
Towards a set of Measures for Evaluating Software Agent Autonomy

Fernando Alonso, José L. Fuertes, Löic Martínez
Facultad de Informática

Universidad Politécnica de Madrid
28660 – Boadilla del Monte, Madrid (Spain)
e-mail: {falonso, jfuertes, loic}@fi.upm.es

Héctor Soza
Facultad de Ingeniería y Ciencias Geológicas

Universidad Católica del Norte
Avda. Angamos 0610, Antofagasta, Chile

mail: hsoza@ucn.cl

Abstract—Agent-oriented software is an established research
field. For this reason, it is important to develop comprehensive
measures of excellence to evaluate this software. No set of
measures defining the overall quality of an agent has been
developed to date. Some attempts at evaluating agent quality
have addressed certain agent features, like the development
process. We believe that agent quality can be determined as a
function of well-defined characteristics. Evaluated using
appropriate measures, these characteristics will assure an
agent’s reliability and correct functionality. This paper deals
with an important agent feature, namely, autonomy.
Autonomy is considered to be the agent’s ability to operate
independently, without the need for human guidance or the
intervention of external elements. The article proposes a set of
measures used to evaluate the autonomy of a agent and
presents a case study analysing the behaviour of these
measures.

Keywords: Autonomy, Measures, Quality, Software agents

I. INTRODUCTION

A number of software development paradigms —
procedural software, object-oriented software, agent-oriented
software, etc. — have been developed throughout computer
science history. Each development paradigm was designed to
more efficiently produce software depending on the
application type. However, software quality, that is, how able
the software is to satisfy user needs, is the goal of any
development. Several quality measures have been designed
so far. In the case of the procedural and object-oriented
paradigms, these measures have resulted in quality models
[1], [2]. In 2001, the ISO and IEC established an
international standard quality model [3]. This model
decomposes overall software product quality into
characteristics, sub-characteristics (attributes) and associated
measures.

Research has been conducted on adapting some measures
of procedural and object-oriented software to evaluate agent-
oriented software quality. This initiative is based on the fact
that these concepts have some characteristics in common
with the agent paradigm, like its procedural programming
approach, encapsulation, information hiding, etc. [4], [5], [6].
Few studies, though, have set out to develop measures
exclusively targeting agent-oriented software [6], [7], and
none have determined a quality model considering specific
characteristics associated with the development and
application of an agent.

The work presented here is part of a line of research
aiming to evaluate the overall quality of an embedded agent
considering its interactions with the user and other agents, to
determine the efficiency and quality of its application.
Research focuses on analysing the characteristics defining a
agent. We presented early results measuring the social ability
characteristic of a software agent elsewhere [8].

This paper presents a set of measures for evaluating agent
autonomy, considering different attributes associated with
this characteristic. Agent autonomy means the agent’s ability
to operate on its own, without the need for any human
guidance or the intervention of external elements, and to
control its own actions and internal states [4], [7].

The paper is structured as follows. The next section
presents some research on measures related to agent
autonomy. In section 3 we discuss software agent autonomy
and its attributes. Section 4 suggests measures for evaluating
agent autonomy attributes. Section 5 summarizes the process
of calculating autonomy and its application to a case study.
The last section includes some concluding remarks and
discusses future research.

II. RELATED WORK

Although there are several studies on agent autonomy,
we have found little relevant research on quality measures
related to agent autonomy.

Barber and Martin authored one of the early papers on
the issue of measuring agent autonomy [9]. They presented a
complete framework for interpreting agent autonomy and
delivering an autonomy representation for quantitatively
assessing an agent’s degree of autonomy. They state that
overall agent autonomy could be measured as the mean or
sum of the autonomies for all the pursued goals. They
expressly state that such an evaluation is beyond the scope of
their study.

Dumke, Koeppe and Wille set out a set of measures
considering product, process and resources to evaluate the
performance of agents and bring an empirical criterion into
the evaluation [4]. In this study, the measure of autonomy of
the agent’s design considers measuring agent size and
complexity.

Cernuzzi and Rossi proposed a framework for evaluating
the agent-oriented analysis and design modelling methods
[10]. The proposal takes into consideration qualitative
evaluation criteria employing quantitative methods. They
evaluated autonomy considering whether or not the

2009 Eighth Mexican International Conference on Artificial Intelligence

978-0-7695-3933-1/09 $26.00 © 2009 IEEE

DOI 10.1109/MICAI.2009.15

73

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 03,2010 at 09:54:39 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

modelling technique checks if agents have control over their
internal state and their own behavior.

In a project report, Shin outlined the results of adapting
some product measurements from the procedural and object-
oriented paradigms to agent-oriented software [6]. Shin
compared objects and agents, and developed a program to
evaluate the measures applied to an example. He suggested
that agent complexity could be viewed as a way of
measuring agent autonomy.

Huber authored another significant paper on measuring
agent autonomy [11]. This work stressed the social aspects of
agents and described autonomy as a measure of an agent’s
social integrity and social dependence. The measure of social
dependence is a function of tasks imposed upon the agent by
a superior agent, tasks accepted from peers, tasks contracted
out to peers (and dependent upon completion) and tasks
imposed upon inferior agents (and dependent upon
completion). To compute an overall autonomy value for an
agent, Huber combines the social integrity autonomy value
and the social dependency autonomy value.

Huebscher and McCann presented a survey about
autonomic computing [12]. They showed that this discipline
has evolved to create self-managing software systems in a
bid to overcome the complexities and inability to effectively
maintain current and emerging systems. They proposed the
main properties of self-management of an autonomic
computing system: self-configuration (configures itself
according to high-level goals), self-optimization (optimizes
its use of resources), self-healing (detects and diagnoses
problems) and self-protection (protects itself from malicious
attacks but also from end users who inadvertently make
software changes). They do not propose measures to evaluate
these properties.

Generally, none of the above studies provides specific
quality measures of software agent autonomy that could be
used to get a global quality measure of the software agent.
This is the main focus of this research.

III. SOFTWARE AGENT CHARACTERISTICS:
AUTONOMY AND ITS ATTRIBUTES

In conformance with other key studies of software
quality [13], [14], the quality of a agent can be analysed on
the basis of its characteristics, sub-characteristics (or
attributes) and attribute measures.

It is now an acknowledged fact in the agent-oriented
software field that an agent must have the following basic
characteristics: social ability, autonomy, proactivity,
adaptability, intelligence and mobility (if the agent is mobile)
[4], [7], [8]. Agent quality will then be determined by the set
of quality attributes for each of the above characteristics, and
these attributes can be evaluated by a set of measures.

Agent autonomy is a characteristic that is interpreted as
freedom from external intervention, oversight, or control
[15]. Autonomous agents are agents that “are able to work on
behalf of their user without the need for any external
guidance” [16]. This type of definition fits the concept of
autonomy in domains that involve an agent interacting with
other agents, as seen in this research.

From our experience with agents [8] and the literature
survey of the field [4], [6], we propose that agent autonomy
should consider three key attributes: self-control, functional
independence and evolution capability. They are:

Self-Control: The ability of self-control is identified by
the level of control that the agent has over its own state and
behaviour [4]. For an agent to operate effectively, its self-
control has to be effective and fast. The more complex its
state is the less self-control it will have. This implies that the
agent’s internal state, which accommodates the agent’s
beliefs, goals and plans, should have a simple structure and
be of a reasonable size to be operated on [6]. Good self-
control depends on the complexity of the agent’s internal
state (evaluated as a function of structural complexity and
internal state size) and of its behaviour complexity.

 Functional Independence: Agent autonomy is a
function of its structural and functional dependence [6], [16].
Functional dependence is related to executive tasks requiring
an action that the agent has to perform on behalf of either the
user it represents or other agents. A good level of functional
independence will indicate that the agent does not have to
perform many executive tasks.

Evolution Capability: The evolution of a agent refers to
the capability of the agent to adapt to meet new requirements
[17] and take the necessary actions to self-adjust to new
goals [18]. An autonomous agent must be able to learn to
adapt its state to attain new goals. This means that the
agent’s knowledge of how to modify its state must be
permanently updated. Therefore, a good evolution capability
depends on its state update capacity, and the frequency of
state update [6].

IV. MEASURES FOR THE ATTRIBUTES OF
AUTONOMY

Before introducing the measures for each attribute
defining agent autonomy that we will use to evaluate this
characteristic, we will discuss some general points related to
the measures that we are introducing.

A. Considerations on Measurement

The measures used in this research are dynamic measures
(i.e. measure the characteristics of the software during
execution) and static measures (i.e. examine the source code
to measure the characteristics of the software) [19].

To gather valid results in a software product evaluation
using dynamic measures, this evaluation should be
conducted in a controlled environment [20]. We will call this
environment the benchmark. This assures that the evaluated
measures are repeatable and comparable. This benchmark
shall precisely specify the conditions in which the system
under evaluation should be run for each dynamic measure.

We define each measure by a formula. The results of the
measures are normalized in the interval [0, 1] (where 0
means a poor result for the measure and 1 means a good
result). To normalize the values of the resulting measures,
we use the functions shown in Figure 1. Some of these
functions were successfully used for social ability software
agent characteristic [8].

74

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 03,2010 at 09:54:39 UTC from IEEE Xplore. Restrictions apply.

The constants k, k1 and k2 are parameters of these
functions. They represent measure evaluation turning points.
Taking the values of each measure, our proposal, to assess it,
is to set a value interval in which k, k1 and k2 can be defined
in terms of the evaluated measure. This provides for an
adequate normalization of the measurement data.

We recommend that the software engineer can configure
the value of the parameters to fine tune the formula
performance for each particular case, considering a values
interval for each parameter according to each measure.

The functions depend on the argument x and function (c)
also depends on the argument p. The values of these
arguments are defined by each measure.

Function (a) indicates that the value of the measure is
constant at 1 (optimum measure value) until x reaches a
value k (k indicates the point at which the value of the
measure should no longer be considered optimum). So, as x
grows, the value of the measure gently descends to zero,
describing an exponential curve.

Function (b) indicates that the measure grows describing
a parabola, as x increases up to a value defined by the
parameter k1. At this point, the measure remains unchanged
at the maximum value 1 as long as x is between the
parameters k1 and k2. Then its value starts to descend gently
down to zero, describing an exponential curve.

Function (c) indicates that the measure descends
constantly as it progresses, until it reaches the value 0 at the
point given by argument p.

B. Definitions of Autonomy Attribute Measures

In this section we present the measures for the agent
attributes of self-control, functional independence and
evolution capability. These attributes define the agent’s
autonomy. Some of these measures are based on research
into the question of autonomy within the agent paradigm,
others were extracted from other paradigms and adapted to
agent technology, and others are new measures proposed
here.

1. Self-Control
The self-control attribute can be measured using the

following measures:
Structural Complexity (SC): State structural complexity

is determined by the quantity and complexity of the pointers
or references that the agent uses.

Let n be the number of pointers and references existing in
the agent’s internal state and let CPi be the complexity of the
ith pointer or reference.

Then CP is defined as equation (1):

�
=

=
n

i
iCPCP

1

. (1)

The SC measure follows function (a) in Figure 1, where x
is CP. The complexity of CPi is evaluated by counting the
embedding level of the structures referenced by the ith

pointer or reference.

�

���

���

���

���

�
	

��

�
�
�

>

≤≤
−−

kxe

kx01
)a(

2

2

k

k)(x

�

���

���

���

���

�
	�	�

�
�
�

�

��
�

�

�

>

≤≤

<≤��
�

	

�

�
−

−
−

2
k

)k(x
21

1

2

11

kxe

kxk1

kx0
k

x

k

2·x

(b)

2
2

2
2

�

���

���

���

���

�

�
�
�

≤≤− px0
p

x
1(c)

Figure 1. Formula types used in the measures.

The measure is considered optimum when the value of
CP is less than k. On the other hand, if CP is greater than k,
the value of the measure decreases rapidly. This is because
an increased number and complexity of the structures
referenced by pointers or references may take longer to
execute resulting in a reduction in the agent’s autonomy.

Internal State Size (ISS): The internal state size is
determined by the size and number of the variables that the
agent needs to define its internal state. ISS measures the
agent’s variable size. This is an adaptation of a measure
described in [6]. Let us define n (n > 0) as the total number
of variables, and let VBi be the bytes size of the memory
needed to represent the ith variable or agent pointer (if the
pointer measures the memory size of the referenced
structure), then MD is defined as equation (2):

�
=

=
n

i
iVBMD

1

. (2)

The ISS measure follows function (b) in Figure 1, where
x is MD. If the value of MD is less than k1, the agent will
have less self-control because it will not have all the
information required for self-control and to attain its goals.
ISS reaches its optimum value for values of MD from k1 to k2,

and then drops rapidly as MD increases. This decline is due
to the growing complexity of the agent’s internal state,
leading it to have to handle too much information to be able
to control itself.

Behaviour Complexity (BC): This measure evaluates
the complexity of the services that the agent offers (only
applies to agents that offer services). A service offered by an
agent implies performing a series of actions, such as the
operations to be executed by the agent to carry out the
offered service. The complexity of these services differs

75

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 03,2010 at 09:54:39 UTC from IEEE Xplore. Restrictions apply.

depending on the paradigm implementing the agent (object-
oriented, knowledge-based system, etc.). Therefore, agent
services complexity will be a function of the paradigm
implementing the agent [21]. Let us define n (n > 0) as the
total number of services and let CSi be the complexity of the
ith service, considering the measure defined for the paradigm
used as the complexity measure, then CS is defined as
equation (3):

�
=

=
n

i
iCSCS

1

. (3)

The BC measure follows function (a) in Figure 1, where x
is CS. Good measures of agent complexity are presented in
[22], [23] and [24]. The value of BC is considered to be
optimum if the value of CS is low, less than k for the system.
For values of CS greater than k, the value of the BC measure
starts to decrease. This is because the increased complexity
of implemented services could possibly affect agent
autonomy as it could increase the time and effort required to
execute its services [21].

2. Functional Independence
The functional independence attribute can be measured

using the following measure:
Executive Messages Ratio (EMR): It measures the

influence on the agent of the ratio of executive messages
(requiring an action) received from the user that the agent
represents or other agents (to which it is obliged to respond)
to all the received messages (considering the communication
actions). Above all, it takes into account FIPA Request
messages [25]. Let MR be the total number of messages
received and let ME be the number of executive messages
received by the agent during execution. This measure is only
applicable when the agent receives messages (MR > 0).
EMR, which follows function (c) in Figure 1, is defined by
equation (4):

MR

ME
EMR −= 1 . (4)

If the value for EMR is high, the agent’s autonomy is
high because, as it receives few executive messages, it has to
execute fewer actions. This affects its autonomy. Having to
respond to a high number of executive messages (a low EMR
value) can penalize the agent's functional independence.

3. Evolution Capability
The evolution capability attribute can be measured using

the following measures:
State Update Capacity (SUC): This static measure is

useful for evaluating the software agent’s capability to
update its state. The agent’s state is defined by a set of
variables that are dependent on different event occurrences,
where the event would change the variable value, and
therefore the agent state [6]. This is an adaptation of a
measure described in [6]. Let us define n (n > 0) as the
number of all executable statements, let m be the number of
variables and let Sij be 1 if the ith statement updates the jth

variable, and 0 otherwise. Let AS be the mean value of
variables updated by agent statements, defined as equation
(5):

��
= =

=
n

i

m

j
ijSAS

1 1

. (5)

The SUC measure follows function (b) in Figure 1, where
x is AS. As the value of AS increases up to the value of k1, the
value of SUC also grows rapidly because each variable is
dependent on a growing number of statements with
changeable values. This influences the agent’s internal state
and, therefore, its evolution capability [6]. The measure
reaches the optimum value between k1 and k2. Finally, when
the value of AS goes above k2, the value of SUC decreases
because the agent’s knowledge update process now involves
so many variables that it is unable to evolve properly.

Frequency of State Update (FSU): This measure is
useful for evaluating the impact of the state update frequency
during the execution of the variable defining the agent state.
Depending on what the knowledge is used for, this frequency
of change could have a big impact on agent predictability
and behaviour [6]. This is an adaptation of a measure
described in [6]. Let us define n (n > 0) as the number of all
executable statements, let m be the number of variables and
let us define VCij as 1 if the ith statement accesses and
modifies the jth variable during the execution of the
benchmark. Then, we define FV (the frequency of the change
of variables inside the agent) by equation (6):

��
= =

=
n

i

m

j
ijVCFV

1 1

. (6)

The FSU measure follows function (b) in Figure 1, where
x is FV. As long as FV is less than k1, the value of FSU
increases because the agent’s knowledge update frequency,
and hence its evolution capability, increases up to the
optimum value when FV is between the values of k1 and k2.
Above this second value (k2), its evolution capability starts to
drop because the knowledge update frequency can become
so high as to prevent it from being able to take the
appropriate actions to evolve. The values of parameters k1

and k2 depend on agent programming.

V. CASE STUDY

To evaluate the studied measures we have used a multi-
agent system with six agent types: three buyers and three
sellers [26]. It is an intelligent agent marketplace which
includes different kinds of buyer and seller agents that
cooperate and compete to process sales transactions for their
owners. Additionally, a facilitator agent was developed to act
as a marketplace manager. We have used this system to
evaluate the functional quality of the buyer and seller agents’
social ability [8] and autonomy within the system.

The agents are basic, intermediate and advanced buyers
and sellers. They have the same negotiation capacities, but
they differ as to how sophisticated the techniques used to
implement their negotiation strategies are, ranging from
simple, hard-coded logic to forward-chaining rule inference.
The seller agents send messages reporting the articles that
they have to sell, and the buyers respond stating their
willingness to buy and what they offer for the article. The
seller agents respond by accepting or rejecting the offer, and,

76

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 03,2010 at 09:54:39 UTC from IEEE Xplore. Restrictions apply.

when they receive this message, the buyer agents return a
confirmation message.

The autonomy study focuses on the six system agents.
Figure 2 shows the values of the measures taken during the
evaluation (the box-and-whisker plots in Figures 2 and 3
compare the minimums, 25th percentiles, medians, 75th

percentiles and maximums of the measured values).

� ��� ��� ��� ��� �

��

��

���

��

�

�

Figure 2. Box-and-whisker plot of the autonomy attribute measures

Figure 2 shows that, unlike the SC and EMR measures,
the ISS, BC, SUC and FSU measures have very high values.
SC has a very low minimum value. It inherits this value from
the basic agents, as a great many, very complex pointers and
references are used for these agents, whereas the
intermediate and advanced agents have less complex
pointers. On these grounds, the median is high and the
percentiles have a wide range of values. The EMR measure
has scored intermediate values, as the ratio of the number of
executive messages over the total number of messages
received is similar for all three agent types, and its values are
close to the mean. The results for the other measures applied
to all three agents are excellent, highlighting that the
properties of these attributes are good for these agents and
have a positive impact on their autonomy.

Figure 3 shows that basic agents have a very high
median, as the intermediate value between the results of
agent structural complexity (low value) and the other
measures considered (high value) leads to a dispersion of the
percentile values and a high maximum value. The measures
for the other agents are higher thanks to which their results
are less dispersed. From this we conclude that the agents are
more autonomous.

Figure 4 shows the values of the measures for the
attributes of the autonomy characteristic aggregated using
the arithmetic mean of their values. We find that the EMR
and SC measures are lower because the basic system agents
have a lower associated value and the other measures are
close to the maximum possible value. From these results we
conclude that the system agents have a very high evolution
capability, high self-control and above average functional
independence.

Figure 5 shows that evolution capability is very high for
all agents. This is followed by self-control. Self-control is
lower for the basic agents because their state change is low.
Finally, functional independence is lower for all agents, as
the EMR measure, which depends on the ratio of executive

messages received over all messages received, is average for
the agents of this system.

� ��� ��� ��� ��� �

����������

����������

���� �������

������!"��

������!"��

���� ��!"��

Figure 3. Box-and-whisker plot for system agents

Figure 4. System average by autonomy attribute measures

�

���

���

���

���

�

����
�!"��

�����#�
�!"��

����
�!"��

����
�����

�����#�
�����

����
�����

�!�$�$#"

��%��$���$�

������!� �

&�$�����
�

Figure 5. Values of autonomy and its attributes

Because all agents have an adequate state update
capacity, the evolution capability attribute scores high for all
agents, as SUC (state update capacity) and FSU (frequency
of state update) have high values in all cases. This can be
attributed to agent programming. Thanks to these measure
values, this is the highest-scoring, and therefore the most
important, attribute for this system. According to these
results, mean autonomy for this system is 85% (aggregated
using the arithmetic mean of their values), all agents scoring
above 80%, where the autonomy of the basic agents is
slightly lower than for the others.

� ��� ��� ��� ��� �

��

��

&��

��

�

�

77

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 03,2010 at 09:54:39 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSIONS AND FUTURE WORK

This paper is part of ongoing research aimed at defining
the global quality of software agents. To define this overall
quality, we first identified relevant software agent
characteristics from the literature: social ability, autonomy,
proactivity, reactivity, adaptability, intelligence and mobility.
For each characteristic, we plan to define a set of attributes
and for each attribute, a set of measures.

We addressed the social ability characteristic in previous
work [8]. In this paper, we present a first approximation to a
set of measures for the autonomy characteristic. This
characteristic is divided into three attributes: self-control,
functional independence and evolution capability. We also
provide a total of six measures for the attributes. We have
applied these measures to a typical case study to evaluate the
applicability of the proposed measures and the relevance of
the identified attributes. This case study is an intelligent
agent marketplace with three types of seller agents (basic,
intermediate and advanced), three types of buyer agents and
one facilitator agent. The autonomy of the designed agents is
high (85%). Two attributes have very good values: evolution
capability (99%) and self-control (91%), whereas the values
for functional independence are much lower (although
greater than 60%).

Our future work pursues the ultimate goal of evaluating
the global quality of software agents. First, we will have to
evaluate the remaining characteristics: proactivity,
adaptability, intelligence and mobility. Then we will define
an aggregation method for computing the global quality of a
software agent, given the results of all the measures of all the
attributes of the agent’s characteristics. This method will
have to deal with the diversity of agent types and multi-agent
systems. For this reason, it has to provide ways to adapt the
computation process to different situations. What we are
actually doing is developing a quality evaluation model for
software agents. This model considers agent types, agent
characteristics, attributes and measures.

REFERENCES

[1] J. A. McCall, “An Introduction to Software Quality Metrics”,
Software Quality Management, J. D. Cooper and M. J. Fisher, (eds.)
Petrocelli Books, New York, NY, 1979, pp. 127–142

[2] J. L. Fuertes, “Modelo de Calidad para el Software Orientado a
Objetos”, Doctoral Thesis. School of Computing, Technical
University of Madrid, Madrid, Spain, 2003.

[3] ISO/IEC. 2001. Software engineering- Product quality- Part 1:
Quality Model. International Standard ISO/IEC 9126-1:2001.

[4] R. Dumke, R. Koeppe, C. Wille, “Software Agent Measurement and
Self-Measuring Agent-Based Systems”, Preprint No. 11, Fakultät für
Informatik, Otto-von-Guericke-Universität, Magdeburg, 2000.

[5] B. Far, T. Wanyama, “Metrics for Agent-Based Software
Development”, Proceedings of the IEEE Canadian Conference on
Electrical and Computer Engineering CCECE 2003, pp. 1297—1300.

[6] K. Shin, “Software Agents Metrics. A Preliminary Study &
Development of a Metric Analyzer”, Project Report No. H98010,
Dept. Computer Science, School of Computing, National University
of Singapore, 2003/2004.

[7] C. Wille, R. Dumke, S. Stojanov, “Quality Assurance in Agent-Based
Systems Current State and Open Problems”, Preprint No. 4, Fakultät
für Informatik, Universität Magdeburg, 2002.

[8] F. Alonso, J. L. Fuertes, L. Martínez, H.Soza,”Measuring the Social
Ability of Software Agents”, Proceedings of the Sixth International
Conference on Software Engineering Research, Management and
Applications, Prague, Czech Republic, 2008, SERA 2008, pp. 3-10.

[9] K. S. Barber, C. E. Martin, “Agent Autonomy: Specification,
Measurement, and Dynamic Adjustment”, Proceedings of the
Autonomy Control Software Workshop at Autonomous Agents,
Seattle, WA, Agents’99,1999, pp. 8–15.

[10] L. Cernuzzi, G. Rossi, “On the Evaluation of Agent Oriented
Methodologies”, Proceedings of the International Conference on
Object Oriented Programming, Systems, Languages and Applications
- Workshop on Agent-Oriented Methodologies OOPSLA 02, Seattle,
WA,. 2002, pp. 2 –30.

[11] M. J. Huber, “Agent Autonomy: Social Integrity and Social
Independence”, Proceedings of the International Conference on
Information Technology ITNG'07, Las Vegas, Nevada. IEEE
Computer Society, Los Alamitos, CA, 2007, pp. 282--290.

[12] M.C. Huebscher, J. A. McCann, “A survey of Autonomic
Computing-Degrees, Models, and Applications”, ACM Computing
Surveys, Vol. 40, No. 3, Article 7, 2008, pp. 1–25.

[13] S. Covey, “The Seven Habits of Highly Effective People”, Free Press,
15th anniversary edition, 2004.

[14] K. Dautenhahn, C. L. Nehaniv, “The Agent-Based Perspective on
Imitation. In: Imitation in Animals and Artefacts” C. L. Nehaniv and
K. Dautenhahn, (eds.) The MIT Press, Cambridge, MA, 2002, pp. 1--
40.

[15] R. Beale, A. Wood, “Agent-based Interaction. In: Proceedings of
People and Computers”, IX: Proceedings of HCI’94, Glasgow, UK,
1994, pp. 239–245.

[16] M. Wooldridge, “An Introduction to Multiagent Systems”, John
Wiley & Sons, Inc., 2002.

[17] J. Murdock, “Model-Based Reflection for Agent Evolution”,
Technical Report GIT-CC-00-34, Doctoral Thesis. Georgia Institute
of Technology, Atlanta, 2000.

[18] B. Friedman, H. Nissenbaum, “Software Agents and User
Autonomy”. Proceedings of the First International Conference on
Autonomous Agents, 1997, pp. 466—469.

[19] G. M. Barnes,B. R. Swim, “ Inheriting Software Metrics”, J. Object-
Orient. Prog. 6, 7, 1993, 27—34.

[20] ISO/IEC. 2004. Software engineering- Product quality- Part 4:
Quality in use metrics. International Standard ISO/IEC TR 9126-
4:2004.

[21] S. R. Chidamber, C. F. Kemerer, “A Metrics Suite for Object
Oriented Design”, IEEE T. Software Eng. 20, 6, 1994, pp. 476—493.

[22] L. Etzkorn, J. Bansiya, C. Davis, “Design and Code Complexity
Metrics for OO Classes”, J. Object-Orient. Prog. 12, 1, 1999, pp.
35—40.

[23] T. J. McCabe, “A Complexity Measure”, IEEE T. Software Eng. SE-
2, 4 Dec. 1976, pp. 308—320.

[24] D. Tran-Cao, G. Levesque, A. Abran, “Measuring Software
Functional Size: Towards an Effective Measurement of Complexity”,
Proceedings of the International Conference on Software
Maintenance ICSM’02, Montreal, Canada, 2002, pp.11-17.

[25] Foundation for Intelligent Physical Agents. FIPA Communicative Act
Library Specification, Document Number SC00037J, Geneva,
Switzerland, 2002.

[26] J. P. Bigus,J. Bigus,”Constructing Intelligent Agents using Java”
2nd ed. John Wiley & Sons, Inc., New York, 2001.

78

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 03,2010 at 09:54:39 UTC from IEEE Xplore. Restrictions apply.

