
The Need for a Unifying Traceability Scheme

Angelina E. Limón and Juan Garbajosa

Technical University of Madrid (UPM, Universidad Politécnica de Madrid),
Mail address: E.U. Informática. Ctra. de Valencia Km. 7,

28031 Madrid, Spain
aespinoza@zipi.fi.upm.es

jgs@eui.upm.es

http://syst.eui.upm.es

Abstract. The benefits of traceability are widely accepted nowadays,
however, several issues still make it difficult a wide-scale adoption of
traceability in the software engineering practice. There is a lack of a com-
monly accepted traceability definition further than the term definition, a
standard way of specifying traceability among items, and a traceability
type classification; besides, conflicts among a number of approaches exist.
As a result traceability-schemes implementation in tools lacks of general-
ity and exchangeability. Round trip engineering therefore cannot be well
enough supported. The motivation behind is aligned with that of PIM
within the MDA initiative. This paper analyzes several current traceabil-
ity schemes, in order to obtain relevant features and identify overlaps and
inconsistencies among the approaches. Then, and based on the analysis,
it provides an initial approach for a Traceability Specification Scheme.
This scheme is expected to facilitate traceability specification for a given
project, to improve the traceability management, and help to automate
some traces management processes.

1 Introduction and Motivation

Traceability is widely recognized as a concern in software and systems engineer-
ing, this is reflected by an extensive literature, multiple tools, and a growing
research interest in the area [15]. The benefits of a well managed traceability
activity are widely accepted nowadays, however, several issues still make dif-
ficult the adoption of a wide-scale traceability activity in the software\system
engineering practice. There is a lack of a commonly accepted traceability defini-
tion, further than the scope of the term definition as in [2]; also a standard way
of specifying traceability among items does not exist. It is interesting to notice
that standards such as [9] and [10], widely used in industry, do not provide a
definition for traceability. A broadly accepted traceability type classification also
is missing. Then, traceability in many organizations is haphazard, the standards
provide little guidance, and the models and mechanisms vary to a large degree
and are often poorly understood [15].

Considering this landscape, the final motivation for this research work is to
provide a traceability scheme general enough to support those features useful for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148656014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


roundtrip engineering but simple enough so that it can be easily implemented
in tools and used to exchange traceability information among different model
representations such as in the MDA case. Furthermore the philosophy that un-
derlying this work and that of PMI are somehow similar. Both of them search for
rather independent representations that work as an umbrella either for platform
dependent (MDA) or, in our case, specific traceability models.

An essential input for the work is the analysis of the current available lit-
erature since the traceability scheme should gather those common features of
the traceability approaches analyzed, together with some proposals, in order to
improve the process control of the traceability management.

Under the MDA approach advantage of the models can be taken through
roundtrip engineering between an abstract model of the system and describing
the system architecture and or design, and the code [3]. Roundtrip is also as
necessary in verification and validation processes and non-conformance manage-
ment [9]. To provide automated support to these processes is one of the high level
objectives of the research group where this work has been performed including
general purpose software engineering environments and validation environments
such as TOPEN [1].

Section 2 of this paper, Analysis of Traceability Approaches presents a sum-
mary of the analysis of several traceability proposals. Section 3, An Initial Pro-
posal for a Traceability Scheme Specification is introduced, and finally in section
4, a number of conclusions are provided.

2 Analysis of Traceability Approaches

One of the aims of the analysis has been to identify a number of features that
are the baseline for the available literature. The following features will be the
starting point for the analysis and assessment and will be studied more in depth
in the following subsections.

1. The link may be process-related or product-related (concepts defined by Jarke
and Ramesh [15]).

2. The Pre-RS 1 and Post-RS traceability relations categories, as defined by
Gotel and Finkelstein [8])

3. The traceability link purpose introduced by Jarke and Ramesh [15]). The
link purpose must provide information on the reason or justification of the
link existence as project artifact, in order to justify the project resources
that will be spent on the link (resources such as, for example to monitor, to
save, and to analyze it in order to make project decisions, etc).

4. The items or objects which the traceability link will relate. It is desirable the
objects can be specifically defined, in order to make the most automatically
possible the linkage tasks.

1 Requirement Specification



2.1 Process and Product-related Link Type

– Jarke and Ramesh [15] present the Satisfies, Dependency, Evolution and
Rationale classification. The Satisfies and Dependency links are qualified by
authors, as product-related.

– Gotel and Finkelstein in [8] introduce the Post-RS links, defined to trace
the requirements from and back to RS, through artifacts in which they are
distributed. Therefore, it is clear that those links include the Satisfies and
Dependency links which are product-related.

– Jarke in [11] also presents a classification which considers the Post-RS rela-
tions defined as relations among requirements to design and implementation.
Post-RS links include the Satisfies and Dependency links which are product-
related.

– Spanoudakis et al. [16] define the Overlap and Requires Feature In which
are Dependency links and Requires Execution Of and Can Partially Realize
which are Satisfies links, as authors themselves assure. Therefore, those four
ones are product-related.

– Van Vliet et al. [12] define a three type classification, more oriented to prod-
uct family traceability:

• Traceability between PF2 feature and Product feature is an Association
relation of the Supports type and is divided into subtypes: ComposedOf
(that is a Derived link, because the composed objects were derived from
its father) and Requires-Excludes (that is a Dependency link).

• Traceability between Product FM3 and Product CM4 is an Association
relation of Realizes type, thus is clear that is a Satisfies link.

• Traceability between Product CM and Implementation is an Association
relation of Implements type. Then is inferred this traceability relation is
a Satisfies link.

Therefore, the all three last links include the Satisfies and Dependency links
which are product-related.

– Letelier et al. [13], also consider satisfies links with the validatedBy, veri-
fiedBy and assignedTo relations. They also consider the rationale link type
with the rationaleOf relation. Even more, they consider modifies and repon-
sibleof traceability relations which are relations among stakeholders (sys-
tem’s actors) and the different system specifications. Those relations are
process-oriented.

As the analysis shows, authors have developed traceability relations to cover
goal, task and resources dependencies and requirements satisfaction issues, which
are product-related links. Another issue that is starting to be analyzed by several
authors is product evolution and system development rationale such as [13, 15,
16].

2 Product Family
3 Feature Map
4 Component Map



Evolution issue is, at present, partially covered by configuration management
tools, which are more focused on system object history and system configuration
history. There are some research initiatives oriented to capture the rationale
information as in [4, 17, 18]. The objectives are to maintain the rationale that
is behind a product, to justify the actions taken and why and how the product
development items have been introduced. But the status of this kind of work
can still be qualified as emerging.

2.2 Pre and Post-traceability issue

Some authors, such as Jarke [11] and Finkelstein et al. [8] are interested on
pre-traceability issues, in order to provide the media to reopen and to rework
previously closed issues and to management the requirements analysis process
for producing a Requirement Specification, which really satisfies customer needs.

However many other authors are more interested on post-traceability issues,
as it is shown by approaches such as, Jarke et al. [15], Spanoudakis et al. [16],
Van Vliet et al. [12], Cerbah et al. [5], Egyed et al. [7], Macfarlane et al. [14],
Watkins et al. [19].

2.3 Links Purpose

The traceability relation existence must be justified in a system development
project. Each trace must have a reason to be a system artifact to analyze, to
save, to monitor, and to present to the project decision makers.

Then, the following objectives have been identified:

– From the business view point, to provide the often demanded linkage be-
tween the business and IT [11], to manage the contributions made by the
stakeholders and to manage the system development responsibilities assigned
to them [13].

– From the technical view point, the purposes are to ensure the requirements
are satisfied by the system, to assure that all requirement will be realized;
to help managing dependencies among objects; to represent the rationale
behind objects or documents; and to document actions leading from existing
objects to new or modified objects (evolution) [13,15,16].

– For the Product Family issue, the aim is to define all the family features from
its members; to show which and how many artifacts realize each product
feature; and to show which and how many artifacts implement each design
decision [12].

2.4 Linked Items Category

The items linked by the traceability relations presented by the authors of this
analysis, belongs almost to the same category:



– System components in general: Design (class, interfaces, attribute, asso-
ciation, methods, etc), implementation (operations, program components,
COTS, modules, documentation, etc) and requirement objects (requirement
specification’s requirements, formal user needs documents, etc) [8,11–13,15,
16].

– Test objects: Test plans, verification plans, test cases, test specifications,
etc [8, 11,13,15].

– Resources: Physicals (money, electricity, etc) or informational (documents,
data, etc) [8, 11,13,15].

– All pre-requirements stage documents: Requirement analysis process docu-
ments, approvals, meet minute, e-mail exchanges, decisions made, alterna-
tives considered, underlying assumptions, stakeholder goals, etc [8,11,13,15].

– Stakeholders (system actors) [13].
– No textual and no model specifications: Videos, images, voice, etc [13].

Some authors also considered smaller granularity items to link such as, a
requirement statement’s sequence of terms [16], a use case’s description [16], a
requirement statement’s description [16], etc.

2.5 Analysis

Authors have concentrated their studies on satisfies and dependency traceabil-
ity relations which belongs to the product-related links, according to Jarke and
Ramesh’s [15] definition. Another issue identified is that evolution and rationale-
based links issues are having an increasing interest by research and industrial
sectors, as is indicated in [4, 13,15–18].

In general, traceability link purposes, presented in literature, cover different
stakeholders needs, from the more general such as, to enable safety analysis,
audits, change control, support flexible process modeling, and compliance veri-
fication, to other more specific, such as technical or product family issue needs.

The type of items used by different authors are similar, though some of
them analyze the possibility to link very specific parts of the items, such as a
requirement statement’s sequence of terms, use case’s description, an use case’s
event, etc [12,13,16], in order to automate the link generation.

One of the problems identified is the lack of a standard scheme to define
the link, so that it may be possible to set up support processes, such as to
maintain the links, or other such as verification or validation, in a systematic
way. The approaches do not specify which link’s information must be stated
for each traceability type, for example, to specifically define the allowed objects
to link or the trace granularity, which are important issues to automate the
trace’s management. The approaches do not make recommendations about which
traceability category is more feasible, useful and reliable to the several system
types, for example, to embedded or computer-based systems or those based on
MDA development.

Also, the approaches do not specify how to check for quality requirements,
in order to assure an updated traceability strategy. Overlaps among definitions
have been identified as well.



Then, as a conclusion it is necessary to define a Traceability Specification
Scheme, the common features set detected from the traceability type’s analysis
will be helpful to define it. That scheme would specify the traceability classifica-
tion necessary to the project, according to a standard guidance; also a link set
which specifies all the needed links for a specific development step baseline, and
a set of traceability metrics in order to verify some quality requirements such
as, completeness, functionality, reliability, usability, efficiency, etc.

3 An initial proposal for a Traceability Scheme
Specification

A Traceability Scheme Specification (TS) is an approach to specify the charac-
teristics and needed items in order to be able to adequately support issues such
management process, and facilitate maintainability, and project control. Some
of the ideas could be in line with those underlying [6]. This issue will be further
worked in the future.

The Traceability Scheme Specification should include the following items:

– A Traceability Link Dataset that will provide a wide basis to define trace-
ability links, applicable a different kind of projects performed using different
process models.

– A Traceability Link Type Set (TYS), in order to define which kind of infor-
mation each traceability link type will contain.

– A Minimal Set of Traceability Links (MINS), in order to define all traceabil-
ity link types, for a specific project or traceability baseline.

– A MEtriCs Set for the MINS (MECS), in order to define which metrics can
or must be applied according to a measurement strategy, to verify if a correct
traceability deployment and management is being performed.

3.1 Traceability Link Dataset

The concept of Traceability Link Dataset plays a similar role to that of metaclass
in modeling. The idea behind is to provide a baseline to define all kind possible
traceability links regardless the process used or the objective of the link. The
dataset will include the following:

LINK TYPE The link type will have a type and will be related either to a
software/system development product or development process.

DESCRIPTION It is a brief description of the traceability type.

PURPOSE Explain the reasons for the link type existence.

RELATED ITEMS Underlying the items or artifacts with which relate.



TYPE SUBCLASIFICATION For each link type it will be possible to define a
number of sublinks with the following characteristics:

1. Link Subtype Name

DESCRIPTION It is a brief description of the traceability subtype.

PURPOSE Explain the reasons for the link subtype existence in a system
development.

RELATED ITEMS Underlying the artifacts with which it is possible to
make a relation of this subtype.

EXAMPLES Present link subtype examples

USES Present possible link type uses in a software project.

EXAMPLES It is presented some general examples of the link type.

3.2 Traceability Link Type Set

For a given project, process and product, it will be necessary to define those
types of links that are felt as required. The template to be used will be that
defined in the Traceability Link Dataset.

3.3 Minimal Set of Traceability Links

The Minimal Set of Traceability Links will define the set of links that should be
created once a system baseline is closed. This set might be defined according to
the stage of the development and the process.

The Traceability Specification should define the Minimal Set of Traceability
Links (MINS). Once the life cycle steps are completed and a baseline of those
steps are closed, it should specify the Life Cycle Step’s Artifact Set (ARS), which
contain all the system artifacts produced during those life cycle steps. Therefore,
when each system baseline is established, there should be an ARS which includes
all the system artifacts which that baseline includes.

The Minimal Set of Traceability Links (MINS) states the traceability links
among the ARS’s artifacts, produced during a specific baseline of a system life
cycle. The links are created based on the traceability types defined on the Trace-
ability Link Types Set (TYS). The MINS’s link number depends on the trace-
ability analysis that determines which and how many ARS’s artifacts are needed
to trace.

A traceability baseline should be stated when each system baseline does, and
includes the MINS and ARS sets.

The MINS should include the following traceability links:

– For each ARS, the links among the artifacts themselves
– For all ARS, among an ARS set and its previous ARS (or vice versa the

links among an ARS and the next ARS).



3.4 MEtriCs Set

This traceability scheme should be usable. After analyzing a number of commer-
cial and non-commercial tools it was clear that usability was a key issue. Many
tools implemented interesting features but usability was not one of the relevant
features. Together with usability there some other characteristics that can be
classified under the non-functional requirements umbrella and define the “qual-
ity” of a given scheme. To evaluate this level of quality some metrics should be
defined to measure these no-functional requirements chosen for the traceability
scheme.

The MEtriCs set will include all the traceability metrics to provide a ba-
sis that assure the correctness and level of accomplishment of the traceability
strategy deployment.

For example, concerning integrity, the real traceability links number obtained
during the measurement might be compared to the MINS number (the MINS
set’s cardinality) specified in the TS5, in order to check for traceability com-
pleteness.

4 Conclusions and Future Work

This paper provides the result of a study aiming at identifying an existing trace-
ability model to implement it into an existing software engineering environment.
One of the objectives was to enhance the support of roundtrip engineering re-
quired to support verification, validation and non-conformance management ac-
tivities. Available literature was studied and analyzed. The issues identified were
lack of a standard scheme to define the traceability link; also the approaches do
not make recommendations about which traceability category is more feasible,
useful and reliable, for example, for embedded systems, computer based systems
or systems based on MDA development. Even more, the approaches do not spec-
ify how to check quality requirements, in order to assure that an updated scheme
is consistent. Overlaps among definitions have been identified as well.

As a result of the analysis, the need for a common traceability scheme was
identified and a first approach for a Traceability Specification Scheme has been
provided, whose objectives are to gather the common features of the traceability
approaches analyzed and to provide a baseline to systematize and to improve
the traceability control.

The scheme is made of a Traceability Types Set (TYS), which defines all
trace types considered by the chosen traceability strategy; the Minimal Set of
Traceability Links (MINS), which includes all traceability links for a specific
traceability baseline; and the MEtriCs Set which defines the metrics to be applied
by a measurement strategy. At present this scheme is being formalized. The
possible relationship with specifications such as [6] are under study now.

5 Traceability Specification



As future work, the Unified Traceability Scheme, will be implemented in the
Software Engineering Environment (SEE6) [1], in order to improve the current
SEE’s traceability scheme.

It is expected that this Traceability scheme will be helpful to improve the
management of the traceability and dependency relationships among MDA mod-
eling elements as long as it intends to be able to integrate relevant features of
existing traceability models.

Acknowledgement. This research work has been partially sponsored by
the AGMOD project, Ref. TIC2003-08503, funded by the Ministry of Education
of Spain. It is wanted to be grateful to the National Council of Science and
Technology (CONACyT) of México for partially sponsoring this research.

References

1. P.P. Alarcon, J. Garbajosa, A. Crespo, and B. Magro. Automated integrated
support for requirements-area and validation processes related to system develop-
ment. In Industrial Informatics, 2004. INDIN 04. 2004 2nd IEEE International
Conference on, pages 287–292. ISBN 0-7803-8513-6, 2004.

2. IEEE Standards Board. IEEE Std 610.12-1990 IEEE standard glossary of software
engineering terminology. IEEE, Institute of Electrical and Electronics Engineers,
345 East 47th Street, New York, NY, September 28, 1990.

3. Alan W. Brown. Model driven architecture: Principles and practice. Software and
System Modeling, 3(4):314–327, 2004.

4. J. Burge and D. C. Brown. Reasoning with design rationale. In Artificial Intelli-
gence in Design 00, pages 611–629, Netherlands, 2000. Kluwer Academic Publish-
ers.

5. Farid Cerbah and Jérôme Euzenat. Using terminology extrac-
tion to improve traceability from formal models to textual require-
ments. Lecture Notes in Computer Science, 1959:115–126, 2001/01.
http://www.springerlink.com/index/8T69TBYUCJ994T1U.

6. ECMA. ECMA-149: Portable Common Tool Environment (PCTE) — Abstract
Specification. pub-ECMA, pub-ECMA:adr, fourth edition, dec 1997.

7. A. Egyed and P. Grunbacher. Automating requirements traceability: Beyond the
record and replay paradigm. In Automated Software Engineering, 2002. Proceed-
ings. ASE 2002. 17th IEEE International Conference on, pages 163– 171. IEEE,
2002.

8. O.C.Z. Gotel and C.W. Finkelstein. An analysis of the requirements traceability
problem. In Requirements Engineering, 1994., Proceedings of the First Interna-
tional Conference on, pages 94–102, Colorado Springs, Co., 18-22 Apr 1994. IEEE
Computer Society Press.

9. ISO – International Standard Organization. (ISO/IEC 12207) Information
Technology—Software Lifecycle Processes, 1995. 85 S.

10. ISO – International Standard Organization. (ISO/IEC 15288) Systems
Engineering—System life cycle processes, 2002.

11. Matthias Jarke. Requirements tracing. Commun. ACM, 41(12):32–36, 1998.

6 Fully compliant with ECSS-E40 standard process model for developing on-board
embedded real-time software



12. P. Lago, E. Niemelä, and H. Van Vliet. Tool support for traceable product evolu-
tion. In CSMR ’04: Proceedings of the Eighth Euromicro Working Conference on
Software Maintenance and Reengineering (CSMR’04), pages 261–269, Washington,
DC, USA, 2004. IEEE Computer Society.

13. Patricio Letelier. A framework for requirements traceability in UML-based
projects. In 1st International Workshop on Traceability in Emerging Forms of Soft-
ware Engineering. (In conjunction with the 17th IEEE International Conference
on Automated Software Engineering), pages 173–183, Edinburgh, U.K., September
2002.

14. I.A. Macfarlane and I. Reilly. Requirements traceability in an integrated develop-
ment environment. In Requirements Engineering, 1995., Proceedings of the Second
IEEE International Symposium on, pages 116–123. IEEE Computer Society, 27-29
Mar 1995.

15. B. Ramesh and M. Jarke. Toward reference models for requirements traceability.
Software Engineering, IEEE Transactions on, 27(1):58–93, Jan 2001.

16. George Spanoudakis, Andrea Zisman, Elena Pérez-Miñana, and Paul Krause. Rule-
based generation of requirements traceability relations. Journal of Systems and
Software, 72(2):105–127, July 2004.

17. Säıd Tazi and David G. Novick. Design rationale for complex system documenta-
tion. In Proceedings of the Conference on Complex Systems, Intelligent Systems
and Interfaces (Nimes 98), volume combined volumes 134-236, pages 49–51, Nimes,
France, 1998.

18. Arie Van Deursen. Recovering rationale. In Proceedings of the WCRE 2001 Dis-
cussion forum on Software Architecture Recovery and Modeling (SWARM 2001),
pages 9–10, Netherlands, 2001. CWI.

19. R. Watkins and M. Neal. Why and how of requirements tracing. Software, IEEE,
11:104–106, Jul 1994.


