
WebODE: a Scalable Workbench for Ontological
Engineering

Julio C. Arpírez, Oscar Corcho, Mariano Fernández-López, Asunción Gómez-Pérez
Facultad de Informática. Universidad Politécnica de Madrid

Campus de Montegancedo, s/n. 28660 Boadilla del Monte. Madrid. Spain
+34 91 336 7439

jarpirez@delicias.dia.fi.upm.es; {ocorcho, mfernandez, asun}@fi.upm.es

ABSTRACT
This paper presents WebODE as a workbench for ontological
engineering that not only allows the collaborative edition of
ontologies at the knowledge level, but also provides a
scalable architecture for the development of other ontology
development tools and ontology-based applications. First, we
will describe the knowledge model of WebODE, which has
been mainly extracted and improved from the reference
model of METHONTOLOGY’s intermediate repre-
sentations. Later, we will present its architecture, together
with the main functionalities of the WebODE ontology editor,
such as its import/export service, translation services,
ontology browser, inference engine and axiom generator, and
some services that have been integrated in the workbench:
WebPicker, OntoMerge and the OntoCatalogue.

Keywords
WebODE, ontology engineering workbench, ontology
building, translation, integration and merge.

1. INTRODUCTION
In the last years, several tools for building ontologies have
been developed: Ontolingua [11], OntoSaurus [24], WebOnto
[8], Protégé2000 [25], OilEd [20], OntoEdit [21], etc. A
study comparing some of them can be found in [10].
Additional ontology tools and services have been built for
other purposes: ontology merging (Chimaera [18],
Ontomorph [4], PROMPT [14]), ontology access (OKBC
[5]), etc. Finally, many applications have been built upon
ontologies: Ontobroker [12], PlanetOnto [9], (KA)2 [1],
MKBEEM [19], etc. All these tools and applications have
contributed to a high development of the ontology
community, and have laid the foundations of an emergent
research and technological area: the Semantic Web [2].
However, current ontological technology suffers from the
following problems, which must be solved prior to its transfer
to the enterprise world:

• There is no correspondence between existing
methodologies and environments for building ontologies,
except ODE and METHONTOLOGY [13].

• Existing environments just give support for designing
and implementing ontologies, but they do not support all
the activities of the ontology life cycle.

• There are a lot of isolated ontology development tools
that cannot interoperate easily, because they are based on
different technologies, on different knowledge models
for representing ontologies, etc.

Consequently, there is a need for a common workbench to
ensure a wide acceptance and use of ontological technology.
We foresee three main areas in this workbench, as shown in
figure 1:
• Ontology development and management, which

comprises technology that gives support to ontology
development activities: knowledge acquisition, edition,
browsing, integration, merging, reengineering,
evaluation, implementation, etc.; ontology management
activities: configuration management, ontology
evolution, ontology libraries, etc.; and ontology support
activities: scheduling, documentation, etc.

• Ontology middleware services, which include different
kinds of services that will allow the easy use and
integration of ontological technology into existing and
future information systems, such as services for
accessing ontologies, integration with databases,
ontology upgrading, query services, etc.

• Ontology-based applications development suites, which
will allow the rapid development and integration of
ontology-based applications. They will be the last step
towards a real integration of ontologies into enterprise
information systems.

In this paper, we will present WebODE as an scalable
ontological engineering workbench that gives support to
activities from the first two areas of the workbench previously
identified. WebODE’s ontology editor allows the
collaborative edition of ontologies at the knowledge level,
supporting the conceptualization phase of
METHONTOLOGY and most of the activities of the
ontology’s life cycle (reengineering, conceptualization,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
K-CAP’01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010…$5.00.

6

implementation, etc). Besides, WebODE provides high
extensibility in an application server basis, allowing the
creation of middleware services that will allow the use of
ontologies from applications.
This paper is organized as follows: section WebODE in a
nutshell gives a general overview of the main features of this
ontological engineering workbench. Section WebODE’s
knowledge model presents the knowledge model used for
representing ontologies in the WebODE workbench. Section
WebODE architecture describes its main services and the
WebODE ontology editor, as an applications that uses most
of the services. Section Related Work gives a short overview
of existing ontology editing applications. Finally, the
Conclusions section summarizes the main conclusions of this
work, projects in which WebODE has already been used,
ontologies developed using the WebODE ontology editor and
further work.

2. WEBODE IN A NUTSHELL
WebODE is not an isolated tool for the development of
ontologies, but an advanced ontological engineering
workbench that provides varied ontology related services and
covers and gives support to most of the activities involved in
the ontology development process.
WebODE workbench is built on an application server basis,
which provides high extensibility and usability by allowing
the addition of new services and the use of existing services.
Examples of these services are WebPicker, OntoMerge and
OntoCatalogue.
Ontologies in WebODE are stored in a relational database.
Moreover, WebODE provides a well-defined service-
oriented API for ontology access that makes it easy the
integration with other systems.

Ontologies built with WebODE can be easily integrated with
other systems by using its automatic exportation and
importation services from and into XML, and its translation
services into and from varied ontology specification
languages (currently, RDF(S) [23], OIL [16], DAML+OIL
[7], X-CARIN [19] and FLogic [17]).
WebODE’s ontology editor allows the collaborative edition
of ontologies at the knowledge level. Its knowledge model,
which is described in depth in the next section, is mainly
based on the set of intermediate representations of
METHONTOLOGY and provides additional features.
Ontology edition is aided both by form based and graphical
user interfaces, a user-defined-views manager, a consistency
checker, an inference engine, an axiom builder and the
documentation service.
Two interesting and novel features of WebODE with respect
to other ontology engineering tools are: instance sets, which
allow to instantiate the same conceptual model for different
scenarios, and conceptual views from the same conceptual
model, which allow creating and storing different parts of the
ontology, highlighting and/or customizing the visualization of
the ontology for each user.
The graphical user interface allows browsing all the
relationships defined on the ontology as well as graphical-
pruning these views with respect to selected types of
relationships. Mathematical properties such as reflexive,
symmetric, etc. and other user-defined properties can be also
attached to the "ad hoc" relationships.
The collaborative edition of ontologies is ensured by a
mechanism that allows users to establish the type of access of
the ontologies developed, through the notion of groups of
users. Synchronization mechanisms also exist that allow
several users to edit the same ontology without errors.

Figure 1. An ontological engineering workbench.

7

Constraint checking capabilities are also provided for type
constraints, numerical values constraints, cardinality
constraints and taxonomic consistency verification [15] (i.e.,
common instances of disjoint classes, loops, etc.)
Finally, WebODE’s inference service has been developed in
Ciao Prolog. Although WebODE is not OKBC compliant yet,
all the OKBC primitives have been defined in prolog for their
use in its inference engine.

3. WEBODE’S KNOWLEDGE MODEL
WebODE’s knowledge model is extracted from the set of
intermediate representations of METHONTOLOGY. It
allows the representation of concepts and their attributes
(both class and instance attributes), taxonomies of concepts,
disjoint and exhaustive class partitions, ad-hoc binary
relations between concepts, properties of relations, constants,
axioms and instances. It also allows the inclusion of
bibliographic references for any of them and the importation
of terms from other ontologies.
Additionally, WebODE improves the reusability of
ontologies defining sets of instances, which allow the
instantiation of the same conceptual model for different
scenarios it may be used for.
In the following subsections we will describe each one of the
components of the WebODE’s knowledge model:

3.1. Concepts
In short, a concept (also known as a class) can be anything
about which something is said, and, therefore, can also be the
description of a task, function, action, strategy, reasoning
process, etc.
Concepts are identified by their name, although they can also
have synonyms and abbreviations attached to them. A
natural language (NL) description can be also included.
The same applies to references and formulae, which will be
described later in this section. Any component in WebODE
may have any amount of references and reasoning formulae
attached to it.
Class attributes are attributes whose value must be the same
for all instances of the concept. They are not components
themselves in WebODE's knowledge model, as they are
always attached to a concept (and to its subclasses, because of
the inheritance mechanism).
The information stored for a class attribute is the following:
its name (which must be different from the rest of attribute
names of the same concept); the name of the concept it
belongs to (attributes are local to concepts, that is, two
different concepts can have attributes with the same name);
its value type, also called range, which can be a basic data
type (String, Integer, Cardinal, Float, Boolean, Date, Numeric
Range, Enumerated, URL) or an instance of a concept (in this
case, the name of the concept must be specified), and, finally,
its minimum and maximum cardinality, which constrains
the number of values that the class attribute may have.
Optional information for class attributes consists of its NL

description, the measurement unit and its precision (the
last two ones just in case of numeric attributes).
Finally, the value(s) of the class attribute can be specified
once it has been defined completely. These values will be
attached to the class attribute where they have been defined.
Instance attributes are attributes whose value may be
different for each instance of the concept. They have the same
properties than class attributes and two additional properties,
minimum value and maximum value, which are used in
attributes with numeric value types. Values inserted for
instance attributes are interpreted as default values for them.

3.2. Groups
Groups, also called partitions, are used to create disjoint and
exhaustive class partitions. They are sets of disjoint concepts
that have a name, the set of concepts they group together
and, optionally, a NL description. A concept can belong to
several groups.

3.3. Built-in Relations
This subsection deals with predefined relations in the
WebODE’s knowledge model, related to the representation of
taxonomies of concepts and mereology relationships between
concepts. They are divided into three groups:
Taxonomical relations between concepts. Two predefined
relations are included: subclass-of and not-subclass-of. Single
and multiple inheritance are allowed.
Taxonomical relations between groups and concepts. A
group is a set of disjoint concepts. There are two predefined
relations available, whose semantics is also explained:
 Disjoint-subclass-partition. A disjoint subclass partition

Y of class X defines the set Y of disjoint classes as
subclasses of class X. This classification is not
necessarily complete: there may be instances of X that
are not included in any subclass of the partition.

 Exhaustive-subclass-partition. An exhaustive subclass
partition Y of class X defines the set Y of disjoint
subclasses as subclasses of the class X, where X can be
defined as union of all the classes of the partition

Mereological relations between concepts. Two relations are
included: transitive-part-of and intransitive-part-of.

3.4. Ad-hoc relations
WebODE allows just binary ad-hoc relations to be created
between concepts. The creation of relations of higher arity
must be made by reification (creating a concept for the
relation itself and n binary relations between the concepts that
appear in the relation and the concept that is used for
representing the relation).
Ad-hoc relations are characterized by their name, the name
of the origin (source) and destination (target) concepts, and
its cardinality, which establishes the number of facts
(instances of the relation) that can hold between the origin
and the destination term. Their cardinality can be restricted to
1 (only one fact) or N (any number of facts).

8

Additionally, there is some optional information that can be
provided for an ad-hoc relation, such as its NL description
and its properties (they are used to describe algebraic
properties of the relation).
References and formulae can be also attached to the ad-hoc
relations, as happened with the concepts.

3.5. Constants
Constants are components that have always the same value.
They are included in the knowledge model of WebODE to
ease the maintenance of ontologies. They are available for
their use in any expression in the ontology.
The information needed for a constant is: name, value type
(the same as shown for attributes of concepts, except for
instances of concepts), value and measurement unit. Its NL
description can be optionally provided.

3.6. Formulae
There are three types of formulae that can be created in
WebODE: axioms, rules and procedures. All of them are
represented by their name, an optional NL description and a
formal expression in first order logic, using a syntax
provided by WebODE.
Axioms model sentences, using first order logic, that are
always true. They may be included in the ontologies for
several purposes, such as constraining its information,
verifying its correctness or deducting new information.
Rules are included in the ontology for the inference of new
knowledge in the ontology from the knowledge already
included in it. Their chaining mechanism is not explicitly
declared, although WebODE’s inference engine uses
backward chaining.
Procedures are used for declaring sequences of actions.
Currently, the user is free to use any syntax for these
components, because it is too much tight to the target
language in which the ontology will be used.
The axiom generator, which will be described later in this
paper, allows the user create axioms more easily than if they
were created from scratch. WebODE also provides a library
of axiom patterns for common used expressions.

3.7. Instances
There are two kinds of instances that can be created in
WebODE: instances of concepts and instances of relations
(also called facts).
Instances of concepts represent elements of a given concept.
They have their own name, and a set of instance attributes
with their values. Instance attributes are inherited from the
concept they belong to and its superclasses.
Instances of relations are used to represent a relation that
holds between individuals (instances of concepts) in the
ontology. They have their own name, the names of the
relation and the instances that participate in it.
WebODE allows grouping both kinds of instances in sets of
instances. Instance sets, which are described by their name

and an optional description, allow the distributed use of the
ontology in different frameworks. In other words, the same
ontology can be instantiated for different applications, and
instances in an instance set are independent from instances in
another one. This, along with the import/export features,
permits the isolation of the main two parts of an ontology: its
conceptualization and its instances (the knowledge base).

3.8. References
References are used for adding bibliographic references in the
ontology. The information needed for references is their
name and an optional description. They can be attached to
any component of the WebODE’s knowledge model.

3.9. Properties
They are used to describe algebraic properties of ad-hoc
relations. They are divided in two groups:
 Built-in properties: reflexive, irreflexive, symmetric,

asymmetric, antisymmetric and transitive.
 Ad-hoc properties. The user can define them and attach

them to ad-hoc binary relations to describe either
algebraic or other kinds of properties of them.

3.10. Imported terms
Imported terms are components that are included in the
current ontology from other ontologies. The user must
provide their name, the host for retrieving the term from, the
name of the ontology where to retrieve the term from and the
original term name.
Currently, only concepts from other ontologies can be
imported into WebODE. In the future, this will be expanded
to any kind of components of the ontology (groups, relations,
axioms, etc.).

4. WEBODE ARCHITECTURE
The architecture of the WebODE workbench is explained in
this section, according to the classical three tiers architecture
commonly found in web applications: data tier, business logic
tier and presentation tier.

4.1. Data Tier
Ontologies are the central element in our workbench. They
can be stored in a relational database with JDBC support (it
has been tested both in Oracle and MySQL).
The module for database access is included as a core service
inside the Minerva Application Server (which is explained
later in this section). Its main features are the optimization of
connections to the database (connection pooling) and
transparent fault tolerance capabilities.

4.2. Business Logic Tier
This tier usually is divided in two different ones: the
presentation sub-tier and the logic sub-tier.
The presentation sub-tier is responsible for generating the
content to be presented in the user’s browser. It also handles
user requests from the client (form handling, queries, etc.)
and forward them to business logic services. Servlets andr
JSPs (Java Server Pages) are used in it.

9

The logic sub-tier comprises the applications’ business-logic
services. All the implemented services are available from the
Minerva Application Server, through RMI-IIOP technology.
We distinguish two groups of services: services from the
Minerva Application Server, which are not tied specifically to
the WebODE workbench but can be used by any other
service, and business-logic services for WebODE, which are
specific to this workbench.

Modules from Minerva Application Server
This application server has been developed in our lab. In this
subsection we will describe its main modules:
Authentication module. All the authentication and security
controls in the application server are based on this module. It
allows managing access control lists for all the services of
applications built upon the server, groups for sharing
ontologies, information protection, etc.
Currently, it uses an internal format for storing and accessing
information. However, it is possible to develop additional
modules for the authentication of users using other
authentication systems (from Windows NT, UNIX, LDAP,
etc.). This would allow the integration of the workbench in
the authentication schema of the organization.
Log module. This module is in charge of auditing tasks. Its
verbose level can be configured, depending on the audit
needs for the system.
Administration module. It allows the administration of the
application server by using the Minerva Management
Console (MMC), which allows the server administrator to
manage locally or remotely every installed service, to start
and stop services, to manage users, groups and access control
lists through the authenticator service, etc.
Thread management module. This module optimizes the
use of threads in the server for any task, using thread-pooling
techniques, which improve drastically their execution time.
Additionally, it is possible to change thread priorities: some
tasks can be executed before other ones.
Planning module. This module, which depends on the thread
management module, allows the planning of periodical tasks,
such as cache management, periodical backups, ontology
consistency checking, etc.
Backup module. Using this module, ontologies can be safely
stored in any destination (which is configurable). Backups
can be scheduled as needed.
This service makes use of the planning and the ontology
XML exportation services. This last service will be explained
later in this section.

Business logic modules for WebODE workbench
These modules provide services for the WebODE ontology
editor, although they can be used for any other application.
Ontology access service. This module is in charge of
managing the ontologies’ conceptual model, by inserting,
deleting and modifying the definitions of all the terms in a
domain.

It uses the database access service, and, optionally, cache and
consistency check services, which are explained below.
Cache module. This module, which uses the database access
and planning services, speeds up the access to ontologies,
using several caching techniques that increase the
performance of the ontology access service.
Consistency check module. This module also uses the
database access and planning services from the Minerva
application server. It performs consistency checks during
taxonomy building, as presented in [15], decoupling these
verifications from the ontology access service.
Ontology access API. Ontologies can be accessed from other
applications through this well-defined API. This API is
supported by the Minerva application server and can be
accessed through RMI-IIOP.
XML ontology exportation module. It exports ontologies to
valid XML, according to a well-defined DTD. This XML
code can be used by other applications able to use this format
or for later importations of the ontologies into other instances
of the WebODE workbench.
XML ontology importation module. It imports ontologies
in the XML format described by the DTD used in the XML
exportation service. These ontologies must also accomplish
consistency rules used by the consistency check service.
Ontology languages exportation/importation. Currently,
several services exist in WebODE for the exportation and
importation of ontologies to the following languages:
RDF(S), OIL, DAML+OIL, X-CARIN and FLogic.
OKBC-based inference engine. It allows the ontology
developer to perform queries and inferences on the ontology.
The user can use predefined access primitives, which are
based in the OKBC protocol, and create his/her own Prolog
programs to perform inferences reusing the primitives already
provided. It is based on Ciao Prolog.
Axiom prover module. It makes use of the inference engine,
allowing the ontology developer to test if knowledge
currently included in the ontology is consistent with its
axioms. Each axiom is translated into Horn clauses and can
be tested independently from the other ones.
Documentation module. WebODE ontologies are
automatically documented in different formats, such as
HTML tables (intermediate representations of
METHONTOLOGY), HTML documents or XML files. The
whole ontology or parts of it can be selected for this
documentation generation. Views generated with
OntoDesigner can be also selected for their documentation.
WebPicker: Ontology Acquisition from Web Resources.
WebPicker is a service for the ontology acquisition from web
resources that has been used for the acquisition of several
standards and initiatives of products and services
classifications in the e-commerce domain (UNSPSC, e-cl@ss
and RosettaNet) as described in detail in [6].

10

Information represented in web resources is transformed into
a conceptual model specified in the XML syntax of
WebODE, which is imported later into WebODE, so that its
ontology editor can be used to redesign it.
OntoMerge: Ontology Merge. This service performs the
merge of concepts (and their attributes) and relations of two
ontologies built for the same domain. First, it assists the
revision of both ontologies, based on a set of design criteria
and semantic and syntactic relationships among the
components of the ontology. Later, it uses natural language
resources for establishing relationships between both
ontologies. It performs a supervised merge of components
from both ontologies using this information. Finally, it assists
the final revision of the resulting merged ontology.
OntoCatalogue: Catalogue Generation from Ontologies.
This service generates electronic catalogues out from
ontologies, taking into account several configuration
parameters, such as the depth of the taxonomy of products,
attributes to be generated, the mappings between relations in
the ontology and links in the catalogue, navigation hints
through the catalogue, parts of the taxonomy to be generated,
etc.
The catalogue generation from ontologies ensures a good and
rich classification of products/services in it.

4.2.1. User Interface Tier: WebODE Ontology Editor
The WebODE ontology editor is an application for the
development of ontologies at the knowledge level, based on
the knowledge model already presented, which uses most of
the services that have been presented above. Its user interface
uses HTML, CSS (Cascading Style Sheets) and XML
(Extended Mark-up Language). JavaScript and Java are used
for several kinds of user validations.
Some specialized applets have been also included in the user
interface, such as OntoDesigner, the axiom manager, the
ontology browser and the clipboard.
The design rationale for this user interface is based on an
easy-to-use and clarity basis. Figure 2 shows one of the
screens of the editor, while including a new instance attribute
for a concept. We will explain the most relevant components
in this figure:
The clipboard applet is available in the upper part of the
screen. It is used to copy and paste components’ definitions,
which is useful when creating components that are very
similar to others. It has enough space for four definitions.
The ontology browser is placed on the left. It aids the
navigation through the taxonomy of concepts, formulae,
references and imported terms in the ontology. New
components can be added by just double clicking on it and

 Figure 2. Snapshot of WebODE’s ontology editor while editing an instance attribute of a concept.

11

filling the form that appears in the middle of the screen, and
contextual menus arise when right-clicking on any of the
visualized components.
This user interface also includes the functionalities of
exporting/importing ontologies into XML or varied ontology
languages, inference engine and documentation.
OntoDesigner. OntoDesigner is a graphical user interface for
the visual construction of taxonomies of concepts and ad-hoc
relations between concepts, which is integrated in the
WebODE ontology editor as an applet. Figure 3 shows a
snapshot of OntoDesigner while editing an ontology on the
domain of office furniture.
Using OntoDesigner, the user can create different views of
the edited ontology, so that the visualization of parts of the
ontology can be customized while creating it. Moreover, the
user can decide at any time whether showing or hiding
different kinds of relations (either predefined or ad-hoc)
between concepts, in the sense of a graphical prune.
Axiom Manager. This applet is used to ease the management
of formulae in the WebODE ontology editor. It allows the
user to create axioms using a graphical interface and provides
functionalities such as an axiom library, axiom patterns and
axiom parsing and verification.

5. RELATED WORK
WebODE has a strong relationship with ODE [3]. Both
applications allow building ontologies at the knowledge level,
and translators are used to implement them in different
ontology languages. ODE was created as a classical
application for single users and was difficult to extend.
Furthermore, ontologies were stored in a Microsoft Access
database, which proved to be inefficient when dealing with
large ontologies. However, while ODE knowledge model is
flexible, WebODE knowledge model is fixed, as has been
explained in this paper.

Protégé2000 and OntoEdit are ontology development tools
developed at the same time than WebODE, and using a
similar design rationale, although they are not web-based but
stand-alone applications. In fact, they share many
functionalities (ontology edition, ontology documentation,
ontology exportation and importation into XML and other
languages). Moreover, Protégé2000 has been developed
using a plug-in architecture, where new services can be added
easily to the environment. However, WebODE integrates all
its services in a well-defined architecture, stores its ontologies
in a relational database (avoiding the use of text files) and
provides additional services such as the inference engine, the
axiom builder, ontology acquisition or catalogue generation.
OilEd was developed in the context of the OntoKnowledge
[22] EU project for the easy development of OIL ontologies.
It is not intended as a complete ontology editor, but just “the
Notepad for OIL ontologies”.
Other “classic” editors, such as WebOnto, Ontolingua and
OntoSaurus, can be used for the edition of ontologies in a
specific language (OCML, Ontolingua and LOOM,
respectively). They do not use databases for storing
ontologies.

6. CONCLUSIONS
In this paper, we have stated the need for a workbench for
ontological engineering that allows:
• the development and management of ontologies,
• a wide use and integration of ontologies using a set of

useful ontology middleware services, and
• the rapid development of ontology-based applications for

their integration in enterprise information systems.
We have presented the WebODE workbench as a solution for
this needs, describing its expressive knowledge model for
representing ontologies, several built-in services and
additional reusable services, such as WebPicker, OntoMerge
and OntoCatalogue.

Figure 3. OntoDesigner.

12

Its ontology editor integrates in a common user interface
most of the activities of the ontology life cycle, using the
services available in the workbench. Its most interesting
functionalities are: multiple-users support, guided
conceptualization through the use of a very intuitive and
simple user interface, multiple choice clipboard for easily
copying and pasting components, complete consistency
checks to ensure that the ontology contains valid
knowledge, easy taxonomy edition either by using the form
based user interface or a more complex and powerful
graphical editor (OntoDesigner), an advanced term import
providing by reference and by value fashions, instance
handling independent from the ontology conceptualization,
an API for accessing ontologies from any application using
RMI or CORBA, and, finally, maximum interoperability
thanks to the use of XML and several ontology
specification languages.
This workbench has been successfully used in several
projects: B2B and B2C ontology creation and reengineering
in MKBEEM (IST 1999-10589), ontology acquisition
through Webpicker in ContentWeb (UNSPSC, RosettaNet
and e-cl@ss), ontology building and ontology metrics in
(Onto)2Agent (Reference Ontology), ontology building in
project UPM:AM-9819 “Environment Ontology” (Elements
and Environmental Ions) and electronic catalogues merging
in MRO.
In the future we will provide extra services both to the
WebODE ontology editor and the middleware area, such as
ontology translation manager, ontology configuration
management capabilities, ontology upgrading, etc.

ACKNOWLEDGEMENTS
This work is supported by a FPI grant funded by UPM and by
the project ContentWeb funded by MEC. It would not have
been possible without the help of J.P. Pérez, O. Vicente, J.
Ramos, R. de Diego, A. López, V. López and E. Mohedano,
in the implementation and/or tests of WebODE, and
developers of ODE (M. Blázquez and J.M. García).

REFERENCES
1. Benjamins, V.R., Fensel, D., Decker, S., Gómez-Pérez,

A. (KA)2: Building Ontologies for the Internet: a Mid
Term Report. IJHCS, 51:687-712. 1999.

2. Berners-Lee, T., Fischetti, M. Weaving the Web: The
Original Design and Ultimate Destiny of the World
Wide Web by its Inventor. Harper. S Francisco. 1999.

3. Blázquez, M.; Fernández-López, M.; García-Pinar, J.M.;
Gómez-Pérez, A. Building Ontologies at the Knowledge
Level using the Ontology Design Environment. KAW98.
Banff, Canada. 1998.

4. Chalupsky, H. OntoMorph: A Translation System for
Symbolic Knowledge. KR-2000. 471-482. 2000.

5. Chaudhri V. K.; Farquhar A.; Fikes R.; Karp P. D.; Rice
J. P. The Generic Frame Protocol 2.0. Technical Report,
Stanford University.1997.

6. Corcho, O., Gómez-Pérez, A. WebPicker: Knowledge
Extraction from Web Resources. NLDB’01. Madrid.
June, 2001.

7. DAML+OIL. http://www.daml.org
8. Domingue, J. Tadzebao and Webonto: Discussing,

Browsing and Editing Ontologies on the Web. KAW98.
Banff, Canada. 1998.

9. Domingue, J., Motta, E. A Knowledge-Based News
Server Supporting Ontology-Driven Story Enrichment
and Knowledge Retrieval. EKAW 1999.

10. Duineveld, A.; Studer, R.; Weiden, M; Kenepa, B.;
Benjamis, R. WonderTools? A comparative study of
ontological engineering tools. KAW99. Banff. 1999.

11. Farquhar A., Fikes R., Rice J., The Ontolingua Server: A
Tool for Collaborative Ontology Construction. 10th
Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, Canada. 1996.

12. Fensel, D., Angele, J., Decker, S., Erdmann, M.,
Schnurr, H., Staab, S., Studer, R., Witt, A. On2broker:
Semantic-Based Access to Information Sources at the
WWW. WebNet 99. Honolulu. USA. October, 1999.

13. Fernández, M.; Gómez-Pérez, A.; Pazos, J.; Pazos, A.
Building a Chemical Ontology using methontology and
the Ontology Design Environment. IEEE Intelligent
Systems and their applications. #4 (1):37-45. 1999.

14. Fridman, N., Musen, M. PROMPT: Algorithm and Tool
for Automated Ontology Merging and Alignment.
AAAI-2000. Austin, Texas. August, 2000.

15. Gómez-Pérez, A. Evaluation of Ontologies. International
Journal of Intelligent Systems. 16(3). March, 2001.

16. Horrocks, I., Fensel, D., Harmelen, F., Decker, S.,
Erdmann, M, Klein, M. OIL in a Nutshell. EKAW'00.
Juan les Pins. France. October, 2000.

17. Kifer, M.; Lausen, G.; Wu, J. Logical Foundations of
Object-Oriented and Frame-Based Languages. Journal
of the ACM. 1995.

18. McGuinness, D., Fikes, R., Rice, J., Wilder, S. The
Chimaera Ontology Environment. AAAI-2000. Austin,
Texas. August, 2000.

19. MKBEEM. http://mkbeem.elibel.tm.fr
20. OILEd. http://img.cs.man.ac.uk/oil/
21. OntoEdit. http://www.ontoprise.de/co_produ_tool3.htm
22. OntoKnowledge. http://www.ontoknowledge.org
23. RDF. http://www.w3.org/TR/REC-rdf-syntax/
24. Swartout, B.; Ramesh P.; Knight, K.; Russ, T. Toward

Distributed Use of Large-Scale Ontologies. AAAI
Symposium on Ontological Engineering. Stanford. USA.
March, 1997.

25. Using Protégé-2000 to Edit RDF. Technical Report.
Stanford University. http://www.smi.Stanford.edu/
projects/protege/protege-rdf/protege-rdf.html.

13

