seemingly true (under
mild assumptions on the function g): there are two constants, A and k, such that, for
every ¢ >0, (i) the problem (A.1) of the Appendix has a unique solution if A= A, and
(ii) if A=A, <A, <0, then the solutions of (A.1) for A=A, and A= A,, u, and u,,
satisfy Ju(x) — 1, (x)| = k(A, - A), for all xe 2. Property (i) may be proved if one is
able to obtain an upper multiplicity bound A when the Robin boundary data in (A.1)
is replaced by Dirichlet data: u =1 on 3£}; if {) is the unit ball of R?, this comes out
from results by Dancer [23] that were obtained by means of topological degree theory;
unfortunately, even if the results of [23] are extended to arbitrary bounded domains
of R?, they do not seem to provide the constant k of part (ii} of the required result
above. Related results in the literature, such as those in [24], [25], do not apply to our
case.

Theorems 4.4 and 4.5 below provide a uniform value of ¢2in 0< o <o but they
require the function g to be strictly increasing.

THEOREM 4.4 (Global asymptotic stability for large $*°). In addition to the assump-
tions of Theorem 4.1, let us assume that g is such that g'(u) >0 for all 0<<u =1, and that

(4.48) 2< y= Hya,/2+1/2a)),

where the constant a, and the function H, (see Fig. 2} are as defined in Theorem 4.3,

Then, (1.1}, (1.2), (2.1} have a unique steady state, which is globally asymptotically stable

if

(4.49) &7 =2/ Sa) K[ pSo/ nor+27""K 1/ G(8)),

where the constants 8, §,, and K are the unigue solutions of the equations

(4.50) y=(1-8)H,[a,(1—-8)/2+1/2a,(1 - 8)}], 0<8<1,

(4.51)  (1-8)/v2G(8,)=(1+D/2p,)* V(1 +p/op)/G(8), 0<8 <1,

(4.52) H,(K/2+2/K)= vas, Kzl1,

the constants p,, p,, and D are as defined in Lemma A4, and
as=(1+D/202)""'[p/ p1 +V(p/ p) +2' " Pa N2G (1) aG(5)),

as=2(p/Sa Y’ pSal upr +27V7].

Remarks. If y=2, then the conclusion of the theorem is true for all $>>0,
according to Theorem 4.2. Equation (4.50) has a unique solution if y satisfies (4.48),
as was seen in a remark above. For a given value of §, (4.51) has a unique solution
8, {which is such that 8, < 8), since the first member of (4.51) is a strictly decreasing
function of 8,, and it approaches 0 and o as 8, | and as §, - 0, respectively. Since
the second member of (4.52) is larger than 2 (a;> 1 and ¥ > 2), (4.52) has a unique
solution (recall that H,(1) =2, H, is strictly increasing and H,{y)— <0 as y-+0).

Proof of Theorem 4.4. If ¢°G(8)exp{y—vy/v,)Zo(o+p/p,), then n,=u*=$
(Lemma A.3) and, as in the proof of Theorem 4.3, £=1/v,—1/v* is seen to satisfy
(4.45), which implies ¢ =0 (i.e., v, = v*). Then u, = u* (Lemma A.1), and the con-
clusion of the thearem follows,

If ¢°G(8)exp(y—y/v,)<o(oc+p/p,), then u* =min {u*(x): xcaQ} satisfy
(Lemma A.4)

(4.53) (1—u%)/V2G(uk) < (1+ D/2p,)* V(1 + p/op,)/ G(8).




Since the first member of {4.53} is a strictly decreasing function of u? and &, satisfies
(4.51), §, = ul and

(4.54) & <u*(x) for ail x<af.
Then, u¥ and u}, = max {u*(x): x € 9Q} = max {u*(x): x < {1} satisfy (Lemma A.4}
{4.55) o(1—ut) < (1+ D/2p,)" "V2A,G(1),

(4.56)  o(1-uk)> A G(8))/[p/p+(p/pV’+2'"VPA,G(8)] = pK,/ Sq
where
(4.57) Ay=¢"exp(y—v/0,).
Since K =1 and ¢ satisfies (4.49), we have A,G(8,) = ¢’ G(8,) Z a4, and

(4.58) (1+D/2p:)" " 'W2A4,G(1) Sp/ uK, = as.
Furthermore, (4.49), (4.56), (4.57) yield
(4.59) K=K,.
Then, if A, and A* are as defined by (4.44), £=1/v,—1/0* = (A* - A}/ A, A* must
vanish because otherwise it would satisfy

£<assinh (y£)}/(K/2+1/2K +cosh ¥£),
as it comes out from (4.44), (4.55), (4.56), (4.58), (4.59), or

as> (K/2+1/2K +cosh y£)/sinh ¥,

and this inequality cannot hold for any ¢ > 0 since the minimum of its second member
in0=¢<oois H{K/2+1/2K)/y,and K satisfies (4.52). Therefore, £=0(i.e., v, = v¥),
u, = u* (Lemma A.1) and the conclusion of the theorem follows.

Observe that the second member of (4.49) does not depend on A. The following
theorem provides a better result if A is sufficiently small. It also applies for arbitrarily
large values of o.

THEOREM 4.5 (Global asymptotic stability for large ¢*). In addition to the hypothesis
of Theorem 4.1, let us assume that the function g satisfies condition (A.6) of Lemma
A2, and that

(4.60) y>2, &=max{(1+1/a}/[1+yi(1+2a))), 2a,/[a;+V a7 —4a; ]} <1,

where the constants a,, a,, and a, are as in Theorem 4.3, k; is as defined in Lemma
A2, and

a;=[{1+a)(2+a,)+ vk, (1 +2a,)1/a,(1+a;).
}'hen, (1.1), (1.2}, (2.1) possess a unique solution, which is globally asymptotically stable
i
"= 2 /Sal K[ pSa/ up +277K1/ G(8)),
where 8, is the unigue solution of
(1-8)/¥2G(8:)= (1+ D/2p)*" V(1 +p/op}/ G(8),  0<8,<],
the constanis p,, p., and D are as in Lemma A4, and
(4.61) K =[y—=2+AVo+J(y+AVy) +dyrk; Vi )/2.

Remark. If v=2 or if § =1, then the conclusion of the theorem is true for all
>0, according to Theorem 4.2.



Proof. If ¢’ G(8) exp(y— y/v )Zo(a+p/p,), then u,=u*=5 (Lemma A3)
and, as in the proof of Theorem 4.3, £=1/v, — 1/v* is seen to satisfy

£Sa,(1+2a,)8[1 —exp (—k;v6))/[1+ a,{1-8) max {1,1+a,(1-85—a,8)}.

This inequality cannot hold for any £>> 0 if § is given by (4.60). Therefore, £ =0 (i.e.,
v, =p*), u, = u* (Lemma A.1) and the conclusion of the theorem follows.

If $°G(8) exp(y—v/vy)<a{o+p/p)), then uf =min{u*(x): xcaQ} satisfies
(4.53) (Lemma A.4). As in the proof of Theorem 4.4, this implies that u* satisfies
(4.54), Then u¥ and uf, = max {#*(x): x € 902} are seen to satisfy (4.55), (4.56), where
A, is given again by (4.57), and K satisfies (4.59) again. In addition, u, and u™ satisfy
(4.28) (Lemma A.2). Then B, and B*, which are defined by

2

B*=1—)tJ. (u*—u$)dx+;.c_'a'J. (1—u*) ds,
o p

B*=1+u""o exp (7€) j

&

(1 —u™)ds,
11
satisfy

0=B*-B,=A I (¥ —u, ) dx +(B* = 1)[1 —exp (—¥£)],
1)

{4.62)

B, z1+K~-AV,, B*=Z1+K,
as it comes out from (4.56), (4.59). Also, B, = v, and B* = v* (see (4.5), (4.6), (4.21)).
Hence, £=1/v,~1/v*=(B*—B,)/ B, B* satisfies

E={1-exp (—y§)}/(1+ K —AVo) +A Vo[l —exp (- y£)l/(1+ KY1+K -AVy),

as obtained from (4.28), (4.62). But this inequality cannot hold for any £¢>01if K is
given by (4.61), as it is easily seen. Therefore £=10 and the conclusion of the theorem
follows.

Finally, since the steady-state solutions of (1.1}, (1.2} do not depend on the
parameter A, the following corollary is true.

CoROLLARY 4.6. If, for some A >0, the hypothesis of one of the Theorems 4.1-4.5
hold, then (1.1), (1.2} has a unique steady state.

5. Concluding remarks. A sequence of nested, globally finitely attracting, invariant
regions of the phase space of (1.1), (1.2), (2.1}, converging to an invariant, globally
asymptotically stable region, has been obtained in § 3. In § 4, some quantitative sufficient
conditions (¢° sufficiently large or small, or g increasing and y sufficiently small) for
global asymptotic stability of the steady state have been obtained, for a kinetic function
fofthetype f(u, v) = g(u) exp (¥ — v/ v). Some of the results, which were not uniformly
valid in 0<<A <0 if ¥ is too large, have been explained by comparison with linear
stability results that were obtained in [2]. Of course, similar results to those of § 4 may
be obtained for any kinetic function satisfying assumption {(H.2), such as that in (1.6).

The results of § 3 remain valid when the Robin type of boundary data is replaced
by Dirichlet boundary data (#=1 on 4}), and O'Ian (1—u}ds is replaced by
Im (du/on) ds everywhere. To see that, a unit order (see, e.g., Amann [26]) must be
used to replace the definition of the order relation « at the end of § 1 by 4, « u; means
that there is a positive constant ¢ such that u,(x)+ ce(x) = u,(x) for all x ), whete
the unit ¢ is defined by Ae+1=0in , e =0 on 3. Such order definition could have
been used in § 3 to obtain results for both Robin and Dirichiet problems at the same
time, although it has not been done for the sake of clarity.



Growth restrictions on the function f are not necessary for the ideas of §3 to
apply. The assumption f,(u, v)> 0 has been imposed because it is satisfied by the most
commonly used kinetic functions (i.e., by those in (1.4)-(1.6)), but it could be removed;
then the definition of the sequence (3.1}-(3.7) should be changed somewhat.

The ideas of this paper are naturally extended if: (a) the Laplacian operator A is
replaced by a uniformly strongly elliptic operator; (b) the function f and/or the
boundary data depend on the space variable x; or {c} the linear boundary conditions
in (1.1} are replaced by appropriate nonlinear ones. They apply also to some more
general reaction-diffusion problems, such as the nonisothermal model (1.1}, (1.3) (this
point is currently under research). Nevertheless, (1.1}, (1.2) has been considered first
because such isothermal model {(a) has practical interest in itself (not only as a limit
of (1.1}, (1.3)), as was explained in the Introduction, and (b) it retains the main intrinsic
difficulty of (1.1}, {1.3), namely, the flow defined by (1.1}, (1.2) is not monotone. Also,
global stability results for (1.1)-(1.2} may be (and have been) compared with local
stability results, which were obtained in [2] for the siab geometry and first-order
Arrhenius kinetics.

Appendix. Let us consider the elliptic semilinear problem
{(A.1) Au=Ag(u) inQ, du/an=c(1—u) onafl,

where AZ0, >0, Q<R” (p=1, 2, or 3) satisfies assumption (H.1) and the C'-
function g satisfies (4.2).

Lemma A1, Under the assumptions above:

A. The problem (A.1) possesses a minimal and a maximal solution, y, i € C*({})
such that

{A.2) Oxpy=a«l.

B. The solution of (A.1) is unique if 0= A< a/k, =00, where a >0 is the smallest
eigenvalue of (2.2), and k| is given by (4.9). Furthermore, if w, and u, are the solutions
of (A) for A=A, and for A=A, with 0SS A, <A <a/k =0, then
(A.3) Oy —wy S k[ky+ Ak /(o — A KA — A,
where

k=max{g(u):0=u=1}, k,=max{y,(x):xefl}, k,=max {y.(x): xel},
g, » 0 is the unique solution of
A +1=0 in i fan+ o, =0 on 3,

and o, is any eigenfunction of (2.2) such that r, = s, .

Proof. A. For the existence of the minimal and maximal solutions of (A.1) see,
e.g.,[13],[14], or [20]. Inequatities ( A.2} follow by standard arguments, using maximum
principles.

B. Since the function u— g{u)+k,u is nondecreasing in 0=u=1, U=d-u
satisfies

(A4) AU+ARUZ0 in{}, dU/en+oU=0 onafd.

Then, if Ak, <a, the generalized maximum principle (see [17]) shows that U/ =0.
Therefore, 4 = i and the solution of (A.1)} is unique.

Since the smallest eigenvalue of (2.2) depends continuously on the parameter o
(see, e.g., [22]), one may choose > 0 sufficiently small for the smallest eigenvalue of

(A.5) AY+ar=0 in{), dfan+({o—e)=0 on ),



a,, to be such that k, A = a;. Then if ¢ > 0 is an eigenfunction of {(A.5), U =(u,—u,)/ ¢
satisfies

AU 2V - VU 2 A [g(u,) —g(u )]+ a (v, —u} in(}, aUj/on+eU=0 onafl.

Then, standard maximum principles show that U » 0, i.e., that u; » u,.

Finally, U = u,—u,— (A — A Y[ g+ Ak o/ (o — A Kky)] is easily seen to satisfy
(A.4) with A= A,. Therefore, U/ =0 and the second inequality (A.3) readily follows.

Remark. I g'(u)=0 for all ue(0, 1], then &k, =0, the solution of (A.1) is unique
for all A =0 and inequalities (A.3) become 0« u, —uy = kki(A; — A;). Under an addi-
tional mild assumption on the function g, the following lemma provides another upper
bound to u,— u,, which is stronger than that above when A, is large.

Lemma A2, In addition to the assumptions of Lemma A1, let us assume that

(A.6) ko =sup {g(u)/ug'(u): 0<u=1}<w,
Let u, and u, be the solutions of (A1) for A=A, and A=A, with 0= A, <A, <0, Then
0« =ty = [1—(A,/ A)9] max {u.(x): x€ ).

Remark. Assumption {A.6) implies that g'(u}>>0 for all 0<<u =1. Although the
converse is not true in general, it is true if, for example, the function u > g'(u) is
nondecreasing in a neighborhood of =0, as is the case for most commonly used
kinetic functions (e.g., for those given in (1.4), (1.5)).

Proof, U = u,—u, >0 satisfies

AU =A.g(u,)— A g(uy) ing, al/an+olU=0 onad.

Let x, be a point {not necessarily unique) where the maximum of Lf is attained. Since
o>0and U(x,}> 0, x; cannot be a point of 3(}. Then, ALU=0 at x=1x, and

Ax/ Ay = g (x0}) glaa(x0)) = [ (xo)/ uz(xo)]UkT,

where the second inequality is easily obtained when using (A.6) (the function u—
g(u)/u'’* is nondecreasing). Then the conclusion of the lemma readily follows.

Let us assume now that the function g is such that there exists a constant &,
0<a=1, satisfying

(A7) g(u)>0 forall0<u=a, gla)y<g(u) foralla<u=l,
(A.8) ky=sup{g{u)/ug(u): 0<u=a}<co,

Then, we have the following.
Lemma A3, Let us assume that, in addition to the hypothesis of Lemma A.1, (A7)
holds. If

(A.9) AGlaYzola+p/p)

then (A1) has a unigue solution, u = u(x), which satisfies

(A.10) AGu(x))=o(o+p/p) forall xefl,

where p, is defined in the interior sphere property {assumption (H.1); see Introduction),

and G:[0,1]->R is the strictly increasing function

(A.11) G(u)=Jug(z) dz.



If, in addition, (A.8) holds and if u, and u, are the solutions of (A.1) for A=A,
and A= A,, where A, and A, satisfy (A9} and A, <A, <0, then

(A.12) 0« uy — tty = [1—(A>/A)Y9) max {uy(x): xe ).
Proof. Let u= u(x) be a solution of {A.1) and let x; be a_point {not necessarily
unique) of €} where the maximum of u, uy, = max {u(x}): x € (1}, is attained. x,€ )

because otherwise Au(xy)>0. Let $,<€) be the hypersphere, of radius p,, that is
tangent to 4§} at x,. We consider the problem

(A.13) Aw=Ag(w) in S, W=, onas,,

where the C'-function g,:[0, 1]- R is such that g,(#)=g(u) for 0= u=a, gi(v)>0
for a << u = 1. Problem {A.13} has a unique solution {Lemma A.1), which is spherically
symmetric {Gidas et al. [27]), and given by

(A18) rPd[rP "V dw/drl dr=d?w/dr+(p—-1)r" dw/dr=Ag,(w) in0<r<p,,
{A.15) dw/dr=0 atr=0, W= atr=p,,

where = x,x and x, is the center of §,. Furthermore, the solution of {A.13) satisfies
w(x)}= u(x) for all x € §,, as it is easily seen by means of maximum principles. Hence

(A.16) o(1—up)=(du/on) o = (dw/dr),.,,.
On the other hand, integration of (A.14), (A.15)} vields

r

(A7) rr dw;'dr=Aj 27 g (w(z)) dz.

a
Therefore, the function r— w(r) is strictly increasing and (A.17) vields pdw/dr <
Arg,(w(r}) for all 0< r = p,. Hence, (A.14) implies that the function r » dw/dr is also
strictly increasing, and (A.17) leads to

™y

ot (dw/dr)2,, > A J 27"y (w(z))(dw/ d2) dz

Efy
>A(epl)prl[cl(um)'Gl(w(spl))],
for any real constant & such that 0<e <1, where

(A.18)

{A.19) G,(u)=J g:(z) dz.

i
But, as it is seen from (A.17), (A.19},

(A.20) pf"(dw{dr),-m>A31(w(spl))J Flal dz = Ag(w(ep))pf(1-£")/p,

£py

(A.21) G(w(ep))) <w(ep))g(w(ep))) < upg (wlep)).
Equations {A.16), (A.18), (A.20)-(A.21) lead to the inequality
AG{up ) <a(1- "M)[elﬁpo'(l —up )+ pupy/p(1-e%)],

which is valid for 0 < £ < 1. Then, when replacing ¥ by 1—u,,, we obtain (recall that
0<uy <1)

(A.22) AG(upy ) <a(a+p/p).

Since the function G, is strictly increasing and G,(u) = G(u) for 0= u = a, if A satisfies
(A.9), then (A.22) vields u,, < a, i.e., any solution of (A.1) satisfies

(A.23) u(x)<a forall xe.



Then, (A.1) has a unique solution, as it comes out when Lemma A.1 and maximum
principles are applied and (A.7} and (A.23) are taken into account. Inequality {A.10)
is readily obtained from (A.22).

Finally, (A.12} is obtained by the argument of the proof of Lemma A.2, when
taking into account that ¥, and u, satisfy (A.23).

LeMma A4, In addition to the assumptions of Lemma A.l, let us assume that
g(u)y=0 for al 0<u =1, and let u = u(x) be the (unique) solution of (A.1) for a given
value of A>0. Then, up =max{u(x): xcaQ}=max{u(x): xe)}, and u,=
min {u(x): x €80} satisfy

(A24) o (V= tpy) > AG(n Y[ p/ oy +V(p/ o +2 VP AG(up)),
{A.25) ol —u,,,)4(1+D/2p2)"“J2AG(um),

where p, and p, are defined in the interior and exterior sphere properties {assumption
(H.1); see Introduction), D is the diameter of Q and the strictly increasing function
G:[0,11>R is defined by (A.11).

Proof. The argument that led to (A.21) in the proof of Lemma A.3 shows that u,
satisfies

AGup) < o(L—up e Pa(l — thyy) + pup / p1(1 — )]

for all 0< ¢ < 1. Then, if ¢® =4 (A.24) is readily obtained.

Let x,<d4) be a point (not necessarily unique) where u,, is attained. Let S, be
the hypersphere of radiuvs p., tangent to 3{} at x, to which the exterior sphere property
refers. Let x, be the center of S§; and let S be the hypersphere of center at x, radius
p,+D. Then Q< S~ 8§,. Let w:5—5,- R be defined by

(A.26) Aw=Ag(w) inS-5,, w=u, ona(S-3,).
Problem (A.26) possesses a unique solution, which is spherically symmetric, and given
by

PP d[rP  dw/dr])/dr=Ag(w) inp,<r<p,+D,
(A27) ? ’
w=u, atr=p,and r=p,+D
where r = x,x. To see this, observe that (A.27) has (at least) a solution (see, e.g., Keller
[13]), and that {A.26) has (at most) one solution {L.emma A.1).
The (unique) sohution of (A.26) satisfies (apply maximum principles)

O<wi(x)<u, foralixeS-35,, wi(x)su(x) forallxel.
Hence
(A.28) —(dw/dr),,, Z(0u/dn) ey, =o(1—u,).
On the other hand, let r, > p, be the smallest value of r where dw/dr=40. Since
n=p,+ D/2 (see Gidas et al. [27]), when (A.27) is multiplied by r**~? dw/dr and the
resulting equation is integrated between p, and r,, we obtain

F.

[p% Y(dw/dr), ., ) =—2A I P2 g(w(r))(dw/ dr) dr

(A.29)

SIARP? J ” g(w) dw <2A(p,+ D/2Y"2G(u,,)

where w, = w{r,}>0. Then (A.25) readily follows from (A.28), (A.29), taking into
account that (dw/dr),.,, <0.
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