
 1

Combination of DROOL rules and Protégé knowledge
bases in the ONTO-H annotation tool

Corcho O. 1,5, Blázquez, M. 1, Niño M. 1, Benjamins V.R.1, Contreras J. 1, García A. 2, Navas E. 2,
Rodríguez J. 2, Wert C2, Millán R. 3, Dodero J.M. 4

1 Intelligent Software Components, S.A. Spain. Contact author: ocorcho@isoco.com
2 Residencia de Estudiantes. Spain

3 Texto Digital S.L. Spain
4 Universidad Carlos III. Spain

5 Currently at University of Manchester. United Kingdom

Abstract. ONTO-H is a semi-automatic collaborative tool for the semantic annotation of
documents, built as a Protégé 3.0 tab plug-in. Among its multiple functionalities aimed at
easing the document annotation process, ONTO-H uses a rule-based system to create
cascading annotations out from a single drag and drop operation from a part of a
document into an already existing concept or instance of the domain ontology being used
for annotation. It also gives support to the detection of name conflicts and instance
duplications in the creation of the annotations. The rule system runs on top of the open
source rule engine DROOLS and is connected to the domain ontology used for
annotation by means of an ad-hoc programmed Java proxy.

1. Introduction
In the context of the Semantic Web, annotation is defined as a process that takes as
input existing content (be it structured or unstructured documents, databases, XML
files, etc.) and provides as output the semantic annotation of that content. Annotations
are instances of existing domain ontologies, and normally have associated a set of
pointers to the original content, so as to show where the instances were extracted from.
Annotation can be performed in several manners, ranging from completely manual to
tool-assisted to fully automatic. The type of annotation approach to be chosen usually
depends on the rate of structure that the content exhibits. More structure allows for more
automation, while maintaining the quality of the annotations. Consequently, and
especially in the case of unstructured or semi-structured sources, the annotation effort
still remains as a serious barrier to the widespread of the Semantic Web [2].
In the context of the projects Esperonto, ONTO-H and SEGEPAC we have created
ONTO-H [1], a Protégé 3.0 tab plug-in that gives support to the manual annotation task
of documents written in the RTF format. This tool allows loading the source text to be
annotated and performing standard ontology edition operations as provided by Protégé
3.0. Besides, it gives support to the addition of new ontology instances using selection
and drag-and-drop functions. The user interface of this plug-in is shown in figure 1.
For instance, we can say that Picasso is an artist by selecting “Picasso” in the source
text, dragging it to the ontology panel and dropping it over the concept “Person”. This
operation creates an instance of the concept “Person” and pops up the usual Protégé
form for creating instances with some information already filled in. The annotation
process does not change the source text itself, but creates a link from the instance to the
original string in the source text. We can also select a string like “inspired-by” and drag-
and-drop it onto the corresponding relation in the ontology. Then the editor creates an
instance of this relationship and pops up the corresponding Protégé 3.0 form where the
user is prompted to complete the relation domain and range.
Other functions provided by the annotation tool are [1]: annotation suggestion, instance
duplication detection and annotation search. ONTO-H also gives support to
collaboration life cycles in the annotation process, defining the roles of annotators,
knowledge engineers and reviewers.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Figure 1: ONTO-H user interface.

In this paper we describe how ONTO-H has been implemented, especially focusing on
the internal process used when a drag-and-drop operation is performed or when the user
asks for annotation suggestions to the system. As a result of these operations the user
interface shows one or several Protégé-standard instance creation forms with some
information already filled in. In this process the instance duplication detection functions
are fired so as to avoid the creation of duplicate instances in the annotation knowledge
base.
The paper is structured as follows. Section 2 describes some annotation examples that
show the complexity of the annotation process, giving support to our design and
implementation decisions. Section 3 describes the internal architecture and the
implementation details of the plug-in, showing how the DROOLS1 rule engine is
connected to the Protégé knowledge base. Section 4 provides some examples of the
rule-sets used for each of the situations identified in section 2. Finally, section 5 gives
some conclusions and identifies future work to be done.

2. Annotation examples and common situations

2.1 Annotation patterns
Massive knowledge acquisition tasks are usually based on typical annotation patterns,
which are critical in complex domains. For instance, in the context of the cultural

1 http://www.drools.org/

 3

domain, and according to the IFLA standard2, each time a new artistic work is being
annotated, it makes sense to also create new instances for its expression and
manifestation [3]. In IFLA “work” is defined as the idea of an artwork, like that of the
Guernika painting of Picasso (Spanish Civil War and the Guernika bombing). The
“expression” is a painting (it could as well be expressed in a poem or movie). The
“manifestation” is the actual painting that can be enjoyed in the Reina Sofía museum in
Madrid, Spain. These kinds of patterns stem from dependency relations between
concepts in the domain ontology.
We can imagine that having to follow the same complex annotation patterns manually
once and again when an artistic work is being annotated is a tedious and repetitive task
for the person in charge of the annotation. Hence providing support for these patterns
can improve the productivity of annotators and annotation reviewers.

2.2 Instance duplication
One of the most complex aspects of the annotation process (and of ontology population
in general) deals with avoiding the duplication of instances due to the use of different
formal names for them. This task usually requires agreeing beforehand on the naming
conventions to be used for creating instances in the knowledge base and following these
conventions strictly. Even with such conventions it is usually the case that duplicate
instances are created, especially if the annotation process is performed by distributed
persons and during a long period of time.
Alternative ways to detect possible duplicates in large knowledge bases have to be
found. A domain independent way to detect a large number of duplicates in document-
based annotation consists in storing the pieces of text that have been used for the
creation of an instance and using them to determine whether a new instance to be
created has already that name or a similar one. For example, in the cultural domain each
author, place, work, etc. can possess a number of names, variable in the time line or
different depending on the relation they participate in (an author can write a book using
one pseudonym, then use his legal name when attending an exposition and use an
acronym when writing a new book with two colleagues). All these names should point
to the same instance of the class “Person”.

2.3 Annotation suggestions
The efficiency and accuracy of the annotation process can be largely improved by
providing annotation suggestions to the users. That is, the user can ask for advice for
selected parts of the text, and the system provides suggestions about possible
annotations that could be performed, based on the information that has been already
stored in the annotation knowledge base and also on natural language resources such as
lexical and morphological analysers, synonym dictionaries, etc. If the selected word or a
part of the selected text is identified as a possible new occurrence of an existing instance
the system can suggest it to the annotator, who can decide which action to perform: (i)
add a completely new instance, (ii) add a new occurrence to an existing instance (that is,
add a new reference from the instance to the document), or (iii) discard any ontology
modification. The more instances the ontology contains, the better suggestions the
system can usually offer.

2 Federation of Library Associations and Institutions: http://www.ifla.org/

 4

3. ONTO-H Architecture and Implementation
As described in the introduction, ONTO-H has been created as a tab plug-in of Protégé
3.0.Consequently, the basic ontology management functionalities are provided by the
Protégé framework while the plug-in just adds the annotation-specific functionalities:
opening and closing documents, creating instances out of those documents by
performing drag and drop operations, avoiding duplicate instance creation, searching for
annotations inside a document, providing annotation suggestions based on natural
language analysers and dictionaries, and giving support to the distributed annotation
lifecycle with actors like annotators, knowledge engineers and annotation reviewers
(this last functionality is explained in detail in [1]).

We have decided to use a rule-based approach for implementing some of the annotation
functionalities described before. The reason for this is twofold:
- On the one hand, some of these functionalities are domain dependent (suggestions

and automatic support for complex annotation patterns). If these functionalities were
hard-coded in the ONTO-H application code a change in the domain used for the
annotation would mean that new code would have to be created specifically for the
new domain, with the subsequent recompilation and reinstallation of the system.

- On the other hand, the domain independent functionalities, such as the detection of
possible duplicates and the different behaviours to be followed when a drag and
drop operation is performed over a concept or instance, have been constantly refined
during the development and evaluation phases of the system, since most of them are
based on heuristics.

Rule based systems have proven useful to provide this behaviour of the annotation tool,
since they provide a declarative way to express the actions to be performed in different
situations and they allow expressing easily the preconditions that have to be satisfied for
performing a set of actions on the knowledge base or on the user interface.

Protégé API Protégé Server

 Protégé ontology editor ONTO-H annotation editor

U
se

r
in

te
rfa

ce
B

us
in

es
s

lo
gi

c
D

at
a

la
ye

r

Protégé Proxy DROOLS rule engine

Ontologies Rules

Figure 2: ONTO-H internal architecture and its relationship with the Protégé API and the DROOLS rule

engine.

 5

Finally, to better access the Protégé API from the rule based system and to allow a
better management of the evolution of that API without affecting too much the internal
code of the annotation system, we have created a proxy of the current Protégé API,
which is used inside the rules for checking the rule preconditions and for updating the
knowledge base.

Figure 2 shows a graphical view of the architecture of ONTO-H, showing the
relationships with the Protégé API and with the DROOLS rule engine, where the rules
are executed.

As an example of how rules are used from the system, we show one of the rules that can
be fired when the annotator drags a text in the document and drops it into an ontology
concept. This rule is described in detail in the next section.

<rule name="If the instance does not exist, create and fill its attributes">
 <parameter identifier="obj">
 <java:class type="com.isoco.ieditor.DropObj">com.isoco.ieditor.DropObj</java:class>
 </parameter>

 <java:condition>
 (com.isoco.ieditor.Environment.getObject().getBaseCon().
 esSubclaseDe(obj.clase.getNombre(),
 com.isoco.ieditor.Constants.NOMBRE_CLASE_PADRE_DENOMINACION).
 equals(Boolean.FALSE) && obj.tipoDuplicidad==0)
 </java:condition>

 <java:consequence>
 import com.isoco.proxyprotege.*;
 Instancia inst = obj.clase.nuevaInstancia(obj.seleccion);
 inst.setAtributoValor("referencia", obj.seleccion);
 inst.setAtributoValor("enlace_fuente", obj.posicion);
 inst.setAtributoValor("fuente", obj.seleccion);
 inst.setAtributoValor("fecha_anotacion",obj.fecha_anotacion);
 obj.instancia = inst;
 obj.resultado = "NEW INSTANCE";
 obj.instancia.mostrar();
 </java:consequence>
</rule>

The most important implementation details are that we have used the Protégé 3.0 server,
since the tool provides collaborative functionalities for managing annotators, knowledge
engineers and annotation reviewers. The Protégé 3.0 server uses a MS Access database
for storing and accessing the ontologies. We have preferred to use a database for
scalability reasons, since in the cultural domain the number of annotations and the size
of the domain ontologies are quite large. With respect to the rule engine, we have used
version 2.0 (beta 17) of DROOLS.

4 Rule sets
As we have described above, there are different types of situations that can arise when
the annotator performs an operation with the ONTO-H user interface. We have
identified several groups of rules that are activated according to the events fired by the
user interface or fired by the execution of other rules:
- Drag and drop rules, either over an ontology concept or over an ontology instance

(that is, over an existing annotation).
- Conflict resolution (instance duplication) rules.
- Cascading instance creation rules.
- Annotation suggestion rules.

 6

The first two groups of rules are completely domain independent, since their
functionalities are valid for any domain. The other two sets of rules are usually domain
dependent, since the annotation creation patterns and the suggestions proposed by the
system will be based on the domain of the annotations performed, as described below.
Let us now see with more detail the rules that are defined in each group.

4.1 Drag and drop rules
When the user drags a selected piece of text from the document being annotated and
drops it onto an ontology concept, an instance of that concept must be created, with a
reference to the position of the selection inside the text and with an instance name that
contains the selected text.
Several situations may arise here:
- If the instance name did not exist already among the annotations stored in the

knowledge base, the annotation system will create it.
- If the instance name already existed among the annotations of any of the subclasses

of the concept where the drag and drop operation was performed, then the system
prompts the user asking whether he or she was referring to that specific instance.

- If the instance name already existed among the annotations of any other concept in
the ontology, then the system prompts the user asking whether they are different
instances or not, and hence whether it has to create a new instance or not.

If the user drags a selected piece of text from the document being annotated and drops it
onto an ontology instance, a new reference to the piece of text will be created for that
instance, and possibly a new alternate name for it, in the case that the information in the
piece of text is different from any of the current instance names.

4.2 Conflict resolution (instance duplication) rules
As aforementioned once the annotator performs a drag and drop operation from the
document to the concept or instance panes, the system analyses whether the
corresponding instance may already exist in the knowledge base using the same name.
This is quite easy to check and obviously avoids easily the duplication of an instance in
the knowledge base.

Figure 3: Instance duplication warning message.

 7

However, there are situations where the instance that the annotator wants to create is
already in the knowledge base with a different name. A set of specialised rules is used
to detect these situations warning the annotator about possible conflicts or duplications
in the knowledge base. These rules check whether the knowledge base contains already
instances that refer to the same piece of text, to exactly the same content available inside
the piece of text or to some of the terms contained in the piece of text that the user
selected in the drag and drop operation.

In the example shown in figure 2 the system alerts the user about the possible
duplication of an instance in the knowledge base when the annotator has selected the
“Eced, Vicente” piece of text and has dropped it into the concept “Person”. The
knowledge base already contains somebody called “Vicente Risco”, which might refer
to the same person or not.

4.3 Cascading instance creation rules
An example of the need of cascading instance creation patterns was outlined in section 2
with an example of how annotations of a work in the cultural domain have to be created
by the instantiation of several concepts, according to IFLA.
For this purpose a set of domain specific rules have been created in the context of the
cultural domain, where ONTO-H has been evaluated. These rules are evaluated
whenever a new instance is created in the knowledge base and they are fired depending
on whether their corresponding preconditions are correctly evaluated. In this domain the
following rules have been created:
- If an instance of the concept “Manifestación” is created, then an instance of the

concept “Expresión” must be also created, with a relationship “tieneManifestación”
instantiated between the latter and the former. Similarly with its subconcepts:

o If an instance of “Manifestación Gráfica” is created, then an instance of
“Expresión Gráfica” must be also created.

o If an instance of “Manifestación Literaria” is created, then an instance of
“Expresión Literaria” must be also created.

o If an instance of “Manifestación Musical” is created, then an instance of
“Expresión Musical” must be also created.

- If an instance of the concept “Expresión” is created, then an instance of the concept
“Work” is created, with a relationship “tiene Expresión” instantiated between the
latter and the former. Similarly with its subconcepts:

o If an instance of “Expresión Gráfica” is created, then an instance of “Obra
Gráfica” must be also created.

o If an instance of “Expresión Literaria” is created, then an instance of “Obra
Literaria” must be also created.

o If an instance of “Expresión Musical” is created, then an instance of “Obra
Musical” must be also created.

The activation of all these rules results in the appearance of several instance edition
forms in the user interface, with the relationships between all these instances already
filled in and with most of the information inside the instances pre-filled.

4.4 Annotation suggestion rules
As described in section 2, the annotation process can be improved by providing
suggestions to the annotator. These suggestions are usually domain dependent and are
based on the use of natural language resources. As an example, for the cultural domain
we have the following rules, among others:

 8

- If a word starts with a capital letter without being the first word of the sentence then
the system suggests that it could be referring to an instance of the concept “Person”,
“Work” or “Place”.

- If a set of consecutive words start with capital letters then the system suggests that
they could be referring to instances of the concept “Person”, “Work” or “Place”.

- If a word or set of words appears in a synonym dictionary as a synonym of another
word that has been already annotated, then the system suggests that it could be
another name for the existing instance and also suggests the addition of a reference
to that part of the text.

5. Conclusions and future work
In this paper we have shown how we can combine a rule-based system with a Protégé
knowledge base to build a tab plug-in that can be used for the semantic annotation of
documents.
The annotation process is usually based on a set of heuristics that are followed by the
person in charge of creating the annotations. These heuristics are used for detecting
pieces of the text source that can be candidates for annotations, detecting possible
duplicates when creating instances of the domain ontologies used for the annotation
process, and improving the efficiency of annotation by giving support to complex
annotation patterns.
Due to the heuristic behaviour of the annotation process and to the fact that in some
cases the heuristics depend on the domain of the source documents, the annotation tool
relies on a rule-based system (implemented on top of the DROOLS engine) that is
driven by the events fired by the user interface. The rules can be easily modified when
the annotation tool is used in a different domain, when new annotation patterns are
identified or in the case that refinements of the current behaviours are to be provided.
Though the use of the DROOLS engine has proven to be good for the purposes of our
system and has a good behaviour even with large knowledge bases, we plan to explore
the use of other rule-based systems, especially those that will support the emerging
SWRL, so as to provide a Semantic Web compliant solution for our tool and to allow a
better reuse of our rules in other applications. In this direction, we also plan to explore
the use of the Protégé-OWL API instead of the core Protégé API by modifying our
Protégé API proxy, described in section 3.
Besides, since the tool uses documents specified in the RTF format another future piece
of work will be the exploitation of the document layout during the annotation process.
The current architecture allows this kind of exploitation, since we can create sets of
annotation rules specifically devoted to exploiting such characteristics of the source
documents.

Acknowledgements
This work has been supported by the EU IST project Esperonto (IST-2001-34373) and
the Spanish PROFIT projects ONTO-H and SEGEPAC.

References
1. Benjamins V.R., Contreras J., Blázquez, M., Niño M., García A., Navas E., Rodríguez J., Hernández

F., Wert C., Dodero J.M. ONTO-H: a Collaborative Semiautomatic Annotation Tool. Available at:
http://protege.stanford.edu/conference/2005/submissions/abstracts/accepted-abstract-benjamins.pdf

2. Benjamins VR, Contreras J, Corcho O, Gómez-Pérez A (2002) Six challenges for the Semantic Web.
KR2002 Workshop on Semantic Web. Toulouse, France.

3. Dodero JM, Contreras J, Benjamins VR (2004) D9.2: Test Case Ontology Specification Cultural
Tour. Esperonto Project, www.esperonto.net

