
Approach to an FPGA embedded, autonomous object recognition
system: run-time learning and adaptation

Rubén Salvador, Carlos Terleira, Félix Moreno and Teresa Riesgo
Centro de Electrónica Industrial, http://www.cei.upm.es

Departamento de Automática, Ingeniería Electrónica e Informática Industrial
Universidad Politécnica de Madrid.

felix.moreno@upm.es

ABSTRACT

Neural networks, widely used in pattern recognition, security applications and robot control have been chosen for the
task of object recognition within this system. One of the main drawbacks of the implementation of traditional neural
networks in reconfigurable hardware is the huge resource consuming demand. This is due not only to their intrinsic
parallelism, but also to the traditional big networks designed. However, modern FPGA architectures are perfectly suited
for this kind of massive parallel computational needs. Therefore, our proposal is the implementation of Tiny Neural
Networks, TNN –self-coined term–, in reconfigurable architectures. One of most important features of TNNs is their
learning ability. Therefore, what we show here is the attempt to rise the autonomy features of the system, triggering a
new learning phase, at run-time, when necessary. In this way, autonomous adaptation of the system is achieved. The
system performs shape identification by the interpretation of object singularities. This is achieved by interconnecting
several specialized TNN that work cooperatively. In order to validate the research, the system has been implemented and
configured as a perceptron-like TNN with backpropagation learning and applied to the recognition of shapes. Simulation
results show that this architecture has significant performance benefits.

Keywords: hardware embedded intelligence, FPGA embedded system, neural networks, pattern recognition,
autonomous system.

1. INTRODUCTION

One of the major problems in computer vision is to build systems with the ability to identify shapes in real world
scenarios [1], [2], [3], [4], [5], [6], [7]. The target application of our work is the correct identification of road traffic signs
in images taken by a car mounted camera, [8], [9]. This paper shows the on-going work towards low cost FPGA-based
object detection and recognition systems. It deals with the run-time learning and adaptation capabilities implemented. It
is part of a broader line of research investigating methods of scaling high level, intelligent, cognitive architectures, into
limited resources embedded systems. An adapted Blackboard architecture, BB1/AIS [10], [11], is the architectural
underlying framework on top of which the system is built.

The network chosen is a two layer perceptron-like TNN, with 30 and 3 neurons in each layer, and has been implemented
on an Altera Cyclone II device. The system, based on a low-cost PAL standard video camera, has the required video
preprocessing stages to adapt the pixel stream to the format required by the network. In order to reduce the size of the
network to comply with the TNN definition, it is necessary to select a Region of Interest, RoI, within the whole image, to
reduce the computational load necessary for the hardware implementation, since not all the information in the image is
pertinent for the reference application. Besides, signal recognition is based on the identification of singularities –
characteristics elements of shape.

The main contribution of this paper is the attempt to rise the autonomy features of the system, this is, making it able to
adapt to unforeseen events or situations. For this reason, a mechanism for triggering a learning (re-training) phase if the
system detects either a false positive or false negative has been implemented. The implementation of the learning
algorithm –variable learning rate backpropagation–, has been done in the PowerPC processor available in a Xilinx
Virtex-II Pro device. The reason to use a microprocessor instead of a custom hardware module is, besides the flexibility
and reduced development times offered by a software approach, testing the capability, in terms of computational power,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of the processor to implement the learning task. As stated in the article, the backpropagation algorithm is not as fast as
desired but the control-intensive part of the system is likely to be definitively implemented in an embedded processor.

When the learning phase is triggered, the data of the initial training of the network, done with 150 lists of three patterns,
is retrieved and used as a seed for the new training process along with the input data (training pattern) that caused the
false positive/negative. Therefore, since the weights and biases values of the network are already close to the solution,
the training time is reduced. When this finishes, the new network parameters, as well as the training data, are stored to be
used as initial seed for future learning processes, and the neural network reconfigured to reflect the new acquired
knowledge.

There are several levels of parallelism in the implementation of the neural network recognition system that we are
proposing: Parallelism among networks, among the layers of a network, among neurons and among connections. All of
them are shown on the General Architecture of the system (Figure1).

The number of “synapses” and multipliers included in a fully interconnected network is proportional to the squared total
number of neurons. The speed slows down due to the increase in the number of multipliers, and the chip size or chip area
increases significantly, which becomes one of the critical points in TNN design. In order to solve this problem, the use
of hardware multipliers seems to be an option to solve the chip size problem; as well as the design of neural networks
without multipliers or reusable ones [13], [14].

Our work explores multiplier re-usability based on an internal bus structure. Taking into account the parallelism of the
neural network model, it is possible to map the architecture on array processors, obtaining a linear growth in the number
of multipliers. We have an ideal scenario for ANN implementation in embedded systems. Figure 2 shows a network
interconnected by mean of an array processor model [15], [16], [17], [18].

Traffic signal and/or pedestrian recognition are two of the most relevant applications. These networks work
cooperatively to obtain the classification of the image.

The main restriction comes with the complexity of the information contained in the image data, because it is sensible to
changes of the environment. It is then necessary to have a recognition system that allows dynamic reconfiguration [1],
[19].

An architecture that allows optimum usage of hardware resources was to be implemented due to the limitations in power
and available area. The suggested system is formed by small Perceptron multilevel networks, and was implemented in an
Altera Cyclone II FPGA.

2. CHARACTERISTICS OF THE SYSTEM ARCHITECTURE FOR THE FPGA BASED
APPROACH

The requirements of recurrent learning processes can be satisfied by the reconfiguration and flexibility of FPGAs, [11],
[20], [21]. Weight modification and architecture reconfiguration can be carried out at run time.

Global
Control

System Bus

Neuronal Net1 Neuronal Net2 Neuronal Net3

Input Vector

General Architecture of the System
a) Net, b) Layers, c) Neurons, d) Links

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Global
Control

System Bus

Neuronal Net1 Neuronal Net2 Neuronal Net3

Input Vector

General Architecture of the System
a) Net, b) Layers, c) Neurons, d) Links

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Layer

neuron

link

Figure 1: General architecture of the system.

When dealing with ANN implementation in hardware, the following considerations should be taken into account:
frequency, precision, configuration issues, and parallelism. In order to improve general design characteristics, two units
have been conceived: basic and control units.

Basic units (specialized neural networks) are in charge of signal processing and weight and bias data storage, including
all the network data processing (multiplication of the weights by the inputs, accumulation and nonlinear function
activation). The control units work on the basis of signal transmission including parallel processing and the algorithmic
datapath control.

By considering those units, the proposed design (as shown in Figure 3) has an efficient architecture based on specialized
neural networks in pattern recognition, implemented in an FPGA.

3. UNITS

For achieving the learning operation the algorithm is divided in three phases, known as: feed-forward, back-propagation
and up-date [22], [23], [24]. In the feed-forward phase the input signals propagate through the network layer by layer,
eventually producing some response at the output of the network. This response is compared with the desired (target)
response, generating error signals that are propagated in backward direction through the network. In this backward phase
of operation, the free parameters of the network are adjusted so as to minimize the sum of square error. Finally, weights

multiplier

adder

X1X2Xn

12ω
11ω

1nω

22ω
21ω

2nω

2nω
1nω

nnω

Array processor

* *

+ +

MAC

multiplier

adder

X1X1X2X2XnXn

12ω
11ω

1nω

12ω 12ω
11ω 11ω

1nω 1nω

22ω
21ω

2nω

22ω
21ω

2nω

22ω 22ω
21ω 21ω

2nω 2nω

2nω
1nω

nnω

2nω
1nω

nnω

2nω 2nω
1nω 1nω

nnω nnω

Array processor

* *

+ +

MAC

Figure 2: Network example.

Figure 3: System Architecture

and biases are updated using the data obtained in the previous phase. The process is repeated as many times as necessary
in order to have a trained network. Usually this process is made using general-purpose computers, and is known as off-
line training. The three phases of algorithm are shown in Figure 4.

Since the proposed architecture is auto-reconfigurable during the execution time, separated modules where developed
[12], [25].

For the system to carry out an on-line adaptation [3], [16], the same learning rules should be applied concurrently over a
new pattern. When the network is reconfigured, the control unit executes the learning process concurrently, using the
training patterns stored in the previos learning phase along with the new pattern to be recognized. This pattern is the one
that triggered this learning phase..

When the learning process finishes, collected data is transmitted to the weights and bias network memories. This is
carried out by the control unit, which makes them flow through the back-propagation level, directing this learning phase
and making the FPGA get adapted.

Figure 5 shows the implementation of the different levels of the learning algorithm. The feed-forward and update
modules corresponding to the basic unit were implemented directly in the same FPGA (Altera Cyclone II), and they are
executed concurrently in a foreground Process.

To accomplish with the adaptation, an uncertainty computation module that is triggered after the feed-forward operation,
determines if there is a new pattern and sends a request to the control unit to reconfigure the network. The
backpropagation module corresponding to on line learning was implemented in the PowerPC processor XILINX (Virtex
II), as a background process.

By means of a state machine, three modes of operation of the system were defined. In the Initialization mode, the
system loads the initial values of the weights and biases, and begins the Classification mode. In this state, the
network works in feed-forward. When, as explained above, it detects a new pattern to apply to a new learning phase,
it changes to the reconfiguration mode.. When this mode is over, the update is carried out in other to begin go back
again into the classification mode. The different modes of operation and the states machine will be explained later in
this paper.

4. SPECIALIZED TINY NEURAL NETWORKS

Considering the problems of size and scalability, we propose a design based on the mathematical model of the neural
networks, similar to the model shown in Figure 6(a).

As explained above, the synapse number is limited (network size) by the size of the internal memory of FPGA [26]. In
addition, the network architecture (number of neurons and number of layers) is also limited by the hardware resources
[27].

In order to avoid these difficulties, a Basic Processing Unit is suggested as the central component of the network.
This unit is called the Knowledge Unit (KWU) and can be modified to feature one or several neurons. Each layer of
the network is composed by several of these KWUs, obtaining different topologies according to the configuration of
the internal registers of the system.

Backpropagation
Module

Update
Module

Feedforward
Module

Backpropagation
Module

Backpropagation
Module

Update
Module
Update
Module

Feedforward
Module

Feedforward
Module

Figure 4: Sequential Algorithm for Learning Operation

Figure 6b shows the model of a Basic Learning Unit. The hardware architecture is obtained by directly mapping the high
level, functional model of the perceptron neural network into its equivalent hardware representation. A data input vector
(coming from the acquisition and pre-processing levels) and the external buses system (address, data and control) is used
to interconnect the knowledge units with the general control of the system [8].

All hardware neurons (Basic Units), are formed by a MAC Unit (multiplier and accumulator), a Serial Unit
(multiplexer), and the Non-linear Functions calculator, all of them interconnected by a parallel system bus as shown on
Figure 6b.

The weight and bias memories have been implemented in the RAM modules embedded in the FPGA. These modules
allow being accessed independently, so faster memory accesses are achieved thanks to this distributed memory scheme.

Having the Learning Unit, it is easy to have a neural network interconnecting two or more Basic Units; depending on the
number of layers those neurons have (Modular and Scalable features of the Architecture). The interconnection is
performed by an internal bus that transfers the data vectors of the previous stage. The data flow is controlled by a control
unit through a protocol which indicates to the next layer on the network, the beginning and end of the information vector.

With the described architecture for the Basic and Control units, it is easy to build up a neural network by simply
interconnecting two or more couples of these units, depending on the number of layers required. The inter-layer
connection is performed by sticking together data and control buses from each layer. The data flow is controlled by the
control unit explained above. This hardware architecture of the network layers confers the system modularity and
scalability features. This may be helpful for future and more powerful versions, implemented on bigger FPGAs..

The modular design of the Control unit of the network layers avoids the need for global control and a completely
modular and scalable system is obtained. The main activities carried out by the Control Unit are signal transmission and
learning algorithm execution.

The state machine of the Control Unit has been carefully designed to improve the system performance. Figure 7 shows
the three different branches that implement the functional behavior previously described.

The design of the system architecture allows for several networks to work (classify) in parallel. Besides, the training
process could be executed in another TNN concurrently.

In order to maintain the processing speed of a TNN in hardware and its versatility in simulations, the reconfiguration of
the neural network on its different hardware levels has to be possible (Reconfiguration features). Different researches
have revealed that general purpose processors can be used in order to reprogram the neural network. We could also use
FPGAs to modify the bus structure and the Basic Unit processing by means of the change in the configuration registers
[21].

The proposed system implements an heterogeneous architecture, combining the features of general purpose processors
(programming easiness and flexibility) with FPGAs (parallel processing and, therefore, performance).

Update
Module

Feedforward
Module

Backpropagation
Module

Reconfiguration

Foreground
Process

Background
Process

Update
Module
Update
Module

Feedforward
Module

Feedforward
Module

Backpropagation
Module

Backpropagation
Module

Reconfiguration

Foreground
Process

Background
Process

Figure 5: Segmentation of the algorithms for Learning Operation

The specialized network design has an Uncertainty computation stage. Its main function is checking that the output data
of the networks is somehow related to the output obtained with the training patterns, validating the recognition process.
This happens when the uncertainty module reports a probability higher than 75%. On the other hand, if it is in a range
between 50% and 75%, a reconfiguration request is asserted [28]. This probability levels have been empirically set. This
way, the system is aware of what network was supposed to have identified the object, and therefore, train that network
again with the new pattern (input data just analyzed). The stages of this uncertainty module are shown on Figure 8.

When this request is asserted, input data is acquired and attached to the appropriate training memory (initially filled with
the patterns of the initial on-line training) as a new pattern for the following training process. Since the networks are
trained to identify singularities, the data stored in memory are the pixels related to these singularities, not the entire
image.

When this on-line training (actually, this training is an adaptation of the network, because it was initially trained, but is
now re-trained to get adapted, taking advantage of the initial training) is finished, the hardware modules have been
reconfigured: training memories (content and dimensions), as well as weight and bias memories have been updated, with
new values obtained at the end of the process.

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC
*

SERIALIZER
**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

*
MAC = MULTIPLY ACCUMULATE

**
NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

X1

Xn

X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1

S x R

S x 1

S x 1 S x 1

S = Number of Neurons

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC
*

SERIALIZER
**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

*
MAC = MULTIPLY ACCUMULATE

**
NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC
*

SERIALIZER
**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

*
MAC = MULTIPLY ACCUMULATE

**
NOT IN OUTPUT LAYER

Data Bus Input Vector

DataOut

WEIGHTS

MEMORY MAC
*

SERIALIZER
**

BIAS

+n

BIAS ADDER
ACTIVATION

FUNCTION

LAYER CONTROL

CONTROL

DATA

*
MAC = MULTIPLY ACCUMULATE

**
NOT IN OUTPUT LAYER

b) Electronic Model
Basic Processing Unit of ANN

X1

Xn

X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1

S x R

S x 1

S x 1 S x 1

S = Number of Neurons

X1

Xn

X2

W1

b1

p

1
+ f1

X1X1X1

XnXnXn

X2X2X2

W1

b1

p

1
+ f1

a = f (Wp +b)

a

a) Mathematic Model
Layer of S Neurons, abbreviated notation

R

R x 1

S x R

S x 1

S x 1 S x 1

S = Number of Neurons

 Figure 6: TNN model

5. INTERCONNECTION OF THE SPECIALIZED TNN TO THE GLOBAL CONTROL SYSTEM

The designed system is highly parallel so it is able to execute several tasks at the same time. The networks in our system
are also cooperative so they are able to solve complex issues through the contribution of each small network. As an
example of the system application, the networks can be trained to identify characteristic elements of shape (singularities)
such as right-angled corners, round segments and acute-angled corners. These singularities are used for the recognition
of rectangular, circular and triangular shapes. Autonomous robots or intelligent systems for cars may use this kind of
system [29].

State Machine of the System
a) Initialization b) Classification c) Reconfiguration

Initial
State

Load Weights

Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training
Memory

Up Date
Memory

Initialization

State Machine of the System
a) Initialization b) Classification c) Reconfiguration

Initial
State

Load Weights

Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training
Memory

Up Date
Memory

Initialization
Initial
State

Load Weights

Layer_In

Load Weights
Layer_Out

Classification

Execute
Layer_In

Execute
Layer_Out

Reconfiguration

Signal
Recognition

Load new
shape

Read training
Memory

Up Date
Memory

Initialization

Figure 7: System operation. State machine.

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Uncertainty stage: Comparator,

Detector Sequence, Detector Uncertainty

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Signal
Valid

> Threshold

COMPARATOR
DETECTOR
SEQUENCE

DETECTOR
UNCERTAINTY

cha

CONTROL

CONTROLDATA OUT

Signal
No-Valid

Reconfig

Uncertainty stage: Comparator,

Detector Sequence, Detector Uncertainty

Figure 8: Uncertainty module.

The decision to have the communication of the global control system through a bus structure was taken after
consideration of the efficiency level that we wanted to achieve. In this way the memory blocks share the same space on
the system and can be accessed with a logic address, having as a result a distributed memory system on the networks
with a centralized control. The addressing mode was considered to be the optimum model because it does not require a
redundant memory for the networks, and only during the reconfiguration process may exist redundancy in the network
memories that have to be reconfigured, achieving a faster convergence of the algorithm (Figure 9).

The learning memory (shown on Figure 3) is non volatile and has all the required training patterns for the training of
each of the specialized networks.

The reconfiguration takes place right when a new image must be recognized. Therefore, the architecture has to be
modified, and the new training patterns and targets added to the memory. When the training process ends, the memories
are updated and the network connections have been already reconfigured so a new recognition process may begin.

According to the research, there are different ways of reconfiguration on a neural network. During the execution time,
the number of neurons on the input layer can be modified or enough knowledge can be given to the network by changing
the training memory content. Both of these methods explained lead to the recognition of the image.

6. RESULTS

The initial weight and bias data stored in the memory modules were obtained by an off-line learning process, using a
backpropagation algorithm. The results obtained in the networks simulation are shown on Figures 10, 11 and 12.

weights of
the neuron 1

weights of the
N neurons

Neuronal Specialized
Network

Control address map

weights and bias memories of
the neuronal specialized network

Address space
“Window”

Neuronal Specialized
Network

Neuronal Specialized
Network

Physical address 

Physical address 

Logical address

weights of
the neuron 1

weights of the
N neurons

Neuronal Specialized
Network

Control address map

weights and bias memories of
the neuronal specialized network

Address space
“Window”

Neuronal Specialized
Network

Neuronal Specialized
Network

Physical address 

Physical address 

Logical address

Figure 9: System memory map.

0 200 400 600 800 1000 1200 1400 1600 1800
0.8

1

1.2

1.4

1.6
x 10

­3

M
ea

n
sq

ua
re

 e
rr

or

0 200 400 600 800 1000 1200 1400 1600 1800
1

1.5

2

2.5

3
x 10

­4

Epoch

Le
ar

ni
ng

 ra
te

Figure 10: On-line reconfiguration process

Figure 11: Another example of the on-line reconfiguration process

(a) Training

(b) Simulation

(a) Training

(b) Simulation

Figure 12: Training results.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.8

1

1.2

1.4
x 10

­3

M
ea

n
sq

ua
re

 e
rro

r

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1

2

3

4
x 10

­4

Epoch

Le
ar

ni
ng

 ra
te

In order to obtain the data of the memories of weights, 450 patterns of training with different characteristics have been
used, taking into account the fact that all correspond to an image of the same class (rectangular, circular and triangular
shapes)

The training method works in batch mode, which means that once all the entries were presented, the learning stage
updates the weights and bias according to the decreasing moment of the gradient and an adaptive learning scale [23].

Some Maltab results are shown on figure 10, where the graph shows the stages used for the algorithm to converge with
the targets of the parameters [30].

Whenever a signal for reconfiguration is produced, coming from the Uncertainty module, the on-line reconfiguration
process takes place. Figure 11 and figure 12 show two examples of the on-line reconfiguration process (means square
error and learning rate versus epoch). Both show the number of necessary iterations of re-training for one of the
networks specialized.

As a design premise we have always had in mind a design for reuse methodology. Therefore, a big effort has been made
to specify as many generic hardware modules as possible. For this reason, the architecture and VHDL description of the
TNN has been improved so that later versions, apart from the basic functionality mentioned above, make possible their
building N-layer, m-output perceptrons in the easiest and most-automated way possible. These features have been
incorporated so that we shall be able, in the future, to test the system architecture on larger FPGAs.

Preliminary synthesis (no synthesis effort or optimizations directed to the synthesizer) results for Altera CYCLONE
EP1C20F400C6 and CYCLONE-II EP2C35F672C6 devices have been obtained with the Altera Quartus II (v. 6.0)
software package. The proposed architecture (Q8.16) fits in one CYCLONE device, but remaining resources, mainly
memory, are a bit scarce. Therefore, the system has also been implemented in the CYCLONE-II device. Functional and
post-fitting simulations with Mentor Graphics ModelSim simulation environment show how the real-time restrictions
imposed on the system and the functional specifications are met.

Fitting results are shown on Figure 13(a) for the whole Recognition System (including the TNN, Figure 13(b), and an
image preprocessing stage). The implemented TNN has 30 neurons in the input layer, and 3 in the output layer. Fitting
details for the most important blocks of the architecture are also shown.

Fig. 13 shows the available resources for the Learning Algorithm implementation on a Xilinx Virtex-II PowerPC. It was
coded in C language (400 code lines). Some interesting data is:

• Learning Rate α = 0.1: Reconf. Time = 0.3sec., with 12 iterations.

• Learning Rate α = 0.01. Reconf. Time = 0.8 sec., with 58 iterations.

Recognition System

119.32 MHzFrequency

47 / 105 (45 %)M4Ks

72,416 / 483,840 (15 %)Total Memory Bits

4,437 / 33,216 (13 %)Logic Elements (LEs)

Recognition System

119.32 MHzFrequency

47 / 105 (45 %)M4Ks

72,416 / 483,840 (15 %)Total Memory Bits

4,437 / 33,216 (13 %)Logic Elements (LEs)

119.32 MHzFrequency

1 / 10534 / 105 (33 %)M4Ks

2880 /483,84024480/483,840(5%)Total Mem. Bits

275 / 33,2162924 / 33,216 (9%)LEs

RoI Extr.+ RoI Buf.BKU

TNN

119.32 MHzFrequency

1 / 10534 / 105 (33 %)M4Ks

2880 /483,84024480/483,840(5%)Total Mem. Bits

275 / 33,2162924 / 33,216 (9%)LEs

RoI Extr.+ RoI Buf.BKU

TNN

(a) (b)

Figure 13: Recognition system implementation results.

7. CONCLUSIONS

A new hardware architecture system for neural network based on specialized Tiny Neural Networks (TNN) for image
recognition has been proposed and designed . One of the most important features of Tiny Neural Networks (TNN) is
their on-line learning ability. These TNN are also cooperative in order to solve complex recognition problems. As an
example of the system application, TNN can be trained to identify special points on an image. These points are
characteristic elements of shape (singularities) such as right-angled corners, round segments and acute-angled corners.
The main contribution of this paper is the attempt to rise the autonomy features of the system, this is, making it able to
adapt to unforeseen events or situations. For this reason, a mechanism for triggering a learning (re-training) phase if the
system detects either a false positive or false negative has been implemented. The implementation of the learning
algorithm –variable learning rate backpropagation–, has been done in the PowerPC processor available in a Xilinx
Virtex-II Pro device. As stated in the article, the backpropagation algorithm is not as fast as desired but the control-
intensive part of the system is likely to be definitively implemented in an embedded processor.

ACKNOWLEDGMENT

This development is carried out in the ASISTENTUR project (Advanced Driver Assistance System for Urban
Environments, TRA2004-07441-C03-03/AUT,) with the support of the Spanish Ministry of Science, under the National
R&D Plan.

REFERENCES

[1] A. de la Escalera, L. E. Moreno, M. A. Salichs, J. M. Armingol, Road traffic sign detection and classification, IEEE
Transactions on Industrial Electronics, 1997, Vol. 44, pp 848-859.

[2] A. de la Escalera, L. Moreno, E. A. Puente, M. A. Salichs, Neural traffic sign recognition for autonomous vehicles,
IEEE Int. Conf. Industrial Electronics, Control and Instrumentation, 1994, Vol. 2, pp 841-846.

[3] T. Theocharides, G. Link, N. Vijaykrishnan, M. J. Invin, V. Srikantarn, A generic reconfigurable neural network
architecture as a network on chip, Proceedings, IEEE International SOC conference, 2004, pp 191-194

[4] S. Estable, J. Schick, F. Stein, R. Janssen, R. Ott, W. Ritter, Y. J. Zheng, A real time traffic sign recognition system,
Proceedings of the Intelligent Vehicles Symposium, 1994, pp 213-218.

[5] J. Torresen, J. W. Bakke, L. Sekanina. Efficient recognition of speed limit signs, Proceedings. IEEE International
Conference on Intelligent Transportation Systems, 2004, pp 652-656.

[6] V. Moreno, A. Ledezma, A. Sanchis, A static images based-system for traffic signs detection, Proceedings of the
IASTED international conference on artificial intelligence and applications, 2006, pp 445-450.

Figure 14: Learning Algorithm Implementation.

- DDR_512MB_64Mx64_rank2_row13_col10_cl2_5 = 256 MB

- DDR_SDRAM_64Mx64 Dual Rank = 256 MB

512 MBTotal Off Chip Memory

208 KBOn Chip Memory

16 KBInstruction Cache

16 KBData Cache

FPGA JTAGDebug interface

100.000000 MHzBus clock frequency

300.000000 MHzProcessor clock frequency

PPC 405Processor

-7Speed Grade

ff896Package

xc2vp30Device

virtex2pFamily

Xilinx XUP Virtex-II Pro Development System Rev CTarget Board

Created by Base System Builder Wizard for Xilinx EDK 8.2 Build EDK_Im.14

- DDR_512MB_64Mx64_rank2_row13_col10_cl2_5 = 256 MB

- DDR_SDRAM_64Mx64 Dual Rank = 256 MB

512 MBTotal Off Chip Memory

208 KBOn Chip Memory

16 KBInstruction Cache

16 KBData Cache

FPGA JTAGDebug interface

100.000000 MHzBus clock frequency

300.000000 MHzProcessor clock frequency

PPC 405Processor

-7Speed Grade

ff896Package

xc2vp30Device

virtex2pFamily

Xilinx XUP Virtex-II Pro Development System Rev CTarget Board

Created by Base System Builder Wizard for Xilinx EDK 8.2 Build EDK_Im.14

[7] G. Adorni, V. D’Andrea, G. Destri, M. Mordonini, Shape searching in real word images: a cnn based approach,
Proceedings Fourth IEEE International Workshop on Cellular neural networks and their applications, 1996, pp 213-
218.

[8] J. Alarcón, R. Salvador, F. Moreno, I. López, A new real-time hardware architecture for road line tracking using a
particle filter, Proceedings of 32nd annual Conference of the IEEE Industrial Electronics Society, IECON’06, Paris
2006, pp 736-741.

[9] I. López, R. Salvador, J. Alarcón, F. Moreno, Architectural design for a low cost fpga-based traffic signal detection
system in vehicles, volume 65900, pages 65900M. SPIE, 2007, Gran Canaria. Spain

[10] BB1 v3.2 Manual. Michael Wolverton, Lee Brownston. Draft, Report No. KSL 94-XX, March 1994. Knowledge
Systems Laboratory, Department of Computer Science, Stanford University, Stanford, California 94305.

[11] Hayes-Roth, B.; Pfleger, K.; Lalanda, P.; Morignot, P.; Balabanovic, M. A Domain-Specific Software Architecture
for Adaptive Intelligent Systems. IEEE Transactions on Software Engineering, Volume 21, Issue 4, April 1995
Page(s):288 - 301. Digital Object Identifier 10.1109/32.385968.

[12] S. Bridges, M. Figueroa, D. Hsu, C. Diorio, A reconfigurable vlsi learning array, Proceedings of the 31st European
Solid-State Circuit Conference, 2005, pp 117-120.

[13] M. A. Figueiredo, C. Gloster, Implementation of a probabilistic neural network for multi-spectral image
classification on an fpga based custom computing machine, Proceedings. Vth Brazilian Symposium on Neural
Networks, 1998, pp 174-178.

[14] H. Hikawa, Implementation of simplified multilayer neural networks with on-chip learning, Proceedings IEEE
International Conferences on Neural Networks, 1995, Vol. 4, pp 1633-1637.

[15] S. B. Yun, Y. J. Kim, S. S. Dong, C. H. Lee, Hardware implementation of neural network with expandible and
reconfigurable architecture, Proceedings, IEEE Int. Conf. on neural information, 2002, Vol. 2, pp 970-975.

[16] B. Pino, F. J. Pelayo, J. Ortega, A. Prieto, Design and evaluation of a reconfigurable digital architecture for self-
organizing maps, Proceedings, Int. Conf. Microelectronics for neural, fuzzy and bio-inpired system, 1999, pp 395-
402.

[17] D. Hammerstrom, A vlsi architecture for high-performance, low cost, on-chip learning, IJCNN International
Conference on Neural Network, 1990, Vol. 2, pp 537-544.

[18] S. Vitabile, A. Gentile, G. B. Dammone, F. Sorbello, Multi-layer perceptron mapping on a simd architecture,
Proceedings of the 12th IEEE workshop on Neural Networks for signal processing, 2003, pp 667-675.

[19] Y. E. Krasteva, E. de la Torre, T. Riesgo, Partial reconfiguration for core relocation and flexible communications,
Proceedings of Reconfigurable Communication-centric SoC, pages 91-97, Montpellier 2006.

[20] J. L. Beuchat, J. O. Haenni, E. Sanchez, Hardware reconfigurable neural networks, IPPS, SPDP worshops, 1998, pp
91-98, url = citeseer.ist.psu.edu/beuchat98hardware.html

[21] J. A. Starzyk, Z. Zhen, L. Tsun-Ho, Self-organizing learning array, IEEE Transactions on Neural Networks, 2005,
Vol. 16, pp 355-363.

[22] J. G. Eldredge, B.L. Hutchings, Density enhancement of a neural network using fpgas and run-time reconfiguration,
Proceedings, IEEE workshop on fpgas for custom machine, 1994, Vol 10-13, pp 180-188.

[23] Martin. T. Hagan, Howard. B. Demuth, Mark. Beale, Neural Network Design, book: Thomson Learning, United
States of America, 1996.

[24] B. Kröse, P. Van der Smagt, An introduction to Neural Networks, eighth edition, The Universidad of Amsterdam,
1996.

[25] M. A. Hannan Bin Azhar, K. R. Dimond, Design of an fpga based adaptive neural controller for intelligent robot
navigation, Proceedings, IEEE Euromicro symposium on digital system design, 2002, Vol. 2, pp 283-290.

[26] Y. Taright, M. Hubin, FPGA implementation of a multilayer perceptron neural network using vhdl, Proceedings
Fourth International Conference on Signal Processing, 1998, Vol. 2, pp 1311-1314.

[27] J. J. Blake, L. P. Maguire, T. M. McGinnity, L. J. McDaid, Using Xilinx FPGAs to implement neural networks and
fuzzy systems, IEE Colloquium on Neural and Fuzzy Systems: Design hardware and applications, Digest No.
1997/133, pp 1/1 – 1/4.

[28] A. Perez-Uribe, E. Sanchez, Implementation of neural constructivism with programmable hardware, Proceedings of
the International Symposium on Neuro – Fuzzy systems, 1996, pp 47-54.

[29] L. Priese, R. Lakmann, V. Rehrmann. Ideogram identification in a realtime traffic sign recognition system,
Proceedings. IEEE Intelligent Vehicles 1995, Vol. 25-26, pp 310-314.

[30] MATLAB. The Language of Technical Computing. Version 7.4.0.287 (R2007a).

	1. INTRODUCTION
	2. CHARACTERISTICS OF THE SYSTEM ARCHITECTURE FOR THE FPGA BASED APPROACH
	3. UNITS
	4. SPECIALIZED TINY NEURAL NETWORKS
	5. INTERCONNECTION OF THE SPECIALIZED TNN TO THE GLOBAL CONTROL SYSTEM
	6. Results
	7. Conclusions

