
Developing Ontologies within Decentralised
Settings

Alexander García, Kieran O'Neill, Leyla Jael García, Phillip Lord, Robert
Stevens, Osear Corcho, and Frank Gibson

Abstract This chapter addresses two research questions: "How should a
well-engineered methodology facilítate the development of ontologies within com-
munities of practice?" and "What methodology should be used?" If ontologies are
to be developed by communities then the ontology development life eyele should
be better understood within this context. This chapter presents the Melting Point
(MP), a proposed new methodology for developing ontologies within decentralised
settings. It describes how MP was developed by taking best practices from other
methodologies, provides details on recommended steps and recommended pro-
cesses, and compares MP with alternatives. The methodology presented here is the
product of direct first-hand experience and observation of biological communities
of practice in which some of the authors have been involved. The Melting Point is
a methodology engineered for decentralised communities of practice for which the
designers of technology and the users may be the same group. As such, MP pro­
vides a potential foundation for the establishment of standard practices for ontology
engineering.

4.1 Introduction

The maturity of a particular scientific discipline can be defined by its progress
through three main stages. First, innovation followed by the subsequent dissemi-
nation of the resulting knowledge or artefact. Second, the formation of communities
or collaborations, that utilise or build upon the innovations. Third, the proposal and
agreement upon standards for protocols to achieve the unified and consistent pro-
gression of innovation and knowledge [1]. The discipline of ontology engineering
can be thought of as progressing through the second stage of scientific maturity,
moving from ontologies developed by a single authoritative expert to harvesting the
collective intelligence of an application domain [2^1]. This trend is also reflected in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad...

https://core.ac.uk/display/148655925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the availability of software supporting the engagement of several domain experts,
communities, representing knowledge and developing ontologies [2, 5]. Therefore,
ontology engineering is on the cusp of the third stage of scientific maturity, requiring
the development of common working practices or standard methodologies.

Knowledge engineering (KE) is a field that involves integrating knowledge
within computer systems [6] or the building, maintaining and development of
knowledge-based systems [7]. Therefore, some of the methods proposed within the
field of KE are applicable when building ontologies [8]. However, the experiences
from KE have not always been applied when developing ontologies. In general KE
methodologies focus primarily on the use of the ontology by a software system as
opposed to the development of the ontology [9].

Within the domain of ontology engineering several methodologies have been pro-
posed and applied [10–17]. The majority of the proposed methodologies have been
engineered for centralised settings. However, none of these have gained widespread
acceptance, predominant use or have been proven to be applicable for multiple
application domains or development environments [18]. To date the community
has not been widely involved or considered within ontology engineering method-
ologies. This situation has encouraged debate amongst those within the ontology
community as to which methodology or combination of methodologies are most
applicable [18, 9].

The language choice for encoding an ontology is still an open debate across
the ontology building communities. This situation can be illustrated by the use
of both the OBO format and the OWL within the bio-ontology community [19].
Conforming to or accepting a single formalism for ontology encoding would bring
consistency and standardisation to the engineering methodology, such as tool sup-
port and reasoning engines. However, it is outside the scope of this work to
recommend a particular formalism for ontology encoding. Therefore, the ontology
methodologies are considered and analysed in a language-independent manner.

Whatever methodology emerges, it is essential that the methodology should
be able to support the construction of ontologies by communities and utilise the
collective intelligence of the application domain. Of the published methodologies
that have been proposed or applied, no methodology completely satisfies all the
criteria for collaborative development. To this end, we have reviewed the exist-
ing methodologies, identified commonalities and assessed their suitability for use
within community ontology development. We have summarised these commonali-
ties into a convergence of existing methodologies, with the addition of new aspects
which we have termed the Melting Point (MP) methodology. The MP methodol-
ogy builds upon the authors’ experiences with community-developed ontologies,
re-using methods and techniques that already exist and suggesting new mechanisms
to cope with collaborative ontology development in decentralised settings.

4.1.1 Decentralised Communities

As knowledge is in a constant flux, ontologies should be flexible so they are re-
usable and easily extensible. This is not effortlessly achievable as representing

knowledge requires the active participation of domain experts. The majority of
existing methodologies have been engineered for centralised settings, in which the
ontology is developed and deployed on a one-off basis. Afterwards, the mainte-
nance, as well as the evolution of the ontology, is left to the knowledge engineer
and a reduced group of domain experts. This situation is also true through-
out the development process: a reduced group of domain experts work together
with the knowledge engineer to build the ontology. To date the community has
not been widely involved or considered within ontology engineering method-
ologies.

The costs and efforts associated with the development of ontologies are con-
siderable, it is therefore important to facilitate this process by allowing the
community to participate in the development. By having this active participation
some important aspects are covered: first, the quality of the model is constantly
verified and second the evolution of the ontology is feasible. This paradigm fol-
lows the “wisdom of crowds” — assuming that more contributors implies higher
quality or volume of information — as is employed within wiki-based collabora-
tions. Collaboration is thus at the Melting Point in a methodology for developing
ontologies.

4.1.2 Community-Driven Ontology Engineering

To illustrate the motivation and applicability of the MP methodology, examples are
given from the life sciences, specifically the biomedical ontology domain. Within
the knowledge-intensive biological domain, collaboration and community involve-
ment is common place and encouraged in ontology development maintenance,
evaluation and evolution.

Despite the lack of formal methodologies, bio-ontologies continue to be devel-
oped and the nature of this development has two very interesting properties. First,
it is highly distributed; domain experts in any given sub-domain of the biologi-
cal sciences are rarely in one place. Rather, they are distributed across the globe
yet frequently interact to either collaborate or peer review each others’ work.
Hence, when biologists build ontologies, they tend to form virtual organisations
in which experts with different but complementary skills collaborate in building
an ontology for a specific purpose. The structure of this collaboration does not
necessarily have a central control; different domain experts join and leave the
network at any time and decide on the scope of their contribution to the joint
effort. Leveraging this kind of virtual collaboration can be a powerful tool when
constructing an ontology. Second, biological ontologies continue to evolve, even
after the initial development drive. The continued evolution reflects the advance-
ment of scientific knowledge discovery. New classes, properties and instances may
be added at any time and new uses or extended scope for the ontology may be
identified [17]. By engendering and facilitating this level of community partic-
ipation, an ontology engineer can speed up the initial development and help to
ensure that the ontology remains up to date as knowledge within the domain
advances.

For example, the Ontology of Biomedical Investigations (OBI)1 aims to provide
an ontological representation of life science investigations covering common
components of experimentation, such as equipment, materials and protocols. The
developer community of OBI2 is currently affiliated with 18 diverse biomedical
communities, ranging from functional genomics to crop science to neuroscience. In
addition to having a diverse community of expertise, the OBI developers work in a
decentralised environment encompassing multiple countries and time zones.

The diversity of the life science domain results in a multitude of application
domains for ontology development. To account for and identify available bio-
ontologies the Open Biomedical Ontologies (OBO) Foundry [3] was formed. The
OBO Foundry acts as a registry to collect public domain ontologies that, by design
and revision, are developed by and available to the biomedical community, fostering
information sharing and data interpretation. As of 23 October 2008 there are 76 reg-
istered ontologies at the OBO Foundry, representing knowledge domains ranging
from Amphibian gross anatomy, infectious diseases to scientific experimentation.
Although registered in the same library, the bio-ontologies, often present overlap
in terminology or application domain. In addition to providing a registry, the OBO
Foundry was formed to reduce ontology overlap and ensure bio-ontology orthogo-
nality. Initial steps at achieving this aim have produced a set of design principles3 to
which domain ontologies should adhere, such as openness, a shared syntax and class
definitions. However, the OBO Foundry does not suggest a community-orientated
engineering methodology, methods or techniques by which these principles can
be met.

Case studies have been described for the development of ontologies in diverse
domains, yet surprisingly very few of these have been reported to have been applied
to a domain allied to bioscience, the chemical ontology [13], and the ontology for
immune epitopes [20] being noteworthy exceptions. The research focus for the bio-
ontology community to date has typically centred on the development of domain-
specific ontologies for particular applications, as opposed to the actual “how to” of
building the ontology or the “materials and methods” [17, 21]. This has resulted
in a proliferation of bio-ontologies, developed in different ways, often presenting
overlap in terminology or application domain.

The biomedical domain is not the only domain where ontologies are being devel-
oped and applied. The Semantic Web (SW) encompasses a vision where knowledge
and relationships between documents are disseminated via ontologies by annotating
the current, largely human-accessible Web, to facilitate a Web amenable to machine
processing [22]. Indeed, the creators of that vision consider the life sciences to
potentially be the “incubator” community for the SW, as the physics community
was for the Web [23]. Within the SW vision, as within the biomedical domain, the
involvement of communities of practice is crucial, not only for the development, but
also for the maintenance and evolution of ontologies.

4.1.3 Upper Level Ontologies

As the biomedical domain is highly interconnected, domain ontologies may overlap
with each other. For instance, OBI requires the availability of definitions for those
chemicals used in any investigation. These definitions do not need to be developed
within the OBI ontology as there is already a biomedical ontology for the domain of
chemicals, called ChEBI [24]. Similarly, software making use of an ontology may
require more than a single domain ontology. Typically, in these types of scenar-
ios, it is necessary to integrate multiple ontologies into a single coherent narrative.
In order to integrate or re-use specific domain ontologies following this “building-
block” approach there has to be a high-level structure or common “scaffold” where
different parts of different domain ontologies may be “plugged” into. To ensure ease
of interoperation or re-use of a domain ontology, well designed and documented
ontologies are essential and upper ontologies are fundamental in this integrative
effort.

Upper level ontologies provide a domain-independent conceptual model that
aims to be highly re-usable across specific domain applications. Most of the
upper ontologies provide a general classification criterion that makes it easy to
re-use, extend and maintain those existing ontologies required by a particular
application. Therefore, it is essential, to aid interoperability and re-use, that ontol-
ogy development methodologies should provide general guidelines for the use of
upper level ontologies. These guidelines should cover the documentation of (i)
the design decisions and the justification for choosing one upper ontology over
another and (ii) examples that illustrate how they used in the conceptualisation
of a particular domain. Examples of upper level ontologies include the Basic
Formal Ontology (BFO) [25], DOLCE [26] and GFO [27]. This adoption has, how-
ever, not been documented within a methodological framework that facilitates both
the adoption of the upper level ontology and its proper use. However, the OBO
foundry has recommended that ontologies registered on the OBO Foundry should
use BFO.

4.1.4 Dynamic Ontologies

Ontologies, like software, evolve over time; specifications often change as the
development proceeds, making a straightforward path to the ontology unrealistic.
Different software process models have been proposed; for instance, linear sequen-
tial models and prototyping models. Linear sequential models are also known as
waterfall models [28, 29] and are designed for straight-line development. The linear
sequential model suggests a systematic, sequential approach in which the com-
plete system will be delivered once the linear sequence is completed [29]. The
role of domain experts is passive as end-users of technology. They are placed in
a reacting role in order to give feedback to designers about the product. The soft-
ware or knowledge engineer leads the process and controls the interaction amongst
domain experts. A high-speed adaptation of the linear sequential model is the

Rapid Application Development (RAD) model [30, 31]. This emphasises short
development cycles for which it is possible to add new software components, as
they are needed. RAD also strongly suggests reusing existing program components
or creating reusable ones [29].

The prototyping model is more flexible as prototypes are constantly being built.
Prototypes are built as a means for defining requirements [29], this allows for a
more active role from domain experts. A quick design is often obtained in short peri-
ods of time. The model grows as prototypes are being released [32]; engineers and
domain experts work on these quick designs. They focus on representational aspects
of the ontology, while the main development of the ontology (building the models,
defining what is important, documenting, etc.) is left to the knowledge engineer.

The evolutionary nature of the software is not considered in either of the afore-
mentioned models, from the software engineering perspective evolutionary models
are iterative, and allow engineers to develop increasingly more complex versions of
the software [29, 31, 33]. Ontologies are, in this sense, not different from other soft-
ware components for which process models have evolved from a “linear thinking”
into evolutionary process models that recognise that uncertainty dominates most
projects, that timelines are often impossibly short and that iteration provides the
ability to deliver a partial but extendible solution, even when a complete product is
not possible within the time allotted. Evolutionary models emphasise the need for
incremental work products, risk analysis, planning followed by plan revision, and
customer (domain expert) feedback [29].

4.1.5 The Melting Point: A Methodology for Distributed
Community-Driven Ontology Engineering

A general purpose methodology should aim to provide ontology engineers with a
sufficient perspective of the stages of the development process and the components
of the ontology life cycle, and account for community development. In addition,
detailed examples of use should be included for those stages, outcomes, deliver-
ables, methods and techniques; all of which form part of the ontology life cycle
[9, 34].

To address ontology development methodology in a distributed community envi-
ronment the “The Melting Point” methodology is described. Consideration has been
applied to the previously proposed methodologies and their integration adaptation
and the re-use of components were possible within the MP. Several IEEE soft-
ware engineering practices have also been included to formulate a methodology
applicable to the requirements of community ontology development. The Melting
Point also follows Sure’s [9] work as it considers throughout the whole process the
importance of the software applications that will ultimately use the ontology. The
following sections not only present the MP methodology but also the relationship
between methodological issues and the life cycle of community-based ontologies.

An analysis of current ontology engineering methodologies is presented in
Section 4.2, emphasising the significance of commonalities across methodologies as

well as the engagement of communities of practice. Section 4.3 presents a detailed
definition of the methodology and related components; methods, techniques, activi-
ties, and tasks of the MP methodology. Sections 4.4 and 4.5 contain discussion and
conclusions, respectively.

4.2 Review of Current Methodologies

Melting Point espouses the combination of good practices from existing method-
ologies. A comparison of these methodologies is therefore appropriate, in order to
give context to MP. Several ontology methodology approaches are analysed below,
according to criteria described in detail in Section 4.2.1. These criteria are derived
from the work done by Fernandez [35], Mirzaee [18] and Corcho et al. [36].

The engineering methodologies analysed are the Enterprise Methodology pro-
posed by Uschold and King [10]; the TOVE Methodology proposed by Gruninger
and Fox [11]; the Bernaras methodology proposed by Bernaras et al. [12]; the
METHONTOLOGY methodology proposed by Fernandez et al. [37] the SENSUS
methodology proposed by Swartout et al. [14]; the DILIGENT methodology pro-
posed by Pinto et al. [15, 16]; the GM methodology proposed by Garcia et al. [17]
the iCAPTURer Methodology proposed by Good et al. [38] and the NeOn method-
ology4. Table 4.1 provides a summary of the methodologies and the results of the
analysis against the criteria. Complete details of the analysis have been provided in
Appendix for reference.

4.2.1 Criteria for Review

C1. Inheritance from knowledge engineering. Ontology building is ultimately the
assertion and representation of knowledge. Therefore, this criterion consid-
ers the influence traditional Knowledge Engineering (KE) has had on the
methodologies studied.

C2. Detail of the methodology. This criterion is used to assess the clarity with which
the methodology specifies the orchestration of methods and techniques.

C3. Strategy for building the ontology. This should provide information about the
purpose of the ontology, as well as the availability of domain experts. There
are three main strategic lines to consider: (i) the application of the ontology;
(ii) the use and type of domain experts available and (iii) the type of ontology
to be developed. These three aspects are defined in more detail from C3.1 to
C3.3.

C3.1. Application of the ontology. This criterion describes how tightly cou-
pled the ontology is going to be in relation to the application within

Ta
bl

e
4.

1
E

va
lu

at
io

n
of

on
to

lo
gy

en
gi

ne
er

in
g

m
et

ho
do

lo
gi

es
ac

co
rd

in
g

to
co

m
m

on
cr

ite
ri

a
(s

pe
ci

fie
d

in
Se

ct
io

n
4.

1)
.F

ul
ld

et
ai

ls
ar

e
pr

ov
id

ed
in

A
pp

en
di

x
A

In
he

ri
ta

nc
e

fr
om

kn
ow

le
dg

e
en

gi
ne

er
in

g

D
et

ai
lo

f
th

e
m

et
ho

-
do

lo
gy

St
ra

te
gy

fo
r

bu
ild

in
g

th
e

on
to

lo
gy

St
ra

te
gy

fo
r

id
en

tif
yi

ng
co

nc
ep

ts
R

ec
om

m
en

de
d

lif
e

cy
cl

e

R
ec

om
m

en
de

d
m

et
ho

ds
,

te
ch

ni
qu

es
an

d
te

ch
no

lo
gy

A
pp

lic
ab

ili
ty

C
om

m
un

ity
in

vo
lv

em
en

t
K

no
w

le
dg

e
el

ic
ita

tio
n

A
pp

lic
at

io
n

of
th

e
on

to
lo

gy
D

om
ai

n
ex

pe
rt

s
O

nt
ol

og
y

ty
pe

E
nt

er
pr

is
e

Pa
rt

ia
l

V
er

y
lit

tle
A

pp
lic

at
io

n
in

de
pe

nd
en

t
N

/A
N

/A
M

id
dl

e
ou

t
N

/A
N

/A
E

nt
er

pr
is

e
on

to
lo

gy
N

/A
N

/A

T
O

V
E

Sm
al

l
L

itt
le

A
pp

lic
at

io
n

se
m

i-
in

de
pe

nd
en

t

N
/A

D
om

ai
n

an
d

ta
sk

on
to

lo
gi

es

M
id

dl
e

ou
t

N
/A

N
/A

B
us

in
es

s
an

d
fo

un
da

tio
na

l
on

to
lo

gi
es

N
/A

N
/A

B
er

na
ra

s
A

lo
t

V
er

y
lit

tle
A

pp
lic

at
io

n
in

de
pe

nd
en

t
N

/A
D

om
ai

n
an

d
ta

sk
on

to
lo

gi
es

To
p

do
w

n
Fo

llo
w

s
so

ft
w

ar
e

N
/A

E
le

ct
ri

ca
l

en
gi

ne
er

in
g

do
m

ai
n

N
/A

N
/A

M
E

T
H

-
O

N
T

O
L

O
G

Y
A

lo
t

A
lo

t
A

pp
lic

at
io

n
in

de
pe

nd
en

t
N

/A
In

pr
in

ci
pl

e
it

is
ap

pl
ic

ab
le

to
an

y
ki

nd
of

on
to

lo
gi

es

M
id

dl
e

ou
t

E
vo

lu
tio

na
ry

pr
ot

ot
yp

e
So

m
e

ac
tiv

iti
es

m
is

si
ng

.
Te

ch
no

lo
gy

re
co

m
m

en
de

d

M
ul

tip
le

de
ve

lo
pm

en
ts

re
po

rt
ed

N
/A

Pa
rt

ia
lly

SE
N

SU
S

In
ex

is
te

nt
M

ed
iu

m
A

pp
lic

at
io

n
se

m
i-

in
de

pe
nd

en
t

N
/A

In
pr

in
ci

pl
e

it
is

ap
pl

ic
ab

le
to

an
y

ki
nd

of
on

to
lo

gi
es

N
/A

N
/A

N
/A

A
ir

ca
m

pa
ig

n
pl

an
ni

ng
on

to
lo

gy

N
/A

N
/A

D
IL

IG
E

N
T

Sm
al

l
Sm

al
l

A
pp

lic
at

io
n

de
pe

nd
en

t
N

/A
N

/A
Pr

ob
le

m
de

pe
nd

en
t

N
/A

N
/A

N
/A

Y
es

Pa
rt

ia
lly

G
M

Sm
al

l
A

lo
t

A
pp

lic
at

io
n

de
pe

nd
en

t
T

he
fo

cu
s

is
m

or
e

on
sp

ec
ia

liz
ed

do
m

ai
n

ex
pe

rt
s

D
om

ai
n

an
d

ta
sk

on
to

lo
gi

es
To

p
do

w
n

E
vo

lu
tio

na
ry

pr
ot

ot
yp

e
So

m
e

te
ch

ni
qu

es
an

d
m

et
ho

ds
re

co
m

m
en

de
d

Te
ch

no
lo

gy
re

co
m

m
en

de
d

D
ev

el
op

m
en

ts
re

po
rt

ed
fo

r
th

e
bi

o
do

m
ai

n

Y
es

Su
pp

or
te

d

iC
A

PT
U

R
er

L
itt

le
A

lo
t

A
pp

lic
at

io
n-

in
de

pe
nd

en
t

B
ro

ad
:A

ll
le

ve
ls

of
do

m
ai

n
ex

pe
rt

s
co

ns
id

er
ed

D
om

ai
n

an
d

ta
sk

on
to

lo
gi

es
B

ot
to

m
up

E
vo

lu
tio

na
ry

/
ite

ra
tiv

e
N

/A
N

/A
Y

es
In

te
gr

al

N
eO

n
St

ro
ng

ly
in

flu
en

ce
d

A
lo

t
A

pp
lic

at
io

n-
in

de
pe

nd
en

t
D

om
ai

n
ex

pe
rt

s
an

d
on

to
lo

gy
en

gi
ne

er
s

as
su

m
ed

to
be

ac
tiv

el
y

w
or

ki
ng

to
ge

th
er

.

D
om

ai
n

an
d

ta
sk

on
to

lo
gi

es
N

/A
R

ec
og

ni
se

d
bu

tn
ot

pr
es

cr
ib

ed

M
an

y,
w

ith
sp

ec
ifi

c
de

ta
il

M
ul

tip
le

de
ve

lo
pm

en
ts

re
po

rt
ed

C
ol

la
bo

ra
tio

n
of

th
e

co
m

m
un

ity
is

as
su

m
ed

Si
gn

ifi
ca

nt

which, in principle, it should be used. This is often evaluated via compe-
tency questions. Competency questions can be typically classified in two
forms: informal competency questions (natural language) and formal
competency questions. The criteria for describing the level of application
engagement are described as follows:

C3.1.1. Application dependent. The ontology is built on the basis of
an application knowledge base, by means of a process of
abstraction [35].

C3.1.2. Application semi dependent. Possible scenarios of ontology use
are identified in the specification stage [35].

C3.1.3. Application independent. The process is totally independent of
the uses to which the ontology will be put in knowledge-based
systems or any software layer making use of the ontology.

C3.2. Domain experts. This criterion outlines the level of perceived expertise
of the individuals consulted within the ontology development process. A
domain expert can be graded in the following manner:

C3.2.1. Specialised domain experts. Those with an in-depth knowledge
of their field. Within the biological context these are usu-
ally researches with vast laboratory experience, very focused
and narrowed within the domain of knowledge. Having the
specialised domain expert helps define very specific concepts
within the ontology; this can lead to a strategy for identifying
concepts known as the bottom-up approach (see C4.1).

C3.2.2. Broader-knowledge domain experts. Those who have a general
knowledge or a higher level view of the domain(s). Having this
kind of domain experts usually facilitates capturing concepts
more related to high-level abstraction, and general processes,
rather than specific vocabulary describing those processes. The
ontology may be built from high-level abstractions downwards
to specifics. This approach known as the top–down strategy for
identifying concepts (see C4.2).

C3.3. Ontology type. The ontology-type criterion classifies the ontology being
developed into the following types or categories [39, 40]:

C3.3.1. Top-level ontologies. These describe very general concepts like
space, time, event, which are independent of a particular prob-
lem domain. Such unified top-level ontologies aim at serving
large communities [9]. These ontologies are also known as
foundational ontologies or commonly called upper ontologies;
see, for instance, the DOLCE ontology [26].

C3.3.2. Domain ontologies. These are focused within a particular
domain and describe specific vocabulary.

C3.3.3. Task ontologies. These describe vocabulary related to tasks,
processes or activities.

C3.3.4. Application ontologies. As Sure [9] describes them, application
ontologies are specialisations of domain and task ontologies as
they form a base for implementing applications with a concrete
domain and scope.

C4. Strategy for identifying concepts. There are three strategies regarding the con-
struction of the ontology and the kinds of terms it is possible to capture
[41]:

C4.1. Bottom-up work from the most concrete or specific concepts to the most
abstract concepts. [41–43].

C4.2. Top-down work from the most abstract to the more domain/application
specific concepts [35].

C4.3. Middle-out work from the most relevant to the most abstract and most
domain/application-specific concepts [35, 40, 43].

C5. Recommended life cycle. This criterion evaluates whether and to what degree
the methodology implicitly or explicitly proposes a life cycle [35].

C6. Recommended methods and techniques. This criterion evaluates whether or not
there are explicit methods and techniques as part of the methodology. This is
closely related to C2. An important issue to be considered is the availability
of software supporting either the entire methodology or a particular method of
the methodology. This criterion also deals with the methods or software tools
available within the methodology for representing the ontology, for example,
in OWL5, or RDF6.

C7. Applicability. As knowledge engineering is still in its infancy it is important to
evaluate the methodology in the context of those ontologies for which it has
been applied.

C8. Community involvement. As has been pointed out before in this chapter, it is
important to know the level of involvement of the community. Phrasing this as
a question, is the community a consumer of the ontology or is the community
taking an active role in its development?

C9. Knowledge elicitation. Knowledge elicitation is a major bottleneck when rep-
resenting knowledge [44]. It is therefore important to know if the methodology
assumes knowledge elicitation to be an integral part of the methodology; does
it describe the elicitation techniques?

4.2.2 Finding the Melting Point

The considerable number of methodologies coupled with the limited descriptive
detail of the ontology development approach makes it extremely difficult to present
a consensus or a melting point where the methodologies converge. From the method-
ologies studied, very few clearly state the methods and techniques suggested in
the methodology. However, the roles of those participating in the development
of the ontology are clearly outlined. The following sections discuss the identified
commonality and differences in approach, elucidated from the evaluation of the
methodologies.

Common features. There are certain commonalities in the ontology development
approach across the methodologies. For instance, all the studied methodologies con-
sider an inception, formalisation as well as an evaluation phase. Figure 4.1 illustrates
those shared stages across all methodologies. The DILIGENT and GM methodolo-
gies, however, present some fundamental differences when compared to the other
methodologies — both were engineered for developing ontologies within geograph-
ically distributed settings. The differences identified between the DILIGENT and
the GM methodology on the one hand and the other methodologies are presented
and described below:

Life cycle. For both DILIGENT and GM, the ontology is constantly evolving,
in a never-ending cycle. The life cycle of the ontology is understood as an
open cycle in which the ontology evolves in a dynamic manner.

Fig. 4.1 Common features of the methodologies reviewed

Collaboration. For both DILIGENT and GM, a group of people agrees on the
formal specification of the concepts, relations, attributes, and axioms that the
ontology should provide. This approach empowers domain experts in a way
that sets DILIGENT apart from the other methodologies.

Knowledge elicitation. Due in part to the involvement of the community and
in part to the importance of the agreements, for DILIGENT and the GM
methodology knowledge elicitation is assigned a high level of importance; it
supports the process by which consensus is reached.

The GM, DILIGENT and NeOn methodologies consider the ontology to be con-
stantly evolving. In fact, the life cycle spirals, with the ontology progressing over
each iteration of the cycle. In addition, the GM methodology also emphasises the
notion of collaboration in the development process, particularly during knowledge
elicitation. The GM knowledge elicitation relies heavily on interaction; the higher
the level of interaction amongst domain experts, the more refined the specific models
are likely to be. Both DILIGENT and GM methodologies assume a leading role for
the domain experts as well as a tight relationship between the ontology and the soft-
ware application in which it will ultimately be used. Within the NeOn framework
the focus is more on the network of ontologies rather than specifically on the act of
collaboration amongst domain experts. However, NeOn offers a complete review of
methods that in principle support collaboration when building ontologies; NeOn
supports the collaboration over two main axes: argumentation and collaborative
editing.

The GM, DILIGENT and NeOn methodologies consider the ontology to be con-
stantly evolving. In fact, the life cycle spirals, with the ontology progressing over
each iteration of the cycle. In addition, the GM methodology also emphasises the
notion of collaboration in the development process, particularly during knowledge
elicitation. The GM knowledge elicitation relies heavily on interaction; the higher
the level of interaction amongst domain experts, the more refined the specific mod-
els are likely to be. Both DILIGENT and GM methodologies assume a leading role
for the domain experts as well as a tight relationship between the ontology and the
software application in which it will ultimately be used.

Differences amongst Methodologies. As illustrated by the summary table, no
methodology completely satisfies all the criteria. Some of the methodologies, such
as that of Bernaras, provide information about the importance of the relationship
between the final application using the ontology and the process by which the ontol-
ogy is engineered. This consideration is not always taken from the beginning of the
development; clearly the kind of ontology that is being developed heavily influences
this relationship. For instance, foundational ontologies rarely consider the software
using the ontology as an important issue; these ontologies focus more on funda-
mental issues affecting the classification system such as time, space, and events.
They tend to study the intrinsic nature of entities independently from the particular
domain in which the ontology is going to be used [37].

The final application in which the ontology will be used also influences which
domain experts should be considered for the development of the ontologies.
For instance, specialised domain experts are necessary when developing appli-
cation ontologies, domain ontologies or task ontologies, but they tend not to
have such a predominant role when building foundational ontologies. For these
kinds of ontologies philosophers and broader knowledge experts are usually more
appropriate.

None of the methodologies investigated provided detail; the descriptions for the
processes were scarce, and where present theoretical. There was no analysis of
actual ontology building sessions. The methods employed during the development
of the ontologies were not fully described. For instance the reasons for choos-
ing a particular method over a similar one were not presented. Similarly there
was no indication as to what software should be used to develop the ontologies.
METHONTOLOGY was a particular case for which there is a software environ-
ment associated to the methodology; the recommended software WebODE [45] was
developed by the same group to be used within the framework proposed by their
methodology.

Although the methodologies investigated have different views on the life cycle
of the ontology, only DILIGENT, NeOn and GM consider the life cycle to be
dynamic. This is reflected in the processes these methodologies propose. The devel-
opment happens in a continuum; some parts within the methodologies are iterative
processes, but the steps are linear, taking place one after the other. In the case of
DILIGENT the different view on the life cycle is clear. NeOn poses a view of the
process that is closer to the one proposed by the MP methodology; it provides a
clear view of the overall process and provides some detail as to the actual ontology
building practice.

The lack of support for the continued involvement of domain experts who may
be located around the world was not considered when engineering most of the stud-
ied methodologies. As both, the SW and the biodomain, pose a scenario for which
information is highly decentralised, domain experts are geographically distributed
and the interaction takes place mostly on a virtual basis, such consideration is impor-
tant. For both cases the realisation of the SW vision, as well as the achievement of
collaboration, is more about a change in people and communities of practices than
it is about technology [4, 46].

Evolution and community involvement. Ontologies in the biomedical domain not
only are domain and/or task specific but also application oriented. Within both, the
SW and the biodomain, the construction of applications and ontologies will not
always take place as part of the same software development projects. It is there-
fore important for these ontologies to be easily extensible; their life cycle is one in
which the ontologies are in constant evolution, highly dynamic and highly re-usable.
Ontologies in biology have always supported a wide range of applications; the
microarray ontology (MO) [47], for instance, is used by several, unrelated microar-
ray laboratories information systems around the world. In both scenarios, SW and
biology, not only is the structure of the ontology constantly evolving but also the

role of the knowledge engineer is not that of a leader but more that of a facilitator
of collaboration and communication amongst domain experts.

Parallels can be drawn between the biological domain and the SW. The SW-
related scenarios are often described as being distributed, loosely controlled and
evolving [15]. The main differences between the classic proposals for building
ontologies and those requirements applied to the SW have been summarised by
Pinto et al. [15], as well as Garcia et al. [17], and are described in four key
points:

1. Distributed information processing with ontologies: Within the SW scenario,
ontologies are developed by geographically distributed domain experts willing
to collaborate, whereas KE deals with centrally developed ontologies.

2. Domain expert-centric design: Within the SW scenario, domain experts guide the
effort while the knowledge engineer assists them. There is a clear and dynamic
separation between the domain of knowledge and the operational domain. In
contrast, traditional KE approaches relegate the role of the expert as an informant
to the knowledge engineer.

3. Ontologies are in constant evolution in SW, whereas in KE scenarios, ontologies
are simply developed and deployed.

4. Additionally, within the SW scenario, fine-grained guidance should be provided
by the knowledge engineer to the domain experts.

Collaboration is present in the DILIGENT, iCAPTURer, NeOn and GM method-
ologies. However, neither DILIGENT nor GM propose methods for engaging the
collaborators, nor do they provide clear methodological guidelines. Alternatively,
NeOn proposes a set of methods and techniques for most of the steps described.
Nevertheless, the process of knowledge elicitation, whether within the context of
collaboration or as a focus group activity, is not fully addressed in most of the
methodologies investigated. METHONTOLOGY and NeOn consider knowledge
elicitation as part of the methodology, but there are no recommendations regarding
knowledge elicitation methods.

One important feature that is not covered by any of the methodologies inves-
tigated is the use of upper level ontologies; as these are meant to support
classification based on universal criterion it is important to understand the struc-
ture proposed by these ontologies in order to ease the integration of domain
ontologies.

Collaboration, knowledge elicitation, a better understanding of the ontology life
cycle and detailed description for the different steps involved are important criteria
that should be documented to ensure that methodologies may be more efficiently
replicated and applied. There is also an increasing need to emphasis the reuse of
methodologies rather than developing ad hoc, de novo methodologies. The reuse
of methodologies will go some way to ensure efficient development, interoperabil-
ity and the elucidation of best practice in ontology development, irrespective of
the domain of application. These are precisely the issues that a methodology for
community-based ontologies needs to address.

4.3 The Melting Point Methodology

The following outlines the Melting Point methodology and can serve as a “manual”
for ontology engineering. As mentioned in Section 4.1, many of the techniques are
best practices chosen from other methodologies, and as such extensive reference is
made back to these methodologies. The MP methodology aims to provide ontology
developers with a detailed view of the processes that should take place when build-
ing ontologies; it supports the orchestration of steps in the development process
based on the inputs consumed and outputs produced by the methods and techniques
used. MP is not prescriptive about specific techniques or methods; ontology devel-
opers should consider the use of those that best suit their particular situation. This
document, as well as several deliverables from the NeOn project are a good source
of information regarding the methods and techniques available.

For the purpose of MP, the activities involved are framed within pro-
cesses and activities, as illustrated in Fig. 4.3; this conception is promoted by
METHONTOLOGY [35] for centralised settings. As these activities were not con-
ceived within decentralised settings, their scope has been redefined, so that they
better fit the life cycle of ontologies developed by communities. The methodology
here presented emphasises: decentralised settings and community involvement. It
also stresses the importance of the life cycle these ontologies follow, and provides
activities, methods and techniques coherently embedded within this life cycle.

The methodology and the life cycle are illustrated in Fig. 4.2. The overall
process starts with documentation and management processes; the development
process immediately follows. Managerial activities happen throughout the whole
life cycle; as the interaction amongst domain experts ensures not only the qual-
ity of the ontology, but also that those predefined control activities take place. The
development process has five main activities: specification, conceptualisation, for-
malisation implementation and evaluation. Different prototypes or versions of the
ontology are thus constantly being created. Initially these prototypes may be unsta-
ble, as the classes and properties may drastically change. In spite of this, the process
evolves rapidly, achieving a stability that facilitates the use of the ontology; changes
become more focused on the inclusion of classes and instances, rather than on the
redefinition of the class hierarchy.

4.3.1 Definition of Terminology

To aid the clarity of the methodology descriptions the interpretation of key
terminology must be made clear. The meaning of the terms methodologies,
techniques and methods follow the Institute of Electrical and Electronics Engineers
(IEEE) descriptions [18, 19], as recommended by Perez-Gomez et al. [32],
[48], Fernandez et al. [37] Pinto et al. [15, 49] and Garcia et al. [17]. Both
Fernandez et al. and Perez-Gomez et al. emphasise the importance of complying
with the Institute of Electrical and Electronics Engineers (IEEE) standards, more

Fig. 4.2 Life cycle, processes, activities and view of the methodology

specifically with the IEEE standard for software quality assurance plans [50]. Not
only does standards compliance ensure careful and systematic planning for the
development, but it also ensures the applicability of the methodology to a broad
range of problems. As such, we have also adopted terminology from the above-
mentioned IEEE standard. A methodology should be interpreted as a “comprehen-
sive integrated series of techniques or methods creating a general system theory of
how a class of thought-intensive work ought to be performed” [18]. Methodologies
are composed of both techniques and methods. A method is an “orderly” process or
procedure used in the engineering of a product or performing a service [20]. A tech-
nique is a “technical and managerial procedure used to achieve a given objective”
[18]. Thus methodologies bring together techniques and methods in an orches-
trated way such that the work can be done. Figure 4.3 illustrates these relationships
graphically.

Greenwood [51] and Gomez-Perez et al. [52] present these terminological rela-
tionships in a simple way: “a method is a general procedure while a technique is the
specific application of a method and the way in which the method is executed” [52].
According to the IEEE [53] a process is a “function that must be performed in the
software life cycle. A process is composed by activities”. The same set of standards
defines an activity as “a constituent task of a process” [53]. A task is the atomic unit

Fig. 4.3 Relationships amongst ontology engineering terms

of work that may be monitored, evaluated and/or measured; more formally, a task is
“a well defined work assignment for one or more project member. Related tasks are
usually grouped to form activities” [53].

4.3.2 Management Processes

The management activities are initiated as soon as there is a motivation (speci-
fication) and a decision for developing the ontology, therefore an artefact and a
process to manage. The management process continues through the remainder of the
ontology development process. Some of the activities involved in the management
processes are

Scheduling. Scheduling identifies tasks, time and resources needed.
Control. Control ensures that the planned tasks are completed.
Inbound interaction. Inbound interaction specifies how the interaction amongst

domain experts will take place, for instance, by phone calls, mailing lists,
wiki and static Web pages.

Outbound interaction. As different communities should in principle be allowed
to participate, there has to be an inclusion policy that specifies how a new
community could collaborate and engage with the ongoing development.

Quality assurance. This activity defines minimal standards for the outputs from
each and every process, activity or task carried out during the development
of the ontology.

Scheduling project management techniques can be employed such as Gantt
charts to and define milestones and deadlines. Several software suites exist to assist
in project management, both commercial and open source. Specific technologies
for documentation and communication are discussed in Garcia et al.17]. In addition,

more generic content management and communication systems can be employed for
documenting and communicating the management process, such as those identified
and reviewed by Mooney and Baenziger [54]. For both scheduling and controlling,
the software tool(s) should in principle

– help to plan the activities and tasks that need to be completed,
– give a basis for scheduling when these tasks will be carried out,
– facilitate planning the allocation of resources needed to complete the project,
– help to work out the critical path for a project where one must complete it by a

particular date,
– facilitate the interaction amongst participants and
– provide participants with simple means for exchanging information.

4.3.3 Documentation Processes

The documentation is a continuum process throughout the entire development of
the ontology. This documentation should make it possible for new communities of
practice to get involved in the development of the ontology. These include early
processes such as the specification of the purpose of the ontology right through to
later processes such as formalisation and evaluation of the ontology.

Documenting classes and properties. Although documentation can happen natu-
rally, facilitated by discussions via an email basis, it is often difficult to follow the
argumentative thread. Even so, the information contained in mailing lists is useful
and should whenever possible be related to classes and properties. Use cases, in
the form of examples for which the use of a term is well illustrated, should also be
part of the documentation of classes and properties. Ontology editors allow domain
experts to comment on the ontology; this kind of documentation is useful, as it
reflects the understanding of the domain expert. For classes and properties there are
three main sources of documentation:

Mailing lists. Discussions about why a class should be part of the ontology, why
it should be part of a particular class hierarchy, how it is being used by the
community, how a property relates two classes, and in general all discussions
relevant to the ontology happen on an email basis.

On-the-ontology comments. In the cases when domain experts are familiarised
with the ontology editor, they usually comment on classes and properties.

Use cases. This should be the main source of structured documentation pro-
vided by domain experts. However, gathering use cases is often difficult and
time consuming. The use cases should illustrate how a term is being used
in a particular context, how the term is related to other terms, and those
different uses or meanings a term may have. Guidance is available for the
construction of use cases when developing software; however, this direction
is not available when building ontologies. From those experiences in which

the author participated some general guide can be drawn, for instance, use
cases should be brief, they should be based upon real-life examples, knowl-
edge engineers have to be familiar with the terminology as well as with the
domain of knowledge because use cases are usually provided in the form
of narratives describing processes, graphical illustrations should be part of
the use case, and also whenever possible concept maps, or other related KA
artefacts, should be used.

4.3.4 Development-Oriented Processes

These are the processes by which the ontology is actually built and represent the
core of the methodology. The life cycle, documentation and management provide a
framework in which development-oriented processes are embedded.

Specification. The specification of the ontology involves defining the motivation;
in other words why the development of an ontology is required for the application
domain. The specification phase can also be called a feasibility study and includes
addressing straightforward questions such as “What is the ontology going to be used
for?”, “How is the ontology ultimately going to be used by the software implemen-
tation?”, “What do we want the ontology to be aware of?” and “What is the scope of
the knowledge we want to have in the ontology?”. The answers to these questions
are typically represented as competency questions, which define the requirements of
the ontology. The requirements are dependent on the motivation and are described
as informal questions or tasks that an ontology must be able to answer or perform.
In other words, competency questions are those questions for which we want the
ontology to be able to provide support for reasoning and inferring processes [17].
It is often helpful to include competency questions, as they can help to enforce the
boundaries of the scope of the ontology.

Conceptualisation. The conceptualisation of the ontology is the process of identi-
fying the key concepts that exist in the domain, their properties and the relationships
that hold between them; this includes identifying natural language terms to refer to
such concepts, relations and attributes as well as structuring domain knowledge into
explicit conceptual models [55]. Gruber’s design principles. [4] are relevant to the
conceptualisation process as described below:

Gruber’s first principle. “The conceptualisation should be specified at the
knowledge level without depending on a particular symbol-level encoding.”

Gruber’s second principle. “Since ontological commitment is based on the con-
sistent use of the vocabulary, ontological commitment can be minimised by
specifying the weakest theory and defining only those terms that are essential
to the communication of knowledge consistent with the theory.”

Gruber’s third principle. “An ontology should communicate effectively
the intended meaning of defined terms. Definitions should be objective.
Definitions can be stated on formal axioms, and a complete definition

(defined by necessary and sufficient conditions) is preferred over a partial
definition. All definitions should be documented with natural language.”

The process of conceptualisation typically involves the activities of domain anal-
ysis (DA) and knowledge elicitation (KE) and knowledge acquisition (KA). DA is
the process by which a domain of knowledge is analysed in order to find common
and variable components that best describe that domain. KE the process of collecting
from a human source of knowledge, information that is relevant to that knowledge
[44]. KA includes the elicitation, collection, analysis, modelling and validation of
knowledge for knowledge engineering and knowledge management projects. The
notion for both KA and KE comes from the development of knowledge bases; for
the purposes of developing ontologies, KA and KE can be considered as transpos-
able terms. KA and DA are interchangeable and complementary activities by which
the information used in a particular domain is identified, captured and organised for
the purpose of making it available in an ontology [56].

Those activities related to DA and KA focus more on capturing and represent-
ing knowledge in a more immediate manner and not necessarily on having logical
expressions as part of the models; whereas when formalising and evaluating an
ontology, activities and tasks are more oriented to include logical constrains and
expressions. DA and KA may be seen as the art of questioning, since ultimately all
relevant knowledge is either directly or indirectly in the heads of domain experts.
This activity involves the definition of the terminology, i.e. the linguistic phase.
This starts by the identification of those reusable ontologies and terminates with the
baseline ontology, i.e. a draft version containing few but seminal elements of an
ontology.

Identifying available sources of knowledge is also important; by doing so it can
help to refine or confirm the ontology specification. In the bio-ontology domain this
process can be facilitated by the OBO Foundry, which is a registry of available and
accessible domain ontologies. Searching the registry can be made possible via the
BioPortal from the National Center for Biomedical Ontology (NCBO) [57] or the
Ontology Lookup Service7. The OLS provides a user-friendly single entry point for
querying publicly available ontologies in the Open Biomedical Ontology (OBO)
format. By means of the OLS it is possible to verify if an ontology term has already
been defined and in which ontology is available [58].

The following criteria are important during knowledge acquisition [17]:

Accuracy in the definition of terms. The linguistic part of the ontology devel-
opment is also meant to support the sharing of information/knowledge.
The availability of context as part of the definition is useful when sharing
knowledge.

Coherence. The narrative should be coherent; descriptions should make
sense within the context in which they are intended to have a meaning.

Moreover, narratives should provide examples from which instances can be
gathered.

Extensibility. This approach may be seen as an aggregation problem; CMs are
constantly gaining information, which is always part of a bigger narration.
Extending the conceptual model is not only about adding more detail to
the existing CMs or just about generating new CMs; it is also about group-
ing concepts into higher-level abstractions and validating these with domain
experts. Scaling the models involves the participation of both the domain
experts and the knowledge engineer. It is mostly done by direct interview
and confrontation with the models from different perspectives. The partici-
pation of new “fresh” domain experts, as well as the intervention of experts
from allied domains, allows analysing the models from different angles. This
participatory process allows re-factorising the models by increasing the level
of abstraction.

The OBO Foundry has tried to define their criteria for defining terms. These OBO
Foundry naming conventions8 outline how to represent class labels and definitions
to maintain consistency within one ontology and to provide a common naming con-
ventions for integration across resources to avoid conflicts both at a human readable
level and at a logical level.

For the purpose of DA and KA it is critical to elicit and represent knowledge from
domain experts. They do not, however, have to be aware of knowledge representa-
tion languages; this makes it important that the elicited knowledge is represented
in a language-independent manner. Researchers participating in knowledge elicita-
tion sessions are not always aware of the importance of the session; however, they
are aware of their own operational knowledge. This is consistent with the first of
Gruber’s design principles.

Regardless of the syntactic format in which the information is encoded domain
experts have to communicate and exchange information. For this matter it is usually
the case that wide general theories, principles, broad-scope problem specifications
are more useful when engaging domain experts in discussions, as these tend to
contain only essential basic terms, known across the community and causing the
minimal number of discrepancies (see the second design principle). As the commu-
nity engages in the development process and the ontology grows, it becomes more
important to have definitions that are usable by computer systems and humans (see
the third design principle). The relevant milestones, techniques and tasks for DA-
and KA-related activities are

Tasks. Focal groups, limited information and constrained-processing tasks,
protocol analysis, direct one-to-one interviews, terminology extraction, and
inspection of existing ontologies.

Techniques. Concept mapping, sorting techniques, automatic or semi-automatic
terminology extraction, informal modelling and identifying pre-existing
resources.

Milestones. Baseline ontology, knowledge sources, basic terminology, reusable
ontologies.

Formalisation. Formalisation of the ontology is the activity during which the
classes are constrained and instances are annotated against their corresponding
classes. For example, “a male is constrained to be an animal with a y-chromosome”.
During the formalisation domain experts and knowledge engineers work with an
ontology editor. When building iterative models and formalising the ontology the
model grows in complexity; instances, classes and properties are added and logi-
cal expressions are built in order to have definitions with necessary and sufficient
conditions. For both formalisation and iterative building of models, Gruber’s fourth
designing principle and Noy and McGuinness’ guidelines [59] are applicable:

Gruber’s fourth principle. “An ontology should be coherent: that is, it should
sanction inferences that are consistent with the definitions. [. . .] If a sentence
that can be inferred from the axioms contradicts a definition or example given
informally, then the ontology is inconsistent.”

Noy and McGuinness’ first guideline. “The ontology should not contain all the
possible information about the domain: you do not need to specialise (or
generalise) more than you need for your application.”

Noy and McGuinness’ second guideline. “Subconcepts of a concept usually (i)
have additional relations that the superconcept does not have or (ii) restric-
tions different from these of superconcepts or (iii) participate indifferent
relationships than superconcepts. In other words, we introduce a new con-
cept in the hierarchy usually only when there is something that we can say
about this concept that we cannot say about the superconcept. As an excep-
tion, concepts in terminological hierarchies do not have to introduce new
relations.”

Noy and McGuinness’ third guideline. “If a distinction is important in the
domain and we think of the objects with different values for the distinction
as different kinds of objects, then we should create a new concept for the
distinction.”

Implementation. The implementation of the ontology concerns the choice and jus-
tification of the encoding formalism, for example, the OBO format or the Web
Ontology Language (OWL). The choice and the justification of a language take
into account the required expressivity demanded by the specification process and by
extension the tools required to facilitate the encoding. For example, if the chosen
language was OWL, then it would be appropriate to use an ontology editor such
as Protege9. Ultimately implementation is concerned with encoding the decisions

made as part of the formalisation process. However, the implementation process and
the formalisation process can often happen simultaneously as an iterative process.

Iterative building of ontology models (IBOM). Iterative building of informal
ontology models helps to expand the glossary of terms, relations, their definition
or meaning, and additional information such as examples to clarify the meaning
where appropriate. Different models are built and validated with the domain experts.
There is a fine boundary between the baseline ontology and the refined ontology;
both are works in progress, but the community involved has agreed upon the refined
ontology.

Methods, techniques and milestones for the IBOM. Some milestones, techniques
and tasks for IBOM related activities are

Tasks. Focal groups.
Techniques. Concept mapping, informal modelling with an ontology editor.
Milestones. Refined ontology.

4.3.5 Evaluation

There is no unified framework to evaluate ontologies and this remains an active
field of research [32]. When developing ontologies on a community basis four main
evaluation activities have been identified:

Specification evaluation. The specification defines the motivation and the scope
of the ontology in the form of competency questions. Specification evaluation
concerns the ability of the ontology to answer the competency questions and
therefore demonstrate fulfilment of the intended scope.

Application-dependent evaluation. It is considered that ontologies should be
evaluated according to their fitness for purpose, i.e. an ontology developed
for annotation purposes should be evaluated by the quality of the annotation
and the usability of the annotation software [17]. The community carries out
this type of evaluation in an interactive manner; as the ontology is being
used for several purposes a constant feedback is generated. The feedback
thus gathered also helps in the evolution of the ontology; as the community
comments on an ontology term being used to annotate a resource, ontology
engineers are able to include, delete or edit terms in the ontology. This makes
it possible for the community to effectively guarantee the usability and the
quality of the ontology. By the same token, the recall and precision of the
data, and the usability of the conceptual query builder, should form the basis
of the evaluation of an ontology designed to enable data retrieval.

Terminology evaluation. This activity was proposed by Perez-Gomez et al. [60].
The goal of the evaluation is to determine what the ontology defines and
how accurate these definitions are. Perez-Gomez et al. provides the following
criteria for the evaluation:

Consistency. It is assumed that a given definition is consistent if, and
only if, no contradictory knowledge may be inferred from other
definitions and axioms in the ontology.

Completeness. It is assumed that ontologies are in principle incomplete
[32, 60], however, it should be possible to evaluate the completeness
within the context in which the ontology will be used. An ontology
is complete if and only if All that is supposed to be in the ontology is
explicitly stated, or can be inferred.

Conciseness. An ontology is concise if it does not store unnecessary
knowledge, and the redundancy in the set of definitions has been
properly removed.

Taxonomy evaluation. This evaluation is usually carried out by means of rea-
soned systems such as RACER [61] and Pellet [62]. The knowledge engineer
checks for inconsistencies in the taxonomy, these may due to errors in the
logical expressions that are part of the axioms.

4.4 Discussion

4.4.1 Melting Point Evaluated

The Melting Point (MP) methodology emphasises an integral knowledge manage-
ment cycle. It is influenced by METHONTOLOGY and the work done by Sure in
the field of knowledge management. The MP makes use of several methods and
techniques, defining the steps which should be undertaken. The MP methodology
stresses the importance of the orchestration of methods and techniques based on
coherence between outcomes and deliverables for each step, thus proposing a flexi-
ble structure that can be adapted without losing rigor in the process. When evaluated
against the criteria presented in Section 4.1, the MP methodology can be seen to
have the following properties:

C1. Inheritance from knowledge engineering. Highly influenced by knowledge
engineering.

C2. Detail of the methodology. Although it defines steps the MP methodology
stresses the importance of an orchestration based on those outcomes and deliv-
erables from each step. The MP aims for a flexible rigor, rather than a strict
series of steps.

C3. Strategy for building the ontology.

C3.1. Application of the ontology. application independent.
C3.2. Domain experts. The methodology is intended to make use of knowl-

edge gathered from all levels of domain experts. It is assumed an active
participation of domain experts.

C3.3. Ontology type. The methodology is best suited for domain ontologies.

C4. Strategy for identifying concepts. Concepts are identified by a variety of meth-
ods and techniques; the MP does not enforce the use of a particular method or
technique; it proposes processes for which there can be several methods and
techniques available. It assumes an active participation of domain experts in
that for the MP methodology domain experts are also modelers.

C5. Recommended life cycle. Processes, activities and tasks are proposed and
orchestrated within an incremental evolutionary spiral model.

C6. Recommended methods and techniques.] The MP methodology proposes some
methods and techniques; these are, however, changeable as the methodology
does not emphasise the use of particular methods and techniques but rather
stresses the impotence of an orchestrated Knowledge management process.

C7. Applicability. Parts of the proposed methodology have been applied and
reported [17, 63]. The MP methodology is based upon these experiences and
on the observation of several ontology development processes such as the
CARMEN project10.

C8. Community involvment. Active steps are taken to ensure that the community
takes a leading role in the development process.

C9. Knowledge elicitation. Knowledge elicitation is an integral part of the overall
process.

4.4.2 IEEE Standards Compliance

As discussed by [34], METHONTOLOGY is the only methodology that rigorously
complies with IEEE standards; this facilitates the applicability and extendibility
of the methodology. Other methodologies, such as those studied by [42] do not
intentionally meet the terms posed by the IEEE. However, some of the proposed
activities by those ontologies may be framed within IEEE standards. The Melting
Point methodology proposed here reuses and adapts many components from
METHONTOLOGY and other methodologies within the context of decentralised
settings and participatory design. It also follows Sure’s [9] work as it considers
throughout the whole process the importance of the software applications that will
ultimately use the ontology. The work done by Sure is complementary to the one
presented in this chapter, as both works study different edges of the same process:
developing knowledge-based software.

4.4.3 Quality Assurance

METHONTOLOGY allows for a controlled development and evolution of the ontol-
ogy placing special emphasis on quality assurance (QA) thought the processes.

Although QA is considered, the authors do not propose any methods for this spe-
cific task. Management, development and support activities are carried out in a
centralised manner; a limited group of domain experts interact with the knowledge
engineer, conceptualise and prototype the ontology, successive prototypes are then
built, the ontology gains more formality (e.g. logical constraints are introduced)
until it is decided that the ontology may be deployed. Once the ontology has been
deployed a maintenance process takes place. Neither the development nor the evo-
lution of the ontology involves a decentralised community; the process does not
assume a constant incremental growth of the ontology as it has been observed, and
reported by [17] QA is also considered to be a centralised activity, contrasting with
the way decentralised ontologies promote the participation of the community in part
to ensure the quality of the delivered ontology.

4.4.4 Activities Become Interrelated

As those required ontologies grow in complexity so does the process by which they
are obtained. Methods, techniques, activities and tasks become more group-oriented,
making it necessary to re-evaluate the whole process as well as the way by which it
is described. The IEEE proposes a set of concepts that should in principle facilitate
the description of a methodology; however, these guidelines should be better scoped
for decentralised environments.

Activities within decentralised ontology developments are highly interrelated.
However, the maturity of the product allows engineers and domain experts to deter-
mine boundaries and by doing so establishing milestones for each and every activity
and task. Although managerial activities are interrelated and impact at a high level
those development processes it is advisable not to have rigid management struc-
tures. For instance, control and inbound–outbound activities usually coexist with
some development activities when a new term needs to be added. This interac-
tion requires the orchestration of all the activities to ensure the evolution of the
ontology. This interaction and orchestration of activities with defined boundaries
and milestones are evident in the bio-ontology domain from the development of
the Proteomics Standards Initiatives (PSI) sample processing and separations con-
trolled vocabulary, sepCV. The PSI aims to facilitate global proteomics models for
publication, data storage,data comparisons and dataintegration and to standardise
and advance proteomics research [64]. To this end, they have developed mini-
mum reporting guidelines [65], data transfer formats and ontologies to control the
terminology used for reporting. The sepCV ontology had an initial specification
and therefore milestones to represent the technology of gel electrophoresis [66].
However, its scope was then expanded to cover gel image informatics, so the life
cycle continued collecting and representing community-defined concepts for both
gel electrophoresis and gel informatics. In addition to these two technologies the
sepCV is also expected to expand its specification to cover other separation tech-
nologies, such as column chromatography and capillary electrophoresis, with the

consequences that these interactions require the orchestration of all the activities
to ensure the evolution of the ontology to fit dynamic boundaries and expanding
specification over its life cycle.

4.4.5 Recommended Life Cycle: Incremental Evolutionary Spiral

When communities are developing ontologies the life cycle varies. The ontology
is not deployed on a one-off basis; there is thus no definitive final version of the
ontology. The involvement of the community allows for rapid evolution, as well as
for very high-quality standards; errors are identified and discussed then corrections
are made available within short time frames.

The model upon which this proposed methodology is based brings together ideas
from, linear sequential modelling [29, 67], prototyping, spiral [68], incremental
[69, 70] and the evolutionary models [29, 71]. Due to the dynamic nature of the
interaction when developing ontologies on a community basis the model grows
rapidly and continuously. As this happens prototypes are being delivered, docu-
mentation is constantly being generated, and evaluation takes place at all times as
the growth of the model is due to the argumentation amongst domain experts. The
development process is incremental as new activities may happen without disrupting
the evolution of the collaboration. The model is therefore an incremental evolution-
ary spiral in which tasks and activities can coexist simultaneously at some level of
detail. As the process moves forward activities and/or tasks are applied recursively
depending on the needs. The evolution of the model is dynamic and the interaction
amongst domain experts and with the model happens all the time. Figure 4.4 illus-
trates the model as well as how processes, activities and tasks are consistent with
the model.

4.5 Conclusions

The Melting Point methodology proposed here reuses some components that various
authors have identified as part of their methodologies for ontology development.
This chapter has investigated how to use these components within decentralised
settings, using the biomedical domain as an example. A domain where community
development is critical to understanding a large, complex and an ever expanding
knowledge base. Not only can the Melting Point methodology be demonstrated in
the life science domain, the methodology can also be applicable to the development
of the knowledge infrastructure of the Semantic Web, a decentralised environment
by design.

The Melting Point methodology stresses the importance of a detailed description
of the methods, techniques, activities, and tasks that could be used for developing
community-based ontologies. Furthermore, a discussion of how the development
process evolves adapts and expands with increasing or redefining of the ontology
specification is presented within the life cycle model of these ontologies.

Fig. 4.4 A view of the whole process, showing development activities and the artefacts they
produce and consume

The adoption of the Melting Point methodology should provide a level of rigour
and consistent development of ontologies, with a particular focus on community
contribution. The methodology may facilitate a process by which the OBO Foundry
principles for bio-ontology development11 can be achieved. Ontologies developed
within the same methodology framework may aid in increasing ontology interoper-
ability and integration, as the processes and design decisions can be disseminated
upon publication and therefore followed and evaluated.

As we increasingly build large ontologies against complex domain knowledge in
a community and collaborative manner there is an identified need for a method-
ology to provide a framework for this process. A shared methodology tailored
for the decentralised development environment, facilitated by the Internet should
increasingly enable and encourage the development of ontologies fit for purpose.
The Melting Point methodology provides this framework which should enable
the ontology community to cope with the escalating demands for scalability and

repeatability in the representation of community-defined knowledge bases, such as
those in biomedicine and the Semantic Web.

A. Appendix: Review of Methodologies

A.1 The Enterprise Methodology

Uschold and King proposed a set of four activities that are listed here and illustrated
in Fig. 4.5

Fig. 4.5 Uschold and King methodology

1. Identify the purpose and scope of the ontology
2. Build the ontology, for which they specify three activities:

– Knowledge capture
– Development / coding
– Integrating with other ontologies

3. Evaluate
4. Document the ontology

C1. The methodology does not explicitly inherit methods from knowledge engi-
neering. Although Uschold and King identify steps that are in principle related
to some methodologies from knowledge engineering. Neither a feasibility
study nor a prototype method is proposed.

C2. Stages are identified, but no detail is provided. In particular the Ontology
Coding Integration and Evaluation sections are presented in a superfluous
manner [18].

C3. Limited information is provided. The proposed method is application inde-
pendent and very general, in principle it is applicable to other domains. The
authors do not present information about the kind of domain experts they advise
working with.

C4. Uschold and Kind do not provide a clear criterion for the selection of either
approach. For Uschold and King the disadvantage of using the top-down
approach is that by starting with a few general concepts there may be some
ambiguity in the final product. Alternatively, with the bottom-up approach too
much detail may be provided and not all this detail could be used in the final
version of the ontology [41]. This in principle favours the middle-out approach
proposed by Lakoff [43]. The middle-out is not only conceived as a middle
path between bottom-up and top-down, but also relies on the understanding
that categories are not simply organised in hierarchies from the most general to
the most specific, but are rather organised cognitively in such a way that cate-
gories are located in the middle of the general-to-specific hierarchy. Going up
from this level is the generalisation and going down is the specialisation [43,
18].

C5. No life cycle is recommended.
C6. No techniques or methods are recommended. The authors mention the impor-

tance of representing the captured knowledge but do not make explicit rec-
ommendations as to which knowledge formalism to use. This methodology
does not support any particular software as a development tool. The integra-
tion with other ontologies is not described, nor is any method recommended
to overcome this issue, nor is whether this integration involves extending the
generated ontology or merging it with an existing one explained.

C7. The methodology was used to generate the Enterprise ontology [10].
C8. Communities are not involved in this methodology.
C9. For those activities specified within the building stage the authors do not pro-

pose any specific method for representing the ontology (e.g. frames, description
logic). The authors place special emphasis on knowledge elicitation. However,
they are not specific in developing this further.

A.2 The TOVE Methodology

The Toronto Virtual Enterprise (TOVE) methodology involves building a logical
model of the knowledge that is to be specified by means of an ontology. The steps
involved as well as their corresponding outcomes are illustrated in Fig. 4.6.

C1. The methodology is heavily influenced by the development of knowledge-
based systems using first-order logic [36].

C2. No specifics are provided on the activities involved.
C3. The TOVE methodology emphasises competency questions as well as motivat-

ing scenarios as important components in their methodology. This methodol-
ogy is application semidependent as specific terminology is used not only to

-

-

Fig. 4.6 The TOVE methodology

formalise questions but also to build the completeness theorems used to evalu-
ate the ontology. Once the competency questions have been formally stated, the
conditions under which the solutions to the questions must be defined should
be formalised. The authors do not present information about the kind of domain
experts they advise working with.

C4. This methodology adopts a middle-out strategy.
C5. No indication about a life cycle is given.
C6. The importance of competency questions are emphasised. However, they do

not provide techniques or methods to approach this problem.
C7. The Toronto Virtual Enterprise ontology was built using this methodology [72].
C8. Communities are not involved in this methodology.
C9. No particular indication for eliciting knowledge is given.

A.3 The Bernaras Methodology

Bernaras work was developed as part of the KACTUS [12] project which aimed to
investigate the feasibility of knowledge reuse in technical systems.

C1. This methodology is thus heavily influenced by knowledge engineering.
C2. Limited detail about the methodology is provided.

C3. This methodology is application dependant. As the development of this
methodology took place within a larger engineering effort ontologies were
being developed hand-in-hand with the corresponding software. This implies
that domain experts were being used for both tasks, for requirements interviews
and studies as well as for ontology development. This, however, does not mean
that domain experts were taking an active role. The authors present very little
information about the kind of domain experts they advise working with.

C4. This methodology adopts a bottom-up approach [36].
C5. As the ontology is highly coupled with the software that uses it, the life cycle

of the ontology is the same as the software life cycle.
C6. For the specific development of the ontology no particular methods or tech-

niques are provided. However, as this methodology was meant to support the
development of an ontology at the same time as the software it is reasonable
to assume that some software engineering methods and techniques were also
applied to the development of the ontology.

C7. It has been applied within the electrical engineering domain.
C8. Communities are not involved in this methodology
C9. No particular indication for knowledge elicitation is provided.

A.4 The METHONTOLOGY Methodology

The authors of METHONTOLOGY aim to define a standardisation of the
ontology life cycle (development) with respect to the requirements of the Software
Development Process (IEEE 1074-1995 standard) [18]. The METHONTOLOGY
methodology is illustrated in Fig. 4.7.

Fig. 4.7 METHONTOLOGY. Reproduced with permission from [36]

C1. METHONTOLOGY has its roots in knowledge engineering.
C2. Detail is provided for the ontology development process; Fig. 4.7 illustrates

the methodology. It includes the identification of the ontology development
process, a life cycle based on evolving prototypes, and particular techniques
to carry out each activity [36]. This methodology heavily relies on the IEEE
software development process as described in [50]. Gomez-Perez et al. [52]
consider that all the activities carried out in an ontology development process
may be classified into one of the following three categories:

1. Management activities: Including planning, control and quality assurance.
Planning activities are those aiming to identify tasks, time and resources.

2. Development activities: Including the specification of the states, concep-
tualisation, formalisation, implementation and maintenance. From those
activities related to the specification knowledge engineers should under-
stand the context in which the ontology will be used. Conceptualisation
activities are mostly those activities in which different models are built.
During the formalisation phase the conceptual model is transformed into
a semi-computable model. Finally, the ontology is updated and corrected
during the maintenance phase [42].

3. Support activities: These include knowledge elicitation, evaluation, integra-
tion, documentation, and configuration management.

C3. Application independent. No indication is provided as to the kind of domain
experts they advise working with. In principle METHONTOLOGY could be
applied to the development of any kind of ontology.

C4. This methodology adopts a middle-out
C5. METHONTOLOGY adopts an evolving-prototype life cycle.
C6. No methods or techniques recommended. METHONTOLOGY heavily relies

on WebODE [45] as the software tool for coding the ontology. However, this
methodology is in principle independent from the software tool.

C7. This methodology has been used in the development of the Chemical
OntoAgent [73] as well as in the development of the Onto2Agent ontology
[73].

C8. No community involvement is considered.
C9. Knowledge elicitation is part of the methodology. However, no indication is

provided as to which method to use.

A.5 The SENSUS Methodology

The SENSUS-based methodology [14] is a methodology supported on those expe-
riences gathered from building the SENSUS ontology. SENSUS is an extension and
reorganisation of WordNet [74], this 70,000-node terminology taxonomy may12

be used as a framework into which additional knowledge can be placed [75].
SENSUS emphasises merging pre-existing ontologies and mining other sources
such as dictionaries.

C1. SENSUS is not influenced by knowledge engineering as this methodology
mostly relies on methods and techniques from text mining.

C2. Although there is extensive documentation for those text-mining techniques
and developing structures for conceptual machine translation [75–77] no detail
is provided as for how to build the ontology.

C3. As SENSUS makes extensive use of both text mining and conceptual machine
translation the methodology as such is application semi-independent. The
methods and techniques proposed by SENSUS may, in principle, be applied
to several domains.

C4. SENSUS follows a bottom-up approach. Initially instances are gathered, as the
process moves forward abstractions are then identified.

C5. No life cycle is identified; from those reported experiences the ontology is
deployed on a one-off basis.

C6. Methods and techniques are identified for gathering instances. However, no
further detail is provided.

C7. SENSUS was the methodology followed for the development of knowledge-
based applications for the air campaign planning ontology [78].

C8. No community involvement is considered.
C9. Knowledge elicitation is not considered explicitly.

A.6 DILIGENT

Diligent (DIstributed, Loosely controlled and evolvInG Engineering of oNTologies)
was conceived as a methodology for developing ontologies on a community basis.
Although the DILIGENT approach assumes the active engagement of the commu-
nity of practice throughout the entire process, it does not give extensive details.
Some particularities may be found reported for those cases in which DILIGENT
has been used, for instance [15].

C1. DILIGENT is influenced by knowledge engineering as this methodology has
been developed assuming the ontologies will be used by knowledge-based sys-
tems. However, DILIGENT introduces novel concepts such as the importance
of the evolution of the ontology and the participation of communities within
the development and life cycle of the ontology.

C2. DILIGENT provides some details specifically for those developments in which
it has been used.

C3. DILIGENT is application dependant. There is no indication about the kind of
domain experts they advise working with.

C4. The selection between top-down, bottom-up or middle-out is problem depen-
dent. No indication is given as to which strategy would be best to follow.

C5. DILIGENT assumes an iterative life cycle in which the ontology is in constant
evolution.

C6. In principle DILIGENT does not recommend methods or techniques. By the
same token DILIGENT is not linked to any software supporting, either the
development or the collaboration.

C7. Some cases for which DILIGENT has been used have been reported, for
instance, the study of legal cases [79].

C8. The involvement of communities is considered in this methodology.
C9. Although knowledge elicitation is considered in this methodology no special

emphasis is placed on it.

A.7 The GM Methodology

The GM methodology emphasises on knowledge acquisition when developing
ontologies within decentralised settings. Similar to DILIGENT, the GM method-
ology was engineered for scenarios in which geographically distributed domain
experts were working together on the same ontology. The GM methodology makes
use of conceptual maps to support the acquisition of knowledge. In contrast to the
DILIGENT methodology, the GM methodology provides a detailed description of
the process applied within their development scenario.

C1. GM applies knowledge engineering principles.
C2. A detailed description of the methods and techniques used are provided.
C3. GM is application dependant. GM assumes the participation of both specialised

and broader knowledge domain experts.
C4. A top-down approach is applied within GM.
C5. GM assumes an iterative life cycle in which the ontology is in constant

evolution.
C6. Methods and techniques for some of the stages of the development process are

recommended.
C7. GM has been used within the biomedical domain [79].
C8. GM assumes an active participation of the community.
C9. GM has an emphasises on knowledge elicitation.

A.8 The iCapturer Methodology

The GM methodology emphasises on knowledge acquisition within decentralised
settings. Unlike GM and DILIGENT, iCapturer [38] makes use of text-mining
approaches, such as text-to-onto, to identify important terms and to suggest
candidate ontological relationships between them.

C1. The iCAPTURer approach has received little influence from knowledge engi-
neering.

C2. The iCAPTURer methodology is very specific in terms of the orchestration of
methods used. The first step is term and relationship extraction from text con-
taining domain knowledge. The second is web-based, massively collaborative
correction, refinement and extension of the automatically extracted concepts
and relationships. The second step may be divided into phases of knowledge
elicitation, evaluation, and aggregation.

C3.1. Application of the ontology. Application independent.
C3.2. Domain experts. The methodology is intended to make use of knowl-

edge gathered from all levels of domain experts. It is assumed that the
pool of experts contains all of the knowledge that is intended to be
represented in the ontology.

C3.3. Ontology type. The methodology is best suited for domain ontologies.

C4. Strategy for identifying concepts. The strategy for identifying concepts is to
extract representative terms automatically from text. Though this will typically
result in what appears to be a more bottom-up approach, different bodies of
text will produce different results.

C5. Recommended life cycle. The recommended life cycle is to

1. identify a domain of knowledge to be represented in an ontology,
2. identify a corpus thought to contain that knowledge,
3. apply text-mining approaches, such as text-to-onto, to identify important

terms and to suggest candidate ontological relationships between them,
4. define user-interfaces for correcting and extending this knowledge,
5. assemble a broad array of experts in the domain and engage them in using

the interface to improve the ontology,
6. evaluate the quality of each contributor based on expected correct interac-

tions with the knowledge elicitation system,
7. weight their contributions based on this level of quality,
8. aggregate the contributions of all of the experts so that a candidate ontology

can be generated and
9. iterate and refine as needed.

C6. Recommended methods and techniques. The methodology specifies the process
but does not suggest any specific method. Several text-mining algorithms or
knowledge gardening interfaces might be applied depending on the domain
and the community.

C7. Applicability. iCAPTURer has not yet been applied in real scenarios.
C8. Community involvement. The community is assumed to develop the ontology.
C9. Knowledge elicitation. Knowledge elicitation is an integral part of the method-

ology. iCAPTURer describes some techniques for KE, but there is also wide
room for expansion and adaptation of other methods.

A.9 NeOn Methodology

NeOn13 is a framework for developing networked ontologies. It is one of the
most comprehensive works in terms of ontology engineering. The framework
incorporates a methodology.

C1. Highly influenced by knowledge engineering.
C2. It defines those steps that should be undertaken when developing ontologies.
C3.

C3.1. Application of the ontology. Application independent.
C3.2. Domain experts. It assumes an active participation of domain experts

and ontology engineers.
C3.3. Ontology type. The methodology is best suited for domain ontologies.

C4. Strategy for identifying concepts. No particular detail is provided for identify-
ing concepts.

C5. Recommended life cycle. Project aims specifically to support life cycle activi-
ties, but does not prescribe a particular type of life cycle.

C6. Recommended methods and techniques. It provides specifics for methods and
techniques.

C7. Applicability. The methodology is proposed based on cases that have been stud-
ied; however, it is not clear which ontology has been developed applying the
proposed framework.

C8. Community involvement. It assumes collaboration and the involvement of a
community of practice.

C9. Knowledge elicitation. Knowledge elicitation is recognised to play a significant
role during the development process.

References

1. Editorial: Compete, collaborate, compel. Nat Genet 39(8) (Aug 2007) 931
2. Julian, S., J. Rector, A.: The state of multi-user ontology engineering. In: Proceedings of the

2nd International Workshop on Modular Ontologies, Canada (2007)
3. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L., Eilbeck,

K., Lewis, S.: The obo foundry: Coordinated evolution of ontologies to support biomedical
data integration. Nature Biotechnology 25(11) (2007) 1251–1255

4. Gruber, T.: Collective knowledge systems: Where social web meets the semantic web. In:
Proceedings of the 5th International Semantic Web Conference, Athens, GA, USA (2006)

5. Tudorache, T., Noy, N.: Collaborative protege. In: Social and Collaborative Construction
of Structured Knowledge, Proceedings of 16th International WWW Conference, Alberta,
Canada (2007)

6. Feigenbaum, E., McCorduck, P.: The Fifth Generation. Addison-Wesley, Reading, MA (1983)

7. Kendal, S., Creen, M.: An Introduction to Knowledge Engineering. Springer, New York, NY
(2007)

8. Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundation.
Brooks Cole Publishing, Pacific Grove, CA (2000)

9. Sure, Y.: Methodology, Tools and Case Studies for Ontology Based Knowledge Management.
PhD Thesis, Universitat Fridericiana zu Karlsruhe (2003)

10. Uschold, M., King, M.: Towards methodology for building ontologies. In: Workshop on Basic
Ontological Issues in Knowledge Sharing, Held in Conjunction with IJCAI-95. Cambridge,
UK (1995)

11. Gruninger, M., Fox, M.S.: The role of competency questions in enterprise engineering.
In: Proceedings of the IFIP WG5.7 Workshop on Benchmarking – Theory and Practice,
Trondheim, Norway (1994)

12. Bernaras, A., Laresgoiti, I., Corera, J.: Building and reusing ontologies for electrical network
applications, 12th European Conference on Artificial Intelligence ECAI. Wiley, Budapest,
Hungary (1996) 298–302

13. Fernadez-Lopez, M., Perez, A.G., Pazos, S.J., Pazos, S.A.: Building a chemical ontology
using methontology and the ontology design environment. IEEE Intelligent Systems and Their
Applications 14 (1999) 37–46

14. Swartout, B., Ramesh, P., Knight, K., Russ, T.: Toward distributed use of largescale ontolo-
gies. In: Symposium on Ontological Engineering of AAAI, Stanford, California (1997)

15. Pinto, H.S., Staab, S., Tempich, C.: Diligent: Towards a fine-grained methodology for dis-
tributed, loosely-controlled and evolving engineering of ontologies. In: European Conference
on Artificial Intelligence, Valencia, Spain (2004) 393–397

16. Vrandecic, D., Pinto, H.S., Sure, Y., Tempich, C.: The diligent knowledge processes. Journal
of Knowledge Management 9(5) (2005) 85–96

17. Garcia, C.A., Rocca-Serra, P., Stevens, R., Taylor, C., Nashar, K., Ragan, M.A., Sansone, S.:
The use of concept maps during knowledge elicitation in ontology development processes –
the nutrigenomics use case. BMC Bioinformatics 7 (2006) 267

18. Mirzaee, V.: An Ontological Approach to Representing Historical Knowledge. MSc Thesis.
PhD Thesis, Department of Electrical and Computer Engineering, University of British
Columbia (2004)

19. Moreira, D., Musen, M.A.: Obo to owl: A protege owl tab to read/save obo ontologies.
Bioinformatics 23(14) (2007) 1868–1870

20. Sathiamurthy, M., Peters, B., Bui, H.H., Sidney, J., Mokili, J., Wilson S.S., Fleri, W.,
McGuinness, D., Bourne, P., Sette, A.: An ontology for immune epitopes: Application
to the design of a broad scope database of immune reactivities. BMC Immunology 1(2)
(2005)

21. Bada, M., Stevens, R., Goble, C., Gil, Y., Ashbourner, M., Blake, J., Cherry, J., Harris, M.,
Lewis, S.: A short study on the success of the geneontology. Journal of Web Semantics 1
(2004) 235–240

22. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Scientific American 284(5)
(2001) 28–37

23. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intelligent Systems
(2006) 96–101

24. Degtyarenko, K., Matos, P., Ennis, M., Hastings, J., Zbinden, M., McNaught, A., Alcantara,
R., Darsow, M., Guedj, M., Ashburner, M.: ChEBI: A database and ontology for chemical
entities of biological interest. Nucleic Acids Research (2007)

25. Smith, B., Kumar, A., Bittner, T.: Basic formal ontology for bioinformatics. Retrieved Jul.
12, 2010 from http://www.uni-leipzig.de/~akumar/JAIS.pdf Journal of Information Systems
(2005) 1–16

26. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening Ontologies
with Dolce. Lecture Notes in Computer Science (2002) 166–181

27. Herre, H., Heller, B., Burek, P., Hoehndorf, R., Loebe, F., Michalek, H.: General Formal
Ontology (GFO) – A Foundational Ontology Integrating Objects and Processes. Onto-Med
Report 8

28. Eden, H.A., Hirshfeld, Y.: Principles in formal specification of object oriented design and
architecture. In: Proceedings of the 2001 Conference of the Centre for Advanced Studies on
Collaborative Research, Toronto, Canada, IBM Press (2001)

29. Pressman, S.R.: Software Engineering, A Practitioners Approach. 5th edn. McGraw-Hill
Series in Computer Science. Thomas Casson, New York, NY (2001)

30. Martin, J.: Rapid Application Development. Prentice-Hall, Englewood Cliffs, NJ (1991)
31. Gilb, T.: Evolutionary project management: Multiple performance, quality and cost metrics

for early and continuous stakeholder value delivery. In: International Conference on Enterprise
Information Systems, Porto, Portugal (2004)

32. Perez, A.G.: Some Ideas and Examples to Evaluate Ontologies. Technical Report, Stanford
University (1994a)

33. Gilb, T.: Principles of Software Engineering Management. Addison-Wesley Longman,
Boston, MA (1988)

34. Garcia, A.: Developing Ontologies Within the Biomedical Domain. PhD, University of
Queensland (2007)

35. Fernandez, M.: Overview of methodologies for building ontologies. In: Proceedings of
the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods(KRR5), Stockholm,
Sweden (1999)

36. Corcho, O., Fernadez-Lopez, M., Gomez-Perez, A.: Methodologies, tools, and languages for
building ontologies. Where is their meeting point? Data and Knowledge Engineering 46(1)
(2003) 41–64

37. Fernandez, M., Gomez-Perez, A., Juristo, N.: Methontology: From ontological art to
ontological engineering. In: Workshop on Ontological Engineering. Spring Symposium
Series. AAAI97, Stanford (1997)

38. Good, B., Tranfield, E.M., Tan, P.C., Shehata, M., Singhera, G., Gosselink, J., Okon,
E.B., Wilkinson, M.: Fast, cheap, and out of control: A zero curation model for ontology
development. In: Pacific Symposium on Biocomputing. Maui, Hawaii, USA. (2006)

39. Van Heijst, G., Van der Spek, R., Kruizinga, E.: Organizing corporate memories. In: Tenth
Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW’96). (1996)

40. Mizoguchi, R., Vanwelkenhuysen, J., Ikeda, M.: Task ontology for reuse of problem solving
knowledge. In: Towards Very Large Knowledge Bases: Knowledge Building and Knowledge
Sharing (KBKS’95). (1995) 46–57

41. Uschold, M., Gruninger, M.: Ontologies: Principles, methods and applications. Knowledge
Engineering Review 11 (1996) 93–136

42. Fernadez-Lopez, M., Gomez-Perez, A.: Overview and analysis of methodologies for building
ontologies. The Knowledge Engineering Review 17(2) (2002) 129–156

43. Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal About the Mind.
Chicago University Press, Chicago (1987)

44. Cooke, N.: Varieties of knowledge elicitation techniques. International Journal of Human-
Computer Studies 41 (1994) 801–849

45. Arpirez, J., Corcho, O., Fernadez-Lopez, M., Gomez-Perez, A.: Webode in a nutshell. AI
Magazine 24(3) (2003) 37–47

46. Hinchcliffe, D.: Dion hinchcliffe’s web 2.0 blog web 2.0 (2008)
47. Stoeckert, C.J., Parkinson, H.: The mged ontology: A framework for describing functional

genomics experiments. Comparative and Functional Genomics 4 (2003) 127–132
48. Perez, A.G., Juristo, N., Pazos, J.: Evaluation and assessment of knowledge sharing tech-

nology. In Mars, N. (ed.) Towards Very Large Knowledge Bases: Knowledge Building and
Knowledge Sharing(KBK95), IOS Press, Amsterdam, The Netherlands, (1995) 289–296

49. Pinto, H.S., Martins, P. J.: Ontologies: How can they be built? Knowledge and Information
Systems 6 (2004) 441–463

50. IEEE: IEEE standard for software quality assurance plans (1998)
51. Greenwood, E.: Metodologia de la investigacion social. Paidos, Buenos Aires (1973)
52. Gomez-Perez, A., Fernandez-Lopez, M., Corcho, O.: Ontological Engineering. Springer,

London (2004)
53. IEEE: IEEE standard for developing software life cycle processes (1996)
54. Mooney, S.D., Baenziger, P.H.: Extensible open source content management systems and

frameworks: A solution for many needs of a bioinformatics group. Brief Bioinform 9(1) (Jan
2008) 69–74

55. Stevens, R., Goble, C., Bechhofer, S.: Ontology-based knowledge representation for bioinfor-
matics. Briefings in Bioinformatics (2000) 398–414

56. Gaines, B.R., Shaw, M.L.Q.: Knowledge acquisition tools based on personal construct
psychology. The Knowledge Engineering Review 8(1) (1993) 49–85

57. Rubin, D., Lewis, S., Mungall, C., Misra, S., Westerfield, M., Ashburner, M., Sim, I., Chute,
C., Solbrig, H., Storey, M., Smith, B., Day-Richter, J., Noy, N., Musen, M.: National center
for biomedical ontology: Advancing biomedicine through structured organization of scientific
knowledge. OMICS 10(2) (2006) 85–98

58. Cote, R., Jones, P., Apweiler, R., Hermjakob, H.: The ontology lookup service, a lightweight
cross-platform tool for controlled vocabulary queries. BMC Bioinformatics 7(97) (2006)

59. Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your First
Ontology. Technical Report, Stanford University (2001)

60. Perez, A.G., Fernadez-Lopez, M., Corcho, O.: Ontological Engineering. Computer Sciences.
Springer. London (2004)

61. Haarslev, V., Mller, R.: Racer: A core inference engine for the semantic web. In: Proceedings
of the 2nd International Workshop on Evaluation of Ontology-based Tools (EON2003),
Sanibel Island, Florida, USA (2003) 27–36

62. Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
resoner. Journal of Web Semantics 5(2) (2007)

63. Garcia, A., Zhang, Z., Rajapakse, M., Baker, C., Tang, S.: Capturing and modeling neuro-
radiological knowledge on a community basis: The head injury scenario. In: Health and Life
Sciences workshop at the WWW2008. (2008)

64. Orchard, S., Hermjakob, H., Apweiler, R.: The proteomics standards initiative. Proteomics
3(7) (2003) 1374–1376

65. Taylor, C., Paton, N., Lilley, K., Binz, P., Julian, R.J., Jones, A., Zhu, W., Apweiler, R.,
Aebersold, R., Deutsch, E., Dunn, M., Heck, A., Leitner, A., Macht, M., Mann, M., Martens,
L., Neubert, T., Patterson, S., Ping, P., Seymour, S., Souda, P., Tsugita, A., Vandekerckhove,
J., Vondriska, T., Whitelegge, J., Wilkins, M., Xenarios, I., Yates, J.R., Hermjakob, H.: The
minimum information about a proteomics experiment (miape). Nature Biotechnology 25(8)
(2007) 887–93

66. Jones, A., Gibson, F.: An update on data standards for gel electrophoresis. Proteomics 7(Suppl
1) (2007) 35–40

67. Dagnino, A.: Coordination of hardware manufacturing and software development lifecycles
for integrated systems development. In: IEEE International Conference on Systems, Man, and
Cybernetics 3 (2001) 850–1855

68. Boehm, B.: A spiral model of software development and enhancement. ACM SIGSOFT
Software Engineering Notes 11(4) (1986) 14–24

69. McDermid, J., Rook, P.: Software development process models. In: Software Engineer’s
Reference Book. CRC Press, Boca Raton, FL (1993) 15–28

70. Larman, C., Basili, R., V.: Iterative and incremental development: A brief history. Computer,
IEEE Computer Society 36 (2003) 47–56

71. May, L, E., Zimmer, A, B.: The evolutionary development model for software. HP Journal
(1996) Retrieved Jul. 12, 2010 http://www.hpl.hp.com/hpjournal/96aug/aug96a4.pdf

72. Fox, M.S.: The tove project: A common-sense model of the enterprise systems. In: Industrial
and Engineering Applications of Artificial Intelligence and Expert Systems. (1992)

73. Arpirez, J., Corcho, O., Fernadez-Lopez, M., Gomez-Perez, A.: Webode in a nutshell. AI
Magazine 24(3) (2003) 37–47

74. Fellbaum, C.: WordNet, An Electronic Lexical Database. The MIT Press, Cambridge, MA
(2000)

75. Knight, K., Luk, S.: Building a large-scale knowledge base for machine translation. In:
Proceedings of the National Conference on Artificial Intelligence. Wiley, New York (1994)
773–773

76. Knight, K., Chander, I.: Automated postediting of documents. In: Proceedings of the
12th National Conference on Artificial Intelligence (vol. 1) Table of Contents, American
Association for Artificial Intelligence Menlo Park, CA, USA (1994) 779–784

77. Knight, K., Graehl, J.: Machine transliteration. Computational Linguistics 24(4) (1998)
599–612

78. Valente, A., Russ, T., MacGregor, R., Swartout, W.: Building and (Re) Using an Ontology of
Air Campaign Planning. IEEE Intelligent Systems (1999) 27–36

79. Tempich, C., Pinto, H., Sure, Y., Vrandecic, D., Casellas, N., Casanovas, P.: Evaluating dili-
gent ontology engineering in a legal case study. In: XXII World Congress of Philosophy of
Law and Social Philosophy, IVR2005 Granada, May 24th, 29th (2005)

80. Garcia, A.: Developing Ontologies in the Biological Domain. PhD Thesis, University of
Queensland (2007)

	4 Developing Ontologies within Decentralised Settings
	4.1 Introduction
	4.1.1 Decentralised Communities
	4.1.2 Community-Driven Ontology Engineering
	4.1.3 Upper Level Ontologies
	4.1.4 Dynamic Ontologies
	4.1.5 The Melting Point: A Methodology for Distributed Community-Driven Ontology Engineering

	4.2 Review of Current Methodologies
	4.2.1 Criteria for Review
	4.2.2 Finding the Melting Point

	4.3 The Melting Point Methodology
	4.3.1 Definition of Terminology
	4.3.2 Management Processes
	4.3.3 Documentation Processes
	4.3.4 Development-Oriented Processes
	4.3.5 Evaluation

	4.4 Discussion
	4.4.1 Melting Point Evaluated
	4.4.2 IEEE Standards Compliance
	4.4.3 Quality Assurance
	4.4.4 Activities Become Interrelated
	4.4.5 Recommended Life Cycle: Incremental Evolutionary Spiral

	4.5 Conclusions
	A. Appendix: Review of Methodologies
	A.1 The Enterprise Methodology
	A.2 The TOVE Methodology
	A.3 The Bernaras Methodology
	A.4 The METHONTOLOGY Methodology
	A.5 The SENSUS Methodology
	A.6 DILIGENT
	A.7 The GM Methodology
	A.8 The iCapturer Methodology
	A.9 NeOn Methodology

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

