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Figure 1: Anemone and Fish animations. Top row, theattractivefish swims from right to left over aStrawberryanemone: when theregal
tangfish is close enough, the associated Hole field is activated (white sphere) and the tentacles are deformed. Bottom row, therepulsivefish
swims from left to right over anAnthopleura xanthogrammica: the associated Source field creates deformations of the anemone’s tentacles
when theclown fishpasses by.

Abstract

This paper presents a technique for modeling and animating fiber-
like objects such as sea anemones tentacles in real-time. Each fiber
is described by a generalized cylinder defined around an articulated
skeleton. The dynamics of each individual fiber is controlled by a
physically based simulation that updates the position of the skele-
ton’s frames over time. We take into account the forces generated
by the surrounding fluid as well as a stiffness function describing
the bending behavior of the fiber. High level control of the ani-
mation is achieved through the use of four types of singularities to
describe the three-dimensional continuous velocity field represent-
ing the fluid. We thus animate hundreds of fibers by key-framing
only a small number of singularities. We apply this algorithm on
a seascape composed of many sea anemones. We also show that
our algorithm is more general and can be applied to other types of
objects composed of fibers such as seagrasses.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: sea anemones, tentacles, animation, simulation, fish,
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1 Introduction

Sea anemones are an important component of under water land-
scapes, especially tropical reefs. With the success of the movie
Finding Nemo, modeling of seascapes has gained in popularity.
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However, there is still a lack of real-time techniques that could be
used for video games or virtual environments.

Sea anemones come in many shapes, sizes and colors. However,
most species have a foot that attaches themselves to rocks oran-
chors in the sand. Their main central part is a multi-purposegas-
trovascular cavity of constant volume to which tentacles are at-
tached. As we can see on figure 2, those tentacles are a group of
fibers generally arranged in cycle as a result of spiral phyllotaxis.
Those fibers serve as a defense mechanism to poison aggressors or
as a trap to capture prey. For example, they react to human fingers
by trying to catch them. From the viewpoint of an external ob-
server, it looks like the fingersattract the tentacles. Fish will also
tend toattract them as they pass-by, except for the clownfish that
lives together with sea anemones in a symbiotic relationship. In that
case, the clownfish will tend torepulsethe tentacles that will move
around the fish to allow it to go through.

Figure 2: Photos of real anemones in their environment. The cen-
tral gastrovascular cavity is attached to the rocks thanks to a foot
and covered with poisonous deforming tentacles. On the left, the
Anthopleura xanthogrammica. On the right, theActinia fragacea
also known as Strawberry anemone.

Because they are made of soft material, the fibers also react to the
surrounding fluid by deforming. For example, they will bend in the
direction of the current.

In this paper, we propose a method for modeling and animatingsea
anemones together with their surrounding environment. We do not
attempt to model the behavior of the anemone in a biologically cor-
rect way. Because the sea anemone often remains in the same place
for several days, weeks of even months, we believe it is important
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to model the movement of the tentacles while in this more passive
state. When the anemone is anchored to the floor, its tentacles react
to the movement of the surrounding fluid and fish by swaying in a
smooth way.

In our model, the fibers are automatically generated to follow a
spiral phyllotaxis pattern and animated by a physically based sim-
ulation. The environment is described by a continuous vector
field composed of four types of singularities that can be animated.
Sources and Holes that respectively repulse and attract serve as a
mean to model the other living entities such as fish. Whirlwinds
and Directional Fields are used to create currents of water.Because
it would be impossible to control the animation on a per-fiberbasis,
we offer high level control trough the animation of those singulari-
ties that can either be attached to other entities or key-framed. We
are thus able to animate hundreds of tentacles by only key-framing
a few singularities. Indeed, animating each tentacle by key-framing
would be prohibitively expensive.

1.1 Background

Previous work on sea anemones modeling focuses on theStomphia
Coccinea[Liang et al. 2001]. The anemone and its tentacles are
modeled as an implicit surface using theBlob Tree[Wyvill et al.
1999; Liang and Wyvill 2001]. The position of the tentacles is
computed as the result of a modified phyllotaxis model. The main
drawback of this model is its prohibitive rendering time (over 13
hours on a cluster in 2001 for a single anemone). We use a polyg-
onal model for both, the foot of the anemone and its tentacles. The
deformation is driven by an internal skeleton. [Nur et al. 2001] pre-
sented a model to animate the escape response of the sea anemone
from the starfish. They aimed at creating a biologically accurate be-
havior of the anemone and the deformation itself was done by man-
ually keyframing the parameters associated to the implicitprimi-
tives describing the anemone. We propose a technique to animate
the fibers when the anemone stays in place. Our technique could be
combined to the model of [Nur et al. 2001] to obtain a more natural
swaying of the tentacles for a considerably reduced manual work
(physically based simulation versus manual keyframing).

In addition, previous work on 3D animation of individual grass
blades share some characteristics with the one of sea anemone
fibers. Like [Perbet and Cani 2001; Bakay and Heidrich 2002; Endo
et al. 2003; Ota et al. 2004], we use an internal skeleton to control
the animation of each individual fiber. [Bakay and Heidrich 2002;
Ota et al. 2004] compute the deformation of the skeleton thanks to a
geometric technique similar to an inverse kinematics problem that
gives the position of the intermediate nodes from the position of
the top and bottom nodes. [Perbet and Cani 2001] and [Endo et al.
2003] express the skeleton position as a blending of pre-computed
key positions. While any of those techniques could be used toan-
imate the sea anemone tentacles, they all rely on keyframingor
manual specification of each individual fiber deformation. We use
a full physically based simulation of the dynamics of the skeleton
that yields more precision and accuracy of the swaying movement
as well as more natural deformation shapes over time.

Physically based simulation of branches swaying has been used for
tree animation [Giacomo et al. 2001; Akagi and Kitajima 2006].
We use a similar idea on a single blade by propagating a moment
down the chain. However, we have a dynamic approach combined
to the use of an animated surrounding fluid composed of singu-
larities. Indeed, while continuous fluid flows have been usedin the
past for creating motion paths to animate leaves [Wejchert and Hau-
mann 1991] or to model static hair shapes [Hadap and Magnenat-
Thalmann 2000], the key difference is that we use them in a non-

static framework where the singularities are attached to moving en-
tities and/or key-framed which gives meaningful control ofthe ani-
mations.

To avoid the cost of a physically based simulation, [Stam 1997] has
shown that a stochastic procedural technique based on the modal
analysis of a tree deformation can generate visually appealing re-
sults. However, the interaction with entities like fish is not straight-
forward and the manipulation by an animator is necessary to create
the desired deformation. We offer a higher level control with our
technique by enabling the animator to influence the motion ofthe
anemone tentacles by key-framing the position of fish swimming
around rather than expressing the global deformation of thefibers
directly.

1.2 Overview of the Proposed Technique

The environment is modeled by a continuous three dimensional
vector field that represents the instantaneous velocity field of the
fluid. Unlike previous methods, our field is not discretized in
space [Endo et al. 2003] but continuous. It is modeled through the
summation of four types of singularities [Wejchert and Haumann
1991] that we describe in section 2.

That field exerts pressure forces on the sea anemone fibers modeled
as articulated skeletons covered with a skin (the model is described
in section 3). Those forces are concentrated on the skeleton’s nodes
that are displaced towards equilibrium. The displacementsof the
nodes induce moments that tend to make the entire structure spin
and that are taken into account to compute the displacement of the
subsequent nodes down the chain. This computation is detailed in
section 4.

The use of a continuous vector field to model the velocity of the
fluid offers a key property to the animation of the fibers. Because
they are influenced in a continuous way, self-collisions andcolli-
sions with other anemone fibers or fish are locally impossibleby
definition. Collision detection and response for the fibers is thus
rather unnecessary except for collisions with objects thatare not
described through a singularity like the rocks in our implementa-
tion so far. This will be illustrated in section 5 and discussed in the
future work section.

Notations: vectors whose names are composed of only one letter
appear in bold. Non-bold or non-arrowed characters are scalars.
For example,F is a force whileF is its modulus.

2 Modeling of the Conservative Fields

The environment is defined by a 3D continuous vector field of the
form V(p). The intensity of the fieldf at a pointp(x,y,z) is given
by the vector’s modulus at this point:

f (p) =
√

Vx(p)2 +Vy(p)2 +Vz(p)2

The field is created by the summation of four types of singularities:
SourcesS(p), HolesH(p), WhirlwindsW(p) and Directional fields
D(p) (see figure 3).

In an environment composed ofSSources,H Holes,W Whirlwinds
andD Directional fields, the resulting vector fieldV(p) is given by:

V(p) =
S

∑
i=1

Si(p)+
H

∑
j=1

H j(p)+
W

∑
k=1

Wk(p)+
D

∑
l=1

Dl (p) (1)



Figure 3: The four types of singularities used to model the fluid’s
velocity field. From left to right: Source, Hole, Whirlwind and
Directional Field.

Sources, Holes and Whirlwinds are local fields. Their intensity is
maximal in their centerC and inversely proportional to the distance
of the sample pointp(x,y,z) to C. The interesting consequence is
that the computations can be greatly speeded up by using an oc-
tree decomposition of the singularities and bounding volumes for
the influenced objects (see section 5). On the contrary, Directional
fields are global and affect wider areas. A mathematical description
of each type of field follows.

2.1 Sources

The Source creates arepulsiveradial vector field with a maximum
intensity Φmax in its centerC and a decreasing intensity towards
the exterior. Letd(p,C) be the Euclidean distance from pointp to
the centerC ; Φ the nominal intensity of the field ; andΦmax the
maximum intensity of the field. The Source field can be expressed
by the following equation:

S(p) =
Φ

Φ
Φmax

+d(p,C)2

~Cp

|| ~Cp||
(2)

~Cp is the vector from the centerC to the pointp where the field is
being evaluated.

A key property of Source fields is that two sources of equal intensity
create a stationary field (V(p) = 0) at their midpoint. It is thus pos-
sible to create a wall in the fluid by aligning two series of Sources
with the same intensity.

2.2 Holes

The Hole or Sink is the opposite of the Source. The intensity is the
same but the direction is opposite. Instead of beingrepulsive, the
Hole isattractive. This can be expressed by the following equation
(the variables are the same as for equation (2)):

H(p) = −S(p) = −
Φ

Φ
Φmax

+d(p,C)2

~Cp

|| ~Cp||
(3)

2.3 Whirlwind

The intensity of the field generated by a Whirlwind (or Vortex) is
the same as the one generated by the Source or the Hole. The direc-
tion of the field, however, is orthogonal to both,~Cp and the axis of
rotation of the vortex~R. The sign of the intensity defines if the vor-
tex rotates clockwise or counterclockwise. This can be expressed
by the following equation (the variables are the same as for equation
(2)):

W(p) = ±
Φ

Φ
Φmax

+d(p,C)2

~Cp×~R

|| ~Cp×~R||
(4)

2.4 Directional Field

The Directional field is the only one to be global. The field is usu-
ally constant in direction although the direction could be modu-
lated by a sine or cosine function. Its intensity can also be constant,
but more interesting patterns can be obtained for varying intensities
over space and over time. For an intensity functionΦ(p,t) and a
constant unit vector~v, it can be expressed by the following equa-
tion:

D(p) = Φ(p,t).~v; (5)

The Directional field is very useful to model current or wind.By
modulating the intensity by a sine or cosine function, it is possi-
ble to obtain wave effects. Other interesting effects such as an in-
creasing intensity with the altitude can be created thanks to thep
parameter.

3 Our Anemone Model

3.1 Modeling

An anemone is composed of a foot on top of which are attached
individual fibers. Each fiber is represented as an articulated skeleton
made of a series of segments connected at nodes (see figure 7, left).
The number of segments as well as their length and width varies
depending on the type of plant. The root of each fiber’s skeleton (at
the bottom) is anchored to the foot. The foot is itself anchored to
the floor or other objects such as rocks.

We model the foot of the anemone as a wide single fiber. The ten-
tacles are placed on the foot using a collision-based simulation of
spiral phyllotaxis [Fowler et al. 1992]. Figure 4 shows someexam-
ples of patterns for various radii of the foot, the mouth and the base
of the tentacles.

Figure 4: On the left, two examples of patterns with different radii
for the anemone, the mouth and the tentacles. On the right, exam-
ples of various anemones automatically generated.

Alternatively, because we also use our model for seagrasses, we
can model our plants by hand under Maya [Maya 2008] using the
Skeleton tool and then export it to our animation software thanks to
a MEL script we have developed.



3.2 Rendering

The geometry of both the foot and the fibers is created from the
skeleton and the radii at the nodes. The radiusr i at a given nodeNi
defines a circle orthogonal to the segmentLi. Triangles are created
to join consecutive circles (see figure 5). Textures are usedto color
the foot and tentacles of the anemone. Because the deformation
of the fiber is skeleton driven, it would totally be possible to use
another type of surface to represent the fiber such as a polygonal
mesh deformed by skinning [Lewis et al. 2000] or implicit surfaces
with skeletons [Bloomenthal and Wyvill 1990; Nur et al. 2001].

Figure 5: Our fiber model. From left to right: the nodes of the
skeleton, the width of the nodes, the triangulation of the surface.

We generated 4 models of anemones inspired from existing species:
the Actinia fragaceaalso known as Strawberry anemone; theAn-
thopleura xanthogrammica; the Stomphia coccineaand theAn-
thothoe chilensis(see figure 6). The position of the tentacles is
automatically computed using a phyllotaxis model as described in
the previous section. The textures have been created by handfrom
real photographs but are applied automatically.

Figure 6: Various types of anemones generated automatically from
a small set of parameters. From left to right, top to bottom: the
Actinia fragacea, theAnthopleura xanthogrammica, theAnthothoe
chilensisand theStomphia coccinea.

4 Deformation of a Fiber

The velocity field representing the fluid exerts pressure forces on
the articulated skeleton. Those forces apply at the nodes todisplace
them. Each node has material properties such as stiffness that influ-
ence the way the chain bends and twists. It is important to note that

the length of each individual segment does not change duringdefor-
mation. However, the fiber bends at the nodes towards equilibrium.
This bending induces a moment on the next node down the chain.
Indeed, the force applied at a node affects the whole structure that
tends to spin.

The algorithm, that can be partially parallelized, can be summarized
as follows:

//1. Computation of intensities at nodes
For each node Ni
Force = 0;
For each singularity

Force += getForce(singularity, nodePosition);
End for
Force += ForceL(Ni+1) + Force_Moment;
//2. Computation of node displacement
BendingAngle = getBending(ForceT, Li);
//3. Propagation of moment down the chain
Moment = getMoment (ForceT, Li);
Force_Moment(Ni-1) = transmitMoment;

End for

with Li = || ~NiNi−1|| andForce= ForceL +ForceT .

The functiongetForcecan be executed in parallel for nodes and sin-
gularities. Combined to an octree, the evaluation of the singularities
intensities can be very efficient.

In our implementation, we evaluate the node forces, displacements
and moments every 50ms. A smaller timestep increases stability
but might prevent the simulation from running in real-time.

The three following subsections detail the three importantsteps
mentioned in the algorithm:

1. Computation of the force from the velocity field ;

2. Computation of a node displacement ;

3. Computation of the transmitted moment.
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Figure 7: On the left, a complete articulated skeleton. In the middle,
the radii and segment lengths related to the current nodeNi and two
nodes down the chain. On the right, the bending angleαi of node
Ni as well as the forces exerted on this node.

4.1 Computation of the force from the velocity field

We approximate each fiber segment fromNi−1 to Ni by a cylinder
of radiusr i and heightLi (see figure 7). The pressure exerting on
this cylinder at nodeNi is given by equation (6).

F f =
1
2

ρ f luidV2(Ni)Li2r iCD
V(Ni)

||V(Ni)||
(6)



ρ f luid is the density of the fluid inkg.m−3 ; V(Ni) is the instanta-
neous velocity at nodeNi obtained from the distance field by equa-
tion (1) ; Li is the length of segment ~NiNi−1 ; r i is the radius of the
fiber atNi (see figure 7) andCD is the drag coefficient that depends
on the Reynolds numberRe.

0.5
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Re500 000
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Figure 8: Relationship between the shape coefficientCD and the
Reynolds numberRe. The (black) continuous curve depicts the real
relationship while the (red) dashed curve shows the approximation
we used in our implementation.

On the graph of figure 8, the (black) continuous curve shows the
real relationship betweenCD and Re. In our implementation we
simplified this relationship by:

CD =

{

1.2 if Re < 5.105,
0.5 otherwise.

(7)

depicted by the (red) dashed curve on the same graph.

The Reynolds number is a dimensionless number that comparesthe
behavior of a fluid with an ideal fluid. It is computed as:

Re =
ρV2r

µ
(8)

µ is the viscosity coefficient of the fluid inN.s.m−2.

For sea water,µH2O = 1.15.10−3N.s.m−2 andρH2O = 1000kg.m−3.
HenceRe = 9.105V2r > 5.105 andCD = 0.5.

V

F = A V

F = A V

2

F

Figure 9: Simplification of the relationship between the force and
the velocity.

For a fiber with constant diameter and distance between nodescon-
stant, equation (6) simplifies intoF f = A.V2, A = constant. This
however creates a quadratic relationship between the velocity field
and the force as we can see on the graph of figure 9. To ensure a

more stable simulation, we approximate this relationship by a linear
curve:

F f = A.V(Ni) (9)

with A = 1
2ρLr = constant.

This simplification is valid for velocities close to 1.m.s−1 which
corresponds to calm water. When an anemone decides to settlefor
a little while, it chooses a place with little current, usually protected
by rocks. The forces are thus fast and easy to compute for a very
small loss in accuracy and an improved stability.

4.2 Node Displacement

The node displacement is computed as the result of the application
of an elastic force acting in the direction perpendicular tothe fiber.
Let’s F(Ni) be the net force applied to nodeNi . For the top node
of the fiber,F(Ntop) = F f (Ntop) = A.V(Ntop). We will detail in
section 4.3 how this net force is computed for the remaining nodes
down the chain. As we can see on figure 7, this force can be decom-
posed into two components:F(Ni) = FL(Ni)+ FT(Ni). FL is the
part of the force in the direction of the current fiber segment~Ni−1Ni
while FT is the orthogonal component. As the fluid exerts forces as
a pressure on the fiber, only the orthogonal component of the force
is relevant to compute the displacement of the node.

Let’s ki denote the stiffness of the fiber at nodeNi . The elastic
forceFelastic= kiu = FT , u being the elongation of the spring (see
figure 7, right). AsFT is orthogonal to the current segment, we can
expressαi as:

tan(αi) =
u
Li

=
FT

kiLi
(10)

It is thus straightforward to get the bending angleαi of the fiber and
the new position of nodeNi .

The stiffness parameterki influences how the fiber bends. It de-
pends on the radius of the fiberr i and on a material stiffness that is
constant thorough the material:

ki = r i
n.Kmaterial (11)

The exponentn is a tunable parameter that is used to define how lo-
cal the bending around a node is. Figure 10 shows different bending
behaviors for different values ofn. Whenn increases, the deforma-
tion becomes more local. This can be used to model a plant with
very soft tips and stiff trunk.

Figure 10: A fiber deformed by a Source. The parameters for
the fiber and the singularity are the same in the three cases except
for the exponentn of the radius influence in the stiffness function.
From left to right:n = 1, n = 2, n = 3 andn = 20. The higher the
exponent, the more local the deformation is.



4.3 Propagation of the Moments and Forces down

the chain

The displacement of a node induces a moment that tends to make
the remainder of the chain spin. This momentM(Ni) is a rota-
tion vector that is orthogonal to bothFT and ~Ni−1Ni . Its norm is
M(Ni) = FT .Li . It generates a force on nodeNi−1 that can be ex-
pressed as:

FM(Ni−1) =
M(Ni)

Li−1
.

~Ni−1Ni−2×M(Ni)

|| ~Ni−1Ni−2×M(Ni)||
(12)

TheFL component of the force is directly transmitted to the follow-
ing node.

At a given nodeNi , the net force can be expressed as:

F(Ni) = A.V(Ni)+FL(Ni+1)+FM(Ni) (13)

For the first node (at the top),FL(Ntop+1) =~0 andFM(Ntop) =~0.
Figure 11 left shows the forces created by a singularity on the nodes
of a fiber. On the right, we can see the modulus of the accumulated
transmitted moments down the nodes (for visualization purposes,
we did not apply the deformation of the fiber). We can see that
this moment increases, causing an increase in stress. However, as
the radius of the fiber also increases, the resulting deformation is
smaller.

Figure 11: A fiber deformed by a Source. On the left, the force due
to the singularity acting on the nodes (A.V(Ni)). On the right, the
modulus of the accumulated transmitted moments (M(Ni)).

The last node is fixed to the floor. It is thus not displaced. Thecar-
ried forces and moments acting on that node might be quite strong
as we can see on figure 11, right. If the net force is above a thresh-
old, the fiber could break.

5 Results

The animations presented in this section have been computedin
real-time on a PC equipped with an AMD Athlon 64 X2 Core 2
2.21 GHz with 2Go of RAM and an NVIDIA 9800 GX2 graphics
board. Our program has been developed with Java and runs under
Windows XP.

5.1 Singularities and Fibers

Figure 12 shows the influence of the three types of singularities
on a group of 100 identical fibers: a Source (green), a Hole (red)
and a Whirlwind (yellow). The parameters we have used for the

singularities are the following:φSource= 10000;φHole = 10000 and
φWhirlwind = 10000. Each fiber is composed of 22 nodes equally
spaced byLi = 5 units. The fiber radius goes from 4 to 1 from
bottom to top, decreasing the fiber’s radius by 6% at each step.
Stiffness of the fibers is 1.

Figure 12: Influence of a Source (green), a Hole (red) and a Whirl-
wind (yellow) on a group of identical fibers.

Performance To test the performance of our algorithm, we have
tested it on 36 Strawberry anemones, composed of 40 fibers each.
Each foot as well as each fiber is animated thanks to 10 internal
nodes which makes a total of 14760 skeleton nodes. The geome-
try is rendered from the 126720 vertices defined from the skeleton
nodes. The animation runs at 17 fps (see figure 13). While the
obtained framerate is satisfying, better performance could be ob-
tained by using a more efficient programming environment as well
as a parallel implementation of the vector field forces evaluation.

Figure 13: Influence of a Source (fish) on 36 anemones. 14760
nodes are animated at 17 fps.

Bounding Volumes To speed-up the computations, we have
used spherical bounding volumes around each anemone. Whilethe
directional field simulating the current of water influencesall nodes
at all times, the moving singularities influence only the anemones
that are within a certain distance. As a consequence, equations (2)
to (4) that apply to each node of each fiber of each anemone do not
need to be evaluated. This represents 14760 evaluations of the vec-
tor field for each fish in the environment in our example containing
36 anemones. Figure 14 shows such a bounding sphere.



Figure 14: On the left, you can see the bounding volume around
the fibers of one anemone. As long as the fish remains outside the
volume, it does not influence the tentacles.

5.2 Singularity Keyframing

Previous models of grass or trees animation require the keyframing
of individual fibers or the procedural specification of a bending po-
sition. Both those technique are unsuitable to generate seascapes
where a lot of anemones are present. Keyframing the fibers indi-
vidually is not feasible and the use of precomputed bending defor-
mation creates patterns that are too easily identifiable. Inaddition,
it may be hard to include the influence of fish on the swaying of
fibers.

Because we use singularities to model our fluid, we gain high level
control of the animation. It is thus possible to obtain a swaying field
of anemones and influence of fish by keyframing the singularities
in position and intensity. In the following examples, the singularity
is attached to the fish. Figure 15 shows the influence of changing
the intensityφ of the singularity that is keyframed from a Source
to a Hole. Figure 16 shows the keyframing of the position of the
singularity (the fish moves) and the corresponding deformation of
the anemone. When the fish is far away from the anemone, its be-
havior is only influenced by the current. When the fish comes close
enough, it influences the deformation of the anemone.

Figure 15: Influence of key-framing the intensity of the singularity
attached to the fish. The anemone is deformed while the fish doesn’t
move.

Figure 16: Influence of a Hole attached to a moving fish on an
anemone. When the fish comes closer, itattractsthe anemone. In
real life, the anemone reacts to the fish by trying to capture it.

5.3 Anemones and Seagrasses

To generate a complex seascape, we have implemented an auto-
matic terrain generator that uses Perlin Noise [Ebert et al.1998].
We have added some rocks and different kinds of anemones and
seagrasses in the background, animated by a gentle current.The
seagrasses are simulated with the same algorithm as the anemones.
The results can be seen on figure 17. Videos can be seen on the
publication’s website1.

Figure 17: We have simulated various kinds of anemones and of
fishes as well as seagrasses with our technique.

5.4 Other plants

We have applied our algorithm to the generation of other types of
plants (see figure 18). From a set of 50 fibers with constant radius
r i = 3 composed of 10 nodes equally spaced byLi = 5, we auto-
matically generate additional fibers by interpolation.

6 Conclusion and Future Work

We have presented a physically based model to animate sea
anemone tentacles. To obtain a fast and stable algorithm, wehave
simplified some functions so that they remain valid for the condi-
tions in which anemones settle (e.g. calm waters). Similarly, we
have approximated some parameters by constants. On the other
hand, we allow the user to tune the most relevant parameters in or-
der to create a wide variety of plants. Those include the varying

1http://www.gmrv.es/Publications/2009/AL09/



Figure 18: We have simulated other types of plants with our tech-
nique. To the left: the 50 guide fibers are submitted to gravity;
to the right: the resulting plant is obtained by interpolation of the
guide fibers.

radius along the fiber, the exponent of this radius in the stiffness
function and the material stiffness constant. We have shownthat
our model can be used for animating sea anemones and seagrasses.
We plan on using it to model other kinds of plants such as grassand
trees by tuning the fluid properties and fibers parameters. However,
a non-experienced user might find it a little difficult to tunethose
parameters to simulate a given type of plant. We thus plan on cre-
ating a table of parameters that could be used as a reference.

Because the deformation of the fibers is entirely dependent on the
singularities representing the environment, high level control of the
animation is achieved through the control of their positionand in-
tensity over time. For example, a Hole can be attached to a fish
so that it attracts the anemone fibers when coming too close asit
would happen in real life (although for different reasons).It is thus
easy to create an animation of a complicated landscape.

Finally, we have mentioned that because the velocity field repre-
senting the fluid is continuous, there is no need for self-collisions
detection and response. This is also true for anemone-to-anemone
or anemone-to-fish collisions. However, all of the objects that
are not associated a vector field might be responsible for inter-
penetrations. For example, in some cases, the anemone fiberscould
go inside the rocks. It would be tedious (but possible) to addone or
several vector fields to wrap each non-animated object of thescene.
However, we believe that in many cases (such as the rock example),
it would be more efficient to implement a penalty method for colli-
sion detection and response, especially as the surface of the fiber is
described by a generalized cylinder around a skeleton. The skeleton
nodes could thus be used to apply the penalty method.

The other strong aspect of our algorithm is that the velocityfield of
the fluid can be computed in parallel for each node of the skeleton
of each fiber. The speed of our algorithm could thus be improved
by a GPU implementation.
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