
A Tool Suite to Enable Web Designers, Web Application Developers
and End-users to Handle Semantic Data

Mariano Rico, José Antonio Macías, David Camacho
Computer Science Dept.

Escuela Politécnica Superior
Universidad Autónoma de Madrid, Spain

Óscar Corcho
Ontology Engineering Group

Departamento de Inteligencia Artificial
Universidad Politécnica de Madrid, Spain

Current web application development requires highly qualified staff, dealing with an extensive
number of architectures and technologies. When these applications incorporate semantic data,
the list of skill requirements becomes even larger, what represents a high adoption barrier for
the development of semantically-enabled Web applications. This paper describes VPOET, a
tool focused mainly on two types of users: web designers and web application developers.
By using this tool, Web designers do not need specific skills in semantic web technologies
to create web templates for handling semantic data. Web application developers incorporate
easily those templates into their web applications, by means of a simple mechanism based in
HTTP messages. And end-users can use these templates by means of a Google Gadget created
to this end. As web designers play a key role in the system, an experimental evaluation has
been carried out, showing that VPOET provides good usability features for a representative
group of web designers in a wide range of competencies in client-side technologies, ranging
from amateur HTML developers to professional web designers.

Web application development is becoming increasingly dif-
ficult, especially when focusing on designing attractive and
reusable web applications. Web application developers need
to be skilled in a wide set of client-side technologies (e.g.,
HTML, Javascript, CSS, DHTML, Flash, AJAX) and server-
side ones (e.g., JSP, ASP, .NET), addressing an extensive
number of programming languages (e.g., Java, Python, Ruby,
PHP). The fast and divergent development of client-side
technologies, which have formed the basis for the emergence
of the Web 2.0 concept (O’Reilly, 2005) and attitude (Davis,
2005), has increased the importance of having experts in
this type of technologies. In this paper, we refer to these
client-side experts as web designers. This heterogeneity and
complexity converts web designers in skilled programmers,
as pointed out by Rochen et al (Rochen, Rosson, & Pérez,
2006), and increases the development cost of such applica-
tions.

The situation becomes even more complex when Web ap-
plication developers want to incorporate Semantic Web data
in their applications. Although many domains have a lack
of ontologies, semantic technologies are mature enough and
there is an increasing number of ontologies publicly avail-
able. According to d’Aquin et al, in 2007 there were around
23,000 ontologies available on the Internet (d’Aquin et al.,
2007), and this number is growing quickly, especially due to
the Linked Open Data initiative (Bizer, Heath, & Berners-

This work has been partially funded by the Spanish Ministry
of Science and Innovation under the projects HADA (TIN2007-
64718), METEORIC (TIN2008-02081) and DEDICON (TIC-
4425).

Lee, 2009).

Therefore, this wealth of information still remains hidden
to most Web application developers and end-users. On the
one hand, semantic web technology experts are not usually
focused on producing attractive and reusable web applica-
tions what makes it difficult for end-users to access this in-
formation (Macías & Castells, 2007). For example, early
work on Semantic Web portals showed that usability aspects
were not well considered in general in semantic web por-
tal technologies (Lausen et al., 2005). From our experience
with semantic web portals (Corcho, López-Cima, & Gómez-
Pérez, 2006), we did conclude that such portals required very
skilled people to maintain them, and demanded more flexi-
ble frameworks in order to create complex applications com-
bining traditional web development and semantic data man-
agement. On the other hand, Web application developers
need to improve their skills with those for the understanding
and management of ontologies and semantic data, in order to
produce semantically-enabled web applications (Oren, Heit-
mann, & Decker, 2008) (d’Aquin et al., 2008).

Our approach aims at hiding much the complexity of se-
mantic web technologies to the parties responsible for bring-
ing the Semantic Web to end-users. In our previous work
(Rico, Camacho, & Corcho, 2008) we divided the skills re-
quired to create a semantically-enabled web application into
different groups of competencies, identifying the roles (pro-
files) involved. Two of these roles were identified as devel-
opers. The first of them had competencies in semantic web
technologies and was low-skilled in web application devel-
opment. The second developer profile had minimal skills in
semantic web technologies but high competencies in web ap-
plication development. For the first developer profile we built

2 M. RICO, J.A. MACÍAS, D. CAMACHO AND Ó. CORCHO

a wiki-based framework named Fortunata (Rico, Camacho,
& Corcho, 2010), which allows semantic web application de-
velopers to create, configure and activate pieces of code that
run on top of the framework, in a collaborative way. The ex-
perimental evaluation of this framework showed that the de-
velopment cost and the required competencies for handling
this framework were lower when compared to traditional
technologies. We measured the usability of Fortunata from
the developer’s perspective by means of early-prototypes of
Fortunata-based application, and that information was use-
ful to identify usability pitfalls and successfully solve most
of them, as well as to create a “Fortunata-based-application
developers guide”.

For the second developer profile, the most common cur-
rently available, we provide them with a programming-
language independent mechanism (based in HTTP mes-
sages) to use ‘semantic templates’. These templates are cre-
ated by web designers by using a Fortunata-based application
named VPOET (Rico et al., 2008), which plays a key role
between the two developer profiles described.

The novelty of this paper is the description of the final
version of VPOET, and the analysis of VPOET from the per-
spective of its users.

VPOET lets web designers create semantic templates to
present and edit semantic data, even if they are low skilled
in semantic web technologies. VPOET may have been im-
plemented with any traditional combination of the aforemen-
tioned server-side and client-side technologies. However, the
advantage of using Fortunata as a basis for the development
of VPOET is that, as we said previously, this framework sim-
plifies the development of semantically-enabled web applica-
tions.

To support some of the tasks required by VPOET’s users
we have also implemented another Fortunata-based tool
called OMEMO. This application is aimed at web design-
ers with no knowledge about ontology languages. Instead of
opening the ontologies in specialized tools, non-skilled users
can browse ontology components (classes and properties) by
means of a set of wiki pages that are automatically gener-
ated whenever an RDFS or OWL ontology is included in
the system. This application is similar to those provided for
ontology developers by ontology edition tools like Protégé,
SWOOP or NeOn Toolkit, or those provided as on-line ser-
vices, like OWLDoc. However we considered it interesting
to have this ontology visualizer highly coupled with VPOET,
since understanding the structure of a given ontology compo-
nent is one of the major tasks to be accomplished by a web
designer who is designing a presentation template for an on-
tology component.

Our hypothesis is that web designers with no previous
knowledge about semantic technologies, but skilled in client
web technologies in the range from low to experts, can create
easily VPOET templates.

To prove the validity of our hypothesis we carried out a
usability and user satisfaction evaluation with a representa-
tive group of web designers, ranging from low-skilled to ad-
vanced. In this evaluation, all these web designers had a com-
mon objective: to create a presentation template for a specific

ontology component. Once this objective was accomplished
each of them had to answer a detailed set of questionnaires.
The analysis of their answers revealed good values for usabil-
ity and user satisfaction in the whole representative range of
web designers, validating our hypothesis.

In the rest of this article we start with a brief description of
VPOET architecture. Then the focus of the paper is centred
in the two perspectives of VPOET: the one provided to web
designers and the one provided to web developers. Next sec-
tion shows the experimental evaluation of the usability and
user satisfaction concerning VPOET. Then, a section show-
ing related work, and we finish with a conclusions and further
work section.

VPOET architecture and roles
involved

Fortunata1 is a Java library built on top of the JSPWiki
wiki engine. The main features of this engine are its sup-
port for the management of forms and its extensibility ca-
pabilities by means of plugins. Fortunata simplifies the cre-
ation of semantically-enabled web applications by delegat-
ing to the underlying wiki engine the client-side presentation
and server-side publication of semantic data. The creation of
pages is done with a wiki-based syntax, which has predefined
constructs to create links, sortable tables, tables of contents,
etc. The publication of semantic data is done automatically
by the system.

A Fortunata-based application consists of a set of wiki
pages that contain regular wiki code intertwined with calls
to Fortunata plugins (F-plugins). For instance, VPOET is a
Fortunata-based application that consists in four interrelated
wiki pages and seven F-plugins. Fig. 1 shows the architecture
of VPOET and the roles involved.

Table 1 provides details about these roles, focusing on the
activities that they perform, the skills required to perform
such activities, and the benefits achieved by this approach.
In summary the roles are these:
• Web application developer (devel1) creates

semantically-enabled web applications by using the tem-
plates stored in VPOET. This role only requires basic HTTP
management skills in any programming language in order
to make a simple HTTP call to get a visualization for the
semantic data specified. Playing this role we have created an
application oriented to end-users, based in Google Gadgets
technology, which enable end-user to handle semantic data
in their web pages. This application, named GG-VPOET, is
described later.
• Web designer (user2) uses VPOET to create templates

to present semantic data (output templates), or request data
to the user that will be converted to semantic data (input tem-
plates). This role requires skills in web design (HTML, CSS,
AJAX, etc.).
• End-user (user1) uses his/her web browser to use the

application created by devel1. In this case, by using the
VPOET Google Gadget (GG-VPOET) end-users can handle
semantic data in their own pages or any Google product such
as Google Docs, Google Pages, or iGoogle.

APA STYLE MANUSCRIPT 3

GUI

Fortunata

VPOET OMEMOSemantic
templates

VPOET
wiki

pages

OMEMO
wiki

pages

Web designer
(user2)

http
API

End-user
(user1)

Web
Application
Developer
(devel1)

GG-VPOET

Semantic
data

Web applications
HTTP

message

Presentation
web code

Web
browser

Web
browser

Web application server

Figure 1. : VPOET architecture and actors involved.

Table 1
: Description on the roles involved in VPOET

Role Activities Requirements Benefits

devel1
Web application developer. Integrates VPOET
templates in any web application in order to
create semantically-enabled web applications

HTTP management skills in
any programming language

No client technologies skills are
required

user2 VPOET user. Uses VPOET to design web
templates Web design skills No semantic web technologies

skills are required

user1
VPOET Google Gadget end-user. Uses the
VPOET Google Gadget to visualise semantic
data

HTML basics (cut & paste
simple generated code)

No client or semantic technolo-
gies skills are required

VPOET for web designers:
Enhancing the presentation and

capture of semantic data

VPOET enables web designers (user2 in Fig. 1), also
known as “Template Providers”, to create web templates
for a set of ontology components. There are two types of
VPOET templates: output templates are intended to present
semantic data, input templates are intended to request data
from users. For example, let us imagine that we want to cre-
ate output and input templates to render and create, respec-
tively, semantic data for the concept Person, belonging to
the FOAF ontology, one of the most popular concepts in the
Semantic Web with 60 million instances available2. Output
templates can be used to render any data source containing
instances (individuals) of this class, or any subclass if there
are no more specialized templates for them. Input templates
are intended to present a form to request data that will be
converted to an instance of Person.

VPOET is focused on web designers, who should be able
to author attractive designs capable of handling semantic
data. Hence, VPOET only requires basic skills in client-side

technologies (e.g., HTML, Javascript). As described in fol-
lowing sections, the most difficult task to be performed by
web designers is to embed some semantic data management
macros in the client-side web code. Hence there is little train-
ing needed to start creating templates (a 30-minute online
tutorial 3 is enough, as demonstrated in our evaluation).

Although it will be described in the next section, Web ap-
plication developers can use the templates stored in VPOET
in their own web applications. From the point of view of
end-users who browse semantic data sources through the vi-
sualizations generated by output templates or who have to in-
troduce data through input templates, a VPOET-enabled ap-
plication is like any other Web application, with information
shown in simple tables or advanced client-side elements such
as Flash.

In the following subsections we will describe the pro-
cess to be followed in order to create VPOET output and
input templates, how to reuse output templates, and we will
also provide some additional information about the related
Fortunata-based tool OMEMO which can be also used in this
process.

4 M. RICO, J.A. MACÍAS, D. CAMACHO AND Ó. CORCHO

Creation of VPOET output templates

The process to create an output template starts with the
selection of the corresponding ontology component to be vi-
sualized. As an example we show the steps to be followed
to create an output template for the concept Person from the
FOAF ontology:

1. Getting information about the structure of the targeted
component. The VPOET user needs to know the structure
of this component: its properties, sub-components, etc. Al-
though this information can be obtained by directly analyz-
ing the corresponding ontology in its implementation lan-
guage (e.g., RDFS, OWL) or by using ontology visualization
tools, typical VPOET users are not skilled to achieve this
task. We have developed an specific tool named OMEMO
(described later) to achieve this task. Figure 6 shows a snap-
shot of the information provided by OMEMO for the class
FOAF:Person.
In this case, the VPOET user can see that FOAF:Person
comprises properties such as firstName or interest, as
well as firstName is a Literal belonging to the rdfs on-
tology. The link in Literal will open the web page for this
element.

2. Authoring a web design (with any web authoring tool)
where semantic data will be inserted. Table 2 shows a ini-
tial example of a web design. The left-most column shows
the HTML code, whereas the right-most one shows how it is
rendered in a web browser.

3. Choosing an identifier for the template, which will gen-
erate the corresponding wiki page in the system with infor-
mation about the template, as described in step 8.

4. Cutting & pasting the web design code into the appro-
priate VPOET form fields, with the appropriate HTML, CSS
and Javascript code. If the code includes references to files
(e.g., images), these can be uploaded into the VPOET or any
web server.

5. Replacing any absolute paths in the web design code
(e.g. path to images or Javascript files) by the macro
OmemoBaseURL, which expands into the appropriate URL at
runtime, depending on the URL of the server where the sys-
tem is running. A list with the available macros can be found
in table 3. Our experience has shown that this small set is
enough to cover the most common needs for the creation of
VPOET templates.

6. Replacing any dummy semantic values in the web de-
sign code by specific macros that insert the actual prop-
erty values at runtime. For example, the dummy text
“this is the name” in table 2 should be replaced by the
macro OmemoGetP, which gets the values of the property
indicated. The result of this replacement is shown in
Fig. 2. Other macros like OmemoConditionalVizFor and
OmemoGetLink allow reusing existing VPOET templates,
and are described later.

7. Testing the design with semantic-data sources (typi-
cally external to VPOET) that contain instances of the tar-
geted component. Fig. 3 shows the kind of results that can
be achieved when a given output template is tested with data
from a given data source (in this case http://ishtar.ii

.uam.es/fortunata/foaf.rdf) which contains some in-
stances of the class FOAF:Person.

8. Describing the designed template with the following in-
formation: template type (input or output), behavior in case
of changes to the font size, sizes (preferred, minimum and
maximum), code-type (HTML,Javascript, CSS), and domi-
nant colors. This information is included in the correspond-
ing template wiki page, and is useful to discover at runtime
the most appropriate template for a given user or interaction
device, as described in the conclusions and future work sec-
tion.

Reusing templates in VPOET

VPOET users can exploit two macros that allow reusing
existing VPOET output templates belonging to him/her or
to any other template provider, so that it is possible to cre-
ate compositions of templates and hence more modular de-
signs. This is normally used with properties that connect
an individual with another individual (e.g., with the relation
FOAF:knows). However, it may be also used to reuse spe-
cific templates for some types of property values. For ex-
ample, if a VPOET output template for visualizing e-mails
with Javascript obfuscation to avoid SPAM has been created
and is available in the system, we may reuse this template
when a class contains a property showing the e-mail address
of a person or organization. This can be used as well to hide
details in order to get a compact visualization. Clicking in
a small icon can expand or substitute the visualization area
to display details. These expand and/or contraction features
require AJAX knowledge or third parties javascript libraries.

The first macro, OmemoGetLink (seee table 3), specifies
a property that is substituted at runtime by a link that points
to the VPOET communication servlet, with the appropriate
parameters, for rendering the destination instance. For exam-
ple, the property FOAF:knows establishes a relation between
an origin (FOAF:Person in this case) and a destination (an-
other FOAF:Person). If we use this macro for this property,
we get a link capable of rendering any “known” person.

When a given property has no value, the macro
OmemoGetP returns the string “N.A.”. To avoid this effect,
the macro OmemoConditionalVizFor checks if the prop-
erty value exists and, if it is the case, uses an existing tem-
plate to show the property value (in this case, a simple text
renderer). This is also applicable with relations that link the
instance with other instances.

The code requited to create the template shown in Fig. 3 is
shown in Fig. 4. Macros are framed within a thick rectangle,
and reused templates are framed within a thin stroke.

Creation of VPOET input templates

VPOET input templates are HTML forms that convert
the entered values into semantic data (RDF). As in output
templates, an input template is intended for an ontology
component (which usually comprises a set of ontology sub-
components). For example, an input template for the on-
tology component FOAF:Person must provide a form with

APA STYLE MANUSCRIPT 5

Table 2
: Initial output template example. Left: initial HTML code. Right: template rendered in a web browser.
Code Rendering
<table style=’background: #F0F0F0; padding: 1px;
border: thin solid #DDDDDD; margin-left: 1em’>
<tr> <td>Name:</td><td>this is the name</td>
</tr>
<tr> <td>Given Name:</td><td>this is the givenname</td>
</tr>
<tr> <td>Family name:</td><td>this is the family_name</td>
</tr>
<tr> <td>Home page:</td><td>http://somewhere.com</td>
</tr>
<tr> <td>Depiction:</td><td></td> </tr>
<tr> <td>Knows:</td><td>list of known people</td>
</tr>
</table>

Figure 2. : Placing the source code in VPOET. Some code is replaced by macros.

input fields for firstName, knows, etc. The process to cre-
ate an input template is similar to the one required to create
output templates. The main differences are the following:

• The template source code does not contain macros, al-
though it must follow some conventions: (1) the HTML code
must contain an HTML form with the action attribute point-
ing to an specific servlet provided by VPOET, (2) the form
must contain a hidden input field named “ontoelem”, whose
value is the name of the ontology component for which this

template has been created, (3) the HTML form controls (i.e.
input fields, radio buttons, etc.) must have an attribute name
that corresponds to the corresponding component (e.g., prop-
erty) in the ontology. This can be referenced to with the fol-
lowing notation: ontologyAlias.version.elem (this is
the OMEMO syntax, described in the next subsection), or
with the corresponding URI.
• The test phase does not use external semantic data

sources. However, as the VPOET servlet generates semantic

6 M. RICO, J.A. MACÍAS, D. CAMACHO AND Ó. CORCHO

Table 3
: Main set of macros available for VPOET template providers.

Macro Arguments Explanation
OmemoGetP propName It is replaced by the property value propName. As most properties can

be multivalued, the next version is used.
OmemoGetP propName,

prefix,
posfix,
separator

Indicated for multivalued properties, it is replaced by the whole set of
values, starting with the code specified in prefix, finishing with the
code in posfix, and placing the code in separator between each
property value. See an application example in figure 2, in the code
placed in the HTML tab.

OmemoGetP relation,
propPref,
prefix,
posfix,
separator

Indicated for relations, it shows the value(s) of the property propPref
(preferred) of the entity target of the relation. See an application exam-
ple in figure 2.

OmemoBaseURL No arguments It is replaced by the URL of the server where VPOET is running. See
an application example in figure 4

OmemoConditionalVizFor propName,
designerID,
designID

It renders the property propName only if it has a value, using the tem-
plate indicated by designerID and designID.

OmemoGetLink relationName,
designerID,
designID

It is replaced by a link capable of displaying components of the type
pointed by the relation relationName using the template indicated by
designerID and designID. See an application example in figure 4

Figure 3. : Testing a sample output template against a given
semantic data source. The balloons show different individ-
uals, even anonymous. Non anonymous individuals can be
rendered individually if the link in the right side of the bal-
loon is clicked.

data, this source can be rendered by a VPOET output tem-
plate. Therefore, it is recommended to create an output tem-
plate for each input template, for testing proposes. Typical
errors such as wrong property names can be detected with
this strategy.

Fig. 5 shows an example of a VPOET input template
for the ontology class FOAF.20050403.Person. The fig-
ure shows a “plus sign” on the right of some fields. This
is automatically generated by VPOET when a property can
have multiple values. Similarly the icon on the right of the
property knows is also automatically generated by VPOET.
When a user clicks on it, it opens an “instance browser”, a
web page that allows end-users to select a set of instances
from the corresponding target class. These instances may be
available in the system (and then the system shows them in
the list) or the end-user may write their URI directly, if they
are in a external semantic data source.

As such, input templates are very similar to what has been
traditionally done in semantic portals for the introduction of
semantic data according to a given ontology model. Hence
there is not much innovation on this side, apart from the fact
that semantic portals are usually more rigid and do not allow
using properties for an individual that are not connected to
the class that the individual belongs to. This is something
that can be done easily in VPOET.

OMEMO: wiki-based documentation of ontologies

OMEMO is another Fortunata-based application. It stands
for “Ontologies for MEre MOrtals”, and it is aimed at users
with no skills in ontology languages, as mentioned in the in-
troduction. With OMEMO users can find out which compo-

APA STYLE MANUSCRIPT 7

Figure 4. : Advanced example showing macros (thick rectangles) and templates reuse (thin rectangles).

Figure 5. : An example of VPOET input template in action.

nents (classes and properties) are defined in a set of ontolo-
gies.

OMEMO generates a set of wiki pages that describe any

Figure 6. : Snapshot of the OMEMO wiki page for class
Person (version 20050403) of the FOAF ontology

given OWL or RDF Schema ontology. An ontology may
have different versions, which can be distinguished from one
another by its publication date or, as proposed in the current
OWL 2 working draft (Draft, 2009), by specific versioning
properties. In the following example, we consider the FOAF
ontology 20050403.

OMEMO only requires the URL of a given ontology, and
the generation process results in a page for the ontology
and another page per each class and property. Carrying on
with the example, Fig. 6 shows a section of the wiki page
generated for the class Person (version 20050403). Point
Í indicates that other versions of the same ontology exist

8 M. RICO, J.A. MACÍAS, D. CAMACHO AND Ó. CORCHO

and lets us access those pages through those links. Property
interest has type FOAF:Document (point Ì), and property
firstName (point Ê) has type RDFS:Literal (point Ë).
These solid links indicate existing component wiki pages;
otherwise, links will be underlined by a dotted-line.

It is worth mentioning that the pages generated by
OMEMO are automatically indexed by JSPWiki using the
Lucene engine, as it happens with any other wiki page gen-
erated manually. Hence search facilities provided by JSP-
Wiki include the text in these pages. Besides, any manually-
created wiki page can link to any of these automatically-
generated pages.

VPOET for web application
developers: including VPOET
templates in web applications

As shown in Fig. 1, Web application developers (repre-
sented by devel1) can exploit VPOET templates in order to
create easily semantically-enabled web applications.

For example, a web page about the city of Madrid would
include the usual HTML code to show the text, multimedia
objects and links to internal or external URLs. We can also
include additional calls to VPOET templates that link some
of those pieces of text, multimedia objects and links with the
visualization of semantic data available in the system or in
any other external semantic data source. From this descrip-
tion, this configuration may seem to be similar to that of se-
mantic wikis. However, in these systems the visualization of
semantic data is done always by reference to internal seman-
tic data and by means of predefined tables, which is not the
case with the use of applications exploiting VPOET.

Now we describe how to include VPOET templates
into any web application. Developers can use VPOET
templates by means of an ad-hoc communication servlet that
lets clients make HTTP GET/POST requests with variable
parameters in order to facilitate queries like “render the
semantic data at URL Z by using the output template X
created by designer Y”. This request is codified as http://
URL-to-servlet/VPoetRequestServlet?action=
renderOutput&designID=X&provider=Y&source=Z. In
this example, the semantic data are referenced by means of
the source parameter (GET message), but can be included
in the HTTP message (POST message). The complete
syntax of these requests is shown in table 4.

Semantic data can be included or not in the parameters of
the HTTP message. SPARQL endpoints4 provide a similar
functionality, but they are oriented to much more specialized
developers (those capable of writing the SPARQL queries
that must be specified in the HTTP message). As we aim at
a wider audience with little or no knowledge about Semantic
web technologies, we preferred to provide the current syntax.

HTTP messages with the specified syntax, can be sent to
the VPOET communication servlet by other programs writ-
ten in any programming language, or by Javascript appli-
cations executed in a web browser. However, browsers are
more limited than other applications because they suffer se-
curity limitations due to the fact that communication is re-

stricted to the server which holds the web application. This
is the case for Tabulator (Berners-Lee et al., 2006), which re-
quires reducing the security restrictions of the browser. Our
approach does not have this problem because communica-
tions between the end-user and the different semantic data
sources are centralised by VPOET.

VPOET Google Gadget (GG-VPOET)

Besides the previous HTTP-based mechanism, and aimed
at decreasing even more the required skills needed to use
VPOET templates, we have created a Google Gadget called
GG-VPOET5. By using this gadget, any developer or end-
user can render easily a semantic data source or provide a
web interface to create semantic data. GG-VPOET, as any
other Google Gadget, can be inserted into an ordinary web
page or in Google products such as iGoogle, Google Desktop
or Google Pages.

This gadget is configured by end-users by providing sim-
ple parameters such as the template ID or the web designer
ID, which can be obtained reading the VPOET “designs list”
wiki page. Fig. 7 shows this gadget in action using a given
output template for the ontology component foaf:Person.
The left-most window shows how this gadget can be inserted
in a web page (and how it is configured), whereas the right-
most one shows this gadget in a proprietary tool such as
Google Pages.

Experimental evaluation

The evaluation of our work has focused on providing evi-
dence that supports our principal aim concerning ease-of-use
and expressiveness of VPOET. As we have shown, VPOET
has two faces, the first one intended for web designers and
the second one intended for web application developers. The
first is provided through a web application and the second is
provided through an HTTP API. Although both faces can be
evaluated, we have focused on the first one. The HTTP API
was informally discussed with some developers, and they did
applaud the simplicity of the HTTP calls and the high func-
tionality provided. Although there are techniques to measure
the quality of object oriented APIs (Bansiya & Davis, 2002),
we do not have any reference on quality metrics for HTTP
APIs. Therefore, we trust in the informal evaluation of the
VPOET API and focus our study in measuring quality fea-
tures of web designers using VPOET, specifically usability
clues and user satisfaction with the user interface.

In this context, usability is defined as “the ease of use and
acceptability of a system for a particular class of users carry-
ing out specific tasks in a specific environment”(Holzinger,
2005).

Description of the experiment

In order to have a real feeling about VPOET users’ per-
ception, we selected fifteen postgraduate students to carry
out this experiment. Some of them had basic technical back-
ground and knowledge about client-side web languages such

APA STYLE MANUSCRIPT 9

Table 4
: Parameters accepted in the HTTP GET/POST request.

Parameter Value Explanation/Example
action renderOutput Request a visualisation for the components object in the data

source given in parameter source
renderInput Request a visualisation to request data for the component

object from the user
object prefix.class[.ver] Example: foaf.Person

prefix.relation[.ver] Example: foaf.firstName
source
(GET only)

URL URL of the semantic data source

[provider] ID Identifier of the visualization provider. For example: user3.test
outputFormat HTML Default value

XHTML XHTML is used by WAP 2.0 mobile phones

Figure 7. : Using GG-VPOET in different application oriented to end-users. Left: a personal page. Right: Google Pages

as HTML, CSS or Javascript. Some other had large experi-
ence in web design.

We provided all of them with a 30-minute talk about the
task that they had to accomplish playing the role of web de-
signers, giving a general overview of VPOET and OMEMO.
The talk used an online tutorial in which concepts such as
class, instance, value, property, relation, were explained with
practical examples. More advanced concepts such as condi-
tional rendering or templates reusing also were covered by
the online tutorial and were used by the participants. Af-
ter this introductory talk, we explained them the main ob-
jective of the evaluation: creating a VPOET output template

for the class Person defined in the ontology FOAF (version
20050403). We made explicit that the time needed to per-
form this task was not going to be evaluated, so they could
take as long as needed, but emphasizing that the objective
was to create attractive visualizations of the ontology compo-
nent specified. Links to existing semantic data sources were
supplied in the wiki in order to help them test their designs.

Some of the common errors that they made were those
related to the wrong display of multi-valued properties such
as Person.knows, or to the incorrect visualization of miss-
ing values for properties such as Person.title. Once ev-
ery user finished and tested his/her template, each participant

10 M. RICO, J.A. MACÍAS, D. CAMACHO AND Ó. CORCHO

Table 5
: Topics in the skills questionnaire

ID Client-side web technologies
Q1 HTML
Q2 CSS
Q3 DHTML (Javascript + DOM)
Q4 AJAX Basics (Javascript + asynchronous in-

vocation + DOM)
Q5 Advanced AJAX Level 1 (AJAX ba-

sics+management of XML/JSON)
Q6 Advanced AJAX Level 2 (AJAX basics+API’s

usage = mashups)
Q7 Flash basics
Q8 Advanced Flash (XML data exchange and/or

communication with Java/Others)

filled in a detailed questionnaire6 of 49 questions comprising
different features such as (a) skills in client-side technolo-
gies, (b) usability concerning VPOET, and (c) user’s satis-
faction concerning the User Interface of VPOET. Most of
these questions were based on standard questionnaires from
Perlman site7.

Evaluation

Choosing the number of participants. To achieve a 95%
confidence level for a given mean with error less than 1%, it
is required to take 15 measurements at least (Efron & Tib-
shirani, 1986). This assumes intervals based on a normal
population distribution for mean.

n = (z∗ · σ/m)2

In this equation, z∗ is the upper (1 − C)/2 critical value for
the standard normal distribution (C is the confidence level),
σ stands for the standard distribution (sample mean), and m
stands for the margin of error.

Evaluation of skills in client-side technologies. The user’s
skills were calculated as the sum of the numerical values
freely auto-assigned by each user (depending on his/her level
of competence, from 0 to 5) on the client side issues de-
scribed in the questionnaire. These issues are shown in ta-
ble 5. An additional question to measure the level of compe-
tencies in semantic web technologies was removed from the
results due to none of the participants had competencies in
this topic.

Evaluation of usability. The questions about the usabil-
ity of VPOET were taken from a standard test called “Prac-
tical Heuristics for Usability Evaluation” (Perlman, 1997).
This test includes 13 questions ranging from 1 (bad) to 5
(good), which provides a useful measure of the user’s per-
ceived usability. The results of this test are shown in Fig. 9a
and Fig. 8a. Fig. 9a shows that three types of users can be
identified: those with basic skills (range 0-20, with 5 users),
medium (20-40, with 7 users), and advanced (greater than

40, with 3 users). Fig. 8a shows the average value assigned
by the participants to the questions related to usability in the
questionnaire.

The analysis of usability was based on the average value
assigned in this test, which was 4.1, with a standard devia-
tion of 0.595. This shows high usability values for the whole
range of participants, although the most skilled users assign
slightly lower usability values. A possible explanation is that
skilled users are more demanding, and this results in slightly
lower evaluations, but even these advanced users provide
high usability values. These results confirm that VPOET is a
useful tool even for less skilled designers.

Evaluation of user’s satisfaction. In order to evaluate the
user’s satisfaction concerning the VPOET user interface, we
used a slightly modified version of the standard test “User
Interface Satisfaction” (Chin, Diehl, & Norman, 1988). The
standard version includes 27 questions, but it was reduced
to 24 due to overlaps with the usability test described previ-
ously. Valid responses to these questions were positive in-
tegers ranging from 0 (not satisfied at all) to 7 (completely
satisfied). The results are shown in Fig. 9b and Fig. 8b.

The average value for user satisfaction was 6.06, with a
standard deviation of 0.53. Besides, the results show the de-
pendency between the user’s satisfaction and his/her skills. It
is worth noting that the user satisfaction depends on the user
skills in the same way that usability, that is, higher-skilled
users assign a slightly lower value to satisfaction.

Treats to Validity. The next list summarises the context in
which these results must be considered:
• The justification for the number of participants assumes

intervals based on a normal population distribution for mean.
• The task proposed to the participants was the creation

of a simple template, and many complex elements such as
transitive relationships, axioms and constraints were not con-
sidered. Therefore the validity of this evaluation is restricted
to the creation of presentation templates for simple ontology
components.
• The effects of the underlying framework (Fortunata)

impose several restrictions to the web application user in-
terface. These restrictions have an effect in the web designer
perception so that, these results must be considered in the
context of Fortunata-based applications. A new version of
VPOET, built with traditional web technologies, although
more expensive in terms of development cost, could result
in a tool better evaluated by web designers.

Analysis results. In summary, from the experimental eval-
uation with 15 participants, we can conclude that VPOET
provides good average values for usability (8.2 in a 0-10
range) and user satisfaction concerning the user interface (8.7
in a 0-10 range) for a wide range of user competencies, what
confirms our main hypothesis, that is, VPOET is a usable tool
for web designers in a wide range of client-side technologies
skills.

APA STYLE MANUSCRIPT 11

3

4

5

N
o

te
 A

ss
ig

n
e

d
 (

1
-5

)

2

3

4

5

U
-L

1

U
-L

2

U
-L

3

U
-L

4

U
-A

1

U
-A

2

U
-A

3

U
-A

4

U
-A

5

U
-F

1

U
-F

2

U
-F

3

U
-F

4

A
v
e

ra
g
e

re

s
p

o
n

s
e

 v
a

lu
e

Question ID

(a) Usability part of the questionnaire

3

4

5

6

7

S
-O

1
S

-O
2

S
-O

3
S

-O
4

S
-O

5
S

-O
6

S
-P

1
S

-P
2

S
-P

3

S
-I

1
S

-I
2

S
-I

3
S

-I
4

S
-L

1
S

-L
2

S
-L

3
S

-L
4

S
-L

5
S

-L
6

S
-C

1
S

-C
2

S
-C

3
S

-C
4

S
-C

5

A
v
e

ra
g
e

 r
e
s
p

o
n

s
e

 v
a

lu
e

Question ID

(b) Satisfaction part of the questionnaire
Figure 8. : Mean value of the user’s responses in the questionnaire (circles). Thin bars show standard deviation. Thick bars
show the 90% confidence interval of the mean. Dark dotted line shows the average usability value, and light dotted lines show
standard deviation bounds.

2

3

4

5

0 10 20 30 40 50 60

U
sa

b
il

it
y

User skills

Usability vs. Skills per range

(a) Usability of VPOET

3

4

5

6

7

0 10 20 30 40 50 60

U
s
e

r
 s

a
t
is

fa
c
t
io

n

User skills

(b) Satisfaction of the user concerning VPOET user interface
Figure 9. : Usability and satisfaction as a function of user’s skills in client-side technologies grouped by skills. Bars show
standard deviation.

Related Work
Our approach has some relationships with work per-

formed in the context of semantic wikis, semantic portals,
semantic pipes and semantic-web browsers, as well as End
User Development (EUD).

Semantic Wikis (Oren, Delbru, Moller, Volkel, & Hand-
schuh, 2006) are collaborative web applications that allow
creating semantic data (e.g., RDF triples) and publish it in a
wiki-like fashion, normally combined with natural language
text. These systems require users trained in the annotation
of natural language text and knowledge about the annota-
tion terms to be used (ontologies terms). The wiki pages
generated by these systems normally show both the natural
language text and the semantic information in a predefined
way. Although some systems provide users with templates,
there is a one-to-one relation between an ontology term and
a template. That is, the template for an ontology term is used
to render all the ontology term individuals. VPOET exter-
nalizes this functionality, providing ways to access the tem-

plates and allowing a one-to-many relation between ontology
terms and templates. Wikis can exploit VPOET templates
easily (Rico, Camacho, & Corcho, 2009b).

Users can also handle semantic data in a non-explicit way,
i.e. navigating through a web application as usual, but where
semantic data are generated under the hood. This is the case
for Semantic Portals (Lausen et al., 2005). These portals
normally present data in table-based representations and re-
quest data to users by means of forms. Both of them are con-
figured by portal developers with ad-hoc scripting languages.
VPOET follows this non-explicit approach, allowing forms
to request data from users (input templates) and a template
based way to render semantic data (output templates) instead
of scripting languages. The concept of semantic templates
can be found in pOWL (Auer, n.d.), which provides users
with a concept similar to VPOET templates, but much sim-
pler; and Rhizome (Souzis, 2006), in which the ZML lan-
guage is defined, but it is oriented to programmers instead
of web designers with no skills in programming or semantic

12 M. RICO, J.A. MACÍAS, D. CAMACHO AND Ó. CORCHO

web technologies, as is the case for PEGASUS (Macías &
Castells, 2007), that also require technically skilled users.

A very recent approach close to both Semantic Wikis and
Semantic Portals is the one from Semantic Pipes (Le-Phuoc,
Polleres, Hauswirth, Tummarello, & Morbidoni, 2009). It
provides a friendly web interface for users who want to han-
dle semantic data, allowing the creation of semantically-
enabled web applications as workflows that connect the in-
puts and outputs of different semantic data services. These
applications can be contributed by others to be used under a
philosophy very close to VPOET templates. However, unlike
VPOET they are not focused on the presentation/request of
data but only on its transformation. In this sense, VPOET
is complementary to Semantic Pipes, and could be added to
them as a visualization service of the intermediate or final
results. A detailed comparison between VPOET templates
and those from Semantic Media Wiki, Fresnel, and Rhizome
can be found at (Rico, Camacho, & Corcho, 2009a).

In summary, VPOET aims at combining the advantages
of semantic wikis (allowing collaborative features to create
templates), semantic portals (allowing forms to enter user’s
data that will be converted to semantic data) and semantic
pipes (allowing semantic data transformation), minimizing
their drawbacks (uncontrolled edition of semantic data in se-
mantic wikis, difficult transformation of user’s input in se-
mantic portals and lack of focus on presentation in semantic
pipes).

Our approach can be also compared to some of the ef-
forts in the Semantic Web area on the development of
browsers that are able to show or that allow users navigating
through semantic data. These browsers are normally called
Semantic-Web browsers (Quan & Karger, 2004). These
features are used by VPOET web designers and GG-VPOET
end-users. Web designers take advantage of these features
during the “testing loop” - i.e. when web designers have to
test the output template against a set of semantic sources to
discover pitfalls in the template. GG-VPOET users exploit
these features each time the Google Gadget renders a given
semantic data component due to the browsing facilities pro-
vided. It must be noticed that these “browsing facilities” are
different from the ones provided by semantic-web browsers
because browsing is limited to a given type of semantic indi-
viduals (the one of the selected output template). The exten-
sion to support the renderization of heterogeneous data will
be studied in the near future.

Concerning the architecture of these browsers, two main
groups exists: browser-centered and server-centered. Tabu-
lator (Berners-Lee et al., 2006) belongs to the former group.
DISCO (Bizer & GauSS, 2007) belongs to the latter group,
and the same applies to VPOET templates. Browser-centered
applications create some security problems, only solved by
reducing the browser security level. Server-centered brows-
ing does not have this limitation because browsing is indeed
done by the server. Compared to DISCO, VPOET templates
work with both URIs and URLs, however DISCO works
only with URIs. Tabulator and DISCO render semantic data
sources in a specific and non changeable way.

Many other semantic data visualization tools and lan-

guages exist, but are intended for professional users with
high or medium skills on semantic web technologies. The
most remarkable tools are IsaViz (Pietriga, 2001), which
renders graphics in SVG 8 format, or ClusterMaps (Fluit,
Harmelen, & Sabou, 2002). Some proposed visualiza-
tion specifications are Graph-StyleSheets (GSS9), used by
IsaViz; or Fresnel (Bizer, Lee, & Pietriga, 2006), used by
Haystack (Quan & Karger, 2004) and PiggyBank (Huynh,
Mazzocchi, & Karger, 2005). Fresnel requires advanced
technical skills, so that it is not designed for web designers
or common users. Although one of the features of Piggy-
Bank is Semantic-Web browsing, it renders semantic data in
a predefined way (determined by Fresnel) as the aforemen-
tiones semantic-web browsers. Compared to these systems,
the main benefit of VPOET is that VPOET macros are sim-
ple and allow web designers with no technical knowledge
about semantic web technologies a simple and efficient way
to handle semantic data sources.

Another close related research field is End User Develop-
ment (EUD), specifically in the area of mash-ups (Huynh,
Miller, & Karger, 2008), where conceptual frameworks such
as meta-design (Fischer & Giaccardi, 2006; Fischer, Giac-
cardi, Ye, Sutcliffe, & Mehandjiev, 2004) are well-defined
and different types of users and developers have been iden-
tified. Although our approach is close to EUD, we consider
a more traditional separation between the end users of our
tools and the developers of semantic web applications.

Conclusions and future work

In this paper we have presented VPOET, a semantically-
enabled web application designed to lower the adoption bar-
rier of semantic data for web designers and common web ap-
plication developers. VPOET allows web designers with no
knowledge about semantic web technologies to create web
templates capable of handling semantic data. VPOET out-
put templates can render a given semantic component from a
given semantic data source. VPOET input templates provide
a web interface to request data from users, creating or updat-
ing a semantic data source. All these templates can be easily
exploited by third parties by using simple HTTP calls. As an
example of this, a Google Gadget has been created, which
can be easily inserted into any user web page, providing a
simple tool to handle semantic data sources.

VPOET have been built by using the Fortunata frame-
work, a wiki-based infrastructure that joins the benefits of
wiki systems and an ontology management system. As the
creation of semantic templates is the cornerstone of VPOET,
for the widest audience, from amateur to professional, an ex-
perimental evaluation have been carried out. The evaluation
shows that VPOET is considered as highly usable by web
designers in a wide range of skills. It also shows that users
are satisfied with VPOET user interface in the same skills
range.

Our future work will be mainly focused on adaptivity,
which involves the adaptation of the user interface to a user’s
profile (device used, user impairments, and aesthetic prefer-
ences). Another research line is the creation of renders capa-

APA STYLE MANUSCRIPT 13

ble of displaying heterogeneous semantic data, and renders
specialised in displaying dozens, hundreds or thousands se-
mantic data. Some web designers have also identified miss-
ing useful macros that should be implemented, as well as
some needs such as communication between templates that
would allow communicating two GG-VPOET templates lo-
cated in the same web page.

Footnotes
1More details can be found at http://ishtar.ii.uam.es/

fortunata.
2Data from http://esw.w3.org/TaskForces/

CommunityProjects/LinkingOpenData/DataSets/
Statistics, accessed in july 2010

3TheVPOETtutorialisavailableathttp://ishtar.ii
.uam.es/fortunata/Wiki.jsp?page=VPOETTutorial

4The SPARQL protocol is available at http://www.w3.org/
TR/rdf-sparql-protocol/

5The VPOET Google Gadget (GG-VPOET) is available at
the Google Gadgets Directory (http://www.google.com/ig/
directory?q=vpoet&type=gadgets)

6The questionnaire is available at http://
ishtar.ii.uam.es/fortunata/Wiki.jsp?page=
UsabilityAndUserSatisfactionOfVPOET

7Web-based user interface evaluation with questionnaires
is available at http://oldwww.acm.org/perlman/question
.html

8SVG is available at http://www.w3.org/Graphics/SVG
9GSS is available at http://www.w3.org/2001/11/IsaViz/

gss/gssmanual.html

References

Auer, S. (n.d.). powl Ű a web based platform for collabora-
tive semantic web development. Available from http://powl
.sourceforge.net/overview.php

Bansiya, J., & Davis, C. (2002). A hierarchical model for object-
oriented design quality assessment. IEEE Transactions on Soft-
ware Engineering, 4–17.

Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dha-
naraj, R., Hollenbach, J., et al. (2006, November). Tab-
ulator: Exploring and analyzing linked data on the seman-
tic web. In http://swui.semanticweb.org/swui06/program.html
(Ed.), Proceedings of the 3rd international semantic web
user interaction workshop (swui). athens, georgia, usa.
Available from http://swui.semanticweb.org/swui06/
papers/Berners-Lee/Berners-Lee.pdf

Bizer, C., & GauSS, T. (2007). Disco - hyperdata browser. See
http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/. Available
from http://sites.wiwiss.fu-berlin.de/suhl/bizer/
ng4j/disco/

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data - the
story so far. International Journal On Semantic Web and Infor-
mation Systems, 5(3), 1–22.

Bizer, C., Lee, R., & Pietriga, E. (2006). Fresnel: A Browser In-
dependent Presentation Vocabulary for RDF. Proceedings of the
Second International Workshop on Interaction Design and the
Semantic Web, 158–171.

Chin, J. P., Diehl, V. A., & Norman, K. L. (1988). Develop-
ment of an instrument measuring user satisfaction of the human-
computer interface. In E. Soloway, D. Frye, & S. B. Sheppard

(Eds.), Interface evaluations. proceedings of acm chi’88 con-
ference on human factors in computing systems (pp. 213–218).
(June 15-19, 1988. Washington, DC, USA)

Corcho, O., López-Cima, A., & Gómez-Pérez, A. (2006). A plat-
form for the development of semantic web portals. In Pro-
ceedings of the 6th international conference on web engineering
(icwe2006) (pp. 145–152). New York, NY, USA: ACM Press.

d’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S.,
Sabou, M., & Motta, E. (2007). Characterizing Knowl-
edge on the Semantic Web with Watson. In Proceed-
ings of the 5th international workshop on evaluation of
ontologies and ontology-based tools (eon2007), iswc/aswc
(Vol. 329, pp. 1–10). CEUR Workshop Proceedings. Avail-
able from http://sunsite.informatik.rwth-aachen.de/
Publications/CEUR-WS/Vol-329/

d’Aquin, M., Motta, E., Sabou, M., Angeletou, S., Gridinoc, L.,
Lopez, V., et al. (2008, May/June). Toward a New Generation
of Semantic Web Applications. Intelligent Systems, IEEE, 23(3),
20–28.

Davis, I. (2005, 07). Talis, web 2.0 and all that. Avail-
able from http://iandavis.com/blog/2005/07/
talis-web-20-and-all-that?year=2005&monthnum=
07&name=talis-web-20-and-all-that

Draft, W. W. (2009). Owl 2 web ontology language (Tech.
Rep.). W3C. Available from http://www.w3.org/TR/owl2
-overview/

Efron, B., & Tibshirani, R. (1986, Feb). Bootstrap methods for
standard errors, confidence intervals, and other measures of sta-
tistical accuracy. Statistical Science 1 (1), 54-75. Available from
http://www.jstor.org/stable/2245500

Fischer, G., & Giaccardi, E. (2006). Meta-design: A framework for
the future of end-user development. In H. Lieberman, F. Paternò,
& V. Wulf (Eds.), (pp. 427–457). Springer.

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A., & Mehandjiev, N.
(2004). Meta-design: a manifesto for end-user development.
Communications of the ACM, 47(9), 33–37.

Fluit, C., Harmelen, F. van, & Sabou, M. (2002). Ontology-based
information visualisation. In V. Geroimenko (Ed.), (p. 36-48).
Springer Verlag.

Holzinger, A. (2005). Usability engineering methods for software
developers. Communications of the ACM, 48, 71–74.

Huynh, D., Mazzocchi, S., & Karger, D. (2005). Piggy bank: Expe-
rience the semantic web inside your web browser. LNCS. Pro-
ceedings of the International Semantic Web Conference (ISWC),
3729, 413–430.

Huynh, D., Miller, R., & Karger, D. (2008). Potluck: Data mash-
up tool for casual users. Web Semantics: Science, Services and
Agents on the World Wide Web, 6(4), 274–282.

Lausen, H., Ding, Y., Stollberg, M., Fensel, D., Lara, R., & Han,
S.-K. (2005, May). Semantic web portals: state-of-the-art sur-
vey. Journal of Knowledge Management, 9(5), 40–49. Available
from http://dx.doi.org/10.1108/13673270510622447

Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., & Mor-
bidoni, C. (2009). Rapid prototyping of semantic mash-ups
through semantic web pipes. In Www ’09: Proceedings of the
18th international conference on world wide web (pp. 581–590).
New York, NY, USA: ACM.

Macías, J., & Castells, P. (2007, Jul). Providing end-user facilities to
simplify ontology-driven web application authoring. Interacting
with Computers, 19(4), 563-585.

O’Reilly, T. (2005, 09). What is web 2.0. design patterns and busi-
ness models for the next generation of software. Available at

14 M. RICO, J.A. MACÍAS, D. CAMACHO AND Ó. CORCHO

http://oreilly.com/web2/archive/what-is-web-20.html. Retrieved
on 2009-08-03.

Oren, E., Delbru, R., Moller, K., Volkel, M., & Handschuh,
S. (2006). Annotation and navigation in semantic
wikis. In Eswc workshop on semantic wikis. Avail-
able from http://ftp.informatik.rwth-aachen.de/
Publications/CEUR-WS/Vol-206/

Oren, E., Heitmann, B., & Decker, S. (2008). Activerdf: Em-
bedding semantic web data into object-oriented languages. Web
Semant., 6(3), 191–202.

Perlman, G. (n.d.). Web-based user interface evaluation with
questionnaires. Available from http://oldwww.acm.org/
perlman/question.html

Perlman, G. (1997). Practical usability evaluation. In Chi ’97: Chi
’97 extended abstracts on human factors in computing systems
(pp. 168–169). New York, NY, USA: ACM. (Los Angeles, USA.
April 18-23)

Pietriga, E. (2001). Isaviz: A visual authoring tool for rdf.
see http://www.w3.org/2001/11/isaviz/. Available from http://
www.w3.org/2001/11/IsaViz/

Quan, D., & Karger, D. (2004). How to Make a Semantic Web
Browser. In International world wide web conference. proceed-
ings of the 13th international conference on world wide web.
session: Semantic interfaces and owl tools. (ISBN:1-58113-
844-X)

Rico, M., Camacho, D., & Corcho Óscar. (2008). VPOET: Using
a Distributed Collaborative Platform for Semantic Web Appli-
cations. In C. Badica, G. Mangioni, V. Carchiolo, & D. Bur-
descu (Eds.), Intelligent distributed computing, systems and ap-

plications. proc. 2nd international symposium on intelligent dis-
tributed computing (idc’2008) (pp. 167–176). Springer. (ISBN:
978-3-540-85256-8)

Rico, M., Camacho, D., & Corcho Óscar. (2009a). Macros vs.
scripting in VPOET. In 5th Workshop on Scripting and De-
velopment for the Semantic Web (SFSW2009) at the 6th Annual
European Semantic Web Conference (ESWC). CEUR online pro-
ceedings, Volume 449.

Rico, M., Camacho, D., & Corcho Óscar. (2009b). VPOET Tem-
plates to Handle the Presentation of Semantic Data Sources in
Wikis. In Fourth Workshop on Semantic Wikis: The Semantic
Wiki Web (SemWiki2009) at the 6th Annual European Seman-
tic Web Conference (ESWC). CEUR online proceedings, Volume
464 (pp. 186–190).

Rico, M., Camacho, D., & Corcho Óscar. (2010). A Contribution-
based Framework for the Creation of Semantically-enabled Web
Applications. Journal of Information Sciences, 180(10), 1850–
1864.

Rochen, R., Rosson, M., & Pérez, M. (2006). End user Devel-
opment of Web Applications. In H. Lieberman, F. Paternò, &
V. Wulf (Eds.), (p. 161-182). Springer.

Souzis, A. (2006). Bringing the wiki-way to the seman-
tic web with rhizome. In M. Völkel & S. Schaffert (Eds.),
Semwiki2006, proceedings of the first workshop on semantic
wikis. CEUR-WS.org. Available from http://www.ceur-ws
.org/Vol-206/paper19.pdf (Budva, Montenegro, June 12,
2006)

