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ABSTRACT

Neural networks, widely used in pattern recognition, security applications and robot control have been chosen for the 
task of object recognition within this system. One of the main drawbacks of the implementation of traditional neural 
networks in reconfigurable hardware is the huge resource consuming demand. This is due not only to their intrinsic 
parallelism, but also to the traditional big networks designed. However, modern FPGA architectures are perfectly suited 
for this kind of massive parallel computational needs. Therefore, our proposal is the implementation of Tiny Neural 
Networks, TNN –self-coined term–, in reconfigurable architectures. One of most important features of TNNs is their 
learning ability. Therefore, what we show here is the attempt to rise the autonomy features of the system, triggering a 
new learning phase, at run-time, when necessary. In this way, autonomous adaptation of the system is achieved. The 
system performs shape identification by the interpretation of object singularities. This is achieved by interconnecting 
several specialized TNN that work cooperatively. In order to validate the research, the system has been implemented and 
configured as a perceptron-like TNN with backpropagation learning and applied to the recognition of shapes. Simulation 
results show that this architecture has significant performance benefits.

Keywords: hardware  embedded  intelligence,  FPGA  embedded  system,  neural  networks,  pattern  recognition, 
autonomous system.

1. INTRODUCTION

One of the major problems in computer vision is to build systems with the ability to identify shapes in real  world 
scenarios [1], [2], [3], [4], [5], [6], [7]. The target application of our work is the correct identification of road traffic signs  
in images taken by a car mounted camera, [8], [9]. This paper shows the on-going work towards low cost FPGA-based 
object detection and recognition systems. It deals with the run-time learning and adaptation capabilities implemented. It 
is part of a broader line of research investigating methods of scaling high level, intelligent, cognitive architectures, into 
limited resources  embedded systems.  An adapted  Blackboard  architecture,  BB1/AIS [10],  [11],  is  the  architectural 
underlying framework on top of which the system is built.

The network chosen is a two layer perceptron-like TNN, with 30 and 3 neurons in each layer, and has been implemented 
on an Altera Cyclone II device. The system, based on a low-cost PAL standard video camera, has the required video 
preprocessing stages to adapt the pixel stream to the format required by the network. In order to reduce the size of the 
network to comply with the TNN definition, it is necessary to select a Region of Interest, RoI, within the whole image, to 
reduce the computational load necessary for the hardware implementation, since not all the information in the image is 
pertinent  for  the reference  application.  Besides,  signal  recognition  is  based  on the identification of  singularities   –
characteristics elements of shape.

The main contribution of this paper is the attempt to rise the autonomy features of the system, this is, making it able to 
adapt to unforeseen events or situations. For this reason, a mechanism for triggering a learning (re-training) phase if the 
system detects  either  a  false  positive or  false negative  has  been  implemented.  The implementation of  the  learning 
algorithm –variable learning rate  backpropagation–,  has  been done in  the PowerPC processor  available  in  a  Xilinx 
Virtex-II Pro device.  The reason to use a microprocessor instead of a custom hardware module is, besides the flexibility 
and reduced development times offered by a software approach, testing the capability, in terms of computational power, 
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of the processor to implement the learning task. As stated in the article, the backpropagation algorithm is not as fast as 
desired but the control-intensive part of the system is likely to be definitively implemented in an embedded processor.

When the learning phase is triggered, the data of the initial training of the network, done with 150 lists of three patterns,  
is retrieved and used as a seed for the new training process along with the input data (training pattern) that caused the 
false positive/negative. Therefore, since the weights and biases values of the network are already close to the solution, 
the training time is reduced. When this finishes, the new network parameters, as well as the training data, are stored to be 
used as  initial  seed for  future  learning  processes,  and the neural  network  reconfigured  to  reflect  the new acquired 
knowledge.

There are several  levels of parallelism in the implementation of the neural  network recognition system that  we are 
proposing: Parallelism among networks, among the layers of a network, among neurons and among connections. All of 
them are shown on the General Architecture of the system (Figure1). 

The number of “synapses” and multipliers included in a fully interconnected network is proportional to the squared total 
number of neurons. The speed slows down due to the increase in the number of multipliers, and the chip size or chip area  
increases significantly, which becomes one of the critical points in  TNN design. In order to solve this problem, the use 
of hardware multipliers seems to be an option to solve the chip size problem; as well as the design of neural networks  
without multipliers or reusable ones [13], [14]. 

Our work explores multiplier re-usability based on an internal bus structure. Taking into account the parallelism of the 
neural network model, it is possible to map the architecture on array processors, obtaining a linear growth in the number 
of multipliers. We have an ideal scenario for ANN implementation in embedded systems. Figure 2 shows a network 
interconnected by mean of an array processor model [15], [16], [17], [18].

Traffic  signal  and/or  pedestrian  recognition  are  two  of  the  most  relevant  applications.  These  networks  work 
cooperatively to obtain the classification of the image.

The main restriction comes with the complexity of the information contained in the image data, because it is sensible to 
changes of the environment. It is then necessary to have a recognition system that allows dynamic reconfiguration [1], 
[19].

An architecture that allows optimum usage of hardware resources was to be implemented due to the limitations in power 
and available area. The suggested system is formed by small Perceptron multilevel networks, and was implemented in an 
Altera Cyclone II FPGA.

2. CHARACTERISTICS OF THE SYSTEM ARCHITECTURE FOR THE FPGA BASED 
APPROACH

The requirements of recurrent learning processes can be satisfied by the reconfiguration and flexibility of FPGAs, [11],  
[20], [21]. Weight modification and architecture reconfiguration can be carried out at run time.
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Figure 1: General architecture of the system.



When  dealing  with  ANN implementation  in  hardware,  the  following  considerations  should  be  taken  into  account: 
frequency, precision, configuration issues, and parallelism. In order to improve general design characteristics, two units 
have been conceived: basic and control units.

Basic units (specialized neural networks) are in charge of signal processing and weight and bias data storage, including 
all  the  network  data  processing  (multiplication  of  the  weights  by  the  inputs,  accumulation  and  nonlinear  function 
activation). The control units work on the basis of signal transmission including parallel processing and the algorithmic 
datapath control.

By considering those units, the proposed design (as shown in Figure 3) has an efficient architecture based on specialized 
neural networks in pattern recognition, implemented in an FPGA.

3. UNITS

For achieving the learning operation the algorithm is divided in three phases, known as: feed-forward, back-propagation 
and up-date [22], [23], [24]. In the feed-forward phase the input signals propagate through the network layer by layer, 
eventually producing some response at the output of the network. This response is compared with the desired (target) 
response, generating error signals that are propagated in backward direction through the network. In this backward phase 
of operation, the free parameters of the network are adjusted so as to minimize the sum of square error. Finally, weights 
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Figure 3: System Architecture



and biases are updated using the data obtained in the previous phase. The process is repeated as many times as necessary  
in order to have a trained network. Usually this process is made using general-purpose computers, and is known as off-
line training. The three phases of algorithm are shown in Figure 4.

Since the proposed architecture is auto-reconfigurable during the execution time, separated modules where developed 
[12], [25]. 

For the system to carry out an on-line adaptation [3], [16], the same learning rules should be applied concurrently over a  
new pattern. When the network is reconfigured, the control unit executes the learning process concurrently, using the 
training patterns stored in the previos learning phase along with the new pattern to be recognized. This pattern is the one 
that triggered this learning phase..

When the learning process finishes, collected data is transmitted to the weights and bias network memories. This is 
carried out by the control unit, which makes them flow through the back-propagation level, directing this learning phase 
and making the FPGA get adapted.

Figure  5 shows the  implementation  of  the different  levels  of  the learning algorithm. The feed-forward  and update 
modules corresponding to the basic unit were implemented directly in the same FPGA (Altera Cyclone II), and they are 
executed concurrently in a foreground Process. 

To accomplish with the adaptation, an uncertainty computation module that is triggered after the feed-forward operation, 
determines  if  there  is  a  new  pattern  and  sends  a  request  to  the  control  unit  to  reconfigure  the  network.  The 
backpropagation module corresponding to on line learning was implemented in the PowerPC processor XILINX (Virtex 
II), as a background process.  

By means of a state machine, three modes of operation of the system were defined. In the Initialization mode, the 
system loads the initial  values of the weights and biases,  and begins the Classification mode. In this state,  the 
network works in feed-forward. When, as explained above, it detects a new pattern to apply to a new learning phase, 
it changes to the reconfiguration mode.. When this mode is over, the update is carried out in other to begin go back 
again into the classification mode. The different modes of operation and the states machine will be explained later in 
this paper.

4. SPECIALIZED TINY NEURAL NETWORKS

Considering the problems of size and scalability, we propose a design based on the mathematical model of the neural 
networks, similar to the model shown in Figure 6(a). 

As explained above, the synapse number is limited (network size) by the size of the internal memory of FPGA [26]. In 
addition, the network architecture (number of neurons and number of layers) is also limited by the hardware resources 
[27]. 

In order to avoid these difficulties, a Basic Processing Unit is suggested as the central component of the network. 
This unit is called the Knowledge Unit (KWU) and can be modified to feature one or several neurons. Each layer of 
the network is composed by several of these KWUs, obtaining different topologies according to the configuration of 
the internal registers of the system.
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Figure 6b shows the model of a Basic Learning Unit. The hardware architecture is obtained by directly mapping the high 
level, functional model of the perceptron neural network into its equivalent hardware representation. A data input vector 
(coming from the acquisition and pre-processing levels) and the external buses system (address, data and control) is used 
to interconnect the knowledge units with the general control of the system [8].

All  hardware  neurons  (Basic  Units),  are  formed  by  a  MAC  Unit  (multiplier  and  accumulator),  a  Serial  Unit 
(multiplexer), and the Non-linear Functions calculator, all of them interconnected by a parallel system bus as shown on 
Figure 6b.

The weight and bias memories have been implemented in the RAM modules embedded in the FPGA. These modules 
allow being accessed independently, so faster memory accesses are achieved thanks to this distributed memory scheme. 

Having the Learning Unit, it is easy to have a neural network interconnecting two or more Basic Units; depending on the 
number  of  layers  those  neurons  have  (Modular  and  Scalable  features  of  the  Architecture).  The  interconnection  is 
performed by an internal bus that transfers the data vectors of the previous stage. The data flow is controlled by a control 
unit through a protocol which indicates to the next layer on the network, the beginning and end of the information vector.

With the described architecture  for  the Basic and Control  units,  it  is  easy to build up a neural  network by simply 
interconnecting  two  or  more  couples  of  these  units,  depending  on  the  number  of  layers  required.  The  inter-layer 
connection is performed by sticking together data and control buses from each layer. The data flow is controlled by the 
control  unit  explained  above.  This  hardware  architecture  of  the  network  layers  confers  the  system modularity  and 
scalability features. This may be helpful for future and more powerful versions, implemented on bigger FPGAs..

The modular  design of the Control  unit  of the network layers  avoids the need for global  control  and a completely 
modular and scalable system is obtained. The main activities carried out by the Control Unit are signal transmission and 
learning algorithm execution.

The state machine of the Control Unit has been carefully designed to improve the system performance. Figure 7 shows 
the three different branches that implement the functional behavior previously described.

The design of the system architecture allows for several networks to work (classify) in parallel. Besides, the training 
process could be executed in another TNN concurrently.

In order to maintain the processing speed of a TNN in hardware and its versatility in simulations, the reconfiguration of 
the neural network on its different hardware levels has to be possible (Reconfiguration features). Different researches 
have revealed that general purpose processors can be used in order to reprogram the neural network. We could also use 
FPGAs to modify the bus structure and the Basic Unit processing by means of the change in the configuration registers 
[21].

The proposed system implements an heterogeneous architecture, combining the features of general purpose processors 
(programming easiness and flexibility) with FPGAs (parallel processing and, therefore, performance). 
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The specialized network design has an Uncertainty computation stage. Its main function is checking that the output data 
of the networks is somehow related to the output obtained with the training patterns, validating the recognition process. 
This happens when the uncertainty module reports a probability higher than 75%. On the other hand, if it is in a range  
between 50% and 75%, a reconfiguration request is asserted [28]. This probability levels have been empirically set. This 
way, the system is aware of what network was supposed to have identified the object, and therefore, train that network 
again with the new pattern (input data just analyzed). The stages of this uncertainty module are shown on Figure 8.

When this request is asserted, input data is acquired and attached to the appropriate training memory (initially filled with 
the patterns of the initial on-line training) as a new pattern for the following training process. Since the networks are 
trained to identify singularities, the data stored in memory are the pixels related to these singularities, not the entire 
image.

When this on-line training (actually, this training is an adaptation of the network, because it was initially trained, but is 
now re-trained to get adapted, taking advantage of the initial training) is finished, the hardware modules have been 
reconfigured: training memories (content and dimensions), as well as weight and bias memories have been updated, with 
new values obtained at the end of the process.

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC
*

SERIALIZER
**

BIAS

+n

BIAS ADDER
ACTIVATION 

FUNCTION

LAYER CONTROL

CONTROL

DATA

*
MAC = MULTIPLY ACCUMULATE

**
NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

X1

Xn

X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1

S x R 

S x 1

S x 1 S x 1

S = Number of Neurons

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC
*

SERIALIZER
**

BIAS

+n

BIAS ADDER
ACTIVATION 

FUNCTION

LAYER CONTROL

CONTROL

DATA

*
MAC = MULTIPLY ACCUMULATE

**
NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC
*

SERIALIZER
**

BIAS

+n

BIAS ADDER
ACTIVATION 

FUNCTION

LAYER CONTROL

CONTROL

DATA

*
MAC = MULTIPLY ACCUMULATE

**
NOT IN OUTPUT LAYER

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC
*

SERIALIZER
**

BIAS

+n

BIAS ADDER
ACTIVATION 

FUNCTION

LAYER CONTROL

CONTROL

DATA

*
MAC = MULTIPLY ACCUMULATE

**
NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

X1

Xn

X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1

S x R 

S x 1

S x 1 S x 1

S = Number of Neurons

X1

Xn

X2

W1

b1

p

1
+ f1

X1X1X1

XnXnXn

X2X2X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1

S x R 

S x 1

S x 1 S x 1

S = Number of Neurons

 Figure 6: TNN model



5. INTERCONNECTION OF THE SPECIALIZED TNN TO THE GLOBAL CONTROL SYSTEM

The designed system is highly parallel so it is able to execute several tasks at the same time. The networks in our system 
are also cooperative so they are able to solve complex issues through the contribution of each small network. As an 
example of the system application, the networks can be trained to identify characteristic elements of shape (singularities) 
such as right-angled corners, round segments and acute-angled corners. These singularities are used for the recognition 
of rectangular, circular and triangular shapes. Autonomous robots or intelligent systems for cars may use this kind of 
system [29]. 

 

State Machine of the System
a) Initialization b) Classification c) Reconfiguration 

Initial
State

Load Weights

Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training 
Memory

Up Date
Memory

Initialization

State Machine of the System
a) Initialization b) Classification c) Reconfiguration 

Initial
State

Load Weights

Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training 
Memory

Up Date
Memory

Initialization
Initial
State

Load Weights

Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training 
Memory

Up Date
Memory

Initialization

Figure 7: System operation. State machine.

 

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Uncertainty stage: Comparator, 

Detector Sequence, Detector Uncertainty

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Uncertainty stage: Comparator, 

Detector Sequence, Detector Uncertainty

Figure 8: Uncertainty module.



The  decision  to  have  the  communication  of  the  global  control  system  through  a  bus  structure  was  taken  after 
consideration of the efficiency level that we wanted to achieve. In this way the memory blocks share the same space on 
the system and can be accessed with a logic address, having as a result a distributed memory system on the networks 
with a centralized control. The addressing mode was considered to be the optimum model because it does not require a 
redundant memory for the networks, and only during the reconfiguration process may exist redundancy in the network 
memories that have to be reconfigured, achieving a faster convergence of the algorithm (Figure 9).

The learning memory (shown on Figure 3) is non volatile and has all the required training patterns for the training of 
each of the specialized networks.

The reconfiguration takes place right  when a new image must  be recognized.  Therefore,  the architecture has  to be 
modified, and the new training patterns and targets added to the memory. When the training process ends, the memories 
are updated and the network connections have been already reconfigured so a new recognition process may begin.

According to the research, there are different ways of reconfiguration on a neural network. During the execution time, 
the number of neurons on the input layer can be modified or enough knowledge can be given to the network by changing 
the training memory content. Both of these methods explained lead to the recognition of the image.

6. RESULTS

The initial weight and bias data stored in the memory modules were obtained by an off-line learning process, using a 
backpropagation algorithm. The results obtained in the networks simulation are shown on Figures 10, 11 and 12.
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Figure 11: Another example of the on-line reconfiguration process
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In order to obtain the data of the memories of weights, 450 patterns of training with different characteristics have been 
used, taking into account the fact that all correspond to an image of the same class (rectangular, circular and triangular 
shapes)

The training method works in batch mode, which means that once all the entries were presented, the learning stage 
updates the weights and bias according to the decreasing moment of the gradient and an adaptive learning scale [23]. 

Some Maltab results are shown on figure 10, where the graph shows the stages used for the algorithm to converge with 
the targets of the parameters [30].

Whenever a signal for reconfiguration is produced, coming from the Uncertainty module, the on-line reconfiguration 
process takes place. Figure 11 and figure 12 show two examples of the on-line reconfiguration process (means square 
error  and  learning  rate  versus  epoch).  Both  show the  number  of  necessary  iterations  of  re-training for  one of  the 
networks specialized.

As a design premise we have always had in mind a design for reuse methodology. Therefore, a big effort has been made 
to specify as many generic hardware modules as possible. For this reason, the architecture and VHDL description of the 
TNN has been improved so that later versions, apart from the basic functionality mentioned above, make possible their 
building  N-layer,  m-output  perceptrons  in  the  easiest  and  most-automated  way  possible.  These  features  have  been 
incorporated so that we shall be able, in the future, to test the system architecture on larger FPGAs.

Preliminary synthesis (no synthesis effort or optimizations directed to the synthesizer) results for Altera CYCLONE 
EP1C20F400C6 and CYCLONE-II  EP2C35F672C6 devices  have been obtained with the Altera Quartus  II  (v.  6.0) 
software package. The proposed architecture (Q8.16) fits in one CYCLONE device, but remaining resources, mainly 
memory, are a bit scarce. Therefore, the system has also been implemented in the CYCLONE-II device. Functional and 
post-fitting simulations with  Mentor Graphics ModelSim simulation environment show how the real-time restrictions 
imposed on the system and the functional specifications are met.

Fitting results are shown on Figure 13(a) for the whole Recognition System (including the TNN, Figure 13(b), and an 
image preprocessing stage). The implemented TNN has 30 neurons in the input layer, and 3 in the output layer. Fitting 
details for the most important blocks of the architecture are also shown.

Fig. 13 shows the available resources for the Learning Algorithm implementation on a Xilinx Virtex-II PowerPC. It was 
coded in C language (400 code lines). Some interesting data is:

• Learning Rate α = 0.1: Reconf. Time = 0.3sec., with 12 iterations.

• Learning Rate α = 0.01. Reconf. Time = 0.8 sec., with 58 iterations.
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7. CONCLUSIONS

A new hardware architecture system for neural network based on specialized Tiny Neural Networks (TNN) for image 
recognition has been proposed and designed . One of the most important features of Tiny Neural Networks (TNN) is 
their on-line learning ability. These TNN are also cooperative in order to solve complex recognition problems. As an 
example  of  the  system application,  TNN can  be  trained  to  identify  special  points  on  an  image.  These  points  are 
characteristic elements of shape (singularities) such as right-angled corners, round segments and acute-angled corners. 
The main contribution of this paper is the attempt to rise the autonomy features of the system, this is, making it able to 
adapt to unforeseen events or situations. For this reason, a mechanism for triggering a learning (re-training) phase if the 
system detects  either  a  false  positive or  false negative  has  been  implemented.  The implementation of  the  learning 
algorithm –variable learning rate  backpropagation–,  has  been done in  the PowerPC processor  available  in  a  Xilinx 
Virtex-II Pro device. As stated in the article, the backpropagation algorithm is not as fast as desired but the control-
intensive part of the system is likely to be definitively implemented in an embedded processor.
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