
Hera-FFX: a Firefox add-on for semi-automatic web
accessibility evaluation

José L. Fuertes
Dept. LSIIS

Technical University of
Madrid

Campus de Montegancedo
28660-Boadilla del Monte

Madrid. Spain
+34 91 352 25 46

jfuertes@fi.upm.es

Ricardo González
Technical University of

Madrid
Campus de Montegancedo
28660-Boadilla del Monte

Madrid. Spain
+34 91 352 25 46

rgonzalez@cettico.fi.
upm.es

Emmanuelle Gutiérrez
Sidar Foundation
Sancho Dávila, 35

28028-Madrid. Spain
+34 91 725 71 47

emmanuelle@sidar.org

Loïc Martínez
Dept. LSIIS

Technical University of
Madrid

Campus de Montegancedo
28660-Boadilla del Monte

Madrid. Spain
+34 91 352 25 46

loic@fi.upm.es

ABSTRACT
Website accessibility evaluation is a complex task requiring a
combination of human expertise and software support. There are
several online and offline tools to support the manual web
accessibility evaluation process. However, they all have some
weaknesses because none of them includes all the desired
features. In this paper we present Hera-FFX, an add-on for the
Firefox web browser that supports semi-automatic web
accessibility evaluation.

Categories and Subject Descriptors
K.4.2 [Computers and society]: Social issues - Assistive
technologies for persons with disabilities

General Terms
Human Factors

Keywords
Web accessibility, accessibility evaluation, evaluation tools

1. INTRODUCTION
It is a fact that web accessibility is gaining in importance in the
international context, and especially in the European Union. In
Europe, most countries have legislation stipulating that all public
web sites have to be accessible in compliance with the World
Wide Web Consortium’s Web Content Accessibility Guidelines
1.0 (WCAG) [5].
In this context, the evaluation of website accessibility is of utmost
importance. This evaluation cannot be fully automated, as many
of the checkpoints require human judgment to assess a web page’s
conformity level. Thus, web accessibility evaluation is a complex
task requiring human expertise and software support [6], [11]. The
person performing this task needs sound knowledge and

experience in web development and has to be proficient in the use
of the techniques required to evaluate conformity for each of the
WCAG 1.0 checkpoints.
Therefore, both expert and novice web accessibility evaluators
have a common need: a tool that provides support for the manual
evaluation of web accessibility, automating as much of the work
as possible. We have previously presented such a tool, called
Hera [1]. Hera is an online tool for semi-automatically evaluating
website accessibility. Hera has been successfully used by partners
of the Sidar Foundation [10] and the Technical University of
Madrid to evaluate web sites and also as a supporting technology
for teaching web accessibility [2].
Nevertheless, Hera has some limitations, which are what have
motivated the work presented in this paper. The first weak point is
that, being an online tool, Hera is not able to analyze local web
pages unless the developer installs Hera locally (this means
installing a restricted local web server with PHP and MySQL
support, which then can access the local files.) The second
drawback is related to the evaluation of web pages that require
some sort of user authentication. Like almost all other existing
tools, Hera often cannot analyze these restricted access pages. The
third snag is that Hera is unable to evaluate the rendered version
of a web page, including locally displayed styles and
dynamically-generated content from scripts. Again this is a
common limitation shared by most existing evaluation tools.
This paper presents Hera-FFX, an add-on for the Firefox web
browser [7]. Hera-FFX overcomes the above difficulties by
running an automatic preliminary evaluation of the web pages as
they are browsed, as well as enabling the user to manually
evaluate the accessibility of any of the pages.
The paper is structured as follows. Section 2 will briefly discuss
desired features for a web accessibility evaluation tool. Section 3
will present an overview of related work, as a justification of the
need for developing Hera-FFX. Section 4 will give a description
of the main technical issues of the current version. Finally, section
5 will present some concluding remarks about user experiences
with Hera-FFX, along with work to be undertaken in the future.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
W4A2009, April 20-21, 2009, Madrid, Spain. Co-Located with the 18t
International World Wide Web Conference.

2. FEATURES OF WEB
ACCESSIBILITY TOOLS
Several sources have outlined a set of relevant features for web
accessibility evaluation tools. For instance, the W3C document on h

Copyright 2009 ACM x-xxxxx-xxx-x/xx/xxxx ...$5.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
W4A2009 - Technical, April 20-21, 2009, Madrid, Spain. Co-Located
with the 18th International World Wide Web Conference.
Copyright 2009 ACM 978-1-60558-561-1...$5.00.

26

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

selection of web accessibility tools [16], discusses accessibility,
checkpoint coverage, configuration, integration, policy
requirements, reliability, repair and web technology support.
Another relevant research on evaluating web accessibility tools is
the one by Brajnik [3], which measures the tool effectiveness in
fault identification and diagnosis using three basic concepts:
completeness (how many accessibility defects present in the
tested web site are caught by a tool and correctly shown to the
user), correctness (proportion of problems reported by the tool
that are indeed true problems) and specificity (the number of
different possible issues that can be detected and described by a
tool) of the tools.
Based on this previous work, on our day-to-day experience in the
evaluation and teaching of web accessibility, and on the
comments that we have received from the users of Hera (this tool
has had several hundred users over the years, and some have
suggested improvements that we have used in our requirements
analysis), we can identify a list of relevant features for a web
accessibility evaluation tool:

• Automatic preliminary evaluation (AE). Any tool should be
able to automatically assess all the checkpoints (or parts of
them) that can be automated. This is related to accessibility
coverage (W3C) and completeness (Brajnik).

• Support for manual filling of checkpoints results (MF). Once
the automatic evaluation is finished, the tool should provide
automated support for the evaluator to fill-in the values of all
the checkpoints (including the possibility of changing the
values obtained in the automatic evaluation). Additionally,
the user should be able to add comments about each
checkpoint that could be used for later report generation.
This is related to checkpoint coverage (W3C) and
completeness and specificity (Brajnik).

• Page presentation modification for assisting checkpoint
evaluation (PM). This modified presentation should highlight
the elements that have to be inspected for a given
checkpoint, and should display the relevant attributes of
those elements. This is related to checkpoint coverage
(W3C) and correctness (Brajnik).

• Annotated code view for assisting checkpoint evaluation
(CV). The elements specified in the checkpoint should be
highlighted in the HTML code. This is related to checkpoint
coverage (W3C) and correctness (Brajnik).

• Local pages evaluation (LP). This feature is essential for
web developers, as they should be able to assess the
accessibility of web pages under development that are not
published and without having to send the code to a remote
server. This is related to configuration and integration
(W3C), and completeness (Brajnik).

• Restricted-access pages evaluation (RA). The tool should be
able to evaluate restricted access web pages (i.e. password-
protected web sites) and secure pages (using the HTTPS
protocol). This is related to configuration and integration
(W3C), and completeness (Brajnik).

• Rendered-page evaluation (RP). The tool should be able to
evaluate the rendered version of the page, which implies that
it can evaluate locally displayed styles and dynamically-
generated content from scripts. This is related to

configuration, integration and web technology support
(W3C), and completeness (Brajnik).

• Report generation (RG). The evaluators should be enabled to
save reports based on the automatic and manual inspections
in a handy format (that could be human or machine-
readable). This is related to configuration and integration
(W3C) and completeness, correctness and specificity
(Brajnik).

• Support for training (ST). The tool should provide detailed
information about each checkpoint, including normative text
and techniques to be applied for assessment. This
information is very useful for novice evaluators, as well as
for persons that do not perform accessibility evaluations on a
daily basis. This is related to checkpoint coverage (W3C)
and completeness (Brajnik).

• Multi-session capacity (MS). Evaluating the accessibility of
a web page is a long task, and can require several hours of
time, depending on the complexity of the page under
assessment. Typically, an evaluator will need to split the
evaluation task into several work sessions. An evaluation
tool should thus provide some multi-session capacity,
enabling the user to store current work and to load this work
later for resuming the assessment. This is related to
configuration and integration (W3C) and to completeness
(Brajnik).

• Flexibility to integrate other accessibility guidelines (FL). In
addition to WCAG 1.0, there are other accessibility
requirements for the web, such as the US 508 standards, the
Spanish UNE 139803:2004 standard or the “Barrierefreie
Informationstechnik-Verordnung” in Germany. In addition to
that, the next version of WCAG is finished since December,
2008, and the tool should be flexible enough to easily
incorporate the new success criteria. This is related to
checkpoint coverage and policy requirements (W3C) and to
completeness (Brajnik).

3. RELATED WORK AND
MOTIVATION
Web accessibility evaluation tools are software programs or
online services that help to determine whether a web site
conforms to accessibility guidelines. While web accessibility
evaluation tools can significantly reduce the time and effort it
takes to evaluate web sites, no tool can automatically determine
website accessibility [13]. There is a large number of existing
evaluation tools in the domain of web accessibility, as can be
found in [14]. In this section the focus is on tools listed by the
W3C that are free of charge and that can evaluate the checkpoints
of WCAG 1.0. We have decided not to include commercial tools
in this comparison due to unfairness reasons. Firstly, some
commercial tools are very expensive and thus unaffordable for
many small- and medium-sized enterprises. Secondly, it is very
difficult to gather precise information about the features of
commercial tools, given the high testing costs.
These chosen tools are listed in alphabetical order in table 1, with
their features.

27

Table 1. Summary of free web accessibility evaluation tools and their features

Tool Type AE MF PM CV LP RA RP RG ST MS FL
A-Checker online upload
Accessibility Check online
EvalAccess online copy HTML
Foxability extension
Functional Accessibility Evaluator online
Hera online (+MR)
HiSoftware® Cynthia Says™ Portal online
Mozilla/Firefox Accessibility Extension extension
TAW Online online
TAW Standalone application partial (+MR)
Torquemada online
Total validator online
WAVE online upload
WAVE Firefox toolbar extension
Web Accessibility inspector application
Web Accessibility Self-Evaluation Tool report partial

We also have decided not to include research-stage work on web
accessibility evaluations. The efforts that we have found so far
mainly focus on usability-based accessibility evaluation, which is
extremely important during web site development. Our work, on
the other hand, focuses on conformity assessment, that is, to
check if a given web site conforms with a given set of
requirements (in this case, the WCAG 1.0 checkpoints). It is
recognized that user testing and other usability-based evaluations
are useful for improving products but are not so useful for
conformity assessment. And it has to be noted that in many
countries web accessibility is mandatory (at least for public web
sites). This implies that methods and tools are needed to evaluate
web site legal accessibility (that is, the conformity with
requirements).
The feature coverage of the tools listed in table 1 is summarized
below:

• Type of tool: the vast majority are online services, although
there are three browser extensions, two applications and one
manual report.

• Automatic evaluation (AE): all the tools can perform
automatic evaluation, with the exception of the last one,
which consists only of a document for generating an
accessibility report, along with online documentation for
evaluating the checkpoints.

• Manual filling (MF): only four tools allow the user to
manually fill-in the values for each checkpoint.

• Page presentation modification (PM): only five tools offer
modified presentation of web pages for supporting manual
evaluation.

• Annotated code view (CV): only two tools offer an annotated
code view for supporting the evaluation of code-related
checkpoints.

• Local pages (LP): more than 50% of the tools can evaluate
local pages, although two require uploading files and one
require copying HTML code. These two possibilities may
not be convenient in cases where the local web pages contain
sensible information.

• Restricted-access pages (RA): three tools can be used to
evaluate any type of restricted-access pages (all of them are

browser extensions) and two provide partial support to a
limited number of situations (for example, TAW Standalone
can be used to evaluate pages with require user
identification, but it cannot be used for secure HTTP).

• Rendered-page evaluation (RP): only the three tools that are
browser extensions can perform an evaluation of the web
pages after script execution.

• Report generation (RG): almost all tools provide some type
of report generation, although not all of them provide the
same amount of detail. Two of the tools are able to generate
reports in the EARL machine-readable language [15]
(identified with “+MR”).

• Support for training (ST): only four tools provide training-
related content, such as information of detailed techniques to
be used for evaluating each checkpoint.Multi-session
capacity (MS): only two tools enable the user to store and
recover current status of the evaluation of a web page.

• Flexibility (FL): only two tools provide extension
mechanisms for adding new guidelines. Foxability uses
JavaScript for the definition of new tests, whereas Taw
Standalone uses regular expressions.

The conclusion of this analysis of related work is that there is no
tool that covers all of the desirable features described in section 2.
This has motivated our work. For each feature there is at least one
tool covering it, but it is not practical for an evaluator having to
rely on several tools to perform the accessibility evaluation task.

Thus, there is a need for a web accessibility evaluation tool that
provides strong support for manual evaluation activities (like Hera
and Taw Standalone), is able of evaluating all types of web pages
(like the tools that are browser extensions) and includes an
extension mechanism to incorporate new accessibility guidelines
(like Foxability and Taw Standalone).

As we have been involved in the development of one of the listed
tools, HERA [1], [8], [9], our approach has been to start with the
features offered by HERA 2.0 and increment its capabilities.
Briefly, the new tool should provide all the facilities that HERA
2.0 offers, plus the capability of evaluating any web page and the
capability of being extended. To do this, the best solution is to
develop a browser add-on, which we have called Hera-FFX and

28

which, initially, is being developed for Mozilla Firefox. In fact,
Hera-FFX is a complete re-design and re-implementation of Hera.

4. HERA-FFX
4.1 Design
The main goals behind the design of Hera-FFX are: (1) to keep a
similar level of usability of the one found in Hera 2.0 and (2) to
be flexible enough so it can be easily extended with requirements
and tests from other standards or recommendations.
Figure 1 shows a high-level diagram of Hera-FFX, underlying the
main processes and which files or information structures are used.
Below is a description of the most relevant elements:

• Hera-FFX stores the guideline definition and all the
associated checkpoints and tests in a XML-based
Configuration file. This file is loaded during the start-up of
Firefox. Both the user interface of Hera-FFX and its internal
behavior depend on the content on this XML file. This
reduces the coupling between Hera-FFX and the accessibility
requirements specification, increasing the flexibility of Hera-
FFX. The definitions of the tests to be performed for each
checkpoint are made in JavaScript, as is the case of the
Foxability tool.

Mozilla Firefox Hera FFX

Load Configuration XML

Automatic preliminary analysis

Manual evaluation

Load evaluation Report generationSave evaluation

[Current Evaluation]

[DOM web page representation]

[Configuration XML]

[Saved evaluation (XML)]

Browse web documents

[Report]

[Evaluation definition]

[Web page]

• The web pages are loaded and interpreted by Firefox, during
the normal use of the browser. These pages can be either
online or offline files, and can be unprotected or restricted
pages. In fact, every page that can be displayed in Firefox
can be analyzed by Hera-FFX.

• Once the web pages are interpreted by Firefox, a DOM
representation of the web page is built, and this DOM
representation is the one used by Hera-FFX to perform the
accessibility evaluation.

The main tasks of Hera-FFX are to load the XML configuration
file, to perform a preliminary automatic accessibility evaluation,
to assist the user in a manual evaluation process, and to generate a

report with the detailed results of the evaluation process. In
addition, Hera-FFX can save and load the current evaluation
results, enabling the user to divide his or her work into several
sessions without trouble. These activities will be described in
section 4.2.
The two main outputs of Hera-FFX are an accessibility report and
the current evaluation stored in a XML file:

• Accessibility report. This report is generated when requested
by the user. It is an XHTML+CSS accessible document
containing detailed information of the current status of the
accessibility evaluation activities. This detailed information
includes the value given to each checkpoint of the
accessibility guideline and, in addition, comments written by
the evaluators during the assessment.

• Saved evaluation in a XML-based format. This evaluation
can be loaded by Hera-FFX. This enables the user to split the
evaluation of complex web pages into several working
sessions.

During the evaluation process, Hera-FFX uses an internal
structure that holds all the needed information: the guidelines,
checkpoints and tests (read from the configuration file), the results
of the tests (both automatic an manual), the DOM elements
related to each test, the commentaries written by the evaluator,
and so on. Below are the main elements of this internal structure:

• Evaluation: represents the current accessibility assessment.
An evaluation contains general information, such as the URL
of the page being evaluated and, in addition, points to each
of the guidelines of the evaluation. The final result of an
evaluation (the conformity level) is built from the result of
each of the guidelines.

• Guideline: each of the high-level guidelines of one
accessibility technical specification, as defined in the XML
configuration file. One guideline contains general
information about itself: the guideline text, instructions for
the evaluator, identifier and, in addition, points to its
checkpoints. The evaluation result of one guideline is built
from the result of each of the checkpoints.

• Checkpoint: each of the detailed accessibility requirements
belonging to one guideline, again as defined in the
configuration file. Each checkpoint contains the checkpoint
texts, instructions for the evaluator, detailed help and, in
addition, points to a set of tests to be performed for
evaluating the checkpoint. The result of one checkpoint is
built from the results of each of its tests.

• Test: represents one of the tests to be performed during the
accessibility evaluation. Some tests will be automatic (i.e.,
checking that each element has an alt attribute),
while other tests require manual evaluation (i.e., checking
that the value of the alt attribute of an image is adequate).
One test contains a textual description, the JavaScript code to
be executed (if it is an automated test), explanations for the
evaluator and, in addition, points to the elements in the page
to be evaluated (this is relevant for the manual evaluation).
The result of one test is built from the results of evaluating
the test for each applicable element. In some cases there are
tests without associated elements, because they are global to
the page and require manual evaluation (one example is
checking whether the presentation style is uniform across
several pages of a web site).

Figure 1. Hera-FFX global overview.

29

• Element: represents one of the page elements associated with
one test. Each element points to one DOM-Element
(generated by Firefox) and adds useful information for the
evaluation process: the more relevant is the automatic and
manual result for the applied test. The Element class
provides a separation layer between the tests and the actual
DOM elements. It can happen that one DOM element is
evaluated in several tests. In these situations the Element
class stores the result of checking one test on one particular
DOM element. In addition, the Element class contains
information useful for showing both modified page
presentations and annotated code views.

• DOM-Element: represents one of the DOM elements
generated by Firefox during web browsing of the page under
evaluation. This DOM element is unchanged by Hera-FFX
and contains detailed information about all the attribute
values for a given element. Hera-FFX thus uses the DOM to
perform the accessibility evaluation, instead of the source
code (as many other tools do). Using the DOM enables Hera-
FFX to use the actual content of the web page when all the
code is rendered by Firefox (including interpreting client-
side scripting), instead of only relying on the source code
contents. Thus Hera-FFX performs the evaluation of rendered
pages, which are closer to the user experience.

The result assigned to each test during the automatic evaluation
process can be one of the following:

• Pass: the web page passes the test; e.g. when the web page
conforms to the markup language syntax (HTML,
XHTML…).

• Fail: the web page fails the test; e.g. when an image has no
alt attribute.

• Verify: the tool cannot decide what the result should be, and
the user has not proceeded with the manual evaluation; e.g.
to ensure that all information conveyed with color is also
available without color.

• N/A (Not applicable): the checkpoint is not applicable; e.g.
the checkpoint is related to frames and the web site has none.

In addition, during the manual evaluation process, the user can
assign two more values. These values are not assigned to
individual tests, but to the whole checkpoint:

• Partial: the web page does not pass the checkpoint, but only
for a minor reason (i.e., there are one hundred images and
only one has an alt text that is not completely adequate).

• Don’t know: the evaluator cannot decide the result for the
checkpoint (for instance, if the user is blind and has to
evaluate whether the alternative text of an image that he or
she cannot see is adequate).

The final conformity result of one accessibility evaluation
depends on the results obtained for each test. The result for each
element of each test is propagated to the corresponding
checkpoints, guidelines and, finally, the global evaluation.
The automatic propagation process from tests to checkpoints is as
follows:

• If the result of one test for one element is “fail”, then this
result is assigned to the checkpoint independently of the
results of the other tests associated with the checkpoint.
However, these other tests are still applied and results are

obtained, as this is relevant for a detailed manual evaluation
and for generating the report.

• One checkpoint is assigned a “pass” value only if all of its
tests have a “pass” or “not applicable” value.

• One checkpoint is assigned a “verify” value only if none of
its tests have a “fail” value and there is at least one test with
a “verify” value.

• One checkpoint will only have a “not applicable” value if all
of its tests are “not applicable”.

In addition, as it has been said above, the human evaluator can
directly assign any value to any checkpoint, including the
“partial” and “don’t know” values.
From this description it can be deduced that Hera-FFX uses the
following priority order of the values of tests and checkpoints:

Fail > Partial > Verify > Pass > Don’t know > Not applicable

4.2 Detailed Evaluation Process
The Hera-FFX accessibility evaluation process is divided into
three phases:

• Automatic preliminary analysis: Hera-FFX automatically
analyzes the web pages that the Firefox user is browsing.

• Manual evaluation support: Hera-FFX offers the possibility
of running a manual inspection to follow up the automatic
assessment. This is a feature that few other accessibility
evaluation tools offer.

• Report generation: Hera-FFX evaluators can save reports
based on the automatic and manual inspections in a handy
format.

Figure 3 shows each phase and the services offered to support
manual inspection. As a manual evaluation of webpage
accessibility is an extremely time-consuming process, Hera-
FFX automatically runs a preliminary analysis that stops
evaluators having to manually check each and every one of the
65 WCAG 1.0 checkpoints.

Current web page

Automatic
preliminary

analysis

Report
Generation

Help on
checkpoints

Instructions for
Evaluation

Modified Page
View

Code View

Evaluation results

Manual Evaluation
Support

Summary of
Results

Figure 3. Overview of Hera-FFX evaluation process.

4.2.1 Automatic Preliminary Analysis
Once the browser completely loads a page, Hera-FFX runs an
automatic analysis. One reason for waiting for the page to load

30

completely is because many web pages are likely to contain
dynamic elements that are added at load time. These dynamic
elements can be generated by JavaScript, server programs (PHP,
JSP, etc.) or any rendering technology that modifies the browser’s
DOM representation with respect the web site’s original HTML
source code.
Even restricted-access pages (either password-protected or pages
with secure access through HTTPS) can be analyzed by Hera-
FFX. In fact, any web page that Firefox is able to render, with the
corresponding DOM model created, can be analyzed by Hera-
FFX. As shown in table 1, this feature is only offered by four
other tools.
Once the page has been fully loaded (with dynamic elements and
the browser’s DOM representation), the tool runs a user-
transparent automatic accessibility analysis. During this automatic
process each DOM element is evaluated for conformity with the
relevant automatic tests. The assigned values and the relationship
between tests and DOM elements are stored in the internal
information structure, as was described above.
Whilst the automatic analysis process is in progress, the Hera-Ext
icon appearing in Firefox’s status bar changes into an hourglass,
indicating that the test is running. At the end of the test, the
hourglass is replaced by a result icon that indicates whether the
visited page contains any fail or there are only checkpoints to be
checked manually. This way, users are informed at all times about
what the tool is doing and the result.
The fact that the tool is embedded in the browser speeds up the
automated and controlled checking process and test results
generation. The user can stop the tool at any time, switching to
idle mode.
Apart from the details provided by the Hera icon, users can get
more detailed tabulated information by simply positioning the
mouse cursor on the icon (Figure 4). This table represents the
number of points to be checked, as well as incorrect, correct and
not applicable points arranged by priorities 1, 2 and 3. Like the
icon, the table is dynamic. Therefore, the values in the table cells
will change, depending on the result of the automatic analysis,
every time a new web page is visited or reloaded.

The Hera-FFX icon state could possibly change after the results
have been generated. This is because HTML and CSS syntax
validation services are used through AJAX technology
(Asynchronous JavaScript and XML). Because the response is
asynchronous, it could change the Hera-FFX icon.
This preliminary analysis automatically assigns a result to each of
the 65 checkpoints. This result can only be: pass, fail, not
applicable or verify. Table 2 shows a summary of the checkpoints
that Hera-FFX can evaluate automatically.

Table 2. Checkpoints automatically analyzed by Hera-FFX

 Verify Pass Fail N/A
Priority 1 9 - 3 5
Priority 2 16 1 7 4
Priority 3 10 2 2 4

Several checkpoints appear in more than one column in Table 2.
For instance, checkpoint 1.1 (text alternatives) could be
automatically evaluated as “fail” if there are images without the
alt attribute, as “not applicable” if the page has no non-textual
elements (images, objects, etc.), and as “verify” if there are
images with alt attributes that require human evaluation to assess
whether the alternative text matches the image. On the other hand,
this checkpoint will never be automatically evaluated as “pass”,
because the computer cannot judge the adequacy of alternative
texts.

4.2.2 Summary of Results
The summary of the test results is an on-demand functionality that
the tool offers. This functionality is accessed by double clicking
on the Hera-FFX icon in the browser status bar or by activating an
equivalent command in the tool’s menu. This summary of results
is shown in a new window (which is a Firefox user interface, not
browser window), displaying data like:

• URL: web address of the page under analysis.

• Date/time: date and time of the automated inspection.

• Total: number of elements in the page.

• Automated analysis: time (in seconds) taken by the automatic
process.

• Errors: number of failed checkpoints detected during the
automated analysis.

• For manual checking: number of checkpoints that HERA-
FFX has determined should be evaluated by the user.

• Browser: name and version of the user’s browser and the
operating system.

Apart from these data, users can decide on the navigation style
they want to use to get detailed automatic results and then conduct
a manual inspection supported by the Hera-FFX tool:

• Table-based navigation style, where each table cell
represents the test checkpoints grouped by results and
associated priority. This navigation style is useful for
locating what checkpoints the web page fails to conform to
and offers several scanning strategies. For instance, some
evaluators choose to follow the priority levels, whereas
others prefer to focus first on the failed checkpoints
(irrespective of their priority level), then on the checkpoints
requiring manual inspection to finish with the passed and not
applicable checkpoints. Note that, although the tool performs
a preliminary evaluation and decides whether some
checkpoints pass, fail or are not applicable, the responsibility
ultimately falls to the human evaluator.

Figure 4. Hera-FFX overview of automatic results.

• Guideline-based navigation style, displaying one button for
every guideline. This navigation style follows the WCAG
1.0 order, i.e. the numbering of the checkpoints as defined in
the 1999 recommendation. Some users feel more at home
following the WCAG reading order, as this is the way in

31

which they are accustomed to reading and understanding the
checkpoints.

Having decided on the navigation style (by clicking on a table cell
for the point-by-point table-based navigation style or a guideline
button for guideline-based navigation), the tool offers rapid,
simple and effective access to the results, as shown in Figure 5.

Result summary

Table-based
navigation

Guideline-based
navigation

Checkpoint
navigation

Checkpoint result

Checkpoint manual
evaluation

Checkpoint help

Selected
navigation style

Users selecting a specific checkpoint are provided with detailed
help explaining the objective and how to inspect the point, a
manual inspection window and help for modifying the automatic
evaluation run by the tool and a visualization of the results for the
checkpoint. Figure 6 shows a screenshot of the user interface of
Hera-FFX when using the table-based navigation style. The tool
is listing all priority 2 checkpoints and the user has selected
checkpoint 3.3, which currently has a “fail” value automatically
assigned. In the lower right corner the tool shows the interactive
interface to modify this value and to write a comment.

The following design points were taken into account:

• Interface control, as the interface is both keyboard and
mouse operated.

• The color combination used should respect the contrast
values dictated by the WCAG.

• Colors provide additional information (content
reinforcement) and are accompanied by an icon and text to
represent the test results. For example, a red X-shaped cross
on a light red background represents a failure to comply

with a checkpoint. This makes the results analysis more
understandable.

• All the interface elements, like text and images, are
specified in relative units and fit to screen size no matter
what hardware is used.

4.2.3 Manual Evaluation Support
Hera-FFX can be used to manually inspect each checkpoint,
irrespective of the chosen navigation style.
Because of the tremendous amount of information that has to be
dealt with during a manual inspection, the user interface is
designed so that evaluators can carry out the evaluation point-by-
point according to the navigation style selected at the start. Other
accessibility tools fail to provide such easy navigation and quick
access to results. This slows down the job of inspection
enormously.
The intermediate internal structure used in the automatic phase is
also used during the manual phase to perform each of the Hera-
FFX functionalities, as described below

Figure 5. Overview of Hera-FFX navigation. To help to give a better understanding of the checkpoints and
ease manual inspection, the following results visualization
services are provided for each of the checks run to verify a
specific point:

• Simulated view of the modified page indicating which
elements have to be inspected (figure 7). As shown in table 1,
very few existing tools offer this feature: only A-checked,
Hera and Taw Standalone. What Hera-FFX has to do to
highlight the relevant elements is to compare the stored
elements in the internal structure with the actual elements in
the web page. Once the elements are found, Hera-FFX
transforms them in several ways (like adding an icon, a border
and a background color) so that the elements are easy to be
found by the human evaluator. This is a good option to use
when the elements that have need of manual inspection are
visible in the page, such as images, whose alternative text can
be shown in the simulated view. In no case is the original web
page being tested (corresponding to the Firefox browser
window) altered. The elements specified in the results for the
checkpoint are highlighted on a colored background together
with an icon that varies depending on the result: blue and
magnifying glass if it is to be verified, red and cross icon if it
is fail, or green and check icon if it is correct.

• HTML code view generated by the page (remember that the
generated HTML code will not necessarily be exactly the
same as the web site source code, primarily because of
dynamic elements generated at browser page load time).
Only two existing tools offer this feature (Hera and Taw
Standalone). As in the simulation view, the elements
specified in the checkpoint results are highlighted on a
colored background accompanied by an icon that varies
depending on the result (figure 8). This view is a good
option, for example, when the web site contains elements
that are not easily visible, like, for example, JavaScript
code, language changes, etc.

Figure 6. Hera-FFX user interface.

• Visualize the result of a call to an external service. This is a
checkpoint-specific visualization and refers to a response by
an external web service like, for example, HTML and CSS
syntax validation. Internally, Hera-FFX uses AJAX
technology to call to the respective service. This approach
then depends on the offered service (e.g. on the W3C

32

validation service in the case of validation), which it
displays as an HTML document in another application tab.

When inspecting a checkpoint, it should either be classed as pass,
fail, partially incorrect, not applicable, or identified as don’t
know. Additionally, comments about the checkpoint can be added
and stored for later report generation. All this information is also
stored in the internal structure, in such a way that the manual
results annotated by the user always prevail over the automatic
results.
To further ease the efficiency of the process, the changes made by
the evaluator are automatically accepted when the user moves to
another checkpoint (without need to press any “save” or “apply
changes” button). When this happens, Hera-FFX performs some
changes in the user interface:

• Result visualization in the “summary” tab. When there is a
change in the result of one checkpoint, the corresponding
cells in the table are updated (typically there is a cell that

will increment its count and other that will decrement it). For
instance, if one checkpoint on priority 2 passes from “pass”
to “partial”, the second row cell under “pass” will decrement
its count and the cell under “partial” will increment it.

• Result visualization in the reduced table of the “tests” tab:
changes in the numbers will happen in a similar way as for
the summary table.

• Checkpoint result visualization in the list of checkpoints. The
text, color and icon of the checkpoint will change
accordingly with the new value for that checkpoint.

• Checkpoint result visualization in the detailed view of
checkpoints. Again, the text, color and icon will be updated.

A checkpoint will be in one or other table cell depending on the
result returned in the preliminary analysis.
Finally it has to be noted that each time a page is reloaded in
Firefox, the internal structure is deleted and rebuilt in order to
store the data of the new analysis of the web page.

5. CONCLUSIONS AND FUTURE
WORK

Figure 7. Example of simulated page view In this paper we have presented a Firefox add-on that performs a
semi-automatic evaluation of the accessibility of the web sites that
are being browsed. Hera-FFX first performs an automatic
preliminary evaluation and then enables the user to analyze the
detailed results and to proceed with the manual evaluation of all
65 WCAG 1.0 checkpoints.
Hera-FFX has several advantages over other existing tools. It
includes in one package all the desirable features in a web
accessibility evaluation tool (stated in section 2). Table 1
showed that no tool included all these features at the same time,
so Hera-FFX fills an existing gap in this area, as Table 3 below
summarizes (the value column includes a “new” label if the
feature was not present in Hera online).
We feel that Hera-FFX’s combination of features is a
significant contribution. The main difference is that Hera and
Hera-FFX are focused on the manual evaluation of web
accessibility, which is not the case of the other tools. In our
experience this greatly affects the efficiency and effectiveness
of performing manual evaluations of web accessibility
In addition, Hera-FFX improves the Hera online tool providing
few new characteristics: First, it can evaluate local files.
Second, it can evaluate restricted access pages. Third, it can
evaluate the content rendered after the web browser has
processed all the dynamic content. And finally, it improves
flexibility as it is possible to modify or add checkpoints and
tests.

Figure 8. Example of annotated code view

One key point that accessibility evaluators should take into
account is the results of evaluating a web page with Hera-FFX (or
other tools implemented as browser extensions) comparing with
the results of evaluating the same web page with Hera (or other
online or standalone tools). Extensions tools evaluate the web
page after it has been rendered by the browser, having executed
its scripts, so they evaluate the rendered code, whereas the other
tools evaluate just the source code. This could lead to different
values to some of the checkpoints.

33

Table 3. Summary of Hera-FFX features
Feature Value Comment
Automatic
preliminary
evaluation

The “Atomatic preliminary analysis” Hera-FFX module automatically evaluates the checkpoints once the
browser had completely loaded a web page and the all the dynamic elements had been generated. It provides a
preliminary result for the checkpoints.

Support for
manual
filling

The user is guided to complete the automatic preliminary evaluation with a manual evaluation of the web page.
Hera-FFX provides support offering different services to perform the manual evaluation and forms to add results
and comments.

Page
presentation
modification

 Elements to be manually evaluated are highlighted in a modified page view. This allows user to easily locate and
check the conformity of checkpoints.

Annotated
code view Elements to be manually evaluated are highlighted in a code view. This allows user to quickly locate the lines of

code with interesting labels or attributes to check the conformity of checkpoints.
Local pages
evaluation

new

Hera-FFX is able to work with local web pages. This is possible because the evaluation is performed after the
web page is loaded in the browser, so no matter where the page was obtained.

Restricted-
access pages
evaluation

new

Hera-FFX is able to work with restricted web pages (HTTPS, password-protected…). This is possible because
the evaluation is performed after the web page is loaded in the browser and all restrictions have been surpassed
by the user.

Rendered-
page
evaluation

new

Hera-FFX performs the evaluation when the web page is fully loaded. This means that all the dynamic content
has been processed and generated.

Report
generation The “Report generation” module generates a full HTML report about the accessibility of a web page. This report

includes both the automatic and manual evaluation results.

Support for
training

The “help on checkpoints” and the “instructions for evaluation” services provide complementary information to
the evaluator. This helps him or her to better understand the checkpoint under evaluation and to learn how to
check it for comformity.

Multi-session
capacity The “Load evaluation” and “Save evaluation” modules allows to store the ongoing evaluation. This can be used

to interrupt the evaluation or to interchange evaluations among different evaluators.

Flexibility
new

All the structure of guidelines and checkpoints are stored in XML files; together with JavaScript code that
implements the automatic evaluation techniques. This allows flexibility as users could change both the guidelines
and checkpoints as well as the evaluation code.

These advantages have been built into a user interface that has
been designed to closely emulate the Hera online tool’s behavior
and, this way, facilitate the transition from the online tool (which
has been considered to be extremely useful by its hundreds of
users) to Hera-FFX. This was demonstrated by a preliminary user
evaluation involving 6 expert users of Hera. It is an informal
usability evaluation focused on making sure that the tool is useful
for people that are proficient with Hera. These 6 people had to
evaluate several web pages using Hera and Hera-FFX. Each
person only used one tool for a given web page (i.e. for a given
page, 3 people used Hera and 3 other people used Hera-FFX). We
obtained the following usability results:

• Increased efficiency. One of the main reasons of this better
efficiency is that each manual evaluation is automatically
updated in Hera-FFX. In the Hera tool, users were obliged to
click on the “record results” button to store the results of
manual evaluation.

• Same effectiveness. No relevant changes on effectiveness
were measured.

• Increased user satisfaction. The main reason is because users
now are able to evaluate web pages that were impossible
with Hera online (rendered, local or restricted pages).

This is a preliminary evaluation with a very limited number of
users. For this reason, we think that the results are not conclusive
and we plan to carry out a more detailed usability evaluation to
assess how usable Hera-FFX is in different contexts of use.

With the same users we also did a preliminary evaluation of the
tool effectiveness, according to Brajnik’s proposal. When
compared to Hera-online, we obtained the following results:

• Same completeness. Both tools allow the user to fully
evaluate the 65 checkpoints of WCAG 1.0.

• Slightly increased correctness, due to the fact that Hera-FFX
inspects the rendered-page, and is closer to the user
experience.

• Same specificity. Both tools offer the same coverage of
WCAG.

Concerning future work, we are currently working on extending
the Hera-FFX functionality by generating reports in different
formats (PDF and EARL). Although the add-on is in Spanish, it
has been designed to be easily internationalized. We plan to have
an English version ready in several months’ time.

In addition we also plan to update Hera-FFX to cover the next
version of WCAG, which was published as a final
recommendation on December 11, 2008 [4], and to cover the
Spanish web content accessibility standard [12].

Concerning WCAG 2.0, the work of adapting Hera-FFX has
already started. WCAG 2.0 has a more complex structure with
principles, guidelines, success criteria, techniques (both sufficient
and advisory) and failures. Our plan is to consider techniques and
failures at the same level as current “tests” in Hera-FFX, but some
structural changes are needed to handle the flexibility in WCAG

34

2.0 to choose between multiple techniques to satisfy a
requirement.
In the longer term, our ultimate goal is to develop a complete
stand-alone evaluation tool including workgroup tools, such as
project creation and management, evaluation work distribution,
aggregation of results from different evaluators, assessment of
evaluator reliability and so on.

6. ACKNOWLEDGMENTS
The authors wish to thank the Sidar Foundation and especially
Carlos Benavidez for developing Hera, the tool that our add-on is
based on.
The work described in this paper was funded in part by the
Technical University of Madrid and Madrid’s Regional
Government as part of support received for “Assistive Computer
Technology for Disabled People” (CCG06-UPM/INF-388).

7. REFERENCES
[1] Benavídez, C., Fuertes, J. L., Gutiérrez, E., and Martínez, L.

2006. Semi-Automatic Evaluation of Web Accessibility with
HERA 2.0. Lecture Notes in Computer Science 4061 (July
2006), 199-206.

[2] Benavídez, C.; Fuertes, J. L.; Gutiérrez, E.; and Martínez, L.
2006. Teaching Web Accessibility with “Contramano” and
Hera. Lecture Notes in Computer Science 4061 (July 2006),
341-348.

[3] Brajnik, G. 2004. Comparing accessibility evaluation tools: a
method for tool effectiveness. Universal Access in the
Information Society. 3(3-4), Springer Verlag, pp. 252-263.

[4] Caldwell, B., Cooper, M., Reid, L. G., and Vanderheiden, G.
(eds). 2008. Web Content Accessibility Guidelines 2.0.
World Wide Web Consortium Recommendation (December
2008). http://www.w3.org/TR/WCAG20/.

[5] Chisholm, W., Vanderheiden, G., and Jacobs, I. (eds.) Web
Content Accessibility Guidelines 1.0. World Wide Web
Consortium Recommendation (May 1999).
http://www.w3.org/TR/WCAG10.

[6] Education and Outreach Working Group. 2006. Evaluating
Web Sites for Accessibility: Overview. World Wide Web
Consortium. http://www.w3.org/WAI/eval.

[7] Mozilla. 2008. Firefox web browser.
http://www.mozilla.com/en-US/firefox/.

[8] Sidar Foundation. 2003. Hera tool Version 1.0
http://www.sidar.org/ex_hera/ index.php.en.

[9] Sidar Foundation. 2005. Hera 2.0: Accessibility testing with
style. URL= http://www.sidar.org/hera/index.php.en.

[10] Sidar Foundation. 2008. Fundación Sidar - Acceso
Universal, Seminario SIDAR (in Spanish).
http://www.sidar.org/.

[11] Slatin, J. M. and Rush, S. 2003. Maximum Accessibility:
Making Your Web Site More Usable for Everyone. Addison
Wesley Professional, Boston.

[12] Spanish Association for Standardization. 2004. Computer
applications for people with disabilities. Web content
accessibility requirements. Spanish standard UNE
139803:2004. Madrid: AENOR (in Spanish).

[13] W3C. 2006. Web Accessibility Evaluation Tools: Overview.
Web Accessibility Initiative, World Wide Web Consortium.
http://www.w3.org/WAI/ER/tools/.

[14] W3C. 2008. Complete List of Web Accessibility Evaluation
Tools. http://www.w3.org/WAI/ER/tools/complete

[15] W3C. 2008. EARL Overview.
http://www.w3.org/WAI/intro/earl.php

[16] W3C. 2008. Selecting Web Accessibility Evaluation Tools.
Draft. http://www.w3.org/WAI/eval/selectingtools.html

35

	Front-matter.pdf
	complete-proceedings-2009.pdf
	p0.pdf
	INTRODUCTION
	Changing demographics
	Changing abilities

	OLDER WEB USERS
	WAI GUIDELINES AND WEB USABILITY
	Web Content
	Authoring Tools
	User Agents
	Assistive Technologies
	Summary

	GAPS AND OPPORTUNITIES
	Research to complete our understanding
	Web developers’ understanding
	Older users’ understanding
	Summary

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	p1.pdf
	1. INTRODUCTION
	2. OLDER USERS
	2.1 Age
	2.2 Experience and Motivation
	2.3 Age-Related Changes
	2.3.1 Cognitive
	2.3.2 Perceptual
	2.3.3 Motor
	2.3.4 Dynamic Diversity

	2.4 Summary

	3. SUPPORTING OLDER USERS
	3.1 Web Guidelines and Aging
	3.2 Browser Modifications
	3.2.1 Specialized Browsers
	3.2.2 User modification of page presentation

	3.3 Summary

	4. EMERGING EVIDENCE
	5. THE NEXT GENERATION
	Age-Related Changes
	5.2 Age-Related Changes
	Conclusions

	6. ACKNOWLEDGMENTS
	7. REFERENCES

	p3.pdf
	1. INTRODUCTION
	2. FEATURES OF WEB ACCESSIBILITY TOOLS
	3. RELATED WORK AND MOTIVATION
	4. HERA-FFX
	4.1 Design
	4.2 Detailed Evaluation Process
	4.2.1 Automatic Preliminary Analysis
	4.2.2 Summary of Results
	4.2.3 Manual Evaluation Support

	5. CONCLUSIONS AND FUTURE WORK
	6. ACKNOWLEDGMENTS
	7. REFERENCES

	p12.pdf
	Introduction
	Related Work
	Combining CSS Annotations and AxsJAX
	CNN Example
	Conclusion and Future Work
	REFERENCES -9pt

	p13.pdf
	INTRODUCTION
	EVALUATIONS OF THE WCAG 2.0
	Motivation
	Objective and approach
	Participants and settings
	Materials
	Procedure

	FINDINGS
	Design of link purpose
	Keyboard-based navigation

	INFORMING DESIGNS
	DISCUSSION
	ACKNOWLEDGEMENTS
	REFERENCES

	p14.pdf
	Virtual Teaching in a Society of Learning
	António Eduardo Martins
	ONLINE TEACHING – AN EMERGING REALITY
	FINAL THOUGHTS

	p15.pdf
	INTRODUCTION
	IMPLEMENTING ACCESSFORALL IN ATUTOR
	2.1 Personal Needs and Preferences (PNP)
	2.2 Digital Resource Descriptions (DRD)
	2.3 Content Packaging Interoperability

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	p18.pdf
	In this paper, we describe existing implementations for putting subtitles and captions alongside the HTML5 <video> tag inside Web pages and a proposal for standardizing such approaches, which will make them interoperable and easier to be processed by ...
	INTRODUCTION
	EXAMPLE SUBTITLE SUPPORT
	TIME-ALIGNED TEXT
	OGG ACCESSIBILITY
	NEXT STEPS

