
A contribution-based framework for the creation
of semantically-enabled web applications
Mariano Rico , David Camacho , Óscar Corcho
Computer Science Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Ontology Engineering Group, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Spain

A B S T R A C T

We present Fortunata, a wiki-based framework designed to simplify the creation of seman­
tically-enabled web applications. This framework facilitates the management and publica-
tion of semantic data in web-based applications, to the extent that application developers
do not need to be skilled in client-side technologies, and promotes application reuse by fos-
tering collaboration among developers by means of wiki plugins. We ¡Ilústrate the use of this
framework with two Fortunata-based applications named OMEMO and VPOET, and we eval­
úate it with two experiments performed with usability evaluators and application develop­
ers respectively. These experiments show a good balance between the usability of the
applications created with this framework and the effort and skills required by developers.

1. Introduction

In the last years a large number of ontologies has been made available on the Internet, and sources of semantic data nave
also had a large growth [4], especially in the context of the LinkedData initiative (see http://linkeddata.org), which has seen
the emergence of a good number of SPARQL Endpoints [12]. However, this wealth of information still remains mostly hidden
behind these SPARQL Endpoints, ontology libraries and ontology search engines, and are not used extensively in semanti­
cally-enabled web applications. This is due to the fact that, on the one hand, there is an increasing difficulty in the design
of attractive and easily reusable web applications where a wide set of client-side technologies (e.g. HTML, Javascript, CSS,
DHTML, Flash, or AJAX) and server-side technologies (e.g. ASP, JSP, JSF, .NET) need to be used, converting web designers
in skilled programmers as pointed by Rochen et al. [15]. And on the other hand, the complexity of some semantic web tech­
nologies still represents a hard adoption barrier for any web application developer.

As an example, let us suppose that an application developer in a company is interested in creating a prototype of a seman­
tically-enabled web application, so as to make an initial check of the feasibility of this approach and its validity for the type of
problem that she is trying to solve. This developer has to master general-purpose server and client web technologies (which
she may be probably already aware of) as well as semantic web technologies (which are less frequent among developers).
Even a simple application, such as a small prototype, requires a large amount of competencies.

This paper presents Fortunata,1 a framework designed to facilítate these application development tasks. Fortunata allows
developers to build semantically-enabled web applications more easily, by reducing the required competencies in web and

Keywords:
Contributely-collaborative systems
Wiki-based applications
Semantic web technologies
Semantic web applications

http://linkeddata.org

semantic web technologies. The framework provides a programming library able to delégate: (1) the client-side presentation
tasks to the wiki-engine on top of which it is built, and (2) the management and publication of semantic data by incorporating
a simple set of ontology management functions.

Ours is not the first approach that aims at combining semantic and wiki-based technologies. In fact, this is something that
has been covered, at least partially, by semantic wikis, semantic portáis and, more recently, Semantic Pipes. However, there
are some important differences between all these approaches:

• Semantic wikis [11,3] are focused on the collaborative creation [5,13,17] of semantic data (e.g., RDF triples) and its pub­
lication in a wiki-like fashion, normally combined with natural language text. Fortunata is instead focused on the collab­
orative creation of applications that exploit that data, by means of wiki-based plugins (also known as Fortunata-plugins or
F-plugins). That is, semantic wikis are focused on content and are addressed to end users, while Fortunata is focused on
applications and are addressed to developers.

• Semantic portáis [8] are also focused on the collaborative creation of semantic data, although unlike semantic wikis they
are more rigid and enforce the use of specific knowledge models (ontologies), which are converted into forms. These por­
táis normally present data in table-based representations, which are configured by the portal developers with ad hoc
scripting languages. Besides being focused on applications instead of data, Fortunata provides application developers with
the ability to control the data flow between the user's form fields and the published semantic data.

• Semantic Pipes [9] focus on application developers who want to handle semantic data, as in Fortunata. They allow creating
semantically-enabled web applications as workflows that connect the inputs and outputs of different semantic data ser-
vices, and these applications can be contributed for others to be used. Unlike Fortunata, they are not focused on the pre­
sentation of data but only on its transformation.

In summary, Fortunata aims at combining the advantages of semantic wikis (using their easy-syntax for rendering infor-
mation), semantic portáis (allowing forms to enter user's data that will be converted to semantic data) and semantic pipes
(allowing semantic data transformation), and minimizing their drawbacks (uncontrolled edition of semantic data in seman­
tic wikis, difficult transformation of user's input in semantic portáis and lackof focus on presentation in semantic pipes). This
is shown graphically in Fig. 1.

Any Fortunata-based web application comprises a set of plugins that: intégrate semantic data from any existing source
(including other Fortunata-based applications), allow its transformation in different manners, and/or provides presentations
for semantic data. While traditional development centralises the source code, applications designed under this architectural
paradigm are created in a decentralised way. That is, in traditional development, extending functionality of a semantic portal
or wiki typically requires accessing the source code and compiling it, resulting in a new versión of the application. Instead
plugins allow members of a community to contribute to the creation of new functionality with a minimal degree of

Fig. 1. Semantic web applications: semantic web portáis, semantic wikis, and Fortunata-based web applications. The "target user boundary" line separa tes
functionality for humans from functionality for semantic agents.

interdependence (e.g., they do not need to have access to the other plugins' code in order to compile them). When a devel-
oper has created and tested a new plugin, the source code is sent to the Fortunata-based wiki administrator. If the code is
considered valid and safe, it is compiled and added to the Fortunata-based wiki engine, and is made available to any user or
developer.

Following the aforementioned example, after a short initial training on Fortunata, the developer can créate its prototype
in a short amount of time (as shown in the evaluation section). The Fortunata API hides most error-prone details, allowing
developers to focus their efforts in the provisión of the required functionality. Obviously, more advanced applications will
probably require more advanced competencies in semantic web technologies, but critical and error-prone tasks such as
web presentation and publishing of semantic data do not need to be taken into account by the developer, since they are del-
egated to Fortunata.

To valídate our approach, we have carried out two experiments. The first one evaluated the usability of our contribution-
based frameworkat initial design stages (that is, in prototype phases), previous to the creationof more complex applications.
A study using Inspection Methods [7] was carried out by usability experts. The results of this study allowed us to improve the
system (overcoming some of the limitations of the selected wiki engine on top of which Fortunata is developed), as well as
providing future developers with a usability guide specifically oriented to Fortunata-based developers. Following this guide,
two applications have been created: OMEMO and VPOET, which are also described in this work. The second experiment was
focused on measuring the benefits that the contribution-based strategy provides for developers when using Fortunata.
Developers were requested to develop the same application, but were divided into two groups: one of them had to use tra-
ditional development tools while the another had to use Fortunata. Results of this experiment show that Fortunata-based
developers required the use of fewer tools and needed less time to créate their applications.

This paper is structured as follows. Section 2 describes Fortunata, focusing on how it has been built and on how it allows
designing semantic web applications based on the contributively collaboration of developers. Section 3 describes OMEMO
and VPOET, which are examples of the types of semantic web applications that can be created with this framework. Section
4 describes the two sets of evaluations carried out to check the validity of our approach, in terms of usability and develop­
ment effort expenditure. Finally, Section 5 summarises the conclusions and future work.

2. Creating semantic web applications by developers contribution

This section provides a technical description of the architecture of Fortunata, the features provided by Fortunata, and a
developer use case.

2.1. Fortunata features and architecture

As commented in the introduction, Fortunata aims at combining benefits from wiki-engines and ontology management
systems, providing semantic web application developers with the following features:

• Wiki-style presentation. Developers do not require competencies in client-side technologies (e.g., HTML, CSS, or Ajax),
but only wiki-style syntax, which can be learnt in a short period of time (around 10 min). This is because Fortunata pro­
vides developers with simple predefined methods to render a given wiki-text. In order to créate applications, forms is
another required feature. In this case the wiki-text can specify a form easily. This feature is provided by the wiki engine
described later.

• Semantic data management. Ontology management systems such as Jena, Sesame, etc., normally provide developers
with rather large and rich APIs that allow creating and handling ontologies and other semantic data sources. Fortunata
only provides a simplified set of methods to handle these sources, getting an appropriate balance between the richness
of the API and the amount of methods that need to be learnt by developers.

• A set of Utilities. Limitations of JSPWiki such as data exchange between wiki pages, or a unified types set of user messages,
are overeóme by using a set of Fortunata Utilities.

VPOET OMEMO

Fortunata framework

Wiki-Engine (JSPWiki) Ontologies Management (Jena)

Communications
(XML-RPC)

Web feeds
RSS

User authentication
(groups,

permissions)

Versions
control

Indexing
(Lucene)

Fig. 2. Fortunata architecture.

In order to support these features, Fortunata has been created on top of the functionality provided by the JSPWiki wiki
engine and by the ontology management library Jena, as shown in Fig. 2. Now we describe the different software compo-
nents of this framework and justify their use for the creation of Fortunata.

JSPWiki (See http://jspwiki.org) is an open source Java-based wiki engine that allows the use of plugins to extend its
functionality. Some plugins belong to the "core" library (maintained by the JSPWiki community), while other are "contribu-
tions" (maintained by the plugin creators). In 2006 only two wiki engines allowed plugins and forms: JSPWiki (java lan-
guage) and Twiki (Perl language). As Jena requires java language, our decisión was to use JSPWiki as wiki engine.

Besides extensibility, the core implementation of JSPWiki provides other features that can be used by Fortunata develop-
ers as well as by Fortunata-based application users. These benefits are briefly summarized as follows:

• Forms creation by means of specific wiki tags. JSPWiki wiki syntax allows an easy creation of forms which links buttons
actions to plugins. This key relationship is described in Section 2.2.

• Web feeds (based in the standard RSS) provide users with a subscription mechanism. For example, a user subscribed to a
wiki page (which may be generated from a semantic data source and henee represent a change in that semantic data
source) will be notified whenever the subscribed page is changed.

• Common access control mechanisms allow managing permissions to see or modify a wiki page, provide user authentica-
tion mechanisms, group management, etc., which are common functions to be included in (semantic) web-based
applications.

• Versión control allows reverting any wiki page to its previous state. This feature encourages users to modify any wiki page
with the guaranty that changes can be reverted.

• Link management provides mechanisms to identify "nuil" links (links pointing to non-existing wiki pages), "inverse" links
(pages linking to the current page), or orphan links (pages not linked by any page).

• Indexing, implemented with Lucene, allows searches by keyword in all wiki pages, no matter whether they have been cre­
ated manually or automatically from the semantic data sources.

215
214
215
216
217
218
219
220
221
222
223
224
22S
226
227
223
229
230
231
232
233
234
235
236
237
238
239
!«
241
242
243
244
243
246
247
243
249
250
251
252
253
254
255
236
257
258
359

publie VDld uriteSemanticData(TiTi]íiContejít context)
Lhtows PluginExceptionl

//Ensure definicions file exists
creaceDataíIodelTilelf Needed Iconcexc];
//Ensure individuáis file exista
createIndividualsFile3TfNeeded< context);

//Creates an einpty model
String ontoDefsFullfileName = getOntcDefsFullfile
String ontoInstancesFullfileName = getontolnstanc
OntModel KL = ModelEactory. createuntologyHodel mod
m. secNsPrefix (getAliasOfHS |] , gettfRI(J) ;

//Reads daca model from file. This is mandatory b
Model modelData - FileHanager.getO.loadHodel r'rz

getURI(
serializationStyle);

n. addSubModel EmodelData) ;

//Reads individuáis from file. Auto import üill M0T load the defimtions file in this case
Model individualsKodel - EileHanager.getE .loadHodel(": + ontoInstancesfullfileName,

ORÍ,
serializationStyle);

m. add findividualsModel] ;
//Shows the mergeú medel (defs + instantes)

publie void createlndividual (WikiContext context,
OntModel m.
Individual indi) {

Property pLiteral = m.getProperty(getURI() +
HelloWorld.propNameMsg);

String msg = "Helio World!";
indl.setPropertyvalue(pL¡teral, m.createLiteral(msg));

//Cnsates individual
String uriClass - URI + getflainClassName i i ;
OntClass c - m.getOntClass(uriClass];
if (c == nuil)í

loa.in£o("Class " + uriClass + " JIOT foui lets^tfcdel. This is an error that produces
"rdf¡Description instead of class naiia^íhedi i t ! ") ;

)
Individual indi - m.createlndividual getIns*anceUniqueURI (]
//This method must be implemented by tüí^concrete STJApp
createlndividual [context, m, indi);

//Tirites resulting ontology (only instantes!!)
try (

FileOutputStream fos - new FileOutputStream(ontoInstancesFullfileWame);
m.write[fos, a er ial isat icnStyle, URI};
fos.cióse|);

!catch(IOException e){
log. error igetCntologyName i) + " ' i. individuáis f i le " + onto3TnstancesF\illf ileName + " san not be added");
throo neu PluginException[getOntologyName () + n,s individúala can not be added");

}

Fig. 3. Comparison of the code required to store an instance. The box shows the code provided by a Fortunata-based developer in the "Helio Word" example
application. The code in the background is provided by Fortunata.

http://jspwiki.org

Edit Attach Info Help

Save Preview Cancel

Undo

| View | Attach Info ¡ | Edit || More,,, '

MTescitig Látex mach plugin\ \
[{Hath a i ign= ' i e f t ' Éontsize='16H

2\sua -li=l>An s_i \ ; \ in t_a A b f_i {x> g_i {x) \ rdx
>3

This feat.uire i s provided by iLeatis of a cont Tributad
plug-in.
Foriaulae can be u t i t t e n using Lace* syntax.
This plug-in ctreates an image in vhich che formula
in rendered.

Testing Látex math plugin

n ¿ This feature is provided by means

E p of a contrlbuted plug-in, Formulas

3, J fiXfCflX) QX. can be written using Látex syntax,
¡- ^ a This plug-in creares an image ¡n

which the formula in rendered,

(a) (b)
Fig. 4. Usage example of a JSPWiki plugin that generates an image from a Látex formula, (a) "Edition mode" shows how this plugin is invoked. (b) "View
mode" showing the result.

Jena (See http://jena.sourceforge.net) is ajava library that provides developers with a programming environment to man-
age ontologies and semantic data. It can handle different ontology languages, such as OWL and RDFS, as well as different
persistence and reasoning models. Fortunata hides this variety to developers by allowing the Fortunata wiki administrator
to use a fixed set of options. For example, in the implementation used for our evaluations developers were using a Fortunata
framework that was using a file-based persistence model (which is quite natural for wiki-based systems) and OWL DL
ontologies.

With that configuration, the methods provided by Fortunata prevenís developers from having to do tasks such as man-
aging files, managing Jena models, etc. The developer only has to provide code for the creation of semantic data instances, as
well as the code for the creation of the classes and properties. Fig. 3 shows the code provided by the developer to créate an
instance in the "Helio World" example provided in the developers tutorial.2 Compare these three lines to the amount of code
needed to provide this functionality (in this case provided by Fortunata).

2.2. Plugin development in JSPWiki andfortunata

In this section we describe first how JSPWiki plugins can be created and then we move into the creation of F-plugins.

2.2.1. Contributing functionalities in JSPWiki by means of plugins
Wiki plugins are pieces of code that extend the functionality of the wiki-engine, which is focused on allowing users a sim­

ple edition of wiki pages. Wiki plugins automate actions on a wiki page, and they present the result of such action in the
"view mode". Examples of these core JSPWiki plugins are: TableOfContents, which generates a TOC from the wiki page con-
tents, or ReferringPages, which finds and list all pages that refer to the current page, etc. JSPWiki "core" comprise 25 plugins,
and the set of "contributed" plugins is currently around one hundred (by Nov. 2008).

Fig. 4 shows an example of how a specific plugin that is available in the system can be invoked from any wiki page (on the
left part of the figure), and its corresponding result after the invocation with a specific set of parameters (on the right part).
The invocation text of the plugin is between "[{" and "}]". This plugin contains arguments that specify a font size, an align-
ment, as well as a body containing a formula in Látex format. The result of this invocation is the wiki page in "view mode"
that can be seen on the right. This plugin is automatically executed each time this wiki page is displayed in "view mode". The
plugin execution output results in an image displaying the formula.

To créate a JSPWiki plugin, developers only have to créate a class implementing the interface WikiPiugin (see Fig. 5).
This interface requires the implementation of the execute () method. This method will be invoked by the wiki-engine in
the plugin execution, when a user is viewing the wiki page that contains it. Within that method developers have access
to the plugin parameters and valúes, and have to include the code that performs the plugin operations (or the invocation
to the corresponding method).

2.2.2. F-plugins development
In a similar fashion to how plugins are implemented in JSPWiki, the implementation of an F-plugin is done by means of a

Java class (see Fig. 5) that implements the interface WikiPiugin (from the JSPWiki library). Additionally it extends the class
For tuna taP lug in (from the Fortunata library) which provides developers with useful methods (e.g. renderWikiText ())
concerning forms management and rendering.

http://jena.sourceforge.net

JSPWiki API
WikiPiugin

execute (...)

~z±r

Fortunata API

SemanticWeb
Application

F-plugin

FortunataPlugin

renderWikiText (..
FormManager(...)

~7K

Fortunata S WAppl¡catión

createlndividuai (...)
fÜiDataModei(...)

~7sr

Vpoet

AddVisualization

Fig. 5. Classes diagram of Fortunata-based applications. The layer "Fortunata API" shows the main class methods that a developer must implement. In this
example, the F-plugin contains one instance of the class Vpoet. Abstract classes and interfaces are written in italics.

Fig. 5 shows the layers involved in the development of F-plugins. The upper layer is the API provided by JSPWiki, which
provides the abstract class WikiPiugin. Below this layer, the Fortunata API provides a set of generic classes that can be
exploited by specific application classes. This is the case of the semantic web application VPOET, which uses the class Vpoet,
shown in the layer named "Semantic Web application". The last layer, named in the figure "F-plugin", is for specific appli­
cation plugins. The class Adcivisuai izat ionis an example of the kind of classes that exist in this layer, and howit is related
to the other layers.

A semantically-enabled web application is represented by a class derived from the abstract class FortunataSWAppii-
cat ion, which provides developers with useful methods as well as forcé developers to implement the methods c r éa t e i n ­
d iv idua l () and f i i iDataModei() concerning semantics persistence. All the plugins in a Fortunata-based application
share a semantic web application. In this example, the figure shows the class AddVisual izat ion. This class is an F-plugin,
and consequently it inherits the methods implemented in the base class For tuna taP lug in and it is forced to implement
three methods (one from the interface WikiPiugin and two from the class For tunataPlugin) . This plugin contains an
instance of the class Vpoet, which implements two methods from the class FortunataSWApplication concerning seman­
tic data management.

The process to créate and contribute an F-plugin is detailed in the upper part of Fig. 6, and follows the usual procedure
in any plugin-based architecture. First, the developer must créate the F-plugin locally (steps 1-3) and perform an ade-
quate number of tests to check that it is working correctly (step 4). Then she must proceed to the publication (step 5)
of the plugin source code and of the documentation about its usage. The bottom part of the figure depicts the process
to créate new functionality by reusing the initial functionality following a "contributively collaboration" schema. It com-
prises the following steps: installation of an existing F-plugin (step 6), reading and understanding of its associated ontol-
ogies (either by manually reading the OWL files, using any off-the-shelf ontology editor, or by means of OMEMO) in order
to find the elements that must be added, removed or modified, or in order to decide whether a new set of ontologies has
to be imported and used (step 7), local creation of the extended plugin (steps 8-10), local tests (step 11) and publication
(step 12). The purpose of this detailed explanation is to show the low complexity of the plugin reuse and contribution
process.

Table 1 summarizes the development tasks that are normally associated to the development of a typical semantic web
application, and compares the skills that are required to perform these tasks when using a traditional development approach
and a Fortunata-based approach. Traditional development requires more competencies (more development tools and roles)
than Fortunata-based development. This is one of the main results of the comparison performed with real developers, which
is described in Section 4.

3. OMEMO and VPOET: examples of Fortunata-based semantic web applications

This section illustrates how the Fortunata framework can be used to créate two prototypical semantically-enabled web
applications. These applications are not intended to be original or innovative, since similar types of applications are available
in the current state of the art, but we aim at demonstrating that they are easy to implement and extend using our approach.
OMEMO is focused on the HTML publication of ontologies (in a similar fashion to systems like OWLDoc (See http://www.co-
ode.org/downloads/owldoc/)), and it is interesting as a case study since it exploits many features of the wiki infrastructure,
such as orphan links or the simplicity of the wiki syntax. VPOET is focused on semantic data visualization, and especially

http://www.coode.org/downloads/owldoc/
http://www.coode.org/downloads/owldoc/
http://ode.org/downloads/owldoc/)),

r r
OÍ

Q.

3
ai

o
O

CD '
ü i
O

i £

^ - , \ H r J

^

í o

OÍ

CD

OÍ

Q. t r
o
>,
ai
c
g
o
c

4—
OÍ

g

<

O CN

CD J -° ̂
O O

v_

^

f-plugin1 class file

3.- Copy f-plugin class to applicatiorl classpath

T
I

4.- Write wiki page with a form that uses f-plugin 1

textual result of the f-plugin executidn

5.- contribute f-plugin 1 (documentation, wiki r.

i

Local
Fortunata

based
application 1

Public
Fortunata-

based
application

4.1.- Write/Reacl semantic data source

>

sourcp code or/and class) i

I

Developer2
(contributor)

6.-Install pluglnl

Java code
editor

Java
compiler

copy pluglnl

compile pluglnl

T 13
irce code

'source code

7.- Read semantic model (manuallylor by using OMEMO)l

T
- ¡ - ^ Identify the required semantic data P(c,p)

|
8.- codify f-plugin2 using D(c,p)

— H

f-plugin2 source code

9.-compile f-plugin2

.L.

í
f-plugin2 class file

10.- Copy f-plugin2 class to application classpath

T
11.- Write wiki page with a form usirjg f-plugin1 + f-plugin:

textual result of the f-plugin executiqn itión

12.- contribute f-plugin2 (documentation, wiki r.

i

Local
Fortunata-

based
application 2

1
I

+

copy f-plugin class to application classpath

1
- Wnte/Resjd semantic data source

ft-
i

source code or/and class) |

i

Fig. 6. Sequence diagram of a contribution. Developerl crea tes and test (locally) F-pluginl. Once fimshed, this plugin is contributed. Developer2 takes
advantage of this contribution and extends the functionality by means of F-plugin2, which is contributed as well.

exploits the forms provided by the underlyingJSPWiki infrastructure and the ontology publication functionality provided by
OMEMO.

3.1. OMEMO

OMEMO stands for "Ontologies for MEre Mortals". It is aimed at users with no previous knowledge about ontology lan-
guages, whom may find it difficult to understand the knowledge model that an ontology or set of ontologies is providing in
languages like OWL or RDF Schema. By using OMEMO, users can browse and navigate through the components (classes,

Table 1
Comparison between traditional development of semantic web applications and the Fortunata-based approach.

Task

Creation of pages
Creation of forms
Creation of web applications
Permissions, authentication
Creation of ontologies
Creation of semantic data
Publication of ontologies and semantic data

Traditional development

CMS (Contents Managing System)
HTML, CSS, DOM, AJAX
JSP, JSF, .NET technologies
Web server administrator competencies
Jena
Jena
Jena + Web server administration

Fortunata-based development

Wiki
Wiki forms
Wiki-engine
Wiki-engine
Fortunata
Fortunata
Fortunata

properties and individuáis) of any ontology that they upload to the system. When a new ontology is added to the system, a
set of wiki pages is generated automatically, which provide a simplified visión of the ontology components, oriented to show
the structure of the information, since the application is focused to non-technical users.

Therefore, OMEMO hides knowledge representation aspects well-known for ontology experts like "range", "domain", the
differentiation between datatype properties and object properties, "functional properties", "inverse functional properties",
etc.

It is worth noting that an ontology can have different versions, e.g. the FOAF ontology is available in at least two different
versions: 20050403 and 20050603. The page-generation process results in a page for the whole ontology, which links to a set
of pages for each class, property and individual. Fig. 7 shows a section of the wiki page generated for the class Person (ver­
sión 20050403). Point o indicates that other versions of the FOAF ontology exist and allows the access to those pages through
this link. The valué of the i n t e r e s t Property is Document © as defined in FOAF, whereas the valué of the f i rs tuame O
property is L i t e r a l © as defined in the RDFS ontology. Whenever the RDFS ontology is stored in OMEMO, a link (solid
underline) to the wiki page appears. Otherwise, the link will be underlined by a dotted-line (orphan link, i.e. a link pointing
to a non-existing page). The numbered list in Fig. 8 shows the ñame of the wiki pages pointed. Finally, these automatically
generated pages are not editable, resulting in a non-activated "Edit" button in the wiki page.

It is worth mentioning that users may also créate manual pages pointing to these automatically generated pages, if they
wish to add extra documentation to these ontologies (e.g., competency questions as identified in many ontology engineering
methodologies, details of applications that are using them, etc.). Besides, all these pages (manually or automatically gener­
ated by OMEMO) are indexed by the Lucene engine that is part of JSPWiki; therefore, the search facilities provided by JSPWiki
include any text available in the original ontologies plus any additional documentation.

A detailed explanation of the process that follows once the ontology's URL is provided by the user can be described as
follows:

• A HTTP connection to the specified URL is established. The file containing the ontology is downloaded and stored in a tem­
poral folder.

• The ontology is analyzed to detect which namespaces are used. This allows to link different ontology pages among them.
For example, the ontology FOAF refers to the ontology RDFS in the definition of the FOAF:firstName property when the
ontology FOAF declares that FOAF:firstName is a RDFS:Literal (see Fig. 7, first row in the table).

• Check 1: Conflict with prefixes. Blank prefixes (namespaces with no prefix defined), duplicated prefixes (ontology OÍ
defines prefix p for namespace n, and ontology 02 defines the same prefix for a different namespace), and overwritten
namespaces (ontology OÍ defines namespace n with the prefix pl, and ontology 02 defines namespace n with the prefix
P2).

Other versions

sast FQAF 200701 U.Person
spec FOAF,20070524.Person

Properties used bythis class

firstNanie

Leyend
1 Link to SpecFOAF.20050403.firstName

2 Link to Spec.Literal

3 Link to SpecFOAF.20050403.Document

4 Link to SpecFOAF.20050603.Person
Description

JlrstName
The first ñame of a person.

IHl (rdfs)

tríade
Scmethingthatwas made bythis agen!.

Resource (rdfs)

interest

Fig. 7. Snapshot of the OMEMO wiki page for class Person (versión 20050403) belonging to the FOAF ontology.

OMEMO
wiki pages

Authoring
tool

1.-browseinfofore(o, v)

¡nfoaboute(o, v)

2.-infoaboute(o, v)

graphical web design for e (o, v)

3.- créate designer's page

(Cut&paste template's code)

linkto test page

4.2- Upload "included" code and graphics

5.- test témplate (data source)

data renderization

5.n.- Edit témplate (insert/edit macr fe)

link to test page

6.- Témplate Characterization

VPOET
Designer's
wiki page

VPOET
Add/Edit
Témplate
wiki page

VPOET
Test Design
wiki page

Fig. 8. Sequence diagram for VPOET users.

• Check 2: Ontology versions. 01 at URL1, and 02 at URL2, define the same namespace, but the content is different. For
example, two versions of FOAF exist: 20050603 and 20050403. In versión 603 there are properties such as FOAFásPri-
maryTopicOf and FOAF:birthday, that are missed in versión 403.

• Check 3: Duplicated ontologies. The same ontology may have two or more different URLs. This is the case for Dublin Core,
which involves two different URLs: p u r l . o r g / d c / e l e m e n t s / l . l / and dub l incore .o rg /2006/08 /28 /dces . rd f #.
Without this test, this would result in two different entries: dc.20030324 and dc.20060828, but the content would be
the same.

Effective solutions to most of these problems have been implemented, resulting in a concrete schema (Spec.prefix.ver-
sion.elem) for the generated wiki pages, as was shown in the numbered list in Fig. 7.

3.2. VPOET

VPOET [14] allows client-side web designers to créate interactive templates for a given ontology component, not just to
show semantic data (output templates) but to request data from the user (input templates). These templates can be created
by any user, ranging from users with basic skills in client-side technologies, such as HTML or Javascript, to professional web
designers.

This is possible because VPOET users only need to embed simple macros in the client-side web code, providing interaction
templates for each ontology component. Information about each ontology component may be obtained, for instance, by
reading wiki pages generated by OMEMO, although this is not compulsory. Once the interaction témplate is finished, its cre-
ator indicates the features of the témplate, specifying details such as the témplate type (input or output), the behavior in case
of changes to the font size, sizes (preferred, mínimum, máximum), the code-type provided (HTML, Javascript, CSS), or the
dominant colors.

As any other Fortunata-based application, all the generated information is published as semantic data, so that it can be
used by other internal or external applications. Although VPOET can be used by any user with basic skills in client-side web
technologies, it has been created to let professional graphical web designers author attractive designs capable of handling
semantic data. From a user point of view, this application is like any other web application, with form elements like text
fields, radio buttons, or lists, as explained in the VPOET tutorial.3

The process to créate a témplate starts by targeting an ontology component. In our example, the Person element from the
FOAF ontology versión 20050403 is selected.

http://dublincore.org/2006/08/28/dces

The process to créate an output témplate comprises the following steps (see Fig. 8):

1. Getting information about the structure of the targeted element for the given ontology and versión, e (o, v). That is, to
know which sub-elements comprise the element. The visualization provider obtains this information by reading the wiki
pages automatically generated by OMEMO. Fig. 7 shows a snapshot of the OMEMO wiki page for the FOAF:Person for this
versión.

2. Authoring a graphical design in which the semantic data will be inserted. Web designers are free to use their favorite web
authoring tool.

3. Choosing an identifier (ID) to créate a wiki page with that ID. This wiki page shows information about the VP and its
templates.

4. The graphical design comprises a set of files: images, and client-side code such as HTML, CSS, or javascript.
(a) The client-side code is copied and pasted into the appropriated VPOET form fields.
(b) Image files or "included" files must be uploaded to the provider wiki page, or uploaded to any web server. In any

case, the client code must point correctly to these files.
5. A test loop starts, that uses semantic data sources (typically external to VPOET) containing instances of the targeted ele­

ment. A substitution process starts:
(a) Absolute paths must be substituted by a specific macro.
(b) In the location of the semantic valúes, specific macros must be inserted.
(c) The design is tested against the test data sources.
(d) This loop finishes when the design produces a successful visualization for all the semantic test data sources. For this

example, a test source can be http://www.eps.uam.es/~mrico/foaf.rdf. Part (a) of Fig. 9 shows a small part (two
instances of Person) of the web page generated by using a given témplate. Each instance can be rendered individually
(circles la and 2a), as well as each source (circles Ib and 2c). Circles le and 2c show the data stored in the data
source about these instances. Part (b) of Fig. 9 shows the rendering of the individual by using the same témplate.
This results in a semantic web browser rendering each source, jumping from data source to data source, for a given
témplate and ontology element.

6. The design is characterized by its creator, providing information about the témplate features, such as témplate type
(input or output), colors, size policy, or font changes behavior.

Most of the effort required to créate a témplate is in the test loop, especially in the insertion of macros. VPOET has been
designed to let users reuse any other témplate. This is achieved by using: (1) rendering of an element specifying the témplate
(of his/her own or not) and (2) links pointing to data that will render the destination element of a relation specifying the
témplate as previous.

ID = http://captsolo.net/semweb/foaf-captsolo rdf#Uldis_Bojars (

Render source 1K

NamefUldis Bojars \ Q

la

ID = htto/'/ttww cs.man ac uk/~ocorcho/foaf rdf (http'H vAJ:'y.2F%2Fwww

Render source 9Vi

Name:Oscar Corcho 2 C

ID = (Anonymous)

Ñame: Mariano Rico Alrnodóvar

Given ñame: Mañano

Family name:Eic o

Home page: Visit home page

Tifie: Dr
Ñame: Osear Corcho
Given ñame: Osear

Family nameCorcho

Fióme page: Visit home page

Depiction 1
00

Fig. 9. Testing the example témplate against a given semantic data source.

http://www.eps.uam.es/~mrico/foaf.rdf
http://captsolo.net/semweb/foaf-captsolo

4. Evaluating usability and collaborative features

Usability can be defined as "the ease of use and acceptability of a system for a particular class of users carrying out spe-
cific tasks in a specific environment" [7]. In the context of semantically-enabled web applications, usability is still a major
challenge [6]. Henee we have focused our efforts in trying to measure and understand how usable Fortunata-based applica­
tions are. For this purpose, we have analysed the usability of the two applications described in the previous section (VPOET
and OMEMO), as examples of the common types of applications that can be generated with the Fortunata framework.

The literature on usability identifies two main groups of usability evaluation techniques [7]:

• Test Methods, which are normally applied to running applications (or at least with early-prototypes of these applications),
and require real users.

• Inspection Methods, which are normally used during the design phase of these applications to identify potential usability
problems, and do not require real users but only usability evaluators.

In our test we applied Inspection Methods, since our focus was to identify potential usability problems in applications
during their design phase. Inspection Methods comprise different techniques, such as Heuristic Evaluation (HE), Cognitive
Walkthrough and Action Analysis, with different levéis of competencies required from the evaluators. The first one (HE)
was selected due to the lower competencies required from the evaluators, what means that evaluators did not need to be
usability experts, which are difficult to find. In fact, a set of 3-5 evaluators applying this technique can typically identify
75-80% of all usability problems [1]. Evaluators were asked whether the user interface followed some well-known usability
principies, and the evaluation results were used to improve Fortunata and to créate a "usability guide" for Fortunata-based
developers.

The second type of evaluation was focused on the adequacy of the contributively collaboration feature of Fortunata. In
this experiment, several developers with similar competencies on client-side technologies and a minimal background on
semantic web technologies were selected and divided in two groups (identified respectively as "A" and "B"). A common goal
was proposed for both groups, consisting in the incremental creation of three semantically-enabled web applications:

1. Implement a "Personal agenda", with a user interface to provide Ñame, mail and telephone;
2. Use the data from step 1 to add the necessary functionality to provide a user interface to schedule meetings for a given

person;
3. Use the data from step 2 to add the functionality to display the people involved in meetings for a given date.

The first group ("A") had no training on the Fortunata framework, so they were free to use their preferred technologies
and development tools. The only restriction for them was that they had to follow the usability "eight golden rules" (de­
scribed in the next subsection). The second group ("B") received some training (in the form of a 20-min practical tutorial)
on the Fortunata framework, and were requested to use this framework and to follow the "usability guide" created from
the first experiment. The experiment ended filling in a complete questionnaire with quantitative and qualitative questions.

4.1. Experimental setup

4.1.1. Usability experiment
Five usability evaluators were recruited from our academic institutions. They were requested to evalúate independently

early-prototype versions of VPOET and OMEMO. During the evaluation session the evaluator uses the applications several
times, from different starting points, and inspeets the interactive elements. They had to answer questions related to "the
eight golden rules" [16], shown in Table 2.

The questionnaire comprised ten questions from [10]. This is a Likert scale-based questionnaire, i.e. "one based on forced
choice questions, where a statement is made and the respondent then indicates the degree of agreement or disagreement
with the statement on a 5 (or 7) point scale" [2], with seven possible valúes for the answers in the range from 1 (hard) to
7 (easy). Besides the choice, each question had an optional comments field. Table 3 shows the questions.4 Additionally, each
evaluator provided us with a list of recommendations to improve usability. These comments and recommendations were
analyzed once the independent evaluations were carried out.

4.1.2. Collaboration experiment
For the second experiment, six students were selected from a "Semantic Web Technologies" master's course in Computer

Science from one of our Institutions (Universidad Autónoma de Madrid). Three students were assigned to the "A" group (tra-
ditional developers) and three were assigned to the "B" group (Fortunata's developers). The questionnaire comprised two
main blocks of questions related to complexity, collaboration and contribution. Some questions (Q3-Q6) used the previous
Likert-based range valúes and the rest provides a numerical (continuous) valué. These questions are shown in Table 4.

Table 2
Usability "Eight golden rules".

ID Rule Description

1 Consistency There must be consistency in the actions, terminology (messages, menus and help Windows) and graphics (colors, layout,
and fonts)

2 Universal usability Each user has a need; therefore the system must provide some facilities in order to transform contents. Not only impaired
users, but differences between beginners-experts (beginners need explanations, the experts need shortcuts), or age ranges

3 Informative Each action in the system must produce a feedback. For common actions not very important, the answer must be small, but
feedback infrequent actions or important must produce a higher response

4 Dialogs Dialogs must be designed to finalize something. Sequences of actions must be organized in groups with a start, middle, and
final. For example, the concept of cart in web applications, with visualization for finished stages and pending stages

5 Errors prevention The system must avoid that users make mistakes, but if the error is produced, the system must provide with a solution
simple, constructive and specific

6 Undo Allow users to undo actions in an easy way. Everything should be undo-able
7 Locus infernal Support for the locus infernal control. The expert users must have the sensation of controlling the tool. Users must start

control actions, not only respond to them
8 Memory load Diminish the memory load in the short-term. Avoid múltiple Windows, codes, or complex sequences

Table 3
Questionnaire for usability evaluators of Fortunata-based applications.

ID Question

1 Visibility of system status
The system should always keep users informed about what is going on, through appropriate feedback within reasonable time

2 Match between system and the real-world
The system should speak the user language, with words, phrases and concepts familiar to the user, rather than system-oriented terms. Follow real-
world conventions, making information appear in a natural and logical order

3 User control and freedom
Users often choose system functions by mistake and will need a clearly marked "emergency exit" to leave the unwanted state without having to go
through an extended dialogue. Support undo and redo

4 Consistency and standards
Users should not have to wonder whether different words, situations, or actions mean the same thing. Follow platform conventions

5 Error prevention
Even better than good error messages is a careful design which prevents a problem from occurring in the first place. Either elimínate error-prone
conditions or check for them and present users with a confirmation option before they commit to the action

6 Recognition rather than recall
Minimize the user's memory load by making objects, actions, and options visible. The user should not have to remember information from one part
of the dialogue to another. Instructions for use of the system should be visible or easily retrievable whenever appropriate

7 Flexibility and efficiency of use
Accelerators - unseen by the novice user - may often speed up the interaction for the expert user such that the system can cater to both
inexperienced and experienced users. Allow users to tailor frequent actions

8 Aesthetic and minimalist design
Dialogues should not contain information which is irrelevant or rarely needed. Every extra unit of information in a dialogue competes with the
relevant units of information and diminishes their relative visibility

9 Help users recognize, diagnose, and recover from errors
Error messages should be expressed in plain language (no codes), precisely indícate the problem, and constructively suggest a solution

10 Help and documentation
Even though it is better if the system can be used without documentation, it may be necessary to provide help and documentation. Any such
information should be easy to search, focused on the user's task, list concrete steps to be carried out, and not be too large

4.2. Experimental results

4.2.1. Usability experiment
For the first proposed experiment, Fig. 10 shows the average valúes assigned by evaluators to each question and its stan­

dard deviation. The average usability valué (discontinuous line) was 5.66 (in the range [1,7]), with std. dev. 1.16 (dotted-
lines).

Question Q3 ("User control and freedom") had low valúes due to the lack of undo/redo features. Although the wiki-engine
provides some kind of undo by means of control versions, reverting a wiki page to any previous state, the functionality
implemented by F-plugins should support this feature more prominently. The current versions of OMEMO and VPOET do
not implement this feature.

Many questions (Q2, Q3, Q5, Q8, Q9) had high consensus (low standard deviation) from evaluators (std. dev. = 0.55). The
lowest consensus was for Q6 (std. dev. = 0.84).

The (qualitative) recommendations from the evaluators and their relationship to the "eight golden rules" are summarized
in Table 5. Some recommendations were added to the Fortunata API (e.g. Recl), other recommendations were generic guide-
lines (e.g. Rec2 and Rec3) that do not have a specific implementation in Fortunata. Finally, there was a group of recommen-

Table 4
Questionnaire for semantically-enabled web applications developers.

ID Evaluation goal Question

Complexity
Complexity
Complexity
Collaboration
Collaboration
Collaboration

Hours dedicated to créate the application
Tools used to créate the application
Level of difficulty to créate the application
Level of difficulty to follow the usability "eight golden rules"
Level of dependencies on "previous code"
Level of difficulty to share your application's source code

4 5 6 7
Question ID

Fig. 10. Questionnaire for semantically-enabled web applications developers.

dations that can be achieved by "hacking" JSPWiki (e.g. Rec4 and Rec5), but other recommendations cannot be followed be-
cause the current wiki versión (JSPWiki versión 2.4) does not support them (e.g. Rec6 and Rec7) or because they are not
implemented yet (e.g. Rec8). The "usability guide for Fortunata-based developers", comprising these recommendations
can be found at http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=UsabilityRecomendations4Fortunata.

4.2.2. Collaboration experiment
From the questionnaire used in the second experiment (see Table 4), two kind of results can be considered, quantitative

(Q.1 and Q2 questions), and qualitative (Q3-Q6). Quantitative questions were designed to measure the development effort of
Fortunata-based applications (see Fig. 11). The results for Q.1 show that the number of development hours (sum of the three
contributive steps) reduces about 40% using Fortunata against traditional technologies. The results obtained for Q2 show that

Table 5
Aggregated usability recommendations provided by evaluators.

ID Recommendation Rules
involved

Solution provided by Fortunata API

Recl Execution messages must have a fixed location, #1, #2
font size and colors

Rec2 Use links to data pages/help to avoid remembering #8, #7, #3
codes or identifiers.

Rec3 Forms should fit in a single page (avoiding page #5, #7, #8
scrolls). Tabs usage is recommended for large
forms

Rec4 Redirection by means of links #6

Rec5 Improve form features #4

Rec6 Dynamic change of the skin #2

Rec7 Undo/Redo features #6

Rec8 Advanced Editors (e.g. colored source code, auto #5, #4
fill text fields)

Fortunata API provides a unified method for displaying executions
messages, with three different warn levéis ("success", "warning" and
"error"), visually differentiated
General recommendation with no effects on Fortunata API

General recommendation with no effects on Fortunata API

There is no dynamic-redirection. Therefore, the execution of a plugin cannot
change the wiki page. The solution is to place a link to the destination page
in the plugin's execution message text
JSPWiki imposes some restriction to forms: (1) only buttons can fire
plugins, (2) Javascript is not allowed, (3) There are no lists. Evaluators did
not find severe usability problems
The current versión of JSPWiki supports skins, but it cannot be changed
dynamically. Most skins support successfully changes in the font size
The wiki-engine provides with a versión control feature for wiki pages,
allowing undo/redo for wiki contents. However, concerning F-plugins
functionality, undo/redo must be implemented by the plugin's developer
This functionality has not been implemented in JSPWiki yet by any
contributor. These features would improve VPOET templates editor

http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=UsabilityRecomendations4Fortunata

I Group A

Fig. 11. First two questions of the developers questionnaire. Total development time (Ql) and average number of tools used by developers (Q2) for two
kinds of developers: control group (A) and Fortunata-based group (B).

I Group A

l Group B

Q3 Q4 Q5 Q6
Question ID

Fig. 12. Likert questions of the developers questionnaire.

the number of development tools reduces about 60% (the tool used for the three developers belonging the "B" group was just
the Fortunata API, which produces a std. dev. = 0.0).

Fig. 12 shows the results of the rest of questions. In all of them the reduction by using Fortunata is between 10% (Q4) and
60% (Q.6). Group A had uniform consensus for all the questions (std. dev. = 0.58) except Q4 (std. dev. = 1.0). Group B had the
same uniform consensus for all the questions (std. dev. = 0.58) except Q2 in which the agreement was complete (std. dev. =
0.0).

5. Conclusions and future work

The work presented in this paper is focused on the provisión of a simple and easily extensible programming framework
that facilitates the creation of semantically-enabled web applications, while at the same time allows developers to contrib­
ute new applications that can be reused by others. The focus of our work is henee on: (1) simple and collaborative develop­
ment environments, (2) facilities for reusing the contributed functionality, and (3) minimal dependencies between
developers.

To achieve these requirements, Fortunata takes advantage of the functions provided by an open source wiki-engine and
an ontology management library (Jena)> simplifying their use by hiding their complexity to non-expert developers.

A usability study has been carried out in order to ensure that Fortunata-based applications fulfil basic usability require­
ments. The results of this study provided some improvements to the Fortunata API as well as a usability guide for Fortunata
developers. Following this guide, an initial study with real developers has been used to measure quantitative (complexity of
Fortunata-based development) and qualitative (contributively collaborative facilities) aspeets of Fortunata. Results show
good levéis of usability valúes and a reduction on the software development effort.

As a proof-of-concept, two applications (VPOET and OMEMO) were created by using the Fortunata framework. The exper-
iments show that this infrastructure is useful to implement real, reusable, and shareable semantically-enabled web applica­
tions. However, these applications also point out some of the main drawbacks of Fortunata, which are mainly due to the

limitations inherited fromJSPWiki in forms (e.g. no lists, no javascript support, no advanced editors, no dynamic page redi-
rection). Some of these limitations have been overeóme and others will be addressed in future versions.

Future versions of Fortunata will overeóme these drawbacks, providing users with better user interfaces. We will also
incorpórate some of the ideas obtained from the current work on Semantic Pipes, especially in what respeets to the integra-
tion of data that is coming from external sources, on the declarative creation of transformational workflows for semantic
data, and on the visualization providing better user interaction by means of integration with VPOET interactive templates.
Finally, some of the work that we are currently doing is not focused on the platform itself but on one of the applications that
were evaluated: VPOET. We are now proposing mechanisms to select the most appropriated témplate for a given user profile,
considering aspeets like its visual impairments, its interaction device, and its aesthetic preferences. This experiment, ad­
dressed at real user needs, will show the power of reusing different types of visualizations for the same semantic data, which
is something that is already been shown in VPOET and that has only been exploited so far by semantic portáis.

References

[1] K. Baker, S. Greenberg, C. Gutwin, Heuristic Evaluation of Groupware Based on the Mechanics of Collaboration, Lecture Notes in Computer Science 2254
(2001)123-140.

[2] J. Brook, Usability Evaluation in Industry, first ed., Taylor & Francis, 1996 (11 Jun 1996 Ch. SUS - A quick and dirty usability scale, pp. 189-194).
[3] M. Buffa, F. Gandon, G. Ereteo, P. Sander, C. Faron, Sweetwiki: a semantic wiki, Web Semant 6 (1) (2008) 84-97.
¡4] M. d'Aquin, E. Motta, M. Sabou, S. Angeletou, L. Gridinoc, V. López, D. Guidi, Toward a new generation of semantic web applications, Intelligent Systems

IEEE 23 (3) (2008) 20-28.
[5] T. Gruber, Collective knowledge systems: where the social web meets the semantic web, Journal of Web Semantics 6 (1) (2008) 4-13.
¡6] T. Heath, J. Domingue, P. Shabajee, 2006. User interaction and uptake challenges to successfully deploying semantic web technologies, in: Proceedings

of the Third International Semantic Web User Interaction Workshop (SWUI2006), Fifth International Semantic Web Conference (ISWC2006), 2006.
[7] A. Holzinger, Usability engineering methods for software developers, Communications of the ACM 48 (2005) 71-74.
¡8] H. Lausen, Y. Ding, M. Stollberg, D. Fensel, R Lara, S.-K. Han, Semantic web portáis: state-of-the-art survey, Journal of Knowledge Management 9 (5)

(2005) 40-49.
[9] C. Morbidoni, D.L. Phuoc, A Polleres, G. Tummarello, Previewing semantic web pipes, in: S. Bechhofer, M. Hauswirth, J. Hoffmann, M. Koubarakis (Eds.),

Proceedings of the Fifth European Semantic Web Conference (ESWC2008). No. 5021 in LNCS, Springer, 2008, pp. 843-848.
[10] J. Nielsen, R.L Mack, Usability Inspection Methods, Wiley & Sons, Inc., 1994 (Ch. 2: Heuristic Evaluation).
¡11] E. Oren, R. Delbru, K. Moller, M. Volkel, S. Handschuh, Annotation and navigation in semantic wikis, in: ESWC Workshop on Semantic Wikis, 2006.
¡12] E. Prud'hommeaux, A. Seaborne, SPARQL Query Language for RDF. Tech. Rep., W3C Recommendation, 2008.
¡13] D. Richards, A social software/Web 2.0 approach to collaborative knowledge engineering, Information Sciences 179 (15) (2009) 2515-2523.
¡14] M. Rico, D. Camacho, Corcho Óscar, VPOET: using a distributed collaborative platform for semantic web applications. in: C. Badica, G. Mangioni, V.

Carchiolo, D. Burdescu (Eds.). Proceedings of the Second International Symposium on Intelligent Distributed Computing (IDC2008). No. 162 in Studies
in Computational Intelligence, Springer, 2008 pp. 167-176.

[15] R. Rochen, M. Rosson, M. Pérez, End user Development of Web Applications, Springer, 2006 (Chapter 8, pp. 161-182).
¡16] B. Shneiderman, C. Plaisant, Designing the user interface:strategies for effective human-computer interaction, Adison-Wesley, 2005.
¡17] J. Yong, W. Shen, Y. Yang, Special issue on computer-supported cooperative work: techniques and applications, Information Sciences 179 (15) (2009)

2513-2514.

