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Abstract. This paper considers a first-crder, irreversible exothermic reaction in z bounded porous
catalyst, with stooth boundary, in one, two, and three space dimensions. It is assumed that the characteristic
reaction time is sufliciently small for the chemical reaction to be confined to a thin layer near the boundary
of the catalyst, and that the thermal diffusivity is large enough for the temperature to be uniform in the
reaction layer, but that it 15 not so large as to aveid significant thermal gradients inside the catalyst. For
appropriate realistic limiting values of the several nondimensional parameters of the problem, several
time-dependent asymptotic models are derived that account for the chemice! reactien at the boundary (that
becames essentially lmpervious to the reactant), heat conduction instde the catalyst, and exchange of heat
and reactant with the surrounding unreacted fluid. These models pessess asymmetrical steady states for
symmetric shapes of the catalyst, and some of them exbibit a rich dynamic behavior that includes guasi-
periodic phenomena. In one case, the linear stability of the steady states, and also the local bifurcation to
quasi-pertodic solutions via center manifold theory and normal form reduncrion, are analyzed.
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L. Introduction 2ad fermulatien. This paper deals with a well-known model for
the evolution of the reactant concentration u and of the temperature v in a porous
catalyst, in which a first-order, irreversible, exothermic reaction occurs. After suitable
nondimensionalization (length is referred to a characteristic dimension of the catalyst,
time is referred to the thermal diffusion time within the catalyst, and the reactant
concentration and temperature are referred to their respective values at the external
unreacted fluid), the principle of conservation applied to the reactant and to enthalpy
leads to the following model [1, Voi. 1]:

(1.1}  Lou/ot=Au—¢uexp(y—vy/v) inQ, oufdn=c(1—u) ataf},
(1.2)  dv/at=Av+BH'uexp(y—y/v) inQ, svrfon=r(l—v} ataQ,

for ¢ >0, with appropriate initial conditions at 1 =10. Here A is the Laplacian operator,
n is the outward unit normal to the smooth boundary of the domain < R? (p=1,
2, or 3), and all the parameters are positive. ¢° (Damkohler number) is the ratio of
the reaction rate to the diffusion rate, v is the activation energy (or temperature) of
the chemical reaction, L {Lewis number) is the ratio of thermal to materiai diffusivity,
3 (Prater number) is a measure of the chemical heat release (8L is a measure of the
heat of reaction relative to the thermal energy of the catalyst), and o and v (diffusional
and thermal Biot numbers} are measures of the rates of mass and heat transfer between
the surface of catalyst and the external fluid, relative to the rates of mass and heat
transfer within the catalyst.

Usually, the thermal diffusivity of the solid {metallic or with metallic components)
catalyst is very high, and, consequently, B is gquite small, » is fairly small or of order



unity (depending on the size of the catalyst), and L may be large. In addition, ¢/ v is
usually quite large because the exchange of heai (respectively, of mass) with the
external fluid is much slower (respectively, faster} than through the structure (respec-
tively, the pores) of the catalyst. The activation energy is of order unity or fairly large
for most chemical reactions of industrial interest, and ¢ varies in a wide range (in
particular, this parameter may be large in practice). Therefore the limit

(1.3 Lo, 9820, o/vsw

is realistic (although an additional assumption will be made below on the combined
limit (1.3} to account for the most usual numerical values of the parameters).

If, in addition to (1.3), » is assumed to be small, then the so-called isothermal
models are obtained, in which the temperature inside the catalyst is uniform (but not
necessarily equal to its value in the externat fluid). A time-dependent isothermal medel
was first considered by Amundson and Raymond [2]; for a2 more recent analysis of
these models, see [3], and [4], where they are formally derived (for a rigorous derivation
of the isothermal models, see [30]), linear stability and Hopf bifurcation diagrams are
obtained, and global stability properties are analyzed. For an analysis of the steady
states of these models, with more general kinetic laws than the first-order Arrhenius
law considered above, see [5], [31].

In this paper, we consider the limit (1.3} for v ~ 1. If ¢* = O(1), then the following
completely isothermal model (the temperature ¢ is uniform inside the catalyst and equal
to its value at the external fluid, » = 1) is readily obtained in first approximation;:

(1.4) Aufar=Au—d*u in =1 ataf)

Here the time variable is 7=t/ L. The linear problem (1.4) is not very interesting (a
unigque steady state exists that is globally, asymptetically stable). If the nonlinearity
¢*uexp (y—y/v) in (1.1) and (1.2) is replaced by a more general one, of the type
& f(u, v}, where J:[0, =R is a positive smooth function (such that (0, v}=0),
then we must replace in (1.4) ¢ u by ¢°f{w, 1). The resulting model exhibits multiple
steacly states if the function u- f(u, 1) is appropriate {see [6] for a review on these
questions}), but its dynamics is again fairly simple, since the soiutions converge to the
set of the steady states for large 7; see [7].
The limit v ~1, ¢° = is more interesting. In the distinguished limit

(1.5) d*~L~B~ g0,
the following basic model is derived in Appendix A:
(1.6) grfar=Ap in {},

0

(1.7) av/or=rv(1 *vp)vl—brpz exp(y—v/v,) J u, (£, 7) df ateach peafl,

where, at each point p € df}, v,(¢)=v{p, t}, and the function u, is given by

(1.8) Adufar=a"u, /a0  — g u, exp(y—v/v,) in—0<{<0,
(1.9) u, =0 at{=-wx, du,/al=1-—wu, at{=0.
Here the parameters ¢, b, and A, and the variable ¢, are

(1.10) ¢*=¢'o%, b=oB, A=L/d", (=on,

where n is a coordinate along the cutward unit normal to 502
The physical meaning of this model is the following. Since the characteristic
reaction time is small compared with the diffusion time (¢’ ), the reactant is



depieted in a thin reaction layer, of thickness ¢, beside the boundary of 0. Also,
the thermal diffusivity is sufficiently large (8 -+ 0) for the temperature to be uniform,
in the reaction layer, along each normal to 3£); thus the evolution of the reactant
concentration in the reaction layer is given by (1.8} and (1.9), where v is the local
temperature (at each point of 3€)) that does not depend on the inner space coordinate
£. The main difference with the isothermal limit is that here (# ~ 1) the thermal diffusivity
is not so large as to make the itemperature uniform inside (i, where it now evalves
according to the heat equation (1.6). In the nonlinear boundary condition (1.7}, the
total heat flux through each point of €} equals the heat exchange with the external
fluid {the first term in the right-hand side) plus the total heat produced by the chemical
reaction, in the reaction layer, along each normal to 4().

The model (1.6)-(1.9) may be further simplified because A is smail most frequently
in practice, since o/~ 100, L is not larger than 100, and we are assuming that »~ 1.
Although the ratio o/» may be much smaller in some cases {e.g.,, in hydrogen-rich
systems, see [1]) we restrict ourseives to the limit A =0, which will be considered in
§ 2, where the following distinguished limits will be analyzed:

LD e’~h~1, A=D,
1.12) ¢ ~1/b2~ a0

Inn the limit (1.11), the model {1.6}-{1.9} will be reduced, in first approximation,
to the heat equation (1.6) with the following nonlinear boundary condition:

{1.13) dvfan=wv{1—v)+be/[e+exp (v/2o—y/2)] at a5l

The problem (1.6) and (1.13) will henceforth be referred to as model 1. It was first
considered by Pis'men and Kharkats [8], who obtained it from a physical problem
{the so-calied exterior problem of Pis'men and Kharkats; see [1]) that is somewhat
similar to that considered here. The main feature of model 1 is that it exhibits up to
four stable steady states (and five additional unstable ones) in one space dimension;
it also possesses asymmetric steady states in symmetric domains. In § 2.1, we coilect
s0ine resuits in the literature for related problems that apply to model 1 and derive
two additional submodels that account for the limit y— 00, One of these submodels
applies in the limit

{1.11) @i~ (yb)~1, A0,

In the limit {1.12), the modei {1.6}-(1.9} will be reduced {in § 2.2) to the following
model, that will henceforth be referred to as moedel 2. That model is posed by the heat
equation (1.6) with boundary conditions

o
(1.14) dv/on=v(1—uv,}+Bd exp (y—v/v,) J w,(& 1) dé  at each peofl,

where, at each point pea), v,(t)=o(p, {), and the function w, is given by
{1.15) /ot =8 u, /98— ®u, exp(y—y/v,) in —0< £<0,
(1.16) =0 atg=-oo, u,=1 at£=0.

Here the parameters B and @7, and the variable £, are

(1.17) B=b/A=BVL, &= /y=9¢"/L, E=i{VA=nVL,

where, again, 7 is a coordinate along the ouiward unit normal to 9{}. Observe that
model 2 differs from the basic model only in the boundary conditions (1.16) at £=1



and in the fact that it depends on three nondimensional parameters {the basic model
depends on four parameters). In § 2.2 we give two additional submodels of madel 2,
accounting for the limit ¥ =<0, One of these submodels applies in the limit &~ 1,
B~y '50, or (see (1.12), (1.17))

(1.127% @2~ 1/(ybY¥ ~ A >0,

Note that the limits (1.12) and (1.12°) are realistic. I, for example, » =1, ¢ =10,
o=L=100, and either (v, B8)=(5,.05) or {v, B}=1(20, .005), then either p?=A=.01,
b7 =04 or ¢>=A1=(yB8)} >=.01, and one of the limits (1.12) or (1.12"} should be
expected to apply. Observe that these two sets of values of the parameters in (1.1} and
{1.2) are realistic (see, e.g., [1, Vol I, pp. 94-97]).

Model 2 exhibits the same features as model 1 in connection with its steady states,
which will be analyzed in § 3.1, for the one space dimension case. However, the dynamic
behavior of model 2 is mare interesting than that of model 1. In § 3.2 an analysis of
the linear stability of the steady states in one space dimension will be given. In particular,
it will be seen that model 2 exhibits the following degeneracies (w,, w4, - - - are the
gigenvalues of the Hnearized problem around a steady state with zero real part): (i)
=0, wy3==i), Q#0, (ii} @ =%y, wia==il);, =0, L#=0, {iii) w, =0
(triple), (iv) @, = 0 {(double), w, s = £i0}, 2 # 0, and (v) @, =0, ws 5 = £ifd,, @, s = £i(},,
1, #0, (3,2 0. These degeneracies are known to lead to quasi-periodic phenomena,
which is a well-known route to chaos [9], [10]. The normal forms of the (codimension-
two) degeneracies (i) and (ii} are completely analyzed in [9]. For an analysis of the
normal forms of the (codimension-three) degeneracies (iii}-(v), see {11]-[13]. See also
[14] for an asymptotic analysis of the nondegeneracy (iii) in a particular case, allowing
a description of chaotic solutions by analytical means.

In § 4 we obtain the coefficients of the normal form of the degeneracy (i), above,
for model 2 via center manifold theory. That analysis will show that model 2 possesses
guasi-periodic solutions that bifurcate from a family of periodic ones. That result
makes il reasonable to expect chaotic behavior. There is a second reason for that
expectation. The standard model of continuous stirred tank reactor consists of a pair
of ordinary differential equations (ODEs} and exhibits nothing mare interesting than
periodic solutions. However, if an external thermal capacitance is added, the resuiting
model possesses chaotic solutions (that, by the way, bifurcate from a family of periodic
ones via the degeneracy (i), above}; sce [15]. In the same way, model 2 may be seen
as a result of adding to an isothermal model the heat conduction efect in the porous
body, which acts as a thermal capacitance for the exothermic chemical reaction {(that
occurs only in the reaction layer). Thus, from a physical point of view, model 2 is
somewhat similar to that considered in [15]. Nevertheless, the expectabie chaotic
behavior of model 2 will not be pursued any further in this paper.

2. Models 1 and 2. Here we consider the limit A = 0 for the basic model {1.6)-(1.9).
In fact, in the distinguished limits (1.11} and {1.12), models 1 and 2, posed by (1.6),
{1.13) and by (1.6}, (1.14)-(1.16), respectively, are obtained. In addition, we consider
some properties of models 1 and 2.

2.1 The Pis'men—Kharkats mtodel, or model 1. In the limit (1.11), if we let A= 0
formally in {1.6}-(1.9), then we obtain in first approximation the model posed by (1.6)
and (1.7}, where, at each point of §€i, u is given by

(1) 0=0"u/al" —¢ uexp(y—y/v} in —w<{<0,
(2.2) u=0 atf=—o0, gu/od=1—u ati=0.



The linear prablem (2.1), (2.2) is readily integrated to obtain # (v is a parameter in
{2.1)). A further substitution inte (1.7} yields (1.13), and model 1, posed by {1.6},
({1.13), is obtained.

Observe that if, instead of the basic model, we consider the more general one
described in the last paragraph of Appendix A, then, in the iimit (1.11}, we obtain the
model posed by (1.6}, with boundary conditions

{2.3) gvjon=r{l —v)+hoh{e, v) at af),

uolzp,n) 172
hiep, v)=[2j flzv) dz:l s

0

where

and, for each v =0 and each ¢ > 0, uy{e, v) is the unique solution of the equatien

2 1/2
[—uu—w[EJ f(z,v)dz:| .

aQ

The most relevant properties (steady states and their stability, dynamics} of model
1 {posed by {1.6), {1.13)) in one space dimension ({1 =]1—1, 1[ <R} either are well
known or may be established by applying results in the literature for related problems.
In particular, model 1 possesses generically cne or three symmetric {and uniform)
steady states and, for appropriate values of the parameters, fwo or six asymmetric
steady states, as shown by Pis'men and Kharkats [14] (see also [16]). The stability of
the steady states was also analyzed in [14], and it was found that the stable ones are
exactly the following: (i) the minimal and maximal uniform steady states, and {ii) two
of the asymmetric steady states when there are six. The domains of attraction of the
stable steady states (for a slightly different model suggested by a related problem)
were analyzed by Aronson and Peletier [17] and by Aronson [18]. In addition, Ball
and Peletier [19] (see also [20]) proved (for a somewhat more general model) that,
for arbitrary initial conditions, the solution stabilizes (i.e., approaches a steady state)
as >0, The generalization of these properties to two and three space dimensions is
presented elsewhere [21].

Finally, we consider the limit y » < for model 1. Two distinguished limits must
be considered. If

p~exp(—y/2), »~1, v~b-y-ox,
then, in first approximation, we obtain the model posed by (1.6}, with boundary
conditions
(2.4) auv/on=—vo+bg /(e texp (1/20)] at ok

To obtain that model, replace v by vu, b by ¥b,, and ¢ by ¢, exp(—v/2) in (1.6),
(1.13), divide by ¥, and let v— oo, That model is not quite significant, since it involves
very large temperatures in the catalyst, and this must be avoided in practice for technical
1£asons.

The second distinguished limit is

r~¢g~1, b~|p=1]~y"'=0.

Now, by replacing v by 1+v/v and b by b,/ in (1.6), {1.13), multiplying by v, and
letting v - o0, we obtain, in first approximation, the model posed by {1.6) with boundary
conditions

(2.5) doforn=—rvv+be/[e+exp(—p/2)] atofl.



2.2. Model 2. This model is posed by (1.6), {1.14)-{1.16), and it is obtained from
the basic model (1.6)-{1.9) in the distinguished limit (1.12), by introducing the variables
and parameters {1.17) into {1.6}-(1.9) and letting A > 0.

As y -0, we obtain two distinguished submodels of model 2. The first one, which
{as above) is not quite significant, is obtained in the limit ® ~exp (—y/2}, v~ B~y >
by replacing v by yv, B by vB,, and ©®¥ exp (—y) in (1.6}, {1.14)-{1.16), dividing (1.6)
and (1.14) by v, and letting ¥ » 0. The second submeodel is obtained in the limit
v~®~1, B~|v—1|~y ' >0, by replacing » by 1+5/y and B by By/y in (1.6),
(1.14)-{1.16), muliplying (1.6} and (1.14) by v, and letting v > oo,

3. The steady states of model 2 and their linear stability in one dimension. Here
we consider model 2 in one space dimension. It is posed by

(3.1} dv/at=a’v/ax’ in —1<x<],
0
(3.2) av/ox= :i:[y(l —0, )+ B exp{y—v/v.) J u, (& 1) df:l af x==%1,

where v, (1) = v{x1, ¢) and the functions &, and u_ are given by
{(3.3) Buefot = ufag"—Puexp(y—y/ve) In —0<E<H,
(3.4) u,=0 at £=-o0, u.=1 at&=0.

3.1, The steady state solutions. The steady states of {3.1)-(2.4) are readily seen to
be given by

v={(v,—v_ )x/2+{o, +p.)/2,
where v. = v{+1) satisfy
{3.5) v, ={142v)o_—2¢—-2BD exp (v/2—v/2v_),
(3.6) vo={14+2v)v. —2v—-2BD exp (v/2—v/2v.).

By applying standard bifurcation techniques (see, e.g., [22]) to (3.5), (3.6}, it is seen
that, for fixed values of v and v, the response curve v, — 9 is as one of the piots of
Fig. 1. The S-shaped part of the response curve corresponds to steady states such that
(2 =un, and} the temperature is uniform, while the remaining part of the response
curve corresponds to nonuniform temperature profiles (v_# v.). Observe that, for
appropriate values of v and v, the response curve can exhibit up to six bending points
(i.e., the points 1, 2, 5, 5, 6, and 6} and two pitchfork bifurcation points (i.e., the
points 3 and 4). In Fig. 2, the common houndary of regions I and 11 {where the bending
points 1 and 2 coalesce) is given by v =8, as obtained by eliminating v and B¢ from

the following system of equations:
Flv,y, BO,v)=0, F/(y, v B v)=0, F_(v, vy BD v)=0,

¥

where the function F is defined by
(3.7) Flo, o, v)=v(l-v)+eesp(y/2—y/20).

The common boundary of regions IT and III {where the pitchfork bifurcation points
3 and 4 coalesce) is given by y=8([+[/v), as obtained by eiliminating v and B®
from the foliowing system:

F{», v, B, v)=0, F (v, v, B®, v)=0
Foulv,y. BO, v} =F (v, v, B, 0)F. (v, v, BE, v),



FiG. 1. Steady state response curves of model 1| for representative points of the regions 1, T1, 111, and 1V
in Fig. 2. (I {v, ¥) = (3.5,6); [E: (&, %) ={3.5,8.95) 1L: {v, y) = {448, - 11); IV: (e, ¥} ={12,21}.)
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Fuci. 2. Boundary curves in the plane y— v, of the regions 1, 11, 111, and 1V.

where the function F is as defined in (3.7). Finaily, the common boundary of regions
ITI and 1V { where the two pairs of bending points 5-6 and 5"-6' coalesce simuitanecusly)
is obtained (numerically) by eliminating v_, v., and B@® from the following system
of eguations:

v, —v_+2F(r, vy, BD, v ) =0, o_~v,+2F(v,y, BO, v,)=0,
F (v, v, B® v )+ F,(v, v, B®, v,}=2F,(v, vy, BO,v_)F,(v, v, B, v,),
Folv, v, B®, 0.)/ Foy(v, v, BO, v ) =[F.(v, %, B, 0.}/ F, (2, v, B®, v )1,
where the function F is defined as in {3.7).



3.2, Linear stability of the uniform steady states, Now we study the linear stability
of the steady states of (3.1)-(3.4) with uniform temperature profiles, which henceforth
will be called uniform sready states. The linear stability of the remaining steady states
is analyzed in a similar way.

The {fairly involved) complete parametric results of the linear stability analysis
is presented in the Ph.D. thesis of the first author [23). Here, for brevity, we focus on
locating degeneracies (of the linearized eigenvalue problem) of codimension greater
than one, where local bifurcation into (two- and three-dimensional) tori is expected
to occur [9]-[13]. One such bifurcation is considered in § 4.

For the uniform steady states, the temperature o, is independent of x, and the
functions u,, and &, (giving the concentration profiles at the reaction layers) at x = —1
and at x =1 are identical. v, and u, = u,, are given by

(3.8) v, =(v+B®}/», u =exp(Pf),
in terms of the parameter
{3.9) b, =dexp[y(n,—1)/20,]

The linearized problem around the steady state has nontrivial solutions v —s5, =
Vix)exp {ws), v, —u, = U, {x) exp {wt) at x =1 if and only if @ satisfies one of the
following equations:

(3.10) v+vw tank v —{(yB®,/v[1 - P w + O}/ (oV PRI+ w)] =1,
(3.11) v+ vw cothvw — (yB®. /v 1 -/ w + Y/ (Vi + )] =0.

When (3.10) (respectively, (3.11)) holds, then the function x - V(x} is even (rsspec-
tively, odd), and the perturbed temperature profiles are symmetric (respectively, anti-
symmetric) with respect to x=4.

Let us now consider the marginally stable steady states, i.e., these steady siates
such that either (3.10) or (3.11} are satisfied with « = +i{), with {} real and nonnegative.
We first analyze {3.10), which has the solution w =0 if and only if

(3.12) y=2v+B&)/vBD,.

That equation provides the bending points I and 2 of the response curves of Fig. 1.
Also, £3.10) has the solutions w = 7}, with {} > 0 if and only if the following equations
hold:

313) 3w+ BD, POVOE+ D [\/ﬁ sinh V32 —sin V20 }
: y= = v,
PV BD 20V 02+ 0 - Dp) 2 cosh V20 +cos V21T

20707+ D7 Bl _sinh 261 —sin 20} + 2 cosh v2{} +cos v2()

(3.14) = v .
D2V +D*—d,a] sinh VI +sin VI 0 sinh 28 +sin V20

where

(3.15) a=vHPI+VOR+ N2, b=VIVOI+BI-dH'V

Thoese equations provide Hopf bifurcation peints of the S-shaped part of the response
curves of Fig. 1.

For fixed values of »>0 and B>9, {3.12} defines (respectively, {3.13), (3.14)
define) a curve in the plane y—<&, that is as the curve C, (respectively, curve Cs} in



one of the sketches of Fig. 3. (For appropriate values of », there are isolas that bifurcate
from the curve C, (see [23]). These isolas are not shown in the sketches of Fig. 3
because they play no role in the analysis below.) Both curves always intersect at a
point p,, which corresponds to the limit -0 in (3.13), (3.14}. The coordinates of p,
are

(3.16) &, =V3Iv/4, vy, =2v+BD,)V/vBD,,.

Curves C, and C, are tangent at p, if and only if »=10/3. If v#10/3 and B >0, then
at p, the linearized problem around the steady state possesses a double eigenvalue
@ =0, which is geometrically simpie. This is the so-called saddle-node degeneracy,
which has codimension two. For a complete analysis of its universal unfolding, see,
eg., [9] If v=10/3 and B> 0, then at p, the linearized problem around the steady
state possesses a triple eigenvalue w = 0, which is geometrically simple. This degeneracy
is of codimension three and is partially analyzed in [11], where it is shown that it [eads
to bifurcation to two- and three-dimensional ton. Observe that these two degeneracies,
which occur at poimt p, of Fig. 3, correspond to the following situation: a Hopf
bifurcation point of the $-shaped part of the response curve of Fig. 1 appreaches one
of the bending points 1 or 2 and disappears.

A second point of intersection of curves €, and C; (point p, in Fig. 3) exists if
and only if »>10/3 and B>0Q. The coordinates of p, are &, and vy,=
2(v+ BD ./ vB®,,, where, for cach #>10/3, &,,>0 is the unique solution of the
equation that results when (1 is eliminated from the following system of equations:

Q2+ i -Dlb __sinh +/2f) —sin V20

17 = )
(317) WA+ P —®.a) sinhV/20 +sin V20
. avai+ ! \/5 sinh v2(2 +sin v2(}
) v= — .
DOV P —Da) Y 2 cosh V20 +cos VIO
Y Y Y
- c
Ca I Cch Cop!
2 P, D'
(a) ¥s by %s (e} 9¥s
Y Y v
C
| ¢, Cy ‘ C2C7 A
p. 2
Cy 1
)
2 P
(d} %s {e} @5 {¢) @

FiG. 3. Curves of neutral stability points of mede! 2 {under symmerric perturbations) for fixed values of
B and ».



where a and b are as defined in (3.15). At p, the linearized problem around the steady
state has a simple eigenvalue @ = 0 and a pair of complex (simple) eigenvalues w = £iQ),
with Q1 = 0. This is a codimension-two degeneracy whose universal vnfolding has been
completely analyzed [9]. In §4 we study the behavior of (3.1}-(3.4) near that
degeneracy. Observe that the degeneracy corresponds to the following situation: a
Hopf bifurcation point of the response curve of Fig. 1 crosses one of the bending
points 1 or 2.

Let us now consider the eigenvalues of the linearized problem around the steady
state that are solutions of (3.11). Equation (3.11) has the solution w =0 if and only if

{3.19) y=2r+1+B20,¥/{(++1)BD,.

That equation provides the pitchfork bifurcation points 3 and 4 of the sketches of
Fig. 1. Also, (3.11) has the solutions « = £iQ), with >0, if and only if

v+ BO VOO + 0 [\/ﬁ sinh +Z00 + sin VI }
V :

(3.20) -
P BO 2V + D -Blh) 2 cosh V20 —cos V28
(1.21) 200+ -Pib  sinhv20 +sin vm 2 cosh V201 —cos v21}

+v ,
P+ DI - <Da) sinh V201 —sin 20 Q0 sinh 20 ~sin +/20

where @ and b are defined in (3.15).

For fixed values of #>>0 and B> 0, (3.19)-(3.21) define two curves of the plane
d,—vy, €] and %, which are qualitatively similar to the curves C, and C, of the
sketches of Fig. 2. Here we are interested only in analyzing the intersections of the
curve '} with the curves C, and C, (i.e., the points p, and p, of the sketches of Fig.
4). To this end, first observe that the curve C| is always below the curve C), as obtained
by comparing (3.12} and (3.19). Also, as &, » 0, the asymptotic behavior of the curves
C,, C,, and 4 is given by

Yo, =20/BO.+ O(1}, ve,=v¢/BL,+0{1), vg=(r+1)/B® . +0(1).

Then, for sufficiently small ®,, the curve C; 15 below the corves Cy and C, if #>0
and B> 0, whlle the curve C, is below {respectively, above) the curve CL if 0< v <1
{respectively, if »> 1}. Finally, the curves €, and 3 intersect at a point p; (see

fe) ¥ (1] s ig) %s th) s

Fi1G. 4. Curves of neutral stability points of modet 2 when asymmelric perturbations are considered.



Fig. 4) if and only if »>1 and B>0. The coordinates of p, are ®,5 and y,=
v+ BE Y/ vBd,;, where D, Is the unique solution of the equation that results
when () is eliminated in the following system of equations:

OV +Di-P’b  sinh VZ +sin V20

(3.22) = ,
GNP+ B -0 a)  sinh 2§ —sin V201
(3.23) OvQE+ o? 2 sinh V2 +sin 20}

v= .
QJQ2+ D —d3p ¥ 2 cosh V28— cos V282

where a and b are as defined in (3.15). A plot of the first coordinate of the points 1,
2, and 3 (the last two of them as defined above) is given Fig. 5. If 0<<p =1 and B> 0,
then points 2 and 3 do not exist. If 1< » < py=1.8466 - - -, then &, <P, while, if
v v, then $ ;> @,,. The plots of ®,, and P, (the latter exists only if »>10/3)
intersect infinitely often, for a sequence of wvalues of v, » =51482 - <=
8.5523 - - - < py < py<C - - -, @8 seen by an asympiotic analysis of the systems (3.17}-(3.18)
and (3.22), {3.23); the asymptotic behavior of #, is given by

v =(kmr+ 4695 -- - }x 1.0857 - - -+ ofl) as k—o0,

From these properties the following conclusions hold:
(i) If B> 0 and 0<<» =1, then the curve } intersect neither the curve C, nor
the curve , (that is below the curve C\}.
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FiG. 5. The first coordinate of points 1, 2, and 3 in Fig 4 in terms af v,

(iiY If B>0 and 1 <2 <v;=18446 - - -, then the situation is as in one of the
sketches {a) or (b) of Fig. 4. The curve '} intersect the curve C, (at p;), but it does
not necessarily intersect the curve C, (since P, > ¢, and the curve C; is below the
curve C4 for sufficiently small ®,).

(iii) If B>(Q and » =v,, then p, and p, coalesce. At the resulting point, the
linearized preblem around the steady state has a double eigenvalue w =0, which is
geometrically simple, and a pair of complex conjugate simple eigenvalues, @ = +ifl,



with {3 # 0. This is a codimension-three degeneracy that has been partially analyzed
in [12], where it has been shown that it leads to bifurcation to two- and thiee-
dimensional tori. That degeneracy corresponds to the following situation: a Hopf
bifurcation point crosses one of the bending points 1 or 2 of the response curve of
Fig. 1 and, simultaneously, that bending point exhibits a saddle-node degeneracy.

{iv) If B>0 and v,< v=10/3 (respectively if 10/3 < v < », or, more generally,
if 2 < ¥ < w3y, for some k=1), then the situation is as in one of the sketches {c) or
{d) (respectively, (e) or (f}} of Fig. 3. Therefore, if »,< v < v,, then the curves C; and
% intersect at (at least) a point po. At p, the linearized problem around the steady
state possesses two pairs of complex conjugate simple cigenvalues @ =%i{}, and
w = £ i{l;, with ), # 0 and (), # 0. This is a codimension-two singularity whose universal
unfolding has been completely analyzed [9]; in particular, it is known that the
degeneracy leads to bifurcation (e tori. The degeneracy cotresponds to the following
situation: two Hopf bifurcation points, with Tlinearly independent eigenspaces, coalesce.

(v} If 8>0and v = v, (or, more generally, » = v, for some & > 1), then the points
p» and p, coalesce. At the resulting point, the linearized problem around the steady
state has a simple zero eigenvalue @ =0 and two pairs of complex conjugate simple
eigenvalues o = £i0), and w = +if),, with ), # 0and (3,7 0. This is a codimension-three
degeneracy that has been partially analyzed in [13] and leads to bifurcation to two-
and three-dimensional tori. Tt corresponds to the following situation: two Hopf bifurca-
tion points, of linearly independent eigenspaces, simultaneously cross one of the
bending points 1 or 2 of the respanse curve of Fig. 1.

(vi) If B> 0 and v;;_, < ¥ < vy, for some k=1, then the situation is as in one of
the sketches (g) or (h) of Fig. 4. Qbserve that the curves C, and C} intersect at a point
P, where a degeneracy of codimension-two {namely, that appearing in case {iv)} takes
place. Nevertheless, that degeneracy appears now at a peoint of the middle branch of
the S-shaped part of the response curve of Fig. 1, where the linearized problem around
the steady state has a real eigenvalue that is strictly positive. Therefore, no attractor
of the dynamical system defined by {3.1)-{3.4) can bifurcate from the steady state near
that singularity. Thus it is not of much interest.

To summarize the above results, the following degeneracies of codimensions two
and three, leading to quasi-periodic behavior of (3.1)-(3.4), have been found above
(w,, w,, - - - are the eigenvalues of the linearized problem around the steady state with
zero real part):

{i} w,=0, w,,=&if}, with O =0,

{ii) wy,= L0}y, w3 2= Lill, with £}, 5 0 and £2,#0;

(iii) w, =0 (algebraically triple, geometrically simple};

(iv) @, =0 (algebraically double, geometrically simple), w;;=+i{l with Q#0;

(V) o =0‘, iy 3 = iiﬂl, Wy 3= i!ﬂz ,With Ql #0 and Qz #= 0.

To show that the dynamical system associated with (3.1)-(3.4) exhibits stable quasi-
periodic behavior, in § 4 we make a bifurcation analysis of the singularity {i). Let us
recall that the normal forms associated with the degeneracies (i) and (ii} may be
reduced to a second-order autonomous system of ODEs; therefore nothing more
interesting than quasi-periodic phenomena (which corresponds to periodic solutions
of the above-mentioned system of CQDEs) may be seen locally, via center manifold
theory and normal form reduction. The normal forms associated with the degeneracies
(iii}-(v), instead, consist of {or may be reduced to) a third-order system of ODBEs,
which might exhibit chaotic behavior. However, to our knowledge, that question {as
well as some other significant ones, concerning the universal unfolding of the
degeneracies (ii)-(v)) remains unsolved.



Finally, observe that the stability analysis above, of the spatially one-dimensional
problem (3.1)-(3.4), must be seen with some caution from the physical point of view,
since the real world is three-dimensional. That analysis is expected to apply to the
three-dimensional version of (3.1)-(3.4} in 3= ] -1, 1[ x £}, where O, < R?is a bounded
domtain, if the boundary conditions (3.2} are imposed at {—1, 1} x{},, Neumann
boundary conditions are imposed at ]—1, 1[ xa8},, and the domain £, is sufficiently
small; this should be seen by extending well-known results by Conway, Hofl, and
Smoller [24]. This, however, is not true if the domain £, is sufficiently large; in that
case, we expect additional degeneracies of the linear stability problem, of codimension
greater than three. In the limiting case in which {) is an infinite slab, a new source of
chaotic behavior appears, namely, the so-called phase turbulence [25]. We do nat
pursue this important question any further in this paper.

4. Quasi-periodic and other complex phenomena for model 2 in one dimension. In
this section we analyze {via local bifurcation theory) the model (3.1)-(3.4) near a point
of the parameter space (P, y, v, B) =(dy, vo, ¥, By), where the linearized problem
around a uniform steady state (u,g. ts) exhibits ihe degeneracy (i} encountered in § 3.
Recall that this degeneracy corresponds to the interaction of a Hopf bifurcation point
and a bending point of the response curve. The analysis will be made by reducing the
problem to a three-dimensional center manifold and obtaining its normal form; then
we use the general analysis of this normal form in [9]. Let us mention that similar
{but different) normal forms are obtained at the interaction of a Hopf bifurcation point
and either a transcritical or a pitchfork steady bifurcation point; see [26], [27] and
also [9, pp. 396 and 410].

We take &, vy, vy, and B, such that (3.12)-(3.18) hold for some positive values
of the real parameters 2 = Q, and &, = &, where O, satisfies (3.9). Then the linearized
prablem around the steady state {3.8) has the simple eigenvalues w = i{),, & = — i},
and w =0, with (V, U, U_)=(V,, U, U,_),{(V,. Uy, U2, and (Vo, Usy, U5) as
associated eigenvectors, where (here and belaow) overbars denote complex conjugation,
and

(4.1) Vi(x) = cosh (viQex}/cosh (Vifls), Vi(x)=1 in-1=x=1,
U (€)= U (&) = vori®ilexp (Vi) —exp(P o))/ iQulw+ BE o),
U (&) = U _(£) = yova® ok exp {(©,08)/2(ro+ Bi®yo)* in o< £50.

{4.2)

In addition, we assume that
(4‘3) q)sg # F@/B@.

This condition and (3.12} mean that the steady state under consideration is, in fact,
one of the bending points 1 or 2 of the response curve of Fig. 1. If (4.3} does not hold,
but conditions (3.9), (3.12), (3.17}, (3.18) are still imposed, then the steady state
bifurcation diagram exhibits the cusp degeneracy (which corresponds to coalescence
of the bending points 1 and 2), and the local dynamic problem presents a degeneracy
of codimension-three that will not be considerad here.

Now let the parameters », B, ¥, and $* be close to vy, By, ¥, and ©F, and let
the parameters & = (&, £, £;) € R* and § €} be defined by

(4.4) v=wte, B=Byte, y=2[r+B{P,+ 53)]2/ vB(D o+ e5),
B2 =5+ (b +e) exp[—y+yr/{v+ BB+ Be,)]



Note that (v, B, 3 ©%) > (vy, By, ¥4, ©3) as |e[*+8%°=0, and that the map (g, )
(», B, v, ®*) defined by (4.4) is one-to-one if je|*+ 87 is sufficiently small (its Jacobian
at |¢| = 6 =0 is different from zero according to condition (4.3)). The parameters £ and
8 are defined in such a way that if 8 =0 and || is sufficiently small, then {3.1}-(3.4)
possess the steady state

v(e) = [+ B(Pote)l/v, wdf e)u (4 e)=cxp[(Dutes)é]

(4.5) in—oco< £<0.

Also, (i) v, 1, and u,_ depend smoothly on &; (ii) (,, %)= (Va, Uso.) (= the basic
steady state that we are considering) as £ -+ 0 and 8 - 0; and (iii) the linearized problem
around the steady state (4.5) possesses the eigenvalue w =0 (for all ¢ such that el is
sufficiently small).

Now, if |e|* + 87 is sufficiently small, we consider a three-dimensional center manifold
of the phase space of (3.1)-(3.4), M5 .,, which is invariant under the semiflow defined
by {3.1}-(3.4). M,; ., is defined in a neighborhood of the steady state (0,5, Msor, U ),
and My, q; contains that steady state and is tangent {at the steady state) to the linear
manifold spanned by the eigenvectors {of the linearized problem) associated with the
eigenvalues i{ly, —ifly, and 0. In addition, we require M, to contain the steady state
{4.5) (for |¢| sufficiently small}. M; ., may be represented parametrically {through the
parameters ¢ €C and B eR) as
(4.6} vix)=v(e}+aVix)+aV,(x)+BV{x)+ f/'(x; o, & 3; 8,6},

(47) (€} =u.lf )+ al (O +aU {6+ UL UlE 0,4, 8. 8, 2).

Here V,, U, U;_{for j=1and 2}, v., u,,, and u,_ are as given by (4.1), (4.2}, (4.5},
and the functions V{—1,1]x® >R and U,, U_:]-, 0] x % —+R (for some neighbor-
hood @ of the arigin of C*xR®) depend smoothly on x or £ ag, @, 8. 6, and =, where

{4.8) ag=Rea and o;=Ima
In addition, V, U, , and [J_ satisfy the determinancy conditions

(4.9) Il Vv dx+j

—c

LM 0

O.u% d§+J JU% dé=0 forj=1and?2,

-

where (V¥, U¥_ , Uf ) and (VF, U%,, U%) are cigenvectors of the adjoint linearized
problem associated with the eigenvalues i{l; and 0, 1.2,

(4.10) VH(x) = (DL, + if)y) cosh (Viflyx), VHx)=1 in-1=x=1,

Ut (£)= Ut (&)= Byb?, cosh (Vi) 1 —exp (VO + i),
UL(&)= Ul (&)= B[l —exp (P of)] in—0<E=0,

Also, the steady state (4.5) is assumed to correspond to ¢ =0, B=0if §=0, i.e,
(4.12) V=0,0,=0 =0 ifa=p=6§=0.

As a consequence of conditions (4.9} and (4.12}, it may be seen that the following
tangency conditions hold:

(4.11)

aV/isa=aVi3g=avViaB =0,
sU./sa=0U,/0a=0a00,/08=0 ifa=0,83=0,and & =0,

where d/da and 38/d& are the formal { 17, {TS',,, and U_ are not necessarily holomorphic)
partial derivative operatars, defined by {see {4.8))

(4.13) dfda=(0/deg —id/da;}/2, 3foa =(5/dag+id/da,)/2.



Now the restriction of the semiflow defined by {3.1)-(3 4} to the center manifold
may be described by a third-order real {when decomplexified)} system of ODEs of the
form

(4.14) da/dt=fle, & B, 8, £}, dg/di=g(a,a B; § g),

for some functions, f: 9 > C and g:% >R {for some neighborhood 9 of the origin
of ©*x R} that depend smoothly on ag, o {§ee”{4.8)}, B," 8, and £ These functions
are determined (together with the functions V, {J,, and U_ defined above), at least
locally, by the problem posed by (4.9), (4.12), and (4.15)-(4.18} below, which are

readily obtained by imposing the invariance of the center manifold under the semiflow
defined by (3.1)-(3.4):

{4.15) & V/ox’=(V,+aV/sa)f +(1+3V/3p)g - ilpaV,+ce. in-l<x<],
3V/ax = F avillytanh vitlgx »[—-B®, /v —a — 8- V]
(4.16) £ B expy—y/(n +a+a+p+o)]

e}
J‘ [u,+al,.+ B, +U.,]dé+cec. at x==1,

—0

PO = (U4 a0 9a)f + (U taUL/38)g — ad Ui/ — BO° Un /38" — Dlu,
{4.17) +dHu, + al+8U,. + fft) exp[y— v/ (p,tat+a+g+ f’;}]-l— c.c.
in —oo < £},

{4.18) U.=0 até=-oand £=0.
Here 17,2 f’(:l:l; e, d, 8 8, £), 3/da is the operator defined in {4.13} and c.c. denotes
the complex conjugate.

The praoblem posed by {4.9), {4.12}, {4.15)-(4.18) may be solved by (regular)
perturbation techniques, by seeking the asymptotic expansions { p, q, ¥, s = nonnegative
integers)

fla, @ B;8,e)=% T fhled)aa'p®,

p gqtrid=p

gla, & B;8,e)=Y 2 ghds 8)aa’p’,

p gtris=p

V(% 0,6,8;6,6)=% §  V9dx; 8 e)aa’s’,

p qtr¥+s=p

(4.19)

Ut a,&,8:8,e)=Y, T Ul,lx;8 ela’a’p’,

p gtrts=p
The coefficients are uniquely determined from the system of recursive linear problems
that results when the expansions (4.19} are substituted into (4.9), (4.12}, (4.15)-(4.18),
and the coeflicient of each monomial a“&'8" is set to zero. Below, we consider all
coefficients up to order p=3 in the expansions of f and g, but we must explicitly
compute ouly a first approximation of the following:

2600(8, €)= Ao+ O(8° +[e[)
Re [flol0, £)] = A8, + Ase,+ Ay + O(|D
Im [ fioo(0, 0)] =,
Re [flzﬂl({}a 0)]= A, gfm((), 0)=As, g?m{(), 0} =A,,
where the constants Ag, - - - -, Ag are given in the Appendix B.

Now a third-order normal form of system (4.14) may be obtained as follows. We
first truncate the expansions (4.19) of f and g by ignoring all terms of order p =4 and

(4.20)



replace the resulting polynomial in (4.14). Then we consider a near-identity change
of variables (e, B} = {{e, 8; 8, €}, z{e, 3,8, e))eCxR, with y=a and z=§ as
(O.'., ,Bs 5, ‘S) i (05 0, 0, 0), Of the f()rm

(421 y= i Y YEA8 e)a@'p’, z= i Y ZLis e)a%a’ s,

p=0 gtr+sap =0 g¥+r¥s=p
whose coefficients are selected in such 2 way that, in the new variables, system (4.14)
becomes of the form
dy/dt =[ag(8, e} +1icy(8, e}]y +[ar(8, &) +icy(8, )]yz

+[ay(8, £)+icy(8, €)1y F+[a:(8, &) +ica(8, e)Iyz*+ Oy + 2%,
dz/dt=bo(8, 8)+b,(5, 8)yp+ by(&, &)z + b,(5, £)yyz
+by(8, £)z° + Oy + 2%V,

where the real coefficients a;, b, and ¢; are such that
byl 8, £} = A + O(|e[* + 67, ao(0, 8)=A,e,+ Aze.+ Ase,+ O,
(0, 0y=0Qy, a (0, 0)+ic (0,0} =A,, b(0,0=A4A;, b{0,0)=A,.
The terms appearing in the right-hand side of (4.22} cannot be annihilated by a change
of variables of the type {4.21), and are called resonants.

That change of variables is seen to exist by applying the implicit function theorem
to the system of equations that results when (4.21) is substituted into (4.14), and the
coefficient of the monomials not appearing in (4.22) is set to zero {observe that
g502(0, 0) # 0; see (4.3) and (4.20}).

MNow, when the new real variables r>0 and 6, defined by y=rexp (i)} are
introduced, {4.22) is written in the form

(4.22)

(4.23)

{4.24)

{4.25) dridt=aw+arztar+a,r°+0(rF+z9,
{4.26) dz/ @t =by+ b+ bzt + boriz + byt + O+ £2),
{4.27) df/dt =cy+ oz + o’ o2+ O{ri 20

Then (4.25), (4.26) are decoupled from (4.27), and they may be solved separately.
Note that the stationary {respectively, periodic) solutions of {4.25), {(4.26} with r>=0
are periodic (respectively, quasi-pericdic) solutions of (4.25)-(4.27). Now we may use
the fairly complete analysis of (4.25), (4.26) made in [9, pp. 376-39¢]. To this end, we
first reduce (4.23), (4.25) to standard form by using the new variables and parameters

u=|b/bo|'?r, v=—byz, wi=ay, p2=—bob, a=-a,/bs,
(4.28) b=—sign[by/ b {==x1), c=ab3/bi, d=ua)/b3,
e=bibi/bl, [f=bi/b]
to write {4.25), {4.26) as
du/fdt = pu+ auv+ cu’ + due® + O(u* +v°)?,
dv/ di = p, + bu* = v*+ e v+ fir' + O(u’ + v5)%

Here we assume that b, # ¢ (note that b, #0; see {4.3), (4.20)).

Now, when using {4.24), {4.28) and the expressions for 4,, A, A;, and A, in
Appendix B, it is seen that the map (8, £) > {(u,(8, £), 128, £)) of R* inte R* is such
that the rank of its Jacobian matrix at {8, £)=(0,0) is always equal to 2. As a
consequence, any point (g, 4;) in a whole neighborhood of the origin of R® may be
reached if & and ¢ are appropriately chosen.

{4.29)



From the analysis in [9], if @ <0 and b =1, then system {(4.29) exhibits a Hopf
bifurcation at a curve of the plane u, — pt; {for fixed values of the remaining parameters)
of the form w,= u,{u.); with x, <0, such that x}(0) =0. At that curve, the original
problem exhibits a bifurcation to torus; it is well known (see, e.g., [10, pp. 292-313]}
that, when having at least two free parameters (we have four of them available), near
that bifurcation the dynamical system exhibiis a guite complex dynamic behavior,
which includes a large number of periodic solutions and, quite frequently, chaotic
behavior. Also, if 2 >0 and b= —1, then near a curve of the plane g, — ;. of the type
py = gt po), with up > 0, system {4.29) presents a homoclinic bifurcation that is expected
to yield also quite complex dynamic behavior for the original system (see, eg.,
[9, p. 394]}. Both situations {a <0, b=1 and a>>0, b=—1) do occur for appropriate
values of the parameters in our case, as it comes from the plot in Fig. 6, where the
curves Re{A =0, A;=0, and A,=0 are represented in terms of B and » (the
expressions of A., As, and A4 in Appendix B depend on the parameters £, ¢, B,
and », but ¢, and £} are eliminated when using (3.17), (3.18)). These curves define
several regions in the plane »— B. In particular, in region I, Re (A,) >0, A;<<0, A, 0,
and (see {4.24}, (4.28)) the parameters a and b are such that @ <<0 and b =1, similarly,
in region LI, Re (A} <0, A;<<0, As<0, a=> 0, and b= —1. Note that a blow-up of the
region near the point » = 10/3, B =2+10/3 is necessary to appreciate a second point
of intersection of the curves Re(A,) =0 and A;=0.

8. Conclusions. We have ebtained two realistic submodels of (1.1), (1.2} in the
limit {1.3) for »~ 1, which we call models 1 and 2. Their formal derivation by singular
perturbation techniques, was made in Appendix A and § 2.
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FIG. 6, The curves Re(A,) =0, A,=0, and A,=0.

Maodel 1 has been already considered in the liferature, as explained in § 2.1. Model
2, instead, is new (to our knowledge}, and it is quite interesting from the dynamical
point of view. The steady states of model 2 and their linear stability were analyzed in
§ 4, where we showed that the model presents several degeneracies of codimensions
two and three, which are likely to lead to chaotic behavior. One of these degeneracies
was analyzed in detail in § 4, where we showed that, for appropriate values of the



parameters, the dynamics of the model is guite rich. Those results [ead us to the
conjecture that model 2 should present chaotic behavior for appropriate values of the
parameters.

Since, as we explained in § 1, model 2 is obtained in a realistic limit, we expect
that the results in this paper explain some experimentally observed, quite rich dynamic
behavior under apparently isothermal conditions; see, e.g., [28], [29], and [1, Vol. 11,
pp. 140-141]. Finally, to our knowledge, model 2 is the first submodel of (1.1), (1.2}
in the literature such that (a) it is obtained for realistic limiting values of the parameters,
{t) it is simpler than {1.1}, (1.2}, and (c} 1t exhibits generically stable quasi-periodic
behavior.

Appendix A. Asymptotic derivation of the basic model. In this appendix we consider
the limit {1.5} with v~ 1, for the problem {1.1}, {1.2), with initial conditions

(A1} ulx, Q) =u(x)>0, v{x,0)=56(x)>0 in £,

where the smooth functions ¢ and ¢ satisfy the boundary conditions at 3. Far brevity,
only the spatially three-dimensional case is considered, but the results of this section
are also valid in ene and two space dimensions. Also, for simplicity in the presentation,
we assume that v ~ O(1). Again, it may be seen that ihe basic model applies also if v » 1.

Below, we encounter two thin boundary layers beside the boundary of {i. To
describe the (inner) solution in these layers, we introduce, in a neighborhood B of
each point of 30, a curvilinear coordinate system (m, n,, »;) such that 3() is the
parametric surface » =0 and » is a coordinate along the ourward unit normal to 5£2.
Then the Laplacian operator is written as

A=§fan>+h¥sYan'an’ + pajon +ptafan’,

where AY, p, and p”(i,j, k=1 and 2) are appropriate smooth functions defined in the
neighbarhood B.

Two timescales must be considered. For t~1/&, a boundary layer of thickness
1/+/o appears beside the boundary of the domain. We use the time variable + = ot and
the inner variables ¢ =+von, %* and n° in the boundary layer, and we seek the
expansions

u=ugtw/Vo+- o, p=wFo /ot
in the cuter zone, and of the form
u=iyta/Not o,  s=D+0/ Vot -

in the baundary layer. Then u, and v, are given by

{A.2) Adugfar =10, udx, y, z; M =1i(x ¥, z),

{A.3) duy/ 37 = b ugexp (y = ¥/ vy},  vo(X ¥, 2;0)=1B(x, », 2},
and #, and &, are given by

{A4) Adifar=0,  G@f&n', 0% 0 =0, 7', 0,

{A.5) A0, 0T = 8,/SE + bp Hoexp {y — v/ o), dBf3E=0  al £=0,
{A6) %(é m', 730 =6(0, 1", 9%,

where the parameters A, b, and @ are as defined in {1.11}. By uniqueness of solution
of (A.4)-{A.6), we obtain that neither &, ner &, depend on £ Then &, is given by

(A7} b/ dr = bgozﬁo expiy— v/t



and, to the leading order, the boundary [ayer can be ignored at this time stage, since
the inner problem (A4), (A.6), (A7)} is obtained by writing the outer problem in the
inner variables. This is no longer true for higher-order terms, since, for example, #'
does depend on £ for >0, as is easily seen.

The behavior of 1, and v, as 7> o0 is easily obtained, from (A.2}-(A.3}, 10 be

Up=1, Bo=be dexp(y)r+O{1) in £

Therefore vy~ o as +~ o, and we are [ed to the following time stage for t~ 1. Now a
new boundary layer of thickness 1/ appears beside 3(). We use the inner variables
{=no, »', and 5° in this new boundary layer, and seek expansions of the form

=yt u o+ - v=oV,+vVaV, +
in the outer zone, of the form
u=i,ti /ot -, v=oV,+JoV,+

in the first boundary layer (of thickness 1/+o}, and of the form
u=i,+i Vot djo+---, v=oVytVoVi+ V+- -

in the second boundary layer {of thickness 1/o). Then u, and V; are given by

(A.8) Adugfat = - ug exp (7),
(A9) aVp/dt = AVy+ b ugexp (v);
iy, Vy, and V, are given by

{(A.10) Adidyfat = —p i, exp (),
(AID) BV feet ="V, /at?=0;

and f,, V,, V., and V, are given by

(A.12) Adfig/at =5°fe/ 0L — pligenp (y); odyfal=1—14, ati=0,

(A.13} PV =V /alP=0; aVyfal=0Vi/al=0 at{=0,

(A.14) YV, /art=0; avijar=-»V, atl=0.

We do not write the initial conditions for the above problem, which come from matching
conditions with the earlier time stage. From {A.13), we obtain that neither V, nor V,
depend on £, and (A.14} yields aV,/af =—»pV, in —co< { < 0. Then, from (A.11} and
matching conditions between the two boundary layers, we obtain that V, does not
depend on £ and aV,/af = — vV, in —00 < ¢ < 0. Finally, matching conditions between
the puter zonz and the first boundary layer yield

(A.15) aVofan=—vV, atoQ.

Now, from (A.8} and (A.10), we obtain that u, = 0, d,+ 0 as ¢ =+ co, and then (A.9) and
(A.15) vield V;~ 0 as t» 0. In the same way, from the equations giving higher-order
terms, which are not written for brevity, we obtain that, as ¢ » o, v = ({1} everywhere
in £}, and w = o{1/ o) in the outer zone and in the first boundary layer. Therefore, for
sufficiently large i,

=o{l/e), dviat=Av+o(l1)

both in the outer zone and in the first boundary layer, and these two zones need
not be distinguished in first approximation. Then, if we seek the expansions
v=1t,+u,/vo+ -, in the outer zone, and

u=f,ti, /ot -,  v=08,+8/Vot+bfo+- -


file:///dujdt

in the second boundary laver, v, satisfies (1.7}, 4, satisfies (1.9), (1.10), and &,, &,
and ©, are given by

(A.16) 25,/ 00 = 80 a3 =0; 3o/l =a0,/5{=0 at{=0,
0=a"R/o’+ be fyexp (y = ¥/ Do), 982/0f = v(1-10y) at £=0.

Then neither &, nor §, depend on £, and, by integrating (A.16) from —o¢ to 0, we
obtain that

ady /ot = v(1— )+ bo exp (v— v/ 5,) J (L, 7ydl as I-»—w0,

Then matching conditions between the outer zone and the boundary layer show that
o, satisfies (1.8) at 382, and the derivation of {1.7)-(1.10) is complete.

Finally, observe that if the nonlinearity ¢*u exp (y—v/v) is replaced in (1.1),
(1.2) by a more general one, ¢>f(u, v), where [ is a nonnegative smooth function such
that f(0, ©)=0, then the above analysis stands after obvious changes. The resulting
model is that obtained from model 1 by replacing the terms ¢ exp{y—¥/0v)
I u(g, £ d and @’u exp (y— y/v) by 0 [2. fluls, 1), v(1)) d and ¢*f(u, v) in (1.7}
and (1.8), respectively.

Appendix B. The values of the constants Ag, A, - -+ Ag that appear in (4.20) are
as follows:

Ao 2RP} .
YT @4 -3)"

4
—7Bd, -3¢ +; (3BD, + v)Vill tanh Vil

A, =
! (BD,.+1v)C, ’
20(Bd,+v)f DI . 4 _
—2(B®,—w(1+2d N+ —(®?=i) | +—iO tanh vi}
A= B \wffIlf—z v
T (B, +1)C,
Ri)+ 28 BD, + :
2(v(1+23)3®s)+(( e 3}} v)+4B¢¢—V(1+ZB})mtanhm
As= (B®, T mC,
dpd (BO, +v) ( D, )
—1]-2D.(B®,+»)C
i Joi+iq C 6w
(BD +2)C, ¢,C,
207 (2(<’Df+iﬂ)(8€l)_,+u}v , )tanhm
+ _2iQp | ———
o\ B Bb, V)
‘o (BD,+}C,

237 [(m{cb AVDI i)+ PHP? ]]
" B® L@+ (@ +v D2+ i0)?


file:///tanh

20t 4pd? -b 5 { +28) (sinh v2{) +sin v2{})
4P v + +2d;
A v+Bd, O Lvdi+Q? 0 (cosh V20 +cos201)
5 »

Bl4di-3p)

_ 40 v (BD —2)
*7T B(B®, + v)(4Di-13p)’

where

C,

1(tanhﬁﬁ 2 ) »dD? [¢>5+2\f¢’§+fﬂ]
—_—— + — ,
20N Vi) lt+eosh 2ViIGE (9P +iQ)Y? L(d,+VE2+ Q)
L F [ D, +22VPI+i0 }

@2+ Lo, + Vi +ia)r)

Here the suffix 0 has been dropped out everywhere from the parameters By, o,
¢,0, and £, which are defined at the beginning of § 4 and b is defined in (3.15).
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