
Dynamics of nearly unstable axisymmetric liquid bridges 
José M. Perales and José M. Vega 
ETSI Aeronáuticos, Universidad Politécnica de Madrid, Madrid 28040, Spain 

The dynamics of a noncylindrical, axisymmetric, marginally unstable liquid bridge between two 
equal disks is analyzed in the inviscid limit. The resulting model allows for the weakly nonlinear 
description of both the (first stage of) breakage for unstable configurations and the (slow) dynamics 
for stable configurations. The analysis is made for both slender and short liquid brides. In the former 
range, the dynamics breaks reflection symmetry on the midplane between the supporting disks and 
can be described by a standard Duffing equation, while for short bridges reflection symmetry is 
preserved and the equation is still Duffing-like but exhibiting a quadratic nonlinearity. The 
asymptotic results compare well with existing experiments. 

I. INTRODUCTION 

A liquid bridge is the configuration that appears when a 
liquid mass is held by capillary forces between two solid 
supports. The configuration offers the simplest mechanical 
model for some complex systems that appear in many phe-
nomena and is of industrial interest in, e.g., the crystal 
growth technique known as floating zone. 

In the past, one can find many papers dealing with the 
statics of liquid bridges. A review can be found in Meseguer 
et al.1 The previous works mainly focused on determining 
the parameter valúes for which the liquid bridge is either 
stable or unstable. The instability (breakage) for axisymmet­
ric liquid bridges can have two very different behaviors. For 
slender (long) liquid bridges the configuration breaks into 
two drops of different volume while for shorter bridges the 
two drops are equal. In both cases, after the breakage a third, 
much smaller drop (the so-called satellite) appears in be­
tween. For even shorter liquid bridges the instability is non-
axisymmetric and leads no longer to a breakage but to a 
nonaxisymmetric deformation that can be recovered by sim-
ply returning the valúes of the parameters to their original 
valúes. 

Cylindrical liquid bridges were considered in the pio-
neering work by Rayleigh,2 who found that these liquid 
bridges destabilize when their length is greater than its cir-
cumference. More recent stability analyses have focused on 
the effect of various, not necessarily small perturbations, 
such as axial gravity/acceleration,3 unequal disks diameter,4 

rigid solid rotation, and the combined effect of the above.6'7 

In all these, although the basic configurations were axisym­
metric, the possible instabilities were allowed to be either 
axisymmetric or nonaxisymmetric. 

Additional studies cover the influence of various nonaxi­
symmetric perturbations.8'9 The results analysis when pertur­
bations are small are not easy and it is often required 
asymptotic analysis to clarify the effect of every perturba-

tion. For the case of nearly cylindrical liquid bridges, the 
analysis was made by Vega and Perales10 and more recently, 
a study has been made on the influence of small perturba­
tions in the change of stability of liquid bridges cióse to the 
stability limit.11 

The theoretical predictions mentioned above have been 
corroborated by experiments, either on board of space labo-
ratories (where residual gravity is much smaller) or on 
ground; in the latter case, both Plateau baths and in 
microzones12-14 have been used. A lot of works deal with 
linear vibrations from the theoretical, ~ numerical, ~ or 
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experimental point of view. A less understood problem is 
connected with dynamics near the stability limit. Available 
results are really scarce and either focus only on the vicinity 
of the point where a cylindrical liquid bridge loses stability 
(the Rayleigh limit, see Sanz,31 Higuera, Nicolás, and 
Vega,32 and Nicolás and Vega)33 or are based on one-
dimensional approximations, such as the so-called Cosserat 
model.34-38 

Figure 1 shows four consecutive pictures of the breakage 
of a liquid bridge experiment made on board Spacelab D-2 
mission (1993). This particular breakage was unexpected as 
the configuration was rather far from the stability limit pre-
dicted by a statics analysis and one of the goals of this work 
is to elabórate a theoretical model to quantitatively explain 
this breaking process (or the oscillatory movement that will 
appear in case the stability limit is not reached). 

The object of the present paper is to analyze the dynam­
ics near the instability limit for noncylindrical configuration. 
The geometry and the various parameters involved are 
sketched in Fig. 2. In the following, all lengths are made 
dimensionless with the mean of the two almost equal disk 
radii R0 = (Ri+R2)/2. The basic parameters defining the con­
figuration are the slenderness A=L/(2R0) and the dimen­
sionless volume VI{TTLRQ) . The analysis will be made in 
the vicinity of the instability limit, which corresponds to a 
nondimensional volume V0 that depends on A; small pertur-
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FIG. 1. Consecutive pictures of a liquid bridge breaking process. 
WL-AFPM-STACO experiment. Spacelab D-2 mission (1993). 

bations of the nondimensional volume V= VI (TTLR0
2) - V0 

will be considered, as well as small valúes of the dimension-
less disk radii difference H=(R2-Ri)/(R2+Ri) and small 
valúes of the Bond number B = pgR0

2/cr. Namely, we assume 
that 

A ~ l , V0~l, |V|<íl, \H\<£1, |B|<íl . (1) 

II. PROBLEM FORMULATION, STEADY STATES, 
AND INSTABILITY LIMITS 

In the following, all expressions are dimensionless, us-
ing capillary time (pR0

3 / a)112 and the mean of the disk radii 
R0 to nondimensionalize time and length, and the ratios 
{alpR0)

112 and cr/R0 as velocity and pressure units. Restrict-
ing to axisymmetric conflgurations, continuity and inviscid 
momentum equations in the radial and axial directions are 

Ur+U/r+Wz = 0, 

Ut+W(Uz-Wr) = -Qr, 

Wt-U(Uz-Wr) = -Qz-B, 

(2) 

(3) 

(4) 

where r and z are the radial and axial coordinates, U and W 
are the radial and axial velocity components, and 

Q = P + \{U2 + W2) (5) 

is the stagnation pressure. Subscripts indicate hereafter deri-
vation with respect to the independent variables. The bound-
ary conditions [disks impenetrability, free surface anchoring 
to the sharp disks edges, and kinematic compatibility and 
equilibrium of normal stress at the free surface, deflned as 
r=F(z)] are 

W(r, ± A,í) = 0, (6) 

F(±A,t) = í±H, (7) 

Ft(z,t) = U(F(z,t),z,t) - Fz(z,t)W(F(z,t),z,t), (8) 

FIG. 2. A meridian section of the liquid bridge configuration. 

Q(F(z,t),z,t) - j[U2(F(z,t),z,t) + W2(F(z,t),z,t)] 

+ M[F(z,í)] = 0, 

where 

FF -Í-F M[F] = ñ f ^ 

(9) 

(10) 

is the mean curvature of the free surface. For convenience, 
we also state volume preservation, 

F2(z,t)dz = 2A(V0 + V), (11) 

and the smoothness of the (axisymmetric) flow fleld at the 
axis, 

U(0,z,t) = Wr(0,z,t) = 0. (12) 

Finally, suitable initial conditions for the velocity and the 
interface shape, satisfying Eqs. (2)-(12), should be imposed 
that are assumed to be compatible with the perturbation 
scheme below. 

Quiescent steady states are such that U0=0, , W0=0, 
Qo = constant. Thus, invoking Eqs. (6)-(9), the steady free 
surface deformation F0 is given by the following two point 
boundary valué problem: 

M[F0(z)] + Go = 0, 

F0(±A) = 1, 

F2(z,t)dz = 2AV0. 

(13) 

(14) 

(15) 

The solution to this problem is well known and can be either 
written in terms of elliptic integráis11 or solved numerically. 
The instability limit of these is readily calculated imposing 
that the linearized problem around the steady states exhibits 
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FIG. 3. Stability limits of liquid bridges between equal disks for zero Bond 
number. Sketches show stable liquid bridges with volumes larger, equal, and 
smaller than the corresponding to a cylinder. 

a nontrivial solution (see, e.g., Martínez and Perales).39 It 
follows that the perturbed velocity components identically 
vanish, the perturbed pressure q=Q-Q0 is spatially constant, 
and the perturbed free surface deformation, f=F-F0, is 
given by the following linearized, second order, two point 
boundary valué problem: 

M'[F0(zW) + q = 0, (16) 

/ (±A) = 0, 

F0(z)/(z)dz = 0, 

(17) 

(18) 

where the linear operator M'[F0] is the Frechet derivative of 
the mean curvature operator (10), namely, 

M'[F0](f): 
1 

{1+F¿?!2ÍZZ + 
0z 

3FpzF0zz 

(1+V)5'2 

F 0z 

Fo(l+V)3'2 

fz+Fi(i+F0zr
2f 

LA. 
F0dz 

Fofz 

(1+V) 3 ' 2 

/ 

f?(l+F0í
2)1/2" 

(19) 

For each valué of the slenderness this condition (and its 
counterpart for nonaxisymmetric perturbations) provides two 
threshold valúes of the volume, one lower and one upper, 
which will be called the instability limits below. These are 
plotted in Fig. 3, where the stable configurations are those in 
between of the instability limits. The upper instability limit is 
associated with nonaxisymmetric perturbations. The lower 
instability limit is associated with axisymmetric perturba­
tions, which are either reflection symmetric on the plañe 
z=0 if AAs2.127>A>A cs=0.361, or antisymmetric in z if 
\>AA = 2.127. Thus, in the former case the breaking pro-
cess is essentially symmetric and gives one smaller central 

drop and two larger lateral drops, while in the latter case, the 
liquid bridge breaks into two clearly different drops (with a 
third smaller one in between). If A < Ac, the unstable pertur­
bations are again nonaxisymmetric, which are outside the 
scope of this paper. Now, at A=AA a mode interaction occurs 
between the symmetric and antisymmetric instabilities that 
requires considering symmetric and antisymmetric perturba­
tions simultaneously; this mode interaction process is asso­
ciated with a codimension two bifurcation, whose analysis is 
outside of the scope of this paper. Note that the symmetric 
and antisymmetric instability limits are tangent to each other 
at A=AA. 

Against this background, the main object of this paper is 
to describe both oscillations and breaking near the instability 
limits in a weakly nonlinear setting, namely, assuming that 
perturbations of the free surface deflection are small. For the 
sake of clarity, we anticipate here the main results: 

(A) In the nonsymmetric case (near the lower instability 
limit in Fig. 3, as A>AA), perturbations of the free 
surface are given by 

F(z,í) = F0(z)+A(í)/(z)+---, (20) 

where /(z) ~ 1 is a solution of the linearized problems 
(16)—(18) and the mode amplitude A{t) is small, 
namely, 

\A{t)\<\, (21) 

and given by the following forced Duffing equation: 

(B) 

/M(í) + guVA(t) + gmA3(t) = g3H+g4B, (22) 

which generally gives perturbations of one mode oscil­
lations in conservative systems in the presence of re­
flection symmetry, and has been widely studied; see 
Nayfeh and Mook, Guckenheimer and Holmes, 
Moon,42 and Thompson and Stewart43 for comprehen-
sive reviews of the associated literature. Here, depen-
dence of the various coefficients on the small param-
eters V, H, and B, and the fact that nonlinearity is 
cubic, are anticipated from symmetry considerations, 
noting that the equation must be invariant under the 
symmetry group 

A^-A, H^-H, B^-B. (23) 

Assumptions (1) and (21) imply that the amplitude A(t) 
evolves in a large timescale (compared with the capil-
lary timescale used above for nondimensionalization). 
Equation (22) allows for a complete understanding of 
the dynamics near the instability limit. 
In the symmetric case (near the lower instability limit 
in Fig. 3 as A A >A>A C ) , perturbations of the free 
surface are given by the following quadratic Duffing-
like equation: 

(ivC® + gnC
2(t) + g2V= g33H

2 + g^BH+g^B2, (24) 

which also allows understanding the dynamics in this 
case. Again, dependence of the coefficients results from 
symmetry considerations, noting that Eq. (24) must be 
invariant under the symmetry group 



H^-H, B^-B. (25) 

The remaining of the paper is organized as follows. 
The various coefficients appearing in Eqs. (22) and 
(24) will be calculated in Secs. III and IV, respectively, 
where two different scalings will be considered. Equa-
tions (22) and (24) will be used in Sec. V to elucidate 
the weakly nonlinear dynamics of the system near the 
instability limits, which in turn will allow us to explain 
some anomalous experimental behaviors and to make 
some predictions. These will be checked comparing 
with available experiments in literature in Sec. V. The 
paper ends with some concluding remarks, in Sec. VI. 

III. CASE A>AA 

Two different scalings must be considered depending on 
the valué of A. If A > A A (with AA=2.13--% see Martínez 
and Perales)39 an order of magnitude analysis yields the ap-
propriate scaling for both the parameters, 

V=e2v, B = e3b, H=e3h, r=et, 

and the state variables. The latter are seen to be such that 
U~W~(Q_Q0^~(p_p0j~e^ where Q0 and F0 are given 
by Eqs. (13)—(15). Thus, perturbations of this steady state are 
expanded in powers of e as 

/ = F0(r,z) + e/iíz.í) + e2/2(z, T) + e3/3(z, r) + • • •, (26) 

q(r,z,T) = Q0(r,z) + eqx(r,z,T) + e2q2(r,z,T) 

+ e3q3(r,z,T)+---, (27) 

u(r,z, T) = eu2(r,z, T) + e2«3(r,z, T) + • • •, 

w(r,z, T) = ew2(r,z, T) + e2w3(r,z, T) + ••• 

(28) 

(29) 

Substituting these into the governing equations and boundary 
conditions and setting to zero the coefficients of the various 
powers of e leads to the linear problems that are considered 
below. It must be noted that the continuity equation at order 
e* couples with momentum equations at order e*+1. 

A. Order s. 

At this order, qx is readily seen to satisfy qir=qiz=0, 
which means that q1 is spatially constant (but may depend on 
time), and / \ satisfies the linearized problems (16)—(18). 
Since this latter problem does not exhibit temporal deriva-
tives, fi and q1 can be written as 

/i(z,r) = fl(r)/al(z), q1(r,z,T) = a(T)qal, (30) 

where faí(z) and qal (which is constant) are still given by 
Eqs. (16)—(18). Note that this latter problem exhibits non-
trivial solutions precisely at the instability limit in Fig. 3. In 
the present case (A>AA) the nontrivial solutions are anti-
symmetric in z. It follows that 

fai(z) = F0z(z), qal = 0, (31) 

up to a constant factor. 

B. Terms of order e2 

?2Z=0, 

M'[F0(z)](f2(z,r)) + q2(F0(z),z,T) 

= -k2(r)M"[F0(z)](fa l(z),/a l(z)), 

/ 2 (±A,r) = 0, 

F0(z)f2(z,T)dz = -

(32) 

(33) 

(34) 

(35) 

«V) fA ¿ 
fal(z)áz + Av. (36) 

As above, Eqs. (32) and (33) imply that q2 depends only on 
T. And a look at the right hand side of Eqs. (34) and (36) 
suggests to split f2 and q2 as 

f2(z,T) = a2(T)fn(z) + vf2(z), 

q2(T) = a2(T)qn + vq2. 

Substitution of these into Eqs. (34)-(36) leads to the follow-

ing problems to calcúlate (fn,qn) a nd ifi^Qi)'-

M'[F0(z)](fn(z)) + ?n = - ÍM"[F0(z)](fal(z),fal(z)), 

/ n ( ± A ) = 0, 

F0(z)/n(z)dz = - - fal(z)áz, 
A ¿ J - A 

and 

M'[F0(zW2(z)) + q2 = 0, 

/ 2(±A) = 0, 

F0(z)/2(z)dz = A. 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

Note that these two problems are singular, since their left 
hand sides coincide with the homogenous linear problems 
(16)—(18), which exhibits nontrivial solutions. But the forc-
ing terms are reflection symmetric in z, while nontrivial so­
lutions of the homogenous part are antisymmetric, which 
means that the problems above are solvable. The resulting 
solutions are of course nonunique since any solution of the 
homogenous problem can be added to a given solution. For 
convenience, we set 

Fo(z)/ai(z)/n(z)dz = 0, (43) 



F0(z)/al(z)/2(z)dz = 0. (44) 

Note that in the two above problems fal (z) is a known func-
tion [in fact, it is equal to F0z(z)]. These problems have been 
already solved analytically (in terms of elliptic integráis) by 
Gómez, Parra, and Perales.11 It should be noted that neither 
qn ñor q2 are needed to determine the dynamical behavior; 
only fu(z) and /2(z) need to be computed. 

C. Terms of order e3 

u2r+u2/r + w2z = 0, 

q3r = - U2T, 

q3z=-W2r-b, 

w2(r, ± A,T) = 0 , 

u2(0,z, T) = w2r(0,z, T) = 0, 

u2(F0(z),z, T) - F0z(z)w2(F0(z),z, T) = fl(r)/al(z), 

M'[F0(z)](f3(z,T)) + q3(F0(z),z,T) 

= -fl(r)M"[F0(z)](fal(z),/2(z,r)) 

- a(T)fal(z)q2r(F0(z),z,T) 

-|fl3(r)M'"[F0(z)](fal(z),/al(z),/al(z)), 

/ 3 (±A, r )= ±h, 

A í-A 

F0(z)f3(z, T)ÚZ = - a(r) fai(z)f2(z, r)dz. 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

Equations (46) and (47) allow for eliminating u2 and w2 in 
Eqs. (45)-(53). A further look at the boundary condition (50) 
suggests rewriting q3 as 

q3(r,z, T) = a(T)<í>(r,z) - bz, 

which substituted into Eqs. (45)-(53) yields 

<í>rr+<í>r/r + <í>zz = 0, 

<¡>z(r, ± A ) = 0 , 

3>r(0,z) = í)rz(0,z) = 0, 

®r(F0(z),z) - F0z(z)$z(F0(z),z) =/a l(z). 

M'[F0(z)](f3(z, T)) + fl(r)*(F0(z),z) - bz 

= -a(T)vM"[F0(z)](fal(z),Mz)) 

-fl3(r)M"[Fo(z)](fal(z),7n(z)) 

-|«3(r)M'"[F0(z)](fal(z),/al(z),/al(z)), 

/ 3 (±A, r )= ±ft, 

F0(z)/3(z,T)dz 

= -a{r)v\ fal(z)f2(z)áz 
-A 

-a\r)\ /a l(z)/n(z)dz. 
-A 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

Solving Eqs. (54)-(57) for í> and substituting such solution 
into Eqs. (58)-(60) yields a two point boundary valué prob-
lem to determine f3. Such problem needs not be solved. In-
stead we only apply a solvability condition, noting that its 
homogenous part exhibits nontrivial solutions [see Eqs. 
(16)—(18) above]. Such solvability condition is readily ob-
tained multiplying Eq. (58) by F0(z)fai(z) and integrating the 
resulting equation in - A < z < A to obtain 

A í-A í-A 

M'[F0(z)](f3(z, r))F0(z)/al(z)dz + fl(r) <¡>(F0(z),z)F0(z)fal(z)áz - b zF0(z)fal(z)dz 

= - a(T)v | M"[F0(z)](fal(z),/2(z))F0(z)/al(z)dz 
-A 

- fl3(r) | M"[F0(z)](fal(z),/n(z)) + -M'"[F0(z)](fal(z),/al(z),/al(z)) F0(z)/al(z)dz, (61) 
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FIG. 4. Mass coefficient for the antisymmetric mode, /¿¡. 

where the unknown f3 is still present in the first integral. But 
this can be eliminated using the following expression, which 
is readily obtained integrating by parts, 

-A 

M'[F0(z)](g(z))F0(z)fal(z)dz 

Fo(z)faU(z)g(z) 

2 /„\\3/2 F0(z)(l+F¿
0z(z)) 

A M 

- qx F0(z)g(z)dz. 
-A J-A 

(62) 

Here, g is any smooth enough function. Setting g=f3 yields 
-A 

M'[F0(z)](f3(z,T))F0(z)fal(z)dz 

= -2h 
F0(A)/aU(A) 

F 0 (A)(1+<(A)) 3 ' 2 ' 
(63) 

A further substitution into Eq. (61) provides the following 
Duffing equation: 

/Ltiá'(r) + guvair) + gma3(T) = g3h + g4b, 

with 

/ Í 1 = | 3>(F0(z),z)F0(z)/al(z)dz, 
-A 

g12 = M"[F0(z)](fal,f2)F0(z)fal(z)dz, 

M"[F0(z)](faJn) 

(65) 

(66) 

f m — 

+ -M'"[F0(z)](fal,/al,/al) F0(z)/al(z)dz, (67) 

£3 = 2 
F0(A)/aU(A) 

F 0 (A)[1+<(A)] 3 ' 2 ' 

g4 = I zF0(z)fai(z)dz. 
-A 

(68) 

(69) 

The mass coefficient, /xh is plotted versus slenderness in Fig. 
4 and the remaining (stability) coefficients valúes are consid-
ered in Fig. 5. 

FIG. 5. Stability coefficients. The different coefficients have been calculated 
for A > AA, shown by a vertical Une in the figure. 

In the original dimensionless variables, ignoring the res-
caling made above and defining A(í) = ea(r), namely, setting 

F(z,t) = F0(z)+A(t)fal(z), (70) 

with F0(z) and/al(z) as given by the solutions of the problem 
above, the time evolution of A(t) is governed by 

P\ 
d2A(t) 

dt¿ + g12VA(t) + gmAi(t) = g3H + g4B, (71) 

which is a standard Duffing equation. Here V, H, and/or B 
may be slowly varying with time (although, for most appli-
cations only B will be considered as variable). Note that the 
different mass and stability coefficients depend only func-
tions on A. 

(64) IV. CASE A<AA 

The case A c < A < AA is now analyzed by following a 
similar procedure used for the case A>A A , thus only the 
differences with the previous case will be highlighted. The 
appropriate scaling on the parameters and the time variable is 
now 

V=S2v, B=Sb, H=Sh, T= Smt. 

Inspection on the governing equations and boundary condi-
tions (2)-(9) shows that U~W~S312 and Q-Q0~F-F0 

~ S, which means that the dependent variables must be ex-
panded as 

[/(r,z,í) = <53/2M3/2(r,z,r)+ •••, 

W(r,z,t) = S3l2w3l2(r,z,T)+ •••, 

Q(r,z,t) = Q0+ Sqx{r,z, T) + S2q2(r,z, T) + • • •, 

F(z,t) = F0(z) + SMz, T) + S2f2(z, T) + • • •, 

where the steady state solution (<2o> ô) is again given by 
Eqs. (13)—(15). Substituting these expansions into Eqs. 
(2)-(9) and setting to zero the coefficients of S, <53'2, and S2 

leads to the three problems that are considered below. 



A. Order S 

qlr=0, 

qu = -b, 

M'[F0(z)](f1(z,T)) + q(F0(z),z,T) = 0, 

/i(±A,r)= ±h, 

F0(z)Mz,T)dz = 0. 

(72) 

(73) 

(74) 

(75) 

(76) 

The most general solution to this linear problem can be 
written as 

Mz, T) = c(T)fsl(z) + hf3(z) + bf4(z), 

qi(r,z,r) = c(r)qsl -bz + hq3 + bq4, 

where / s l and qsí (which is constant) are given by the linear-
ized problems (16)—(18). The remaining terms, f3, q3, f4, and 
q4, are calculated from the following problems (already 
solved by Gómez, Parra, and Perales):11 

B. Order &<2 

M'[F0(z)](f3(z)) + ?3 = 0, 

/ 3 (±A)= ± 1 , 

F0(z)/3(z)dz = 0, 

M'[F0(z)](f4(z)) + q4 = z, 

/ 4(±A) = 0, 

F0(z)/4(z)dz = 0, 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

As in the antisymmetric case, these two latter problems are 
singular, since their left hand sides coincide with the homog-
enous linear problems (16)—(18), which exhibits nontrivial 
solutions. But the forcing terms are reflection antisymmetric 
in z, while nontrivial solutions of homogenous part are sym-
metric, meaning that the problems above are solvable. The 
resulting solutions are of course nonunique since any 
solution of the homogenous problem can be added to a given 
solution. For convenience, a unique solution is selected 
setting 

F0(z)/sl(z)/3(z)dz = 0, 

F0(z)/si(z)/4(z)dz = 0. 

(83) 

(84) 

(85) 

(86) 

(87) 

U3I2T~ ~ l l n 

W3l2T=-q2z> 

wm{r, ± A,T) = 0, 

u3l2(0,z,T) = w3l2r(0,z,T) = 0, (89) 

u3/2(F0(z),z,T) - Foz(z)w3/2(F0(z),z, T) = c{r)fsl{z). (90) 

C. Order fr 

M'[Fo(z)](f2(z,T)) + g2(F0(z),Z,T) 

= -|M"[F0(z)](c(r)/sl(z) + ft73(z) 

+ bf4(z),c(r)fsl(z) + hf3(z) + bf4(z)), (91) 

/ 2 (±A,r) = 0, (92) 

F0(z)/2(z,T)dz 

(c(T)fsl(z) + hf3(z) + bf4(z))2dz + Au. 

(93) 

Now, «3/2 and w3/2 can be eliminated by differentiating with 
respect to T in Eqs. (86) and (87), and substituting into Eqs. 
(85) and (88)-(90), which yield 

— (<l2rr+<l2rír+q2zz) = 0, 

dr 

q2z(r,±A,T) = 0, 

q2r(0,z,T) = q2zr(0,z,T) = 0, 

(94) 

(95) 

(96) 

q2r(F0(z),z,T) - F0z(z)q2z(F0(z),z,T) = c(T)fsl(z). (97) 

These equations suggest setting 

q2(r,z,T) = c(T)(b(r,z), 

which substituted into Eqs. (94)-(97) provides the following 
problem for í> [identical to that solved for A > AA except for 
the new functions F0(z) and /si(z)] 

(L>rr+(L>r/r + (L>zz = 0, (98) 

<¡>z(r, ±A) = 0, (99) 

3>r(0,z) = í)rz(0,z) = 0, (100) 

<í>r(F0(z),z) - F0z(z)<t>z(F0(z),z) =/ s l(z). (101) 

A further substitution into Eqs. (91)—(93) leads to 



M'[F0(z)](f2(z,T)) + C(T)(D(FO(Z),Z) = - |c2(r)M"[F0(z)](fsl(z),/sl(z)) - k2M"[F0(z)](f3(z),/3(z)) 

- |fc2M"[Fo(z)](f4(z),/4(z))" c(T)ftM"[F0(z)]Cfsl(z),/3(z)) 

- c(T)bM"[F0(z)](fsl(z),Uz)) - hbM"[F0(z)](f3(z),Uz)), 

/ 2 (±A,r) = 0, 

(102) 

(103) 

F0(z)/2(z,T)dz: [c(T)fsl(z) + hf3(z) + bf4(z)]2dz + Av, (104) 

F0(z)/sl(z)/2(z,r)dz = 0. (105) 

As in last section, this problem needs not be solved. Instead, a solvability condition is applied that results from integrating the 
product of Eq. (102) times F0(z)fsí(z) between -A and A, which yields 

A rA 
M'LFo(z)](f2(z, r))F0(z)/sl(z)dz + C(T) <D(F0(z),z)F0(z)/sl(z)dz 

-A J -A 

1 fA 1 fA 

= - -C2{T) M"[F0(z)](fsl(z),/sl(z))F0(z)/sl(z)dz - ~h2 M"[Fo(z)](f3(z),/3(z))Fo(z)/sl(z)dz 
1 J-A Z J-A 

i rA rA 

- -fc2 M"[F0(z)](f4(z),/4(z))/;,o(z)/si(z)dz - c(r)A M"[F0(z)](fsl(z),/3(z))F0(z)/sl(z)dz 
¿ J-A J-A 

rA rA 

- c(T)b M"[F0(z)](fsl(z),74(z))F0(z)/sl(z)dz - hb M"[F0(z)](f3(z),74(z))F0(z)/sl(z)dz. (106) 

Calculation of the integral in the left hand side apparently requires solving problems (102)—(105). Nevertheless, by using the 
above mentioned property (62) of the operator (repeated here) 

M'LFo(z)](£(z))F0(z)/sl(z)dz 

F0(z)fsU(z)g(z) 

F0(z)[l+F2
z(z)]3 '2 

A rA 
- qx F0(z)g(z)dz, 

-A -¡-A 
(107) 

and setting g(z)=f2(z), using the boundary condition (92) and the volume condition (93) 

M'[Fo(z)](f2(z,T))F0(z)/sl(z)dz 

li] F0(z)f2(z,T)dz 
-A 

2 
[c(T)fsl(z) + hf3(z) + bf4(z)]2dz - 2Ai> 

yU2Wj fjz)dz + h2\ 

rA rA rA 
+ qx hb\ Mz)f4(z)dz + c(T)h\ /sl(z)/3(z)dz + c(r)b \ fsl(z)f4(z)dz •qiAv. (108) 



FIG. 6. Mass coefficient for the antisymmetric mode, ¡j^. FIG. 7. Stability coefficients. 

Equation (106) reduces to 

/X2C(T) + fnC2(r) + g2v 

= gssfi2 + g34bh + g44b
2 + gi3c(r)h + g14c(r)b, (109) 

with 

(110) ¿¿2= | í>(F0(z),z)F0(z)/sl(z)dz, 
-A 

- 0 i M"[F0(z)](fsl(z),/sl(z))F0(z)/sl(z)dz 

g2 = -qiA, 

1 A 
3̂3 = - r I M''[F0(z)](f3(z),/3(z))F0(z)/sl(z)dz 

Z J - A 

g34 = - M''[F0(z)](f3(z),/4(z))F0(z)/sl(z)dz 
-A 

Q.\ /3(z)/4(z)dz, 

(111) 

(112) 

(113) 

(114) 

M"[í,o(z)](fsi(z),/4(z))F0(z)/sl(z)dz 

- ? i | /si(z)/4(z)dz = 0, 
-A 

(117) 

where the last two coefficients, g 13 and g 14, are zero due to 
the symmetries of the problem. The mass coefficient, /c¿2, is 
plotted in Fig. 6 and the different stability coefficients in 
Fig. 7. 

Thus, the final equation governing the weakly non linear 
dynamics in this case is 

fJac(r) + gnc
2(T) + g2v = g33h

2 + g34bh + g^b2. (118) 

In the original dimensionless variables, defining C(Í) = <5C(T) 

and using F(z,í) = F0(z) + C(í)/sl(z), with F0(z) and /sl(z) 
given by the solutions of the problem above, the equation 
describing the evolution of the amplitude of the deformation 
is 

fi2 

d2C(í) 0/, 9 , 
—^ + gnC

2{t) + g2V = g33H
2 + g34BH + g^B2. 

(119) 

As in the last section, V, H, and/or B may be allowed to be 
slowly varying functions of time and the different coeffi­
cients depend only on A. 

g44 = - - I M"[F0(z)](f4(z),/4(z))F0(z)/sl(z)dz 

7í(z)áz, 

f l 3= - | M"[F0(z)](fsl(z),/3(z))F0(z)/sl(z)dz 
-A 

- ? i | /si(z)/3(z)dz = 0, 
-A 

V. COMPARISON WITH EXPERIMENTS 

The model developed above applies to general (not nec-
essarily cylindrical) configurations near to the stability limit. 

(115) The Duffing or Duffing-like amplitude equations obtained 
above provides both the small nonlinear oscillations and the 
breaking process that occur under small excitation in the 
stable and unstable sides of the instability limit, respectively. 
The assumption that viscous dissipation is small is quite ap-
propriate for experiments with ordinary liquids in micrograv-

(116) ity conditions, but not to experiments in microzones, where 
viscous dissipation is significant. Microzones exhibit the ad-



time f[s]" 

FIG. 8. Comparison of the diverging amplitude of the amphora-type defor-
mation: experimental points (solid line), with the results of integrating Eq. 
(64) (dashed line). To better see the nonlinear terms effect, the integration 
has been repeated (dotted line) without including the term in a3 (i.e., setting 
§ni = 0 instead of the actual valué taken from Fig. 5 for that slenderness). 
The amplitude of the máximum deformation and the time are here plotted in 
physical units. 

ditional difficulty that the experimental precisión is limited, 
which makes it difficult to identify and measure small per-
turbations. 

Only a few experimental results are available in actual 
microgravity conditions (to experimentally check the re­
sults), and none of them deal with noncylindrical configura-
tions. Fortunately, some experimental results from past space 
experiments are available and can be used for validating re­
sults, at least in the limit of nearly cylindrical configurations. 
An unexpected breakage occurred during the second run of 
an experiment on the stability of liquid columns (STACO), 
performed in 1993, in the ESA Advanced Fluid Physics 
Module (located within the Germán WerkstoffLabor)2 ,AA on 
board Spacelab D-2. The experimental run imposed a slow 
disk separation, at constant volume, in a long liquid column 
(final slenderness was A = 3.13 but with a volume corre-
sponding to a cylinder at the starting slenderness). In order to 
check the ability of Eq. (64) to reproduce this experimental 
run, we intégrate Eq. (64) from the end-of-stretching state 
(i.e., from í0 =—9.5 s) to í=0 s (the breaking instant). At 
t=t0, we impose the measured initial conditions, a(t0) 
= 0.026 (0.4 mm, 1.8 pixels in the image) and á(í0) = 0.0016 
(0.06 mm/s, 0.3 pixels/s). The result (plotted with dashed 
line) is compared in Fig. 8 with the actual experimental 
curve (solid line). Note that the experimental run is rather 
well approximated. In order to illustrate the role of the cubic 
nonlinear term in Eq. (64), the result of integrating Eq. (64) 
with the cubic term ignored is also plotted with dotted line. 

For A = 7r, V0=l the present model coincides with its 
counterpart obtained from the well known Cosserat 

34 38 

model. ' In particular for both models the valúes of the 
coefficients of v, a, and a3 in Eq. (64) coincide but there is a 
small difference in the valué of the coefficient in á2a/át2 (a 
valué of 6.25 for the Cosserat model and of 6.20 in the 

300 320 340 360 
Flight time (s] 

380 400 

FIG. 9. The amplitude oscillation in a liquid bridge with A=2.83 and 
V/(TTLR0 )=1, excited with a sinusoidal Bond number B(t)=Bl eos mt 
+ B3 eos 3<oí produced by shaking with a crank-shaft mechanism (Ref. 24). 
Experimental measurements (crosses) are compared with the result obtained 
via integration of the amplitude equation in two cases: considering all terms 
in the equation (continuous line) and neglecting the cubic term (dashed 
line). 

present model), which is due to the large-slenderness ap-
proximation that is inherent in the Cosserat model, which has 
not been made in this paper. For the sake of comparison of 
theory versus experiments, Fig. 9, adapted from Martinez, 

24 

Perales, and Meseguer, shows the comparison of the evo-
lution of the measured amplitude evolution of a liquid bridge with A = 2.83 and VI (TTLR0

2) = 1 excited with a oscillatory 
Bond number B{t)=Bl eos (ot+B3 eos 3wí resulting from 
shaking the bridge with a crank-shaft mechanism. In this 
figure, the experimental measurements (crosses) are com­
pared with the simulation both considering the full amplitude 
equation (solid line) and neglecting the cubic term (dashed 
line). Note that, as it happened in Fig. 8, nonlinearity plays a 
significant role in the oscillations. 

Apart from the quoted works, there are very few more 
available results. Meseguer et al4 visualized both static con­
figurations cióse to the instability limit and the breaking of 
liquid bridges for non cylindrical configurations, restricting 
to configurations with A > A A (the behavior described in 
Sec. III). The study focused in comparing the theoretical 
stability limit with the actual experimental behavior. A 
short sequence of breakage snapshots was also provided but 
the time resolution of visualizations does not allow for a 
sound comparison with the theoretical results in the present 
work. 

VI. CONCLUSIONS 

Two amplitude equations have been derived for the 
weakly nonlinear dynamics of a liquid bridge when it is 
cióse to its stability limit. These two models apply in the two 
regimes that must be considered, depending on the slender­
ness. The stability limit considered has been that of mini-
mum volume where two different types of instability may 
appear, one leading to reflection symmetric deformations 
(symmetric breakages) with regard to z for A c < A < AA and 
the other leading to reflection antisymmetric deformations 



(antisymmetric breakages) with regard to z for A > AA. The 
different symmetries in the two regimes have dynamic con-
sequences since the amplitude equations are qualitatively 
different. Namely, in the latter regime the equation is a stan­
dard Duffing equation, while in the former case it is a qua-
dratic Duffing-like equation. The amplitude equations also 
include the effect of the change of volume, disk unequality, 
and axial gravity, either stationary of slowly varying with 
time. 

The time integration of either of the equations for a 
given configuration allows for predicting not only the stabil-
ity or instability of the configuration but also the weakly 
nonlinear behavior of the configuration. Comparison with the 
available experimental results (which are concerned with 
nearly cylindrical configurations) is quite good. Further com­
parison with experimentally obtained dynamic behavior of 
truly noncylindrical configurations will be considered else-
where, when these are available. 
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