
Overcoming database heterogeneity to facilitate social
networks: the Colombian displaced population as a case

study

Juan F. Sequeda* Alexander Garcia-Castro§ Oscar Corchoф
Syed Hamid Tirmizi* Daniel P. Miranker*

ABSTRACT
In this paper we describe a two-step approach for the publication
of data about displaced people in Colombia, whose lack of
homogeneity represents a major barrier for the application of
adequate policies. This data is available in heterogeneous data
sources, mainly relational, and is not connected to social
networking sites. Our approach consists in a first step where
ontologies are automatically derived from existing relational
databases, exploiting the semantics underlying the SQL-DDL
schema description, and a second step where these ontologies are
aligned with existing ontologies (FOAF in our example),
facilitating a better integration of data coming from multiple
sources.

Categories and Subject Descriptors
H.2.4 [Systems]: Relational Databases

General Terms
Management, Experimentation, Languages

Keywords
Semantic Web, Data Integration, FOAF, Displaced Population

1. INTRODUCTION
Social networks (e.g., Facebook, LinkedIn, etc.) facilitate people’s
interaction by electronic means; the dynamics within social
networks is simple, the sites offer a vast variety of tools so
members of the networks can install them and generate or import
diverse personal and non-personal content. Users find other users
based on the published content and installed tools. For instance
users can be notified about other users with similar interests
within their geographical vicinity.

Central to the notion of social networks it is precisely “the things
they create and do” as well as “word of mouth being supported by
electronic and digital means”; in summary, user generated content

being distributed across networks. This implies that these systems
heavily rely on the community actively participating in the
generation of content.

Social networks conceived in this manner tend to be human-
centric and mediated by high tech; the load of interaction is
facilitated by the applications and it relays on the engagement of
the community. The community shares information; the
interaction is thus mediated by the degree of interest a particular
piece of information may arise in others with similar interests or
problems. There are scenarios for which the interaction amongst
the community also involves third party actors –external to the
community. For instance, the displaced population in Colombia,
estimates, though widely different, places the total displaced
population between 1,506,869 to 3,100,000, corresponding to 3.4
or 7.1 percent of the country’s population. This population is
highly vulnerable, fragmented, without economical means; as a
community, also involves and requires Non Governmental
Organizations (NGOs) and government agencies to be considered
as part of the network. Enabling interaction for this scenario
requires both, facilitating interoperability across heterogeneous
data sources and delivering these integrative views by means of
a mixture of low and high tech, which can be achieved by means
of many of the social networking sites currently active in the
world.

The Colombian case is a challenging one since it is a low intensity
conflict; in economic terms the policies toward displaced
population are demand driven rather than supply driven. For high
intensity conflicts displacement is of a massive scale, usually
requiring the State or the international community to set up
special camps for providing assistance and safe refuge. The
Colombian government has setup aid packages for people that
have been displaced due to violence. However, due to the
characteristics mentioned before, in order to have access to
government aid the displaced individuals must approach the
government agency in charge and be registered (Sistema Único de
Registro, Unique Registry System, SUR). After being registered
the local representative of this central agency evaluates the
information and within 15 days it is determined if the household is
recognized as displaced and hence it has access to the government
aid. A recent evaluation of the SUR system revealed that the
exclusion from government aid (through SUR) greatly depends on
the displaced households actions and characteristics rather than
institutional factors. Furthermore, the SUR does not provide any
facility that allows this government agency to exchange
information with any of the existing NGOs currently working
with displaced population. The dependency that is created
between victims, NGOs and government agencies is one of the
greatest challenges low intensity conflicts have. In general, these

*Department of Computer Sciences, University of Texas at Austin, USA.
Email: {jsequeda, hamid, miranker} @ cs.utexas.edu
§Department of Computational Linguistics, University of Bremen, Germany.
Email: cagarcia@uni-bremen.de
ф Ontology Engineering Group, Universidad Politécnica de Madrid, Spain.
Email: ocorcho@fi.upm.es

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW’09, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655760?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

conflicts force institutions to locate and track the displaced
population not only for delivering goods and services, but also to
define the policies that will allow NGOs and government agencies
to define action policies to deal with the problem. In order for
demand driven aid systems to work properly information should
flow across displaced population, NGOs and government
agencies. Victims should be able to access information about the
aid available for them, by the same token NGOs and government
agencies should be able to gather the information they need,
verify and cross reference it in an efficient and timely manner.

This is a two fold problem affecting both, the community and the
policy makers; on the one hand there is a duplication of
information and processes, in practical terms this means having to
run the same process several times and capturing the same, or
similar, information every time it is required. Furthermore, the
lack of a unification criterion across these heterogeneous
databases makes it difficult to support a better-structured social
interaction, an electronic complement to the word of mouth
interaction mechanism currently being used. The advantage of
combining both, soft technology, word of mouth, paper-based
billboards, newspaper-based communications and high
technology, digitally mediated, is the preservation of the
knowledge this community has about issues affecting them as
well as the availability of an information resource fully generated
by them –empowering the community. On the other hand merging
and verifying this information is a major bottleneck for the
definition of policies as diverse sources may host conflicting
information that involve further corroboration –often expensive in
terms of time, resources, and political window of opportunity.

Semantic consistency via valid mappings across displaced
population related databases could facilitate access to real time
accurate information; more importantly, it could help the
displaced population to know about their common needs.
Independently from whether the displaced person has registered
with an NGO or with the Government, other displaced persons
should be aware of their peer. This could help in rebuilding the
lost social tissue. Furthermore, it could empower a community
that due to its fragmentation has lost the political life; making it
possible for them to regain their rights. Social networks help in
bringing people together relying on high technology such as
Internet and mobile devices. In this way, people are able to find
peers, people with similar problems or interests; such dynamic
allows these newly formed communities to take action. A
combination of high (internet, mobile devices), medium (TV,
radio) and low technology (word-of-mouth, billboards) could
assist, in the same way, the displaced population to re-gain their
social tissue and their political life.

One commonly-used alternative to overcome this heterogeneity is
to apply an ontology-based framework for integration,
interoperability, search and sharing of data drawn from diverse
sources [1]. Such a framework normally relies on the existence of
a set of mediators that address queries according to a set of local
and/or global ontologies, and corresponding wrappers that
overcome the heterogeneity between these models and the models
from the underlying data sources.

Although there is a large amount of work devoted to mediators
and to multiple types of data sources, in this paper we will focus
on wrapper generation for relational databases (also known as
“upgrading databases to the Semantic Web”), which is known to
be a labor-intensive task. There are broadly two architectural
approaches for wrapper generation that have been researched in
the literature. The most common one consists in mapping a

relational database schema to an existing domain ontology [2, 3,
4]. To date there has been little work automating the creation of
such wrappers.

The second approach, which is the subject of the work in this
paper, concerns the automatic transformation of database content
to an ontological representation, normally RDF and OWL [5, 6,
7]. In this approach it is assumed that the data model entails a
logical model of the application domain, and by syntactically
analyzing the model’s physical encoding in SQL Data Description
Language (DDL) the logical model may be recovered. The current
SQL standard coupled with modern software design methodology
enables rich expression of domain semantics; albeit not in a form
readily accessible to automated inference mechanism [8]. In
addition to foreign key constraints, SQL DDL supports a variety
of constraints on the range of values allowed in a table.

In this paper we describe our approach for wrapper generation,
which is based on the second alternative, allowing the
transformation of relational databases into OWL-DL ontologies
[18]. This approach has been used in the context of the Colombian
displaced community that has been described in this introduction
and that has served as a case study for our technological approach.
Before describing our approach, we also provide some insights
into related approaches and technologies. Later we describe how
the ontology obtained from one of the analyzed schemas can be
aligned with the Friend of A Friend (FOAF) ontology [9], which
has facilitated the description of people, within social networks
(FOAF has been considered as one of the most prevalent uses of
Semantic Web technology [10]). FOAF will be used as the
domain ontology to enable an ontology-based framework for
database integration and interoperability. We finalize by
presenting conclusions and future work, where we acknowledge
the need of an ontology that describes the displaced population.

2. RELATED WORK
While a comprehensive related work section should include not
only technological or architectural options, but also a description
of alternative solutions to the problem addressed in our work, we
have already commented in the introduction that there are no
similar systems that solve the problem of the displaced population
in a Latin-American country like Colombia (and we have not
found in our research any comparable technological effort for
other countries). Hence our focus in this section is on the problem
of addressing heterogeneity in databases following an approach
where ontologies are derived from relational data sources [5, 6, 7].

Stojanovic et al. [5] provide rules for translation of relational
schemas to Frame Logic and RDF Schema. This work formally
defines rules for identification of classes and properties in
relational schemas. However, it does not have the capability of
capturing richer semantics that cannot be expressed in RDF
Schema.

Li et al. [6] propose a set of rules for automatically learning an
OWL ontology from a relational schema. They define the rules
using a combination of some formal notation and English
language. Some of their rules miss some of the semantics offered
by relational schemas and some rules produce specific results for
inheritance and object properties that may not accurately depict
concepts across domains or database modeling choices. We
believe these shortcomings are due to the lack of a formal system
and thorough examination of examples capturing a variety of
modeling choices in various domains.

Finally, Astrova et al. [7] provide expository rules and examples
to describe a system for automatic transformation of a relational
schema to OWL Full, being one of the most comprehensive
approaches. However, rules are not formally defined; hence a
number of transformations are ambiguous.

3. DIRECT MAPPING RELATIONAL
DATABASES TO THE SEMANTIC WEB
We start this section with an example. Let us consider a relational
database that captures data of displaced people in Colombia (see
Table 1, an excerpt of the relational model that allows
representing information about displaced people in one of the
existing systems). The Person table contains data about all people
in the system. The Family table lists the families that are being
displaced, who is the head household member and information
about the displacement. Also, a person is part of a family, and this
information is recorded in the FamilyMember table. The
Displacement table lists the information of a displacement: when
and from where did a family leave and when and to where did a
family arrive to. The City table contains a list of all cities in
Colombia.

Table 1. Schema of a Displaced Population Database
create table PERSON {
 PERSONID integer primary key,
 NAME varchar not null,
 GENDER varchar check in (‘M’, ‘F’),
 CIVIL_STATUS varchar check in (‘Married’,
‘Single’, 'Divorced'),
 AGE integer not null}
create table FAMILY {
 FAMILYID integer primary key,
 FAMILYNAME varchar,
 HEAD integer unique not null foreign key
references PERSON(PERSONID),
 DISID integer unique not null foreign key
references DISPLACEMENT(DISID) }
create table DISPLACEMENT {
 DISID integer primary key,
 CITYFROM integer unique not null foreign key
references CITY(CITYID),
 DATEFROM date,
 CITYTO integer unique not null foreign key
references CITY(CITYID)
 DATETO date}
create table CITY {
 CITYID varchar primary key,
 NAME varchar unique not null }
create table FAMILYMEMBER {
 PERSONID integer foreign key references
PERSON(PERSONID),
 FAMILYID integer foreign key references
FAMILY(FAMILYID),
 constraint FAMILYMEMBER_PK primary key
(PERSONID, FAMILYID) }

In this section, we explain the transformation of a relational
schema to an ontology. First we present our assumptions and
explain the rationale behind them. Then, we list the predicates and
functions we have defined to express transformation rules in first
order logic. In the next section, we explain the transformations for
data types, classes, properties and inheritance, and provide

mapping tables or first order logic rules to formally define the
transformations.

3.1 Assumptions
In order to translate a relational schema into an ontology, we
make the following assumptions:

• The relational schema, in its most accurate form, is available in
SQL DDL. Databases evolve due to changing application
requirements. Such modifications are often reflected solely in
the physical model, usually expressed in SQL DDL, making it
the most accurate source for the structure of the database.

• The relational schema is normalized, at least up to third normal
form. While all databases might not be well normalized, it is
possible to automate the process of finding functional
dependencies within data and to algorithmically transform a
relational schema to third normal form [11, 12].

3.2 Predicates and Functions
We have defined a number of predicates and functions to aid the
process of defining transformation rules in first order logic.

There are two sets of predicates in our system. RDB predicates
test whether an argument (or a set of arguments) matches a
construct in the domain of relational databases. Such predicates
are listed below:

Rel(r) r is a relation
Attr(x,r) x is an attribute in relation r
NN(x,r) x is an attribute (or a set of attributes) in

relation r with NOT NULL constraint(s)
Unq(x,r) x is an attribute (or a set of attributes) in

relation r with UNIQUE constraint
Chk(x,r) x is an attribute in relation r with enumerated

list (CHECK IN) constraint
PK(x,r) x is the (single or composite) primary key of

relation r
FK(x,r,y,s) x is a (single or composite) foreign key in

relation r and references y in relation s
NonFK(x,r) x is an attribute in relation r that does not

participate in any foreign key
On the other hand, ontology predicates test whether an argument
(or a set of arguments) matches a construct that can be represented
in an OWL ontology. These predicates are:

Class(m) m is a class
ObjP(p,d,r) p is an object property with domain d and range

r
DTP(p,d,r) p is an data type property with domain d and

range r
Inv(p,q) when p and q are object properties, p is an

inverse of q
FP(p) p is a functional property
IFP(p) p is an inverse functional property
Crd(p,m,v) the (max and min) cardinality of property p for

class m is v
MinC(p,m,v) the min cardinality of property p for class m is v
MaxC(p,m,v) the max cardinality of property p for class m is v
Subclass(m,n) m is a subclass of class n

The constructs represented by ontology predicates are described
as they appear in the rules mentioned in the upcoming sections of
this paper.

We have also defined the following functions:

fkey(x,r,s) takes a set of attributes x, relations r and s, and
returns the foreign key defined on attributes x in
r referencing s

type(x) maps an attribute x to its suitable OWL
recommended data type (we discuss data types
in more detail in a later section)

list(x) maps an attribute x to a list of allowed values;
applicable only to attributes with a CHECK IN
constraint, i.e. Chk(x) is true

In addition to the predicates and functions listed above, we
describe the concept of a binary relation, written BinRel, as a
relation that only contains two (single or composite) foreign keys
that reference other relations. Such tables are used to resolve
many-to-many relationships between entities. Using RDB
predicates, we formally define BinRel as follows:

Rule Set 1:

BinRel(r,s,t) ←
Rel(r)∧FK(q,r,_,t)∧FK(p,r,_,s)∧p≠q∧Attr(y
,r)∧¬NonFK(y,r)∧FK(z,r,_,u)∧fkey(z,r,u)∈
{fkey(p,r,s),fkey(q,r,t)}

This rule states that a binary relation r between two relations s and
t exists if r is a relation that has foreign keys to s and t, and r has
no other foreign keys or attributes (each attribute in the relation
belongs to one of the two foreign keys). Note that there is no
condition that requires s and t to be different, allowing binary
relations that have their domain equal to their range.

3.3 Transformation Rules and Examples
In this section we present rules and examples for transformation
of a relational database to OWL ontology.

3.3.1 Producing Unique Identifiers (URIs) and
Labels
Before we discuss the transformation rules, it is important to
understand how we can produce identifiers and names for classes
and properties that form the ontology.

The concept of globally unique identifiers is fundamental to OWL
ontologies. Each class or property in the ontology must have a
unique identifier, or URI. While it is possible to use the names
from the relational schema to label the concepts in the ontology, it
is necessary to resolve any duplications, either by producing URIs
based on fully qualified names of schema elements, or by
producing them randomly. In addition, for human readability,
RDFS labels should be produced for each ontology element
containing names of corresponding relational schema elements.
Due to lack of space, we have not used fully qualified names in
our examples. When needed, we append a name with an integer to
make it unique, e.g. ID1, ID2 etc.

3.3.2 Transformation of Data Types
Transformations from relational schemas to ontologies require
preserving data type information along with the other semantic
information. OWL (and RDF) specifications recommend the use
of a subset of XML Schema types [13] in Semantic Web
ontologies [14, 15].

In Table 2 we present a list of commonly used SQL data types
along with their corresponding XML Schema types. During

transformation of data type properties, the SQL data types are
transformed into the corresponding XML Schema types.

Table 2. Common SQL types and corresponding XML
Schema types recommended for OWL

SQL Data Type XML Schema Type

INTEGER xsd:integer

FLOAT xsd:float

BOOLEAN xsd:Boolean

VARCHAR xsd:string

DATE xsd:date

TIMESTAMP xsd:dateTime

3.3.3 Identifying Classes
According to OWL Language Guide [16], “the most basic
concepts in a domain should correspond to classes …”. Therefore
we would expect basic entities in the data model to translate into
OWL classes.

Given the definition of a binary relation, it is quite straightforward
to identify OWL classes from a relational schema. Any relation
that is not a binary relation can be mapped to a class in an OWL
ontology, as stated in the rule below.

Rule Set 2:
Class(r) ← Rel(r)∧¬BinRel(r,_,_)

Remember that a binary relation has exactly two foreign keys and
no other attributes (see Rule Set 1). Keeping that in mind, we can
see that this very simple rule covers a number of cases for
identifying classes:

• All tables that do not have foreign keys should be transformed
to classes. Therefore, we conclude Class(PERSON), i.e. Person
should be mapped to a class since it has no foreign key. The
same reasoning holds for the City table.

• All tables with one foreign key can be mapped to classes since
they cannot be binary relations.

• Tables with more than two foreign keys should be transformed
to classes as well. Such tables may represent an entity or an N-
ary relationship between entities. Fortunately, in OWL, both the
cases can be modeled the same way, i.e. by translating the
entity or the N-ary relationship into a class [17].

• For tables containing exactly two foreign keys, presence of
independent attributes qualifies them to be translated to classes.
The table Family, with an independent attribute FamilyName, is
an example, and is translated to an OWL class. The table
Displacement is translated to an OWL class

Thus Rule Set 2 identifies the OWL classes from the database
schema. For example:

Class(PERSON), Class(FAMILY), Class(DISPLACEMENT),
Class(CITY)

3.3.4 Identifying Object Properties
An object property is a relation between instances of two classes
in a particular direction. In practice, it is often useful to define

object properties in both directions, creating a pair of object
properties that are inverses of each other. OWL provides us the
means to mark properties as inverses of each other. In our work,
when we translate something to an object property, say
ObjP(r,s,t), it implicitly means we have created an inverse of that
property, which we write as ObjP(r’,t,s).

There are two ways of extracting OWL object properties from a
relational schema. One of the ways is through identification of
binary relations, which represent many-to-many relationships. The
following rule identifies an object property using a binary relation.

Rule Set 3:

ObjP(r,s,t) ← BinRel(r,s,t)∧Rel(s)∧Rel(t)∧
¬BinRel(s,_,_)∧¬BinRel(t,_,_)

This rule states that a binary relation r between two relations s and
t, neither being a binary relation, can be translated into an OWL
object property with domain s and range t. Notice that the rule
implies Class(s) and Class(t) hold true, so the domain and range of
the object property can be expressed in terms of corresponding
OWL classes.

From our university database schema, the FamilyMember table
fits the condition. FamilyMember is a binary relation between
Person and Family entities, which are not binary relations.
Therefore, ObjP(FAMILYMEMBER,PERSON,FAMILY) holds,
and since we can create inverses,
ObjP(FAMILYMEMBER’,FAMILY,PERSON) and
Inv(FAMILYMEMBER,FAMILYMEMBER’) also hold true.

Foreign key references between tables that are not binary relations
represent one-to-one and one-to-many relationships between
entities. A pair of object properties that are inverses of each other
and have a maximum cardinality of 1 can represent one-to-one
relationships. Also, one-to-many relationships can be mapped to
an object property with maximum cardinality of 1, and an inverse
of that object property with no maximum cardinality restrictions.

In OWL, a property with min cardinality of 0 and max cardinality
of 1 is called functional which we represent by the functor FP. If
an object property is functional, then its inverse is inverse
functional, represented by the functor IFP. In addition to
specifying cardinality restrictions on properties in general, we can
also specify such restrictions when a property is applied over a
particular domain. In our rules, we use ontology predicates Crd,
MinC and MaxC to specify these restrictions. The examples
following the rules explain the use of these predicates.

The following rule set identifies object properties and their
characteristics using foreign key references (not involving binary
relations, covered in Rule Set 3) with various combinations of
uniqueness and null restrictions. To simplify the rules, we first
define a predicate NonBinFK that represents foreign keys not in
or referencing binary relations and then express the rules in terms
of this predicate.

Rule Set 4:

NonBinFK(x,s,y,t) ≡ FK(x,s,y,t)∧Rel(s)∧Rel(t)∧¬BinRel(
s,_,_)∧¬BinRel(t,_,_)

a. ObjP(x,s,t), FP(x),
MinC(x’,t,0)

← NonBinFK(x,s,y,t)∧¬NN(x
)∧¬Unq(x)

b.
ObP(x,s,t), FP(x),

Crd(x,s,1),
MinC(x’,t,0)

← NonBinFK(x,s,y,t)∧NN(x)∧
¬Unq(x)

c. ObjP(x,s,t), FP(x),
FP(x’)

← NonBinFK(x,s,y,t)∧¬NN(x
)∧Unq(x)

d. ObjP(x,s,t), FP(x),
Crd(x,s,1), FP(x’)

← NonBinFK(x,s,t)∧NN(x)∧
Unq(x)∧¬PK(x,s)

Each rule in Rule Set 4 states that a foreign key represents an
object property from the entity containing the foreign key
(domain) to the referenced entity (range). Since a foreign key
references at most one record (instance) of the range, the object
property is functional. This entails that the inverse of that object
property is inverse functional. An example is the foreign key from
Study to Student which gives us:
ObjP(RNO,STUDY,STUDENT), FP(RNO), Inv(RNO’,RNO),
IFP(RNO’).

Rules 4a and 4b represent variations of one-to-many relationships.

• We can apply a stronger restriction on cardinality of the object

property if the foreign key is constrained as NOT NULL.
Without this constraint (rule 4a), the minimum cardinality is 0,
which is covered by functional property predicate. With this
constraint (rule 4b), we can set the maximum and minimum
cardinality to 1.

• According to these rules, we can infer only the minimum

cardinality restriction of 0 on the inverse property. Since an
instance in the range could be referenced by any number of
instances in the domain, we cannot apply a maximum
cardinality restriction on the inverse property.

The other two rules, 4c and 4d, represent one-to-one relationships,
modeled by applying a uniqueness constraint on the foreign key.
It means that an instance in the range can relate to at most one
object in the domain, making the inverse property functional too.
This also means that the original object property is inverse
functional as well.

The difference between rules 4c and 4d is that of a NOT NULL
constraint that, like one-to-many relationships mentioned above, if
present, gives us a stronger cardinality restriction on the object
property represented by the foreign key.

Notice that none of the rules allow the foreign key to be the same
as the primary key of the domain relation. Rule 4d restricts this by
providing an extra condition, whereas the negation of uniqueness
or NOT NULL constraints in rules 4a-c, by definition, implies this
condition.

Examples of object properties and their characteristics obtained
from the relational schema by applying Rule Sets 3 and 4 are:

ObjP(FAMILYMEMBER,PERSON,FAMILY),
ObjP(FAMILYMEMBER’,FAMILY,PERSON),
Inv(FAMILYMEMBER, FAMILYMEMBER’)
ObjP(CITYFROM,DISPLACEMENT,CITY),
FP(CITYFROM), IFP(CITYFROM’),
MinC(CITYFROM’,CITY,0)
ObjP(CITYTO,DISPLACEMENT,CITY),
FP(CITYTO), IFP(CITYTO’), MinC(CITYTO’,CITY,0)

ObjP(HEAD,FAMILY,PERSON), FP(HEAD), FP(HEAD’),
Crd(HEAD,FAMILY,1)
ObjP(DISID,FAMILY,DISPLACEMENT),
FP(DISID), FP(DISID’), Crd(DISID,FAMILY,1)

3.3.5 Identifying Data Type Properties
Data type properties are relations between instances of classes
with RDF literals and XML Schema data types. Like object
properties, data type properties can also be functional, and can be
specified with cardinality restrictions. However, unlike object
properties, OWL DL does not allow them or their inverses to be
inverse functional.

Attributes of relations in a database schema can be mapped to data
type properties in the corresponding OWL ontology. Rule Set 5
identifies data type properties.

Rule Set 5:
a. DTP(x,r,type(x)), FP(x) ← NonFK(x,r)

b. DTP(x,r,type(x)), FP(x),
Crd(x,r,1)

← NonFK(x,r)∧NN(x,r)

c. DTP(x,r,type(x)∩list(x))
, FP(x)

← NonFK(x,r)∧Chk(x,r
)

Rule Set 5 says that attributes that do not contribute towards
foreign keys can be mapped to data type properties with range
equal to their mapped OWL type. Since each record can have at
most one value per attribute, each data type property can be
marked as a functional property. When an attribute has a NOT
NULL constraint, rule 5b allows us to put an additional
cardinality restriction on the property. Rule 5c allows us to infer
stronger range restrictions on attributes with enumerated list
(CHECK IN) constraints.

In some cases, it may be possible to apply more than one rule to
an attribute. In such cases, all possible rules should be applied to
extract more semantics out of the relational schema. Some data
type properties extracted from our sample university database
schema are:

DTP(PERSONID,PERSON,xsd:integer), FP(PERSONID),
Crd(PERSONID,PERSON,1)
DTP(GENDER, PERSON, xsd:string?{M,F}),
FP(GENDER)
DTP(NAME,PERSON,xsd:string),
FP(NAME), Crd(NAME,PERSON,1)

3.3.6 Identifying Inheritance
Inheritance allows us to form new classes using already defined
classes. It relates a more specific class to a more general one using
subclass relationships [16].

Inheritance relationships between entities in a relational schema
can be modeled in a variety of ways. Since most of these models
are not limited to expressing inheritance alone, it is hard to
identify subclass relationships.

The following rule describes a special case that can be used only
for inheritance modeling in a normalized database design.

Rule Set 6:
Subclass(r,s) ← Rel(r)∧Rel(s)∧PK(x,r)∧FK(x,r,_,s)

This rule states that an entity represented by a relation r is a
subclass of an entity represented by relation s, if the primary key
of r is a foreign key to s.

4. Integration with FOAF to overcome
database heterogeneity
As a result of direct mapping, an ontology is derived from the
relational database schema, called putative ontology [Sequeda]. A
putative ontology represents the basic implicit domain semantics
of a relational database, which is obtained by applying direct
mapping rules. Even though the putative ontology is not
semantically equivalent to a domain ontology, it is not
semantically incorrect, hence putative. Conversely, the
expressiveness of the putative ontology depends on the structure
of the relational database schema. If the schema has been
developed with sophisticated tools and in a normalized manner,
the schema can portray enough semantics to create a semantically
rich putative ontology. An example of the putative ontology
derived from the relational database schema in Table 1 is shown
in Figure 1. An example of why the ontology is considered
putative is the concept “Displacement”; it may be considered
ambiguous and not needed, because it represents an action.
However, this is the result after applying the rules in Section 3.

Figure 1. Putative Ontology

In order to overcome database heterogeneity, each putative
ontology can be mapped to a global domain ontology, enabling an
ontology-based framework for integration and interoperability [1].
By direct mapping relational database schemas, the problem of
mapping a domain ontology to the relational database has changed
to mapping two ontologies: the domain ontology and the putative
ontology

Furthermore, in our case study, we are mostly interested in data
about people and about people’s interaction. Relational DBs for
displaced population normally store this type of information in a
similar way to FOAF; hence we propose to map the putative
ontology to the FOAF ontology manually, utilizing FOAF as our
domain ontology. This will enable our initial objective of
facilitating social networks for the displaced population, since
FOAF is widely used and social networking FOAF-based tools
are available.

The alignment between the putative ontology and FOAF consists
of the following correspondences: the “PERSON” class of the
putative ontology corresponds to the Person class of FOAF; the

“FAMILY” class of the putative ontology corresponds to a
specialization of the Group class of FOAF. In other words, the
“FAMILY” class is a subclass of the Group class. Furthermore,
the “HAS_MEMBER” property of the putative ontology is a
specialization of the “MEMBER” property in FOAF. Finally, the
“HAS_BEEN_DISPLACED” property of the putative ontology is
a specialization of the “BASED_NEAR” property of FOAF.
These correspondences are displayed in first-order logic in Table
3.

Table 3. Alignment between Putative Ontology and FOAF
Ontology

Putative Ontology FOAF Ontology
∀ x, Person(x) = Person(x)
∀ x, Family(x) Group(x)

∀ x, has_member(x) member(x)
∀ x, has_been_displaced(x) based_near(x)

Obviously, depending on the source used to derive the ontology,
different mappings can be generated. For example, if one was to
consider replacing all the information about people with FOAF,
but continuing using other parts of the database-derived ontology,
one could still use a SPARQL query like the ones shown in Table
4 and Table 5.

Table 4. SPARQL query to the database-derived ontology:
show the family and the members of the family who have been

displaced from „San Jose del Guaviare“ to „Bogota“

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX :
<http://www.example.com/displaced.owl#>

SELECT ?family ?firstName ?familyName

WHERE {

 ?family a :Family .

 ?y :isFamilyMember ?family .

 ?y foaf:firstName ?firstName .

 ?y foaf:family_name ?familyName .

 ?family :hasDisplacement ?x .

 ?x :comesFrom ?cityFrom .

 ?x :sendsToCity ?cityTo .

 ?cityFrom :hasCityName "San Jose del
Guaviare" .

 ?cityTo :hasCityName "Bogota" . }

Table 5. SPARQL query to the database-derived ontology
mapped to FOAF: show all the people and their current

location

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?firstName ?familyName ?place

WHERE {

 ?x a foaf:Person .

 ?x foaf:firstName ?firstName .

 ?x foaf:family_name ?familyName .

 ?x foaf:based_near ?place }

Our main assumption is that by having several data sources
transformed into a Semantic Web representation (RDF for data
and OWL for the ontologies), interoperability can be achieved
more easily, since format heterogeneity can be easily overcome.
Moreover, as a direct consequence of having several sources
being aligned with the same set of ontologies (FOAF in our case),
semantic interoperability is further improved. In our case we have
also proposed to extend the FOAF ontology so that it can
represent displaced population.

5. DISCUSSIONS AND CONCLUSIONS
In this paper, we have presented the database heterogeneity
problem of displaced population of Colombia. Currently the
government manages this data in SUR (Sistema Único de
Registro, Unique Registry System). This register system is,
however, not the only one, nor is it a definitive one. Colombian
NGOs maintain other information resources; discrepancies
between these databases range from differences in the information
they managed, no consistency across existing DBs, to a significant
difference in the account for those considered to be displaced –1.9
million for the government, 2.9 for some Colombian NGOs.1 To
overcome this database heterogeneity problem, we have proposed
a two-step solution. Firstly, a putative ontology is automatically
derived from the relational database schema. Finally, the putative
ontology is mapped to a domain ontology.

SQL DDL is a standard for representing the physical schema of
applications that use relational databases. Although SQL DDL is
not a knowledge representation language, it is capable of
capturing some semantics of the application domain. We have
defined a system for automatic transformation of normalized SQL
DDL schemas into a OWL ontology. We have defined our entire
set of transformation rules in first order logic eliminating syntactic
and semantic ambiguities and allowing for easy implementation of
the system in languages like JESS or Datalog.

Once an ontology is obtained for a domain, previously represented
by a relational schema, the actual database content can be easily
translated into its corresponding RDF representation, and then
alignments between the obtained model and other existing
ontologies can be achieved. Being this similar to the work done in
traditional local as view approaches.

Although the FOAF ontology is central to our approach, and has
been used as the domain ontology for database integration, it is
clear that FOAF itself is not enough. Our future work entails
creating an ontology that can fully represent the domain of the
displaced and migrant population (Migrant Population Ontology-
MIPO is under development) in a way that makes it possible to
facilitate integration and interoperability across heterogeneous
databases.
Our case study illustrates how this approach can be applied within
the context of displaced population; more specifically in the case
of the Colombian displaced population. We will continue to work
on this scenario by incorporating several of the heterogeneous
public and private data sources about displacement. The more
coherently integrated data, the more useful information there will

1 http://www.refugeesinternational.org/policy/field-

report/colombia-flaws-registering-displaced-people-leads-
denial-services

be available for policy makers and also for the displaced
population. Social networks within this context do not just allow
people with similar interests to know about each other; more
importantly, in this scenario social networks play an important
role by facilitating the reconstruction of the social tissue that was
lost because of the social conflict. Such specialization, extension,
of FOAF, and the proposed MIPO opens a new window for the
semantic web and social networks to be fully tested and used.

6. ACKNOWLEDGMENTS
Special thanks to Carlos Castro for his useful comments regarding
displaced population. This research was funded in part by the
National Science Foundation Grant IIS-0531767.

7. REFERENCES
[1] Wache, H., T. Vögele, U. Visser, H. Stuckenschmidt, G.

Schuster, H. Neumann, and S. Hübner. "Ontology-based
integration of information - a survey of existing approaches."
IJCAI-01 Workshop: Ontologies and Information Sharing.
Ed. H. Stuckenschmidt 2001, 108-117.

[2] An, Y., Borgida, A., and Mylopoulos, J. Inferring Complex
Semantic Mappings between Relational Tables and
Ontologies from Simple Correspondences. In Proceedings of
On The Move to Meaningful Internet Systems, 2005.

[3] Bizer, C., and Seaborne, A. D2RQ - Treating Non-RDF
Databases as Virtual RDF Graphs. In Poster Proceedings of
3rd International Semantic Web Conference, 2004.

[4] Barrasa, J., Corcho, O. and Gomez-Perez, A. R2O, an
Extensible and Semantically Based Database-to-Ontology
Mapping Language. A Second Workshop on Semantic Web
and Databases (SWDB), 2004.

[5] Stojanovic, L., Stojanovic, N., and Volz, R. Migrating data-
intensive web sites into the semantic web. In Proceedings of
the ACM Symposium on Applied Computing, 2002.

[6] Li, M., Du, X., and Wang, S. Learning ontology from
relational database. In Proceedings of the Fourth
International Conference on Machine Learning and
Cybernetics, 2005.

[7] Astrova, I., Korda, N., and Kalja, A. Rule-Based
Transformation of SQL Relational Databases to OWL
Ontologies. In Proceedings of the 2nd International

Conference on Metadata & Semantics Research, October
2007.

[8] Sequeda, J.F., Tirmizi, S.H., and Miranker, D.P. SQL
Databases are a Moving Target. Position Paper for W3C
Workshop on RDF Access to Relational Databases, 2007.

[9] Friend-of-a-Friend (FOAF). http://www.foaf-project.org

[10] Ding, L., and Finin, T. Characterizing the Semantic Web on
the Web. In Proceedings of the 5th International Semantic
Web Conference. 2006

[11] Du, H., and Wery, L. Micro: A normalization tool for
relational database engineers. Journal of Network and
Computer Applications, vol. 22, no. 4, pp 215-232, 1999.

[12] Wang, S., Shen, J., and Hong, T. Mining fuzzy functional
dependencies from quantitative data. IEEE International
Conference on Systems, Man and Cybernetics, 2000.

[13] Biron, P.V., Permanente, K., Malhotra, A. (eds.). XML
Schema Part 2: Datatypes Second Edition. W3C
Recommendation, http://www.w3.org/TR/xmlschema-2/
(11/24/2008).

[14] Dean, M and Schreiber, G. (eds.). OWL Web Ontology
Language Reference. W3C Recommendation,
http://www.w3.org/TR/owl-ref/ (11/24/2008).

[15] Hayes, P. (ed.). RDF Semantics. W3C Recommendation,
http://www.w3.org/TR/rdf-mt/ (11/24/2008).

[16] Smith, M.K., Welty, C., and McGuinness, D.L. (eds.). OWL
Web Ontology Language Guide. W3C Recommendation,
http://www.w3.org/TR/owl-guide/ (11/24/2008).

[17] Noy, N., and Rector, A. (eds.). Defining N-ary Relations on
the Semantic Web. W3C Working Group Note.
http://www.w3.org/TR/swbp-n-aryRelations/ (11/24/2008).

[18] Tirmizi, S.H., Sequeda, J.F., and Miranker, D.P. Translating
SQL Applications to the Semantic Web. In Proceedings of
Databases and Expert Systems Applications Conference,
2008.

