
L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 316–330, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The FAST Platform: An Open and Semantically-
Enriched Platform for Designing Multi-channel

and Enterprise-Class Gadgets

Volker Hoyer1,6, Till Janner1,6, Ivan Delchev2, Andrea Fuchsloch1, Javier López4,
Sebastian Ortega4, Rafael Fernández4, Knud Hinnerk Möller5, Ismael Rivera5,

Marcos Reyes3, and Manuel Fradinho7

1 SAP Research St. Gallen, 9000 St. Gallen, Switzerland
2 SAP Research Zurich, 8000 Zurich, Switzerland

3 Telefonica I+D, 28043 Madrid, Spain
4 Universidad Politecnica de Madrid, 28660 Madrid, Spain

5 DERI, National University of Ireland, Galway
6 University of St. Gallen, =mcminstitute, 9000 St. Gallen, Switzerland

7 Cyntelix Corporation, Galway, Ireland
{volker.hoyer,till.janner}@sap.com,

{ivan.delchev,andrea.fuchsloch}@sap.com,
{jlopez,sortega,rfernandez}@fi.upm.es,
{knud.moeller,ismael.rivera}@deri.org,

mru@tid.es, mfradinho@cyntelix.com

Abstract. The transfer of the mashup paradigm in corporate environments
needs additional capabilities beyond those typically associated with consumer
mashups. In this paper, we present the architecture of the FAST platform which
allows creating enterprise-class and multi-channel visual building blocks (so
called gadgets) in an ad-hoc manner. The design of complex enterprise-class
gadgets is supported by an integrated semantic concept which hides the com-
plexity from the actual users. The architectural components of the platform, a
technical life cycle model for enterprise mashups, and the FAST gadget ontol-
ogy are presented. By means of a cross-organizational real-world scenario from
the marketing/ promotion event area, we demonstrate the value and potential of
the FAST platform.

Keywords: Enterprise Mashups, Gadgets, Situational Applications, Semantics,
Multi-Channel Visual Building Blocks, FAST Project.

1 Introduction and Motivation

After introducing transaction systems such as enterprise resource planning (ERP),
customer relationship management (CRM), or supply chain management (SCM) since
the beginning of 1990, a next wave in corporate technology adoption, the Web 2.0/
peer production philosophy, addresses ad-hoc and situational applications [1]. It
integrates actual end users in order to generate new information or edit the work of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 The FAST Platform: An Open and Semantically-Enriched Platform 317

others. Renowned management scholars such as Andrew McAfee and Don Tapscott
envision an Enterprise 2.0 [2, 3]. It leverages new consumer-driven technologies in
order to put people in the center of the information-centric work.

In this context, a new software development paradigm, known as enterprise mash-
ups, has gained momentum. At the core of the mashup paradigm are two aspects:
First, empowerment of the end user to cover ad-hoc and long tail needs by reusing
and combining existing software artefacts. Second, broad involvement of users based
on the peer production concept. In contrast to traditional software development con-
cepts aligned with Service-Oriented Architectures (SOAs), enterprise mashups usu-
ally aren’t constructed by a team of traditional software developers. Instead, they are
created by users from the business units characterized by no or limited programming
skills. They desire specific functionality that mainstream SOA-based enterprise appli-
cations don’t provide [4]. In this kind of grassroots computing [5, 6], the focus on
delivering a set of user friendly building blocks rather than finished applications en-
ables users to automate also tactical and opportunistic applications.

Fig. 1. From Automating Transactions to an Enterprise 2.0, adapted from [1]

Market research companies like Gartner [7], Forrester [8], or Economic Intelligence
Units [9], and leading management consulting firms like McKinsey [10], forecast a
growing practical relevance for the mashup paradigm over the next few years. Gartner
sees mashup applications at the mainstream adoption in less than two years in its hype
cycle for Web and user interaction technologies 2008 [7]. In addition, several mashup
tools came up in the recent years [11], i.e., IBM Mashup Center, Intel Mash Maker,
SAP Research RoofTop, Microsoft Popfly, Yahoo Pipes, etc. However, the transfer of
the consumer-driven mashup paradigm to corporate environments needs additional
capabilities beyond those typically associated with consumer mashup offerings.

The goal of this paper is to fill this gap by designing an open and semantically-
enriched platform which allows creating enterprise-class and multi-channel visual
building blocks (so called gadgets). In the course of the EU funded project FAST1, we
are currently implementing the platform. By means of a first cross-organizational

1 http://fast.morfeo-project.eu, last checked 2009-08-13

318 V. Hoyer et al.

real-world scenario from the marketing/ promotion event area, the platform and indi-
rectly the underlying concepts are evaluated.

The remainder of the article is structured as follows: After introducing the termi-
nology of enterprise mashups and elaborating on the requirements for corporate pur-
poses in section two, we present the FAST platform in section three. In particular a
life cycle for enterprise mashups, the architectural components, and the designed
FAST gadget onotology are presented. Section four includes a demonstration by
means of a first B2B mashup scenario. Finally, section five concludes with a brief
summary and provides an outlook on future work.

2 Related Work and Background

2.1 Enterprise Mashups – Definition and Terminology

In the literature, the exact definition of enterprise mashups is open to debate. In this
work, we refer to the definition of [12]: “An enterprise mashup is a Web-based re-
source that combines existing resources, be it content, data or application functional-
ity, from more than one resource by empowering the end users to create individual
information centric and situational applications”. By simplifying concepts of SOA
and by enhancing them with the Web 2.0 philosophy of peer production, enterprise
mashups generally focus on software integration on the user interface level instead of
traditional application or data integration approaches [13].

Fig. 2. Enterprise Mashup Development Layers, Terminology and User Roles

 The FAST Platform: An Open and Semantically-Enriched Platform 319

The relevant architectural components of the enterprise mashup paradigm can be
structured in an enterprise mashup stack comprising three main layers (mashup, wid-
get, resource) [5, 12]. On the gadget layer (visual building blocks), we introduce the
concepts of screens and screen-flows in order to create powerful gadgets for enter-
prise purposes. Fig. 1 depicts the resulting terminology which is applied in the FAST
project and in this paper. In addition, the relevant user roles including their tasks are
mapped to the different architectural terms.

Resources (services) contain content, data or application functionality and repre-
sent the core building blocks of enterprise mashups. They are encapsulated via well-
defined public interfaces (Application Programming Interfaces; i.e., WSDL, RSS,
Atom Feeds, etc.) allowing for a loose coupling of existing resources – an important
feature from the SOA paradigm. These resources are provided by enterprise systems
or by external Web providers (i.e., Amazon, Google, etc.) and are created by tradi-
tional developers who are familiar with development concepts.

The layer above contains gadgets or widgets which provide a simple user interac-
tion mechanism abstracting from the complexity of the underlying resources.
Thereby, the piping composition integrates heterogeneous resources by defining com-
posed data processing chains concatenating successive resources. Aggregate, trans-
form, filter or sort operations adapt, mix, and manipulate the content of the underlying
resources. A graphical user interface form is put on the composed resource. The com-
bination of a form and the piping composition is called a screen which is created by
the screen designer. This user role is characterized by basic programming skills in
order to bind the resources to user interfaces. Screens are fully functional by them-
selves, and their pre- and post-conditions drive the transitions between them to tie
them together, forming a screen-flow. A FAST gadget consists of various screens and
allows the handling of lots of information in several steps. In a similar way to the
resource, input and output ports of a gadget (so-called events and slots) can be defined
by a consultant (gadget developer). In addition, the user playing the consultant role is
able to deploy a gadget to different mashup platforms. A consultant plays a primary
role in IT departments and works quite closely together with key users from the busi-
ness units.

Now, a key user who understands the business challenge is able to combine such
visual gadgets in a mashup platform according to their individual business needs, thus
creating a mashup. This visual composition by linking the in-/ outports of a gadget is
called wiring and requires no programming skills. Finally, the end users consume and
run the created mashup scenario. If necessary, they are able to configure the mashup
to some extent, e.g. (de)activation of functionalities, moving gadgets, etc.

In summery, the composition principle of the resource layer of traditional SOA en-
vironments is transferred to the user interface level where the end users are empow-
ered to create an ad-hoc enterprise-class application. The power of the composition
and also the required IT skills are different. A first discussion regarding the composi-
tion pattern in enterprise mashup environments can be found at [14].

2.2 Requirements

The existing discussion of the mashup principle in the scientific community is driven
by technical aspects. In particular, several research activities deal with the lightweight

320 V. Hoyer et al.

provision of IT-enabled components [15, 16] as well as their composition on the re-
source layer [17, 18]. Coming instead from a business perspective, researchers also
started to analyse the underlying structure of the resulting open mashup ecosystem
[19] and derived first managerial implications for API providers.

However, the discussion about the layers on top of the resources is still missing. By
means of a literature analysis of market research institute reports [1, 4, 8, 20] and by
taking experiences from first mashup implementations into account [21, 22], we iden-
tify the following open challenges concerning the enterprise adoption of the mashup
paradigm. They are clustered in three dimensions: technical, organizational, and busi-
ness perspective.

Table 1. Challenges of Enterprise Mashups

Challenges Description
Technical Perspective
Interoperability Discovery and composition of gadgets

 Underlying information model for in-/ output parameters for
wiring gadgets

Gadget
Portability

 Moving gadgets between different mashup environments
 First standardization activities (e.g., OpenAjax, OpenSAM,

OpenSocial, DataPortability, etc.)
Information
Security

 Gadget-to-resource security
 Single Sign On (SSO) to multiple company internal and

external component sources
 AJAX Web browser-based mashup execution engine

Organizational Perspective
Availability of
Components

 Integration in the existing IT infrastructure (legacy enterprise
systems)

 Creation of enterprise-class gadgets representing the actual
content of enterprise mashup platforms

Governance Managing grassroots and community-driven mashup
environments

 Balancing between organization concerns such as
manageability and fostering user involvement

Culture Exploitation of enterprise mashups to the right user groups
 Users have a new kind of freedom

Business Perspective
Building the
Business Case

 Business value for enterprises and the users to introduce the
mashup paradigm

 Providing key performance indicators for the IT management
Use Cases Real-world scenarios demonstrating the potential

In course of this paper, we focus on the technical interoperability, gadget portabil-

ity, and the availablity of gadgets.

 The FAST Platform: An Open and Semantically-Enriched Platform 321

3 FAST Platform

3.1 Enterprise Mashup Life Cycle

Before elaborating on the actual architecture of the FAST platform, we introduce a
life cycle for enterprise mashups in order to understand how enterprise-class gadgets
are designed and executed. The model is organized by means of two dimensions.
First, according to the terminology as presented in Sect. 2, the relationship between
the mashable components and the related user roles are structuring the vertical axis.
Second, the horizontal axis focuses on the actual life cycle of mashable components.
Thereby, each component of the enterprise mashup stack (mashup, gadget, and re-
source) goes through the four phases design, store, deploy, and execution. The result-
ing enterprise mashup life cycle is depicted in the figure below.

Fig. 3. Enterprise Mashup Life Cycle

As already mentioned, the FAST platform leverages semantics in order to hide the
composition complexity from the users. Therefore, in a preparation phase, an ontol-
ogy engineer identifies relevant domain specific ontologies. After importing of and
mediating between existing ontologies, the FAST gadget ontology is used in the ac-
tual design phase by the users. On the other hand, users are able to extend the FAST
gadget ontology with new instances by using the FAST platform. Mashable compo-
nents can be annotated with additional semantics – in the FAST scope this is done by
the consultants (gadget developers) and the screen developers. After finishing the
design of a mashable components (screen-flow, screen design, form design, piping
operation, and service wrapper), the persistence is handled in the store phase. A cata-
logue provides a URI to access the components and also allows the reuse of it during

322 V. Hoyer et al.

the design phase. In order to consume one of the three executeable components (re-
source, gadget, mashup), the deployment phase takes care of the publication to exter-
nal platforms. In context of a gadget, the FAST platform provides a set of potential
target mashup environments (enterprise, social, mobile, and desktop environments).
Now, the key user is able to compose deployed gadgets with each other (design phase
of the mashup layer). Finally, in the execution phase, the gadget in a mashup scenario
is consumed.

As depicted in Fig. 3, the enterprise mashup life cycle is characterized by perma-
nent loops between the different phases of the life cycle. The result of the FAST plat-
form is self-contained gadget, i.e., a piece of code that is executeable without using
the infrastructure of the FAST platform in the execution phase.

3.2 FAST Gadget Ontology

One of the aspects that set FAST apart from other platforms is that the aim is to create
what we call intelligent or smart gadgets. This means that the individual gadgets, as
well as the reusable parts they are composed of, are formally described, using terms
from a common ontology, the FAST gadget ontology2. It addresses the interoperability
challenges as identified in the requirement section. These formal descriptions are
utilised in different ways. (i) The inputs and outputs (pre- and post-conditions, respec-
tively) of gadget components (e.g., screens) can be matched automatically. This en-
ables the FAST platform to suggest screens which can be connected to other screens,
or which screens are missing from a screen-flow in order to make it executable. (ii)
User preferences and current work context which are equally described in terms of
the ontology can be matched with the gadget and component descriptions, in order to
suggest the right building blocks for a given task. (iii) Descriptions of existing third-
party resources can be mapped to the FAST gadget ontology in order to make them
available to the FAST platform.

In terms of its domain model, the FAST gadget ontology covers components on all
levels of granularity – from complete screen-flows over screens and operators down
to individual UI elements (as outlined in Sec. 2) –, backend services which provide
data and functionality to screens and users of the FAST platform (see Fig. 2). The
ontology is formalised using the Resource Description Framework (RDF) with OWL-
DL semantics [23]. Classes and properties which are unique to the FAST platform
(e.g., screens and screen-flows) have been modelled in the dedicated FAST name-
space, whereas more generic terms (e.g., users, properties for annotation) have been
adopted from external vocabularies and ontologies, such as FOAF and Dublin Core.
For an in-depth discussion of the FAST gadget ontology we refer the reader to [24],
which includes details on the methodology adopted for its development, the scope and
domain model and a complete list of classes and properties with documentation.

However, at this point we would like to highlight a central feature of the ontology,
namely the modelling of pre- and post-conditions, which is crucial both for the com-
position of screen-flows, as well as their excecution. Each such condition is expressed
as a graph pattern, i.e., a set of one or more RDF triple patterns. The patterns of post-
conditions will be instantiated into a common RDF graph, while the patterns of

2 http://purl.oclc.org/fast/ontology/gadget, last checked 2009-08-13

 The FAST Platform: An Open and Semantically-Enriched Platform 323

pre-conditions will be executed as SPARQL queries against this graph to determine if
they are fulfilled. For example, if the pre-condition of a product selection screen P is
that a user has successfully logged into the system, then this could be expressed as
simple graph pattern saying "There is a resource of type sioc:User" as follows3:

?user a sioc:User.

Now, if the post-condition of any screen currently present in the screen-flow contains
this pattern (e.g., from a login screen L), then P is executable. Obviously, graph pat-
terns can be more complex. We could imagine that the post-condition of the login
screen L is "There is a user resource which has an account name. There is also a
person resource which has a name, and which has the user resource as its online
account". Formally in FAST, this could be expressed as follows:

?user a sioc:User;
 foaf:accountName ?account_name.
?person a foaf:Person;
 foaf:holdsAccount ?user;
 foaf:name ?person_name.

In defining pre- and post-conditions of screens in this way, the FAST platform is
capable of suggesting to a user which screens out of the set of available screens could
be added to a given screen-flow during its development, or which of the screens al-
ready present in the screen-flow are executable or not.

3.3 Architecture

In order to support the presented enterprise mashup life cycle and FAST gadget on-
tology, we have designed a high level architecture of the FAST platform. By using the
Fundamental Modeling Notation (FMC), we model the architectural components,
their relationships and how the different user roles interact with the platform. In con-
trast to the technical-oriented UML notations, FMC focuses on human comprehension
of complex systems4.

Taking into account that the main objective of FAST is to allow users to compose
gadgets from reusable building blocks and deploy them on various mashup platforms,
the most natural mean is providing a rich internet application. Therefore, we have
devised a robust architecture comprising the FAST client running on a Web-based
FAST client, which deals with user interactions, and the FAST server, which takes
care of the semantics, the storage capabilities and the deployment to external parties.
Fig. 4 depicts the resulting FAST architecture.

The FAST client, which is called Gadget Visual Storyboard (GVS), consists of
three main architectural components.

Workspace Manager (GUI). This component is responsible for building and render-
ing the user interface and then populating it with the pieces required for designing an
enterprise-class gadget. The AJAX-based user interface is composed by several areas:
the building block palette, which shows a domain-specific subset of the existing
building blocks stored in the server-side catalogue; the design area, in which the user

3 Using SPARQL notation and terms from the SIOC and FOAF vocabularies.
4 http://www.fmc-modeling.org, last checked 2009-08-13

324 V. Hoyer et al.

Fig. 4. FAST High Level Architecture (FMC Notation)

composes the gadget by mixing the pieces coming from the palette in a visual man-
ner; and finally, a number of property editors and inspectors which show to the user
the most relevant information about the screen-flow (or the screen). Fig. 6 in case
study section depicts a screenshot of the FAST GVS user interface.

Local Caching Catalogue. The local catalogue retrieves and caches building block
metadata coming from the FAST server metadata catalogue and being used for the
designing of a gadget (or another lower-level piece, such as a screen). Moreover, this
component provides the workspace manager with recommendations about what build-
ing blocks to use among other assistive features. These recommendations are pro-
vided by the server-side inference engine which is described below.

Semantic Editor. Building block reuse is empowered by the exploitation of seman-
tics. Therefore, during their design and creation, it is necessary to use the existing
semantic information and important to further enrich the elements being composed
with semantic annotations. The semantic editor component allows the user to perform
this duty in an integrated and user-friendly fashion.

 The FAST Platform: An Open and Semantically-Enriched Platform 325

The FAST server in the backend implements a REST API that offers the required
functionality to deal with building block management, workspace persistence, gadget
storage and its deployment. Additionally, the open APIs allow the integration of re-
quired third party tools (i.e., Protégé for managing domain-specific ontologies). In
order to request information about the mashable components, we provide JSON and
RDF/XML payloads. In particular, JSON reduces the programming effort in the
FAST client. The FAST server-side itself is modularized into several cohesive com-
ponents allowing independent development, even using different technologies. The
main components are explained below.

Metadata Catalogue. The FAST metadata catalogue is in charge of the storage and
indexing of information about every piece of a gadget, ranging from components such
as screens or screen-flows all the way down to ontology terms describing the scope of
a gadget. The structure of these components is formally defined in the FAST gadget
ontolgy. Hence, every element in the catalogue is an instance of a concept from the
FAST gadget ontology (or any other ontology), or indeed the ontology terms them-
selves. Consequently, its three main purposes are: (i) finding the most relevant build-
ing blocks for a given context (domain, user preferences and current workspace). (ii)
The support for social interactions allowing community enrichment of the mashable
component base (see semantic editor of the FAST client). (iii) The ability to deal with
different domain-specific building blocks allowing users to create enterprise-class
gadgets. In order to appropriately infer within those different domains, different on-
tologies must be used by the metadata catalogue. The main problem is that the most
valuable gadgets usually are created by mashing up several application domains, so
the catalogue component is also designed to manage the relationship between differ-
ent ontologies (i.e., using ontology mapping techniques). The metadata catalogue is
based on the RDF repository Sesame 2 which also provides a RESTful HTTP inter-
face for SPARQL Protocol for RDF. As an abstraction to access the triple store, the
RDF2Go library is integrated.

Inference Engine. Due to the importance of semantics, we distinguish the inference
engine as the sub-component responsible for reasoning. It allows extracting and deriv-
ing new information given a certain knowledge base. It interacts directly with the
triple store of the metadata catalogue and follows a forward-chaining policy, hence
whenever new data is added to the catalogue, it also triggers a set of rules, and newly
inferred data is added to the catalogue. Following a forward-chaining policy in the
metadata catalogue makes sense, because it allows for faster query answering which
is crucial for the performance of the overall FAST platform. Insertion of new data
which would be favoured by backward-chaining is much less crucial in FAST. The
set of rules being used by the inference engine is composed by a subset of the RDFS
entailment rules5 and the inverse of some of these rules.

Persistence Manager. The persistence manager is responsible for storing the relevant
information between different browsing sessions. It stores user information (e.g., user
profile) and settings, some usage statistics and user feedback, which can be used by
the metadata catalogue to retrieve building blocks more accurately. As indicated in
Fig. 4, data from external systems such as Google Analytics for monitoring designed

5 http://www.w3.org/TR/rdf-mt/#RDFSRules, last checked 2009-08-13

326 V. Hoyer et al.

and deployed gadgets as well as user feedback from the runtime environments
(mashup platforms) is integrated in the persistence manager and therefore in the
FAST ecosystem.

Building Block Repository. Once a component, for instance a screen or a screen-
flow, is designed it must be stored in order to allow reuse at a later stage or even to
create gadgets. The building block repository component is responsible for managing
the existing building blocks’ implementation. The acutal metadata is stored in the
catalogue. By doing so, we separate between the actual code and metadata of the
mashable components in the FAST platform.

Gadget Builder. When consultants finish their work and decide to create a gadget to
be used in a mashup platform for execution, it is necessary to package the final
gadget’s code. It is the actual implementation of the designed functionality by using
the modelled building blocks. The gadget builder is triggerd by the workspace man-
ager of the FAST client and deals with this task. It processes each of the building
blocks to create its associate code, and setting the defined relationships between them.
The result is a self-contained, platform-independent gadget.

Gadget Storage and Deployment. The gadget code is stored and automatically
adapted to the different mashup environments and their specifics. By attaching to the
gadget’s code the platform-compliant implementation of the target gadget API, the
FAST gadget can be executed. The next section explains the FAST deployment con-
cept in more detail.

3.4 Deployment of Multi-channel Gadgets

The final output of the FAST gadget development process is a gadget, which needs to
be first stored and subsequently deployed to a chosen target destination, such as a start
page (e.g., Netvibes, iGoogle, etc), mobile device, social networking site (e.g, Face-
book, Bebo, etc), desktops of operating systems (e.g.: Windows Vista, Safari, etc) and
finally, enterprise mashups (EzWeb).

In order to allow gadget deployment in one or multiple target platforms we have
designed a flexible runtime gadget architecture. To achieve this platform independ-
ence, an important architectural design decision taken was to have the three layered
approach as depicted in Fig. 5: The first layer corresponds to the screen-flow imple-
mentation of a specific enterprise-class gadget created by a user. The FAST platform
empowers the user with the capability of emulating the runtime execution of the
screen-flows, thus allowing for the experimentation of the final gadget. However, it is
necessary the existence of a runtime execution environment, which corresponds to the
other depicted two layers:

• FAST Gadget Player. This player enables building block interactions and
guides the execution flow from one screen to another and keeps track of the
facts.

• FAST Gadget API. This layer is responsible for the actual abstraction of the
target destination mashup platforms.

 The FAST Platform: An Open and Semantically-Enriched Platform 327

Fig. 5. Multi-Channel Gadgets

The three step deployment process begins after the FAST gadget has been created:

• Build. The first phase consists of packaging the complex gadget, namely the
screen-flows and the corresponding resources, into a runtime environment that
will execute independent of the FAST platform.

• Storage. With regards to deployment, it is important to take into consideration
that most target destinations do not support the actual storage of gadgets.
Therefore, the target destination usually keeps track of the URL where the
gadget is stored. Consequently, once the gadget is built, it is placed within a
repository.

• Deployment. This phase focuses on the placement of the gadget within the
target designation platform, using the URL of where the gadget is stored. The
actual deployment can take two alternative paths. First, the gadget is installed
directly into the target destination platform by using an adapter. Second, the
gadget is deployed via a distribution platform (e.g, Beemway6), which trans-
parently installs the FAST gadget onto multiple destinations thus supporting
the paradigm of build once, run everywhere.

4 Case Study: Cross-Organizational Promotion Scenario

After elaborating on the technical issues of the innovative FAST platform, this section
is devoted to demonstrate the business value by means of a case study. Our demo
scenario covers the usage of the FAST platform during the design, storage and
deployment phase of the gadgets and the EzWeb7 mashup platform for the building
and execution of enterprise mashups in a cross-organizational context. The business
scenario is involving two companies: The first company is a promotion agency

6 http://www.beemway.com, last checked 2009-08-13
7 http://ezweb.morfeo-project.eu, last checked 2009-08-13

328 V. Hoyer et al.

PromoBueno, a SME company with 47 employees located in Madrid, Spain. The
company offers different services to its customers, i.e. the organization of promotion
activities at fairs/ events, brand promotion and marketing campaigns, etc. Pro-
moBueno uses the FAST platform to develop gadgets to make their internal work
more efficient and also to enable its customers to place promotion requests directly at
them by using FAST gadgets. The latter gadget will be developed and published to a
publicly available enterprise mashup platform, EzWeb, and allows interested custom-
ers of PromoBueno to create promotion requests and send them directly to Pro-
moBueno. Figure 6 depicts a screenshot of the FAST prototype on how to define a
screen-flow (in this case it consists of two screens - “available crew” and “incoming
request”) and on how to deploy the gaget to mashup platform (EzWeb).

Fig. 6. Design, Deployment, and Execution of an enterprise-class Gadget

Now, the second company in our scenario (AllSports) is a sports equipment and nu-
trition producer, a large enterprise with 3227 employees located in Hamburg, Ger-
many. Recently, AllSports created a new protein bar for high endurance athletes. The
sales and marketing departments arrange and organize so-called point-of-sale (POS)
promotion activities supported by different gadgets via the company internal enter-
prise mashup environment. When AllSports decides to introduce and sell their new
product in Spain, they are interested in collaborating with different promotion agen-
cies to request support for promotion activities at trade fair events. It is important for
them that they can quickly establish the promotion request process with new agencies,
as there are many available.

The created gadget can be used as follows to support the interconnection and col-
laboration between the two firms. A sales employee of AllSports has the need to
request a promotion crew for a sport event. As it is her first time of organizing a booth
at a fair in Spain, she needs the help of a local promotion agency. The sales employee
of AllSports searches the gadget catalogue of the EzWeb platform and finds the

 The FAST Platform: An Open and Semantically-Enriched Platform 329

published “Promotion Request Gadget” of PromoBueno. The integration of the new
“Promotion Request Gadget” is done by a key user of PromoBueno. The sales em-
ployee now carries out the POS process including the booking of the event and also
the staffing of the promotion crew directly via the gadget of the promotion agancy.
The promotion manager at PromoBueno gets the incoming request displayed at her
monitoring gadget and can send a confirmation back to AllSports.

5 Conclusion and Future Work

The aim of this paper is the design of an open and semantically-enriched platform
which allows creating enterprise-class and multi-channel gadgets. In order to achieve
this, first, we introduced the main terms related to enterprise mashups and identified
the challenges in order to transfer consumer-driven mashup paradigm to corporate
environments. In a second step, we present the FAST platform. By means of a life
cylce model, the relationship of the mashable components of an enterprise-class
gadget is described. The FAST gadget ontology and the resulting software architec-
ture are presented. Finally, a first implemented mashup scenario in the marketing/
promotion event area demonstrated the potential of the FAST platform.

Apart from other existing mashup and gadget platforms [4], the presented FAST
platform aims at providing intelligent or smart gadgets by leveraging semantics. The
followed multi-channel deployment approach allows the usage of designed FAST
gadgets in various environments. For example, users from the business unit are em-
powered to develop and publish gadgets on their daily portal environment (EzWeb)
and also on mobile devices without involving the IT department.

What is still missing is a general concept on how to integrate existing legacy enter-
prise systems in enterprise mashup environments. Currently, the consumed resources
from backend systems (SAP Enterprise Service) are integrated manually. Future re-
seach will also deal with the implementation of a complete version of the marketing/
promotion event scenario that covers the ad-hoc interaction between several parties
across company borders.

Acknowledgments. This work is supported in part by the European Commission
under the first call of its Seventh Framework Program (FAST STREP Project, grant
INFSO-ICT-216048) and in part by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Líon-2).

References

1. Chui, M., Miller, A., Roberts, R.P.: Six Ways to make Web 2.0 work. The McKinsey
Quarterly (February 2009)

2. McAfee, A.P.: Enterprise 2.0: The Dawn of Emergent Collaboration. MIT Sloan Manage-
ment Review 47(3), 21–28 (2006)

3. Tapscott, D., Williams, A.D.: Wikinomics: How Mass Collaboration Changes Everythink,
Portfolio, New York (2006)

4. Carrier, N., Deutsch, T., Gruber, C., Heid, M., Jarrett, L.L.: The Business Case for Enter-
prise Mashups, Web 2.0 Technology Solutions, IBM White Paper (2008)

330 V. Hoyer et al.

5. Hoyer, V., Stanoevska-Slabeva, K.: Towards a Reference Model for Grassroots Enterprise
Mashup Environments. In: Proceedings of the 17th European Conference on Information
Systems, Verona, Italy (2009)

6. Cherbakov, L., Bravery, A., Goodman, B.D., Pandya, A., Baggett, J.: Changing the Corpo-
rate IT Development Model: Tapping the Power of Grassroots Computing. IBM Systems
Journal 46(4), 743–751 (2007)

7. Gootzit, D., Phifer, G., Valdes, R., Drakos, N., Bradley, A., Harris, K.: Hype Cycle for
Web and User Interaction Technologies, Gartner Research G00159447 (2008)

8. Young, O.G.: The Mashup Opportunity: How to make Web 2.0 work, Forrester Resesarch,
May 6 (2008)

9. The Economist Intelligence Unit: Serious Business – Web 2.0 goes Corporate, Report of
the Economist Intelligence Unit (2008)

10. McKinsey Global Survey Results: Building the Web 2.0 Enterprise, The McKinsey Quar-
terly (2008)

11. Hoyer, V., Fischer, M.: Market Overview of Enterprise Mashup Tools. In: Bouguettaya,
A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 708–721. Springer,
Heidelberg (2008)

12. Hoyer, V., Stanoevska-Slabeva, K., Janner, T., Schroth, C.: Enterprise Mashups: Design
Principles towards the Long Tail of User Needs. In: Proceedings of the IEEE International
Conference on Services Computing, Honolulu, Hawaii (2008)

13. Daniel, F., Matera, M., Yu, J., Benatalla, B., Saint-Paul, R., Casati, F.: Understadning UI
Integration. A Survey of Problems, Technologies, and Opportunities. IEEE Internet Com-
puting 11(3), 59–66 (2007)

14. Janner, T., Siebeck, R., Schroth, C., Hoyer, V.: Patterns for Enterprise Mashups B2B Col-
laborations to foster Lightweight Composition and End User Development. In: Proceed-
ings of the IEEE 7th International Conference on Web Services, L.A, CA (2009)

15. Abbott, R.: Open at the Top, Open at the Buttom; and continually (but slowly) evolving.
In: Proceedings of the IEEE Conference on Systems of System Engineering (2006)

16. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs Big Web Ser-
vices: Making the Right Architectural Decision. In: Proceedings of the 17th International
World Wide Web Conference, Beijing, China (2008)

17. Maximilien, E.M., Hernan, W., Nirmit, D., Stefan, T.: A Domain-Specific Lanaguage for
Web APIs and Service Mashups. In: Proceedings of the 5th International Conference on
Service Oriented Computing (2007)

18. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful Services and
Collaboration Workflows. IEEE Internet Computing 12(5), 24–31 (2008)

19. Yu, S.: Innovation in the Programmable Web: Characterizing the Mashup Ecosystem. In:
Proceedings of the 2nd International Workshop on Web APIs and Services Mashups (2008)

20. Bradley, A.: Addressing the Seven Primary Challenges to Enterprise Adoption of Mash-
ups, Gartner Research G00164390 (2009)

21. Hoyer, V., Gilles, J.T., Stanoevska-Slabeva, K.: SAP Research RoofTop Marketplace: Put-
ting a Face on Service-Oriented Architectures. In: Proceedings of the 7th IEEE Interna-
tional Conference on Web Services (ICWS), L.A., CA (2009)

22. Lizcano, D., Soriano, J., Reyes, M., Hierro, J.J.: EzWeb/FAST: Reporting on a Successful
Mashup-based Solution for Developing and Deploying Composite Applications in the Up-
coming Web of Services. In: Proceedings of the 10th International Conference on Informa-
tion Integration and Web-based Applications & Services, iiWAS (2008)

23. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantic
and Abstract Syntax, Recommendation W3C (2004),
http://www.w3.org/TR/owl-semantics

24. Möller, K.: Ontology and conceptual model for the semantic characterisation of complex
gadgets, FAST Project Deliverable 2.2.1 (2009)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

