
44

Chapter III
Ontological Engineering:

What Are Ontologies and
How Can We Build Them?

Oscar Corcho
University of Manchester, UK

 Mariano Fernández-López
Universidad San Pablo CEU and Universidad Politécnica de Madrid, Spain

 Asunción Gómez-Pérez
Universidad Politécnica de Madrid, Spain

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

Abstract

Ontologies are formal, explicit specifications of shared conceptualizations. There is much literature on
what they are, how they can be engineered and where they can be used inside applications. All these
literature can be grouped under the term “Ontological Engineering,” which is defined as the set of ac-
tivities that concern the ontology development process, the ontology lifecycle, the principles, methods
and methodologies for building ontologies, and the tool suites and languages that support them. In this
chapter we provide an overview of Ontological Engineering, describing the current trends, issues and
problems.

Introduction

The origin of ontologies in computer science
can be referred back to 1991, in the context of
the DARPA Knowledge Sharing Effort (Neches,
Fikes, Finin, Gruber, Senator, & Swartout, 1991).
The aim of this project was to devise new ways of
constructing knowledge-based systems, so that

the knowledge bases upon which they are based
did not have to be constructed from scratch, but
by assembling reusable components. This reuse
applies both to static knowledge, which is modeled
by means of ontologies, and dynamic problem-
solving knowledge, which is modeled by means
of problem solving methods.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 45

Ontological Engineering

Since then, considerable progress has been
made in this area. Ontologies are now considered
as a commodity that can be used for the develop-
ment of a large number of applications in different
fields, such as knowledge management, natural
language processing, e-commerce, intelligent
integration information, information retrieval,
database design and integration, bio-informatics,
education, and so forth.

The emergence of the Semantic Web (Bern-
ers-Lee, 1999) has caused a growing need for
knowledge reuse, and has strenghtened its poten-
tial at the same time. Therefore, ontologies and
problem-solving methods (which in some cases
are considered as the precursors of Semantic
Web Services) are playing an important role in
this context.

As described in the chapter title, we will pres-
ent the what and how of ontologies, describing
the activities that should be carried out during the
ontology development process, the principles to
be followed in ontology design, and the methods,
methodologies, software tools and languages that
give support to each one of these activities. The
second section defines the word “ontology” and
explains which are the main components that can
be used to model ontologies. The third section
focuses on methods and methodologies for the
development of ontologies, either used for the
whole ontology development process or only for
specific activities. The fourth section focuses on
ontology tools, which normally give support to
the previous methodological approaches. The
fifth section describes ontology languages that
can be used to implement ontologies. All these
sections are structured in a similar way: first we
give a brief overview of their evolution, then we
describe the current trends, and finally we pay
attention to the open issues and practical aspects.
Finally, conclusions and future lines of work are
presented in the last section.

What Is an Ontology and
Which Are its Components?

There are two different views about the use of the
term “ontology,” considering whether the person
who uses that term is interested in its philosophical
roots or in its application to Computer Science.

For philosophers, the term Ontology (normally
typed with uppercase) refers to the “the essence
of things through the changes.” Greek philoso-
phers, from Parmenides of Elea to Aristotle, were
interested in these aspects. In the 18th century,
Kant worked also on these ideas. More recently,
people working in the area of formal ontologies
are also interested in these philosophical ideas
and its application in the context of Computer
Science.

On the other side, ontology engineers in the
context of computer science are more interested
in how ontologies (typed with lowercase) can be
used to represent reusable and sharable pieces of
domain knowledge and how they can be used in ap-
plications. In this context, ontologies are reusable
and sharable artifacts that have to be developed
in a machine interpretable language ���������(Gruber,
1993; Studer, ��������������������������������� Benjamins, & Fensel�������������� , 1998)������� . This
point of view is clearly addressed in the defini-
tion given by Studer and colleagues (1998): An
ontology is a formal, explicit specification of a
shared conceptualization. We consider that this
definition is one of the most complete ones from
those available in the literature.

Once we have analysed these different defini-
tions of the term “ontology,” we will focus on the
second use of this term, that is, on what is normally
known as Ontological Engineering (Gómez-Pérez,
Fernández-López, & Corcho����������������������� , 2003). First we will
discuss about the components that are used to
create an ontology.

Different knowledge representation formal-
isms (and corresponding languages) exist for the

46

Ontological Engineering

fomalisation (and implementation) of ontologies.
Each of them provides different components that
can be used for these tasks. However, they share
the following minimal set of components.1

Classes represent concepts, which are taken
in a broad sense. For instance, in the traveling
domain, concepts are: locations (cities, vil-
lages, etc.), lodgings (hotels, camping, etc.) and
means of transport (planes, trains, cars, ferries,
motorbikes and ships). Classes in the ontology
are usually organised in taxonomies through
which inheritance mechanisms can be applied.
We can represent a taxonomy of entertainment
places (theater, cinema, concert, etc.) or travel
packages (economy travel, business travel, etc.).
In the frame-based KR paradigm, metaclasses
can also be defined. Metaclasses are classes
whose instances are classes. They usually allow
for gradations of meaning, since they establish
different layers of classes in the ontology where
they are defined.

Relations represent a type of association be-
tween concepts of the domain. They are formally
defined as any subset of a product of n sets, that
is: R ⊂ C1 x C2 x ... x Cn. Ontologies usually
contain binary relations. The first argument is
known as the domain of the relation, and the
second argument is the range. For instance, the
binary relation arrivalPlace has the concept Travel
as its domain and the concept Location as its range.
Relations can be instantiated with knowledge from
the domain. For example, to express that the flight
AA7462-Feb-08-2002 arrives in Seattle we must
write: (arrivalPlace AA7462-Feb-08-2002 Seattle)

Binary relations are sometimes used to ex-
press concept attributes (i.e., slots). Attributes
are usually distinguished from relations because
their range is a datatype, such as string, number,
and so forth, while the range of relations is a
concept. The following code defines the attribute
flightNumber, which is a string. We can also express
relations of higher arity, such as “a road connects
two different cities.”

According to Gruber (1993), formal axioms
serve to model sentences that are always true.
They are normally used to represent knowledge
that cannot be formally defined by the other
components. In addition, formal axioms are used
to verify the consistency of the ontology itself
or the consistency of the knowledge stored in a
knowledge base. Formal axioms are very useful
to infer new knowledge. An axiom in the traveling
domain would be that it is not possible to travel
from the America to Europe by train.

Instances are used to represent elements or
individuals in an ontology. An example of instance
of the concept AA7462 is the flight AA7462 that
arrives at Seattle on February 8, 2006 and costs
300 (US Dollars, Euros, or any other currency).

Besides formalisms and languages specifically
designed for representing knowledge, ontologies
can be formalised with other approaches coming
from the areas of Software Engineering, such as
the Unified Modeling Language (UML) (Rum-
baugh, Jacobson, & Booch, 1998) or Entity-Re-
lationship (ER) Diagrams (Chen, 1976).

In this context, the Object Management Group
(OMG)2 is working on a specification to define the
meta-models of some of the diagram types and
languages used in ontology representation. This
specification is known as ontology description
model (ODM, 2005), and uses a common formal
notation to describe the metamodels. Such meta-
models (defined for UML, Entity-Relationship,
OWL, RDF(S), etc.) can be considered formalisa-
tions of knowledge representation ontologies. All
these correspondences are formally described in
the ODM document (ODM, 2005).

The purpose of ODM documents is to allow
software engineers to model ontologies with
familiar notations for them, for example, UML
and ER, and to transform their conceptual models
into formal ontologies represented in ontology
languages.

 47

Ontological Engineering

Methods and Methodologies
for the Development of
Ontologies

Several proposals for ontology development have
been reported in the literature. In 1990, Lenat and
Guha published the general steps (Lenat & Guha,
1990) and some interesting points about the Cyc
development. Some years later, in 1995, on the
basis of the experience gathered in developing the
Enterprise Ontology (Uschold & King, 1995) and
the TOVE (TOronto Virtual Enterprise) project
ontology (Grüninger & Fox, 1995) (both in the
domain of enterprise modeling), the first guide-
lines were proposed and later refined in (Uschold,
1996; Uschold & Grüninger, 1996). At the 12th
European Conference for Artificial Intelligence
(ECAI’96), Bernaras and colleagues (Bernaras,
Laresgoiti, & Corera, 1996) presented a method
used to build an ontology in the domain of elec-
trical networks as part of the Esprit KACTUS
(Schreiber, Wielinga, & Jansweijer, 1995) project.
The methodology methontology (Gómez-Pérez,
Fernández-López, & de Vicente, 1996) appeared
at the same time and was extended in later papers
(Fernández-López, Gómez-Pérez, & Juristo, 1997;
Fernández-López, Gómez-Pérez, Pazos, & Pa-
zos, 1999). In 1997, a new method was proposed
for building ontologies based on the SENSUS
ontology (Swartout, Ramesh, Knight, & Russ,
1997). Some years later, the on-to-knowledge
methodology appeared as a result of the project
with the same name (Staab, Schnurr, Studer, &
Sure, 2001). A comparative and detailed study of
these methods and methodologies can be found in
(Fernández-López & Gómez-Pérez, 2002a).

All the previous methods and methodologies
were proposed for building ontologies. However,
many other methods have been proposed for spe-
cific tasks of the ontology development process,
such as ontology reengineering (Gómez-Pérez &
Rojas, 1999), ontology learning (Aussenac-Gilles,
Biébow, Szulman, 2000a; Kietz, Maedche, &
Volz, 2000), ontology evaluation (Gómez-Pérez,

1994, 1996, 2001, 2004; Guarino, 2004; Gua-
rino & Welty, 2002; Kalfoglou & Robertson,
1999a, 1999b; Welty & Guarino, 2001), ontology
evolution (Klein & Fensel, 2001; Klein, Fensel,
Kiryakov, & Ognyanov, 2002; Noy & Klein,
2002; Noy & Musen, 2004a, 2004b; Noy, Kun-
natur, Klein, & Musen, 2004; Stojanovic, 2004),
ontology alignment (Benebentano et al., 2000;
Castano, De Antonellis, & De Capitani diVe-
mercati, 2001; Ehring & Staab, 2004; Euzenat,
2004; Madhavan, ������������������������� Bernstein, & Rahm�������� , 2001;
Melnik, García-Molina, & Rahm, 2002; Noy
& Musen, 2001; Pan, Ding, Yu, & Peng, 2005;
Shvaiko, Giunchiglia, & Yatskevich, 2004), and
ontology merging (Gangemi, Pisanelli, & Steve,
1999; Steve, Gangemi, & Pisanelli, 1998) (Noy
& Musen, 2000; Stumme & Maedche, 2001),
among others.

In the following subsections we will describe
what we understand by ontology development
process and ontology lifecycle. Then we will
describe the methods and methodologies used for
the whole ontology development process. And fi-
nally we will focus on ontology learning, ontology
merging, ontology alignment, ontology evolution
and versioning, and ontology evaluation.

Ontology Development Process and
Lifecycle

The ontology development process and the
ontology lifecycle were identified by Fernández-
López and colleagues (1997) in the framework
of methontology. These proposals were based
on the IEEE standard for software development
(IEEE, 1996).

The ��������������������������������������� ontology������������������������������� development process refers to
the activities that have to be performed when
building ontologies. They can be classified in
three categories (Figure 1):

Ontology management activities include
scheduling, control and quality assurance. The
scheduling activity identifies the tasks to be
performed, their arrangement, and the time and

48

Ontological Engineering

resources needed for their completion. This activ-
ity is essential for ontologies that use ontologies
stored in ontology libraries or for ontologies that
require a high level of abstraction and generality.
The control activity guarantees that scheduled
tasks are completed in the manner intended to be
performed. Finally, the quality assurance activity
assures that the quality of each and every product
output (ontology, software and documentation)
is satisfactory.

Ontology development oriented activities
are grouped, as presented in Figure 1, into
predevelopment, development and postdevelop-
ment activities. During the predevelopment, an
environment study identifies the problem to be
solved with the ontology, the applications where
the ontology will be integrated, and so forth. Also
during the predevelopment, the feasibility study
answers questions like: is it possible to build the
ontology?; is it suitable to build the ontology?;
and so forth.

Once in the development, the specification
activity3 states why the ontology is being built,
what its intended uses are and who the end-users
are. The conceptualisation activity structures
the domain knowledge as meaningful models

either from scratch or reusing existing models.
In this last case, related activities like pruning
branches of the existing taxonomies, extending
the coverage of ontologies with the addition of
new concepts in the higher levels of their taxono-
mies, or specialising branches that require more
granularity. Given that the conceptualisation
activity is implementation-language independ-
ent, it allows modeling ontologies according to
the minimal encoding bias design criterion. The
formalisation activity transforms the conceptual
model into a formal or semi-computable model.
The implementation activity builds computable
models in an ontology language.

During the postdevelopment, the maintenance
activity updates and corrects the ontology if
needed. Also during the postdevelopment, the
ontology is (re)used by other ontologies or ap-
plications. The evolution activity consists in
managing ontology changes and their effects by
creating and maintaining different variants of
the ontology, taking into account that they can
be used in different ontologies and applications
(Noy et al., 2004).

Finally, ontology support activities include
a series of activities that can be performed dur-

Figure 1. Ontology development process (adapted from Fernández-López et al., 1997)

 49

Ontological Engineering

ing the development-oriented activities, without
which the ontology could not be built. They include
knowledge acquisition, evaluation, integration,
merging, alignment, documentation, and configu-
ration management. The goal of the knowledge
acquisition activity is to acquire knowledge from
experts of a given domain or through some kind
of (semi)automatic process, which is called ontol-
ogy learning (Kietz et al., 2000). The evaluation
activity (Gómez-Pérez, 1994) makes a technical
judgment of the ontologies, of their associated
software environments, and of the documenta-
tion. This judgment is made with respect to a
frame of reference during each stage and between
stages of the ontology’s lifecycle. The integration
activity is required when building a new ontology
by reusing other ontologies already available.
Another support activity is merging (Gangemi et
al., 1999; Noy & Musen, 2000; Steve et al., 1998;
Stumme & Maedche, 2001)�������������������� , which consists in
obtaining a new ontology starting from several
ontologies on the same domain. The resulting
ontology is able to unify concepts, terminology,
definitions, constraints, and so forth, from all
the source ontologies. The merge of two or more
ontologies can be carried out either in run-time
or design time. The alignment activity establishes

different kinds of mappings (or links) between the
involved ontologies. Hence this option preserves
the original ontologies and does not merge them.
The documentation activity details, clearly and
exhaustively, each and every one of the completed
stages and products generated. The configuration
management activity records all the versions of the
documentation and of the ontology code to control
the changes. The multilingualism activity consists
in mapping ontologies onto formal descriptions
of linguistic knowledge (���������������������� Declerck & Uszkoreit,
2003)��� . It has not usually been considered as an
ontology support activity, but has become more
relevant in the context of networked ontologies
available in the Semantic Web.

The ontology development process does not
identify the order in which the activities should
be performed. This is the role of the ontology
lifecycle, which identifies when the activities
should be carried out, that is, it identifies the set of
stages through which the ontology moves during
its life time, describes what activities are to be
performed in each stage and how the stages are
related (relation of precedence, return, etc.).

The initial version of the lifecycle process
model of methontology (see Figure 2) proposes
to start with a scheduling of the activities to be

Figure 2. Ontology lifecycle in methontology

50

Ontological Engineering

performed. Then, the specification activity begins,
showing why the ontology will be built, which its
possible uses will be, and who its users. When
the specification finishes, the conceptualisation
begins. The objective of the conceptualisation is
to organise and structure the acquired knowledge
in the knowledge acquisition activity, using a
set of representations easy to manipulate for
the experts on the domain. Once the conceptual
model has been built, it has to be formalised and
implemented (although if the conceptual model
is formal enough then it will not be necessary to
go through these two stages but just directly to
the implementation). More details can be found
in Gómez-Pérez et al. (2003).

The original ontology lifecycle of methontol-
ogy has been modified recently to take into ac-
count the fact that more ontologies are available
in ontology libraries or spread over the Internet,
so that their reuse by other ontologies and ap-
plications has increased. Domain ontologies can
be reused to build others of more granularity and
coverage, or can be merged with others to create
new ones. Using an analogy with an underground

map, it can be noted that there exists a main line
(in the middle of the Figure 3), which proposes
the main development activities already identi-
fied in the early versions of methontology. Others
lines start from the main one or finish in it, and
others go in parallel ways and fork in a point.
Thus, interdependence relationships (Gómez-
Pérez & Rojas, 1999) arise between the lifecycle
of several ontologies, and actions of evaluation,
pruning and merging can be carried out on such
ontologies. That is, the lifecycles of the different
ontologies intersect, producing different scenarios
with different technological requirements. Cor-
cho and colleagues (2007) describe some of the
most common scenarios that appear in this new
context.

Methods and Methodologies
Used for the Whole Ontology
Development Lifecycle

Several methods and methodologies have been
proposed in the literature as a guide for the main
phases of the ontology development lifecycle. The

Figure 3. The ontology development process of networked ontologies

 51

Ontological Engineering

selection of one or another will mainly depend
on the characteristics of the ontology to be devel-
oped, including the context where they are being
developed and the experience of the ontology
engineers with the each approach. At the end of
this section we provide a comparison of the ap-
proaches according to several factors that can be
considered for ontology development.

The Cyc method (Lenat & Guha, 1990), which
is given this name because it was used for the de-
velopment of the Cyc knowledge base, is mainly
oriented to support the knowledge acquisition
activity, and is structured in three phases. In all
of them, the objective is to derive common sense
knowledge that is implicit in different sources.
The difference between them is the degree of
automation of the knowledge acquisition process
(from manual to automatic). Once knowledge has
been acquired, it is divided into microtheories (or
contexts)��� , which are bundles of assertions in the
same domain.

The Uschold and King’s method (Uschold &
King, 1995) covers more aspects of the ontology
development lifecycle. It proposes four phases:
(1) to identify the purpose of the ontology, (2) to
build it, integrating other ontologies inside the
current one if necessary, (3) to evaluate it, and
(4) to document it. The authors propose three
strategies for identifying the main concepts in
the ontology: a top-down approach, in which the
most abstract concepts are identified first, and
then, specialised into more specific concepts; a
bottom-up approach, in which the most specific
concepts are identified first and then generalised
into more abstract concepts; and a middle-out
approach, in which the most important concepts
are identified first and then generalised and spe-
cialised into other concepts. Depending on the
characteristics of the ontology to be developed,
different strategies will be considered.

Grüninger and Fox (Grüninger & Fox, 1995)
propose a methodology that is inspired on the
development of knowledge-based systems using
first order logic. They propose first to identify

intuitively the possible applications where the
ontology will be used, and determine the scope
of the ontology using a set of natural language
questions, called competency questions. These
questions and their answers are used both to ex-
tract the main ontology components (expressed in
first order logic). This methodology is very formal
and can be used as a guide to transform informal
scenarios in computable models.

In the method proposed in the KACTUS project
(Bernaras et al., 1996) the ontology is built on the
basis of an application knowledge base (KB), by
means of a process of abstraction (that is, following
a bottom-up strategy). The more applications are
built, the more reusable and sharable the ontol-
ogy becomes.

The method based on Sensus (Swartout et
al., 1997) aims at promoting the sharability of
knowledge, since it proposes to use the same
base ontology to develop ontologies in particular
domains. It is a top-down approach where the
authors propose to identify a set of “seed” terms
that are relevant to a particular domain. These
terms are linked manually to a broad-coverage
ontology (in this case, the Sensus ontology, which
contains more than 50,000 concepts). Then, all
the concepts in the path from the seed terms to
the ontology root are included. For those nodes
that have a large number of paths through them,
the entire subtree under the node is sometimes
added, based on the idea that if many of the nodes
in a subtree have been found to be relevant, then,
the other nodes in the subtree are likely to be
relevant as well.

Methontology (Fernández-López et al., 1999) is
a methodology that can be used to create domain
ontologies that are independent of the application
where they will be used. The ontology develop-
ment process and lifecycle presented in the previ-
ous section are derived from this methodology.
Besides, the methodology proposes specific tech-
niques to carry out each of the activities identified
there. The main phase in the ontology development
process is the conceptualisation phase.

52

Ontological Engineering

The on-to-knowledge methodology (Staab et
al., 2001) is based on an analysis of usage sce-
narios. The steps proposed by the methodology
are: kick-off, where ontology requirements are
captured and specified, competency questions
are identified, potentially reusable ontologies are
studied and a first draft version of the ontology is
built; refinement, where a mature and application-
oriented ontology is produced; evaluation, where
the requirements and competency questions are
checked, and the ontology is tested in the applica-
tion environment; and ontology maintenance.

If we analyse the approaches according to the
part of the ontology development process that they
describe, we can conclude (Fernández-López &
Gómez-Pérez, 2002a):

1.	 None of the approaches covers all the pro-
cesses involved in ontology building. Most of
the methods and methodologies for building
ontologies are focused on the development
activities, specially on the ontology concep-
tualisation and ontology implementation,
and they do not pay too much attention to
other important aspects related to manage-
ment, learning, merge, integration, evolution
and evaluation of ontologies. Therefore,
such types of methods should be added to
the methodologies for ontology construction
from scratch (Fernández-López & Gómez-
Pérez, 2002b).

2.	 Most of the approaches are focused on devel-
opment activities, especially on the ontology
implementation, and they do not pay too
much attention to other important aspects
related to the management, evolution and
evaluation of ontologies. This is due to the
fact that the ontological engineering field is
relatively new. However, a low compliance
with the criteria formerly established does
not mean a low quality of the methodology
or method. As de Hoog (1998) states, a not
very specified method can be very useful

for an experienced group.
3.	 Most of the approaches present some draw-

backs in their use. Some of them have not
been used by external groups and, in some
cases they have been used in a single do-
main.

4.	 Most of the approaches do not have a specific
tool that gives them technology support.
Besides, none of the available tools cov-
ers all the activities necessary in ontology
building.

Methods and Techniques Aimed at
Specific Activities of the Ontology
Development Process

Now we will provide an overview of some of the
most important methods and techniques that are
proposed to give support to specific activities of
the ontology development process, such as those
for ontology learning (which support the knowl-
edge acquisition activity), ontology alignment
and merge (which support the integration, merge
and alignment activities), ontology evolution and
versioning (which support the maintenance activ-
ity), and ontology evaluation.

Methods and Techniques for
Ontology Learning

Ontology learning is defined as the set of methods
and techniques used for building an ontology
from scratch, enriching, or adapting an exist-
ing ontology in a semi-automatic fashion using
distributed and heterogeneous knowledge and
information sources, allowing to reduce the time
and effort needed in the ontology development
process. Though the fully automatic acquisition of
knowledge remains far to be reached, the overall
process is considered as semi-automatic, meaning
that the human intervention is necessary in some
parts of the learning process.

Several approaches have appeared during the

 53

Ontological Engineering

last decade for the partial automatisation of the
knowledge acquisition process, applied to differ-
ent types of unstructured, semistructured, and
fully structured data (Maedche & Staab, 2000).
Most of these approaches are based on linguistic
patterns, which are used to extract linguistic rela-
tions that reflect ontological relations (taxonomic
and nontaxonomic relations as well as possible
attributes or their values, depending on the pat-
tern’s type). In the same sense, these patterns are
also used for detecting attribute-value pairs. All
the presented methods require the participation
of an ontologist to evaluate the final ontology
and the accuracy of the learning process. There
are not methods or techniques for evaluating the
accuracy of the learning process either.

Regarding ontology learning methods, some
of the most known ones are due to ������������ Maedche and
colleagues �������������������������������������� (Kietz et al., 2000)������������������ , Aussenac-Gilles
and colleagues (2000a, 2000b), and Khan and Luo
(2002). Maedche and colleagues’ method (Kietz et
al., 2000) proposes to learn the ontology using as
a base a core ontology (SENSUS, WordNet, etc.),
which is enriched with the learnt concepts. ����New
concepts are identified using natural language
analysis techniques over the resources previously
identified by the user. The resulting ontology is
pruned and then focused on a specific domain by
means of several approaches based on statistics.
Finally, relations between concepts are established
applying learning methods.

Aussenac-Gilles and colleagues’ method
(Aussenac-Gilles et al., 2000a, 2000b) combines
knowledge acquisition tools based on linguistics
with modeling techniques to keep links between
models and texts. After selecting a corpus, the
method proposes to obtain linguistic knowledge
(terms, lexical relations, and groups of synonyms)
at the linguistic level. This linguistic knowledge is
then transformed into a semantic network, which
includes concepts, relations and attributes.

Khan and Luo’s method (Khan & Luo, 2002)
aims to build a domain ontology from text docu-
ments using clustering techniques and WordNet

(Miller, 1995). The user provides a selection of
documents, which are clustered using the SOAT
algorithm (Wu & Hsu, 2002). After building a
hierarchy of clusters, a concept is assigned to each
cluster in the hierarchy using a bottom-up fashion
and a predefined set of topic categories. For this
purpose, a topic tracking algorithm (Joachims,
1998) is used. Then, each topic is associated with
an appropriate concept in WordNet, and other
nodes in the hierarchy are assigned according to
the concepts in the descendent nodes and their
hyperyms in WordNet. Relations between con-
cepts are ignored.

Methods and Techniques for
Ontology Alignment and Merge

Ontologies aim to capture consensual knowledge
of a given domain in a generic and formal way, to
be reused and shared across applications and by
groups of people. From this definition we could
wrongly infer that there is only one ontology for
modeling each domain (or even a single universal
ontology). Though this can be the case in specific
domains, commonly several ontologies model the
same domain knowledge in different ways.

Noy and Musen (2000) defined ontology
alignment and merging as follows: (1) ontology
alignment consists in establishing different kinds
of mappings (or links) between two ontologies,
hence preserving the original ontologies (see
Figure 4); and (2) ontology merging proposes
to generate a unique ontology from the original
ontologies. In this chapter we will assume that a
mapping ��� between ontologies is a set of rewriting
rules that associates terms and expressions defined
in a source ontology with terms and expressions
of a target ontology (inspired from Mitra, Wie-
derhold, & Kersten, 2000). Table 1 shows the
mappings that can be established between the two
ontologies of Figure 4. The symbol “:=” means
“is transformed into,” and “λ” is the empty word.
Therefore, date := λ means that the attribute

54

Ontological Engineering

date has no correspondence with terms of the
ontology 2.

Given that a reusable and machine interpretable
database schema can be considered as an ontol-
ogy (see second section), the galaxy of ontology
alignment methods is huge. Some examples of
these methods are: S-Match (Shvaiko et al., 2004),
QOM (Ehring & Staab, 2004), Pan and colleagues
proposal (2005), Artemis (Benebentano et al.,
2000; Castano et al., 2001), Cupid (Madhavan et
al., 2001), AnchorPrompt (Noy & Musen, 2001),
Similarity Flooding (Melnik et al., 2002), and
so forth.

In the context of the workshop on Evaluation
of Ontology Tools EON2004, an experiment was
performed about the quality of the mappings pro-

vided by different methods and tools. This will
be continued in other efforts. To know more on
ontology alignment and merging we recommend
to access to the Ontology Matching Web page.4

With regard to ontology merging methods and
methodologies, one of the most elaborated propos-
als for ontology merging is ONIONS (Gangemi
et al., 1999; Steve et al., 1998), developed by the
Conceptual Modeling Group of the CNR in Rome,
Italy. With this method we can create a library of
ontologies originated from different sources. The
main underlying ideas of this method are: (1) to
link the ontologies taking into account lexical rela-
tions between their terms (polysemy, synonymy,
etc.); and (2) to use generic theories (part-whole or
connectedness theories, for example) as common
upper ontologies of the library ontologies, that is,

Description of the mapping in natural language Rewriting rule

The concept travel (in ontology 1) is equivalent to
the concept traveling (in ontology 2). Travel := Traveling

The concept travel by plane (in ontology 1) is
equivalent to the concept such as it is subclass of
traveling (in ontology 2) and its transport mean is
a plane (in ontology 2).

TravelByPlane := C such as
 subclassOf(C, Traveling) ∧
 C.hasTransporMean = Plane

The concept such as it is subclass of travel (in
ontology 1) and its transport mean is a bus (in
ontology 2) is equivalent to the concept traveling
by bus (in ontology 2).

C such as
 subclassOf(C, Travel) ∧
 C.hasTransporMean = Bus
:= TravelingByBus

The attribute origin (in ontology 1) is equivalent to
the attribute origin place (in ontology 2). Origin := OriginPlace

The attribute destination (in ontology 1) is
equivalent to the attribute destination place (in
ontology 2).

Destination := DestinationPlace

The value New York of attributes origin and
destination (in ontology 2) is equivalent to the
value NY of origin place and destination place
(in ontology 2).

“New York” := “NY”

The attribute date (in ontology 1) does not have
correspondence in ontology 2. Date := λ

The attribute price (in ontology 1) is equivalent
to a combination of the attributes price and tax in
ontology 2.

Price := Price * (1 + Tax/100)

The attribute has transport mean (in ontology 1)
is equivalent to the attribute has transport mean
in ontology 2.

HasTransportMean := HasTransportMean

Table 1. Mappings for the two ontologies of Figure 4

 55

Ontological Engineering

to use generic theories as the glue to integrate the
different ontologies.

FCA-Merge (Stumme & Maedche, 2001) was
developed at the Institute AIFB of the University
of Karlsruhe, Germany. This approach is very
different from the other approaches presented in
this section. FCA-Merge takes as input the two
ontologies to be merged and a set of documents
on the domains of the ontologies. The appearances
of instances of the concepts in the different docu-
ments guides the merging such concepts.

The PROMPT method (Noy & Musen, 2000)
has been elaborated by the Stanford Medical
Informatics group at Stanford University. The
main assumption of PROMPT is that the ontolo-
gies to be merged are formalised with a common
knowledge model based on frames. This method
proposes first to elaborate a list with the candidate
operations to be performed to merge the two
ontologies (e.g., merge two classes, merge two
slots, etc.). Afterwards, a cyclic process starts.
In each cycle the ontologist selects an operation
of the list and executes it.

PromptDiff is a component of Prompt (Noy
& Musen, 2004b) that allows maintaining on-

tology views or mappings between ontologies.
PromptDiff provides an ontology-comparison API
that other applications can use to determine, for
example, the mapping needs to be updated when
new versions of mapped ontologies appear (Noy
et al., 2004).

Methods and Techniques for
Ontology Evolution and Versioning

Ontologies are often developed by several groups
of people and may evolve over time. Therefore,
they cannot be understood as static entities,
but rather as dynamic ones. As a consequence,
ontology versioning becomes necessary and es-
sential.

Ontology engineers working in parallel on
the same ontology need to maintain and compare
different versions, to examine the changes that
others have performed, and to accept or reject the
changes. Ontology-based application developers
should easily see the changes between ontology
versions, determine which definitions were added
or deleted, and accept or reject the changes. Let’s
note that, for ontologies, we must compare the

Figure 4. Example of ontology alignment

56

Ontological Engineering

semantics of the ontologies and not their seri-
alisations, since two ontologies that are exactly
the same conceptually may have very different
text representations when implemented in some
ontology languages.

The most relevant methods (and corresponding
tools) for ontology evolution and versioning are
the change management KAON plug-in (������Stoja-
novic, 2004) and the PromptDiff algorithm (Noy
et al., 2004).

The change management KAON plug-in al-
lows establishing the effects of changes through
evolution strategies (������������������������� Stojanovic, 2004)�������� . A par-
ticular evolution strategy allows establishing,
for example, what happens with its subclasses
when a concept C is deleted: if they can be also
deleted, or they can become subclasses of the
superclasses of C.

The PromptDiff algorithm, which is inte-
grated in the PROMPT plug-in of the Protégé
tool, compares ontologies producing an initial
set of mappings between two versions of the
same ontology (Noy et al., 2004). For instance,
if a term t1 of the version v1 has the same type
as the term t2 of the version v2 (both of them are
concepts, both of them are properties, etc.) and
t1 has a similar name to t2, it is assumed that the
semantics of t1 and t2 are similar. Therefore, t1
and t2 are mapped as similar terms. This initial
set of mappings is propagated using a fixed-point
algorithm that combines the results of the previ-
ous step. Thus, for example, if all the siblings of
the concept c1 of v1 are mapped with siblings of
the concept c2 of v2, c1 and c2 are candidates to
be mapped through a change operation (e.g., the
addition of a new subclass).

Methods and Techniques for
Ontology Evaluation

Work on ontology content evaluation was started
by Gómez-Pérez (1994). A survey on evaluation
methods and tools can be found in (Gómez-Pérez

et al., 2003). These evaluation efforts can be ex-
amined under the following four perspectives:

From a content perspective, many libraries
exist where ontologies are published and pub-
licly available (SWOOGLE5, Oyster6, DAML7,
Protégé8, etc.). No documentation is available
about how ontologies available in libraries or
well-known and large ontologies (e.g., Cyc (Lenat
& Guha 1990), or Sensus (Swartout et al., 1997))
were evaluated. However they have been used to
build many successful applications.

From a methodology perspective, the main
efforts to evaluate ontology content were made
by Gómez-Pérez (1996, 2001) in the framework
of methontology, and by Guarino and colleagues
(Welty & Guarino, 2001) with the OntoClean
method.

Gómez-Pérez has identified and classified dif-
ferent kinds of errors in taxonomies. Such identi-
fication can be used as a checklist for taxonomy
evaluation. Such a list presents a set of possible
errors that can be made by ontology engineers
when modeling taxonomic knowledge in an
ontology under a frame-based approach. They
are classified in: inconsistency, incompleteness,
and redundancy errors. The ontology engineer
should not postpone the evaluation until the
taxonomy is finished; the control mechanisms
should be performed during the construction of
the taxonomy.

OntoClean is a method elaborated by the
Ontology Group of the CNR in Padova (Italy).
Its goal is to remove wrong Subclass-Of relations
in taxonomies according to some philosophical
notions such as rigidity, identity and unity. Accord-
ing to this method, the ontology engineer, first,
assigns some meta-properties to each concept of
the taxonomy (for example, if each instance of the
concept is a whole), then it applies a set of rules
that establish the possible incompatibilities of
values in the taxonomy. Such rules allow pruning
wrong subclass of links if the values assigned to a
concept are incompatible with the values assigned
to its children.

 57

Ontological Engineering

Recently, some researchers have published a
synthesis of their experience in ontology evalua-
tion (Daelemans & Reinberger, 2004; Gómez-Pé-
rez, 2004; Guarino, 2004; Noy, 2004). According
to their conclusions, although good ideas have
been provided in this area, there are still important
lacks. Other interesting works are (Guo, ������� Pan, &
Heflin��������������������������������������� , 2004) and the aforementioned EON2004
experiment.

Ontology Tools

Ontology tools appeared in the mid-1990s with
the objective of giving support to the development
of ontologies, either following a specific set of
methods or a methodology or not. Taking into
account the characteristics of their knowledge
models, ontology tools can be classified in the
following two groups:

•	 Tools whose knowledge model maps directly
to an ontology language, hence developed as
ontology editors for that specific language.
This groups includes: the Ontolingua Server
(Farquhar, Fikes, & Rice, 1997), which sup-
ports ontology construction with Ontolingua
and KIF; OntoSaurus (Swartout et al., 1997)
with Loom; WebOnto (Domingue, 1998)
with OCML; OilEd (Bechhofer, Horrocks,
Goble, & Stevens, 2001) with OIL first, later
with DAML+OIL, and finally with OWL;
and SWOOP (Kalyanpur, Parsia, & Hendler,
2005) and KAON2 (Hustadt, Motik, & Sat-
tler, 2004) with OWL.

•	 Integrated tool suites whose main char-
acteristic is that they have an extensible
architecture, and whose knowledge model is
usually independent of ontology languages.
These tools provide a core set of ontology
related services and are easily extended with
other modules to provide more functions. In
this group we have included Protégé (Noy,
Fergerson, & Musen, 2000), WebODE

(Arpírez, ���������������������������� Corcho, Fernández-López, Gó-
mez-Pérez���������������������������������, 2003; Corcho, Fernández-López,
Gómez-Pérez, & Vicente, 2002), OntoEdit
(Sure, Erdmann, Angele, Staab, Studer,
& Wenke, 2002), and KAON1 (Maedche,
Motik, Stojanovic, Studer, & Volz, 2003).

Tools that Give Support to Most of
the Activities of the Ontology
Development Process

In this section we will focus on those tools that
give an integrated support to the ontology develop-
ment process, and consequently cover most of the
activities needed to develop ontologies. From all
of them we will only describe those that belong
to the new generation of ontology-engineering
environments, in particular, in Protégé, WebODE,
OntoEdit and KAON1.9

These tools have �������������������������� been���������������������� created to integrate
ontology technology in actual information sys-
tems. As a matter of fact, they are built as robust
integrated environments or suites that provide
technological support to most of the ontology
lifecycle activities. They have extensible, com-
ponent-based architectures, where new modules
can easily be added to provide more functionality
to the environment. Besides, the knowledge mod-
els underlying these environments are language
independent.

Protégé (Noy et al., 2000) has been developed
by the Stanford Medical Informatics (SMI) at Stan-
ford University. It is an open source, standalone
application with an extensible architecture. The
core of this environment is the ontology editor, and
it holds a library of plugins that add more func-
tionality to the environment. Currently, plugins
are available for ontology language import/export
(FLogic, Jess, XML, Prolog), ontology language
design (Knublauch, Fergerson, Noy, & Musen,
2004), OKBC access, constraints creation and
execution (PAL), ontology merge (Prompt (Noy
& Musen, 2000)), and so forth.

58

Ontological Engineering

WebODE (Arpírez et al., 2003; Corcho et al.,
2002) has been developed by the Ontological
Engineering Group of the Technical University of
Madrid (UPM). It is also an ontology-engineer-
ing suite created with an extensible architecture.
WebODE is not used as a standalone application,
but as a Web server with several frontends. The
core of this environment is the ontology access
service, which is used by all the services and
applications plugged into the server, especially
by the WebODE’s Ontology Editor. There are
several services for ontology language import/
export (XML, RDF(S), OWL, CARIN, FLogic,
Jess, Prolog), axiom edition, ontology documen-
tation, ontology evaluation and ontology merge.
WebODE’s ontologies are stored in a relational
database. Finally, WebODE covers and gives
support to most of the activities involved in the
ontology development process proposed by meth-
ontology, although this does not prevent it from
being used with other methodologies or without
following any methodology.

OntoEdit (Sure et al., 2002) has been developed
by AIFB in Karlsruhe University, and is commer-
cialised by Ontoprise. It is similar to the previous
tools: it is an extensible and flexible environment,
based on a plugin architecture, which provides
functionality to browse and edit ontologies. It
includes plugins that are in charge of inferring
using Ontobroker, of exporting and importing
ontologies in different formats (FLogic, XML,
RDF(S) and OWL), and so forth. Two versions
of OntoEdit are available: OntoEdit Free and
OntoEdit Professional.

The KAON1 tool suite (Maedche et al., 2003)
is an open source extensible ontology engineer-
ing environment. The core of this tool suite is
the ontology API, which defines its underly-
ing knowledge model based on an extension of
RDF(S). The OI-modeler is the ontology editor
of the tool suite that provides capabilities for
ontology evolution, ontology mapping, ontology
generation from databases, and so forth.

An interesting aspect of tools is that only
OntoEdit and WebODE give support to ontology
building methodologies (on-to-knowledge and
methontology respectively), though this does not
prevent them from being used with other meth-
odologies or with no methodology at all.

From the KR paradigm point of view, KAON is
based on semantic networks plus frames, and the
rest of tools allow representing knowledge follow-
ing a hybrid approach based on frames and first
order logic. Expressiveness of the underlying tool
knowledge model is also important. All the tools
allow representing classes, relations, attributes,
and instances. Only KAON1, and Protégé provide
flexible modeling components like metaclasses.
Before selecting a tool for developing an ontology,
it is also important to know the inference services
attached to the tool, which includes: constraint
and consistency checking mechanisms, type of
inheritance (single, multiple, monotonic, non-
monotonic), automatic classifications, exception
handling and execution of procedures. KAON1
does not have an inference engine. OntoEdit
uses FLogic (Kifer, Lausen, & Wu, 1995) as its
inference engine, WebODE uses Ciao Prolog
(Hermenegildo, ������������������������������ Bueno, Cabeza, Carro, García,
López, & Puebla�������������������������������� , 2000), and Protégé uses an in-
ternal PAL engine. Besides, Protégé and WebODE
provide ontology evaluation facilities. WebODE
and Protégé include a module that performs ontol-
ogy evaluation according to the OntoClean method
(Guarino & Welty, 2002; Welty & Guarino, 2001).
Finally, Protégé (with the OWL plug-in) performs
automatic classifications by means of connecting
to a description logic reasoner.

Another important aspect to take into account
in ontology tools is the software architecture and
tool evolution, which considers which hardware
and software platforms are necessary to use the
tool, its architecture (standalone, client/server,
n-tier application), extensibility, storage of the
ontologies (databases, ASCII files, etc.), failure
tolerance, backup management, stability and tool
versioning policies. From that perspective, all

 59

Ontological Engineering

these tools are based on Java platforms and pro-
vides database storage support. Backup manage-
ment functionality is just provided by WebODE,
and extensibility facilities are allowed in KAON,
OntoEdit, Protégé and WebODE.

Related to the cooperative and collaborative
construction of ontologies, Protégé incorporates
some synchronisation functionalities. In general,
more features are required in existing tools to
ensure a successful collaborative building of
ontologies.

Tools that Give Support to Specific
Activities of the Ontology
Development Process

Here we will only cover tools for ontology learn-
ing and ontology merge and alignment, since the
ones for evolution and evaluation are very close
to each of the methods described previously and
consequently there is not much more that can be
described about them.

Tools that Give Support to Ontology
Learning

We will describe Caméléon (������������������ Aussenac-Gilles &
Seguela, 2000)�������������������������������� , LTG Text Processing Workbench
(�� Mikheev & Finch��������������������������� , 1997), Prométhée (Morin,
1998, 1999), SOAT tool (Wu & Hsu, 2002) and
Text-To-Onto (Maedche & Staab, 2000).

Caméléon (���������������������������������Aussenac-Gilles & Seguela, 2000)�
assists in learning conceptual relations to enrich
conceptual models. Caméléon relies on linguistic
principles for relation identification: lexico-syn-
tactic patterns are good indicators of semantic
relations. Some patterns may be regular enough to
indicate the same kind of relation from one domain
to another. Other patterns are domain specific and
may reveal domain specific relations. This tool
gives technological support to some steps of the
Aussenac-Gilles and colleagues’ method.

Language Technology Group (LTG) Text
Processing Workbench (����������������������� Mikheev & Finch�������� , 1997)

is a set of computational tools for uncovering in-
ternal structure in natural language texts written
in English. The main idea behind the workbench
is the independence of the text representation
and text analysis. In LTG, ontology learning is
performed in two sequential steps: representation
and analysis. At the representation step, the text
is converted from a sequence of characters to fea-
tures of interest by means of annotation tools. At
the analysis step, those features are used by tools
of statistics-gathering and inference to find sig-
nificant correlations in the texts. The workbench
is being used both for lexicographic purposes and
for statistical language modeling.

Prométhée (Morin, 1998, 1999) is a machine
learning based tool for extracting and refining
lexical-syntactic patterns related to conceptual
specific relations from technical corpora. It uses
pattern bases, which are enriched with the ones
extracted in the learning. To refine patterns, the
authors propose the Eagle (Guarino, ���������� Masolo, &
Vetere�� , 1999) learning system. This system is
based on the inductive paradigm learning from
examples, which consists in the extraction of in-
tentional descriptions of target concepts from their
extensional descriptions, and previous knowledge
on the given domain. This fact specifies general
information, like the object characteristics and
their relations. The tool extracts intentional
descriptions of concepts from their extensional
descriptions. The learned definitions are later used
in recognition and classification tasks.

SOAT (Wu & Hsu, 2002) allows a semi-auto-
matic domain ontology acquisition from a domain
corpus. The main objective of the tool is to ex-
tract relationships from parsed sentences based
on applying phrase-rules to identify keywords
with strong semantic links like hyperonyms or
synonyms. The acquisition process integrates
linguistic, commonsense, and domain knowledge.
The restrictions of SOAT involve that the qual-
ity of the corpus must be very high, in the sense
that the sentences must be accurate and enough

60

Ontological Engineering

to include most of the important relationships to
be extracted.

Text-To-Onto (Maedche & Staab, 2000)
integrates an environment for building domain
ontologies from an initial core ontology. It also
discovers conceptual structures from different
German sources using knowledge acquisition
and machine learning techniques. Text-To-Onto
has implemented some techniques for ontology
learning from free and semistructured text. The
result of the learning process is a domain ontology
that contains domain-specific and domain-inde-
pendent concepts. Domain-independent concepts
are withdrawn to better adjust the vocabulary of
the domain ontology. The result of this process
is a domain ontology that only contains domain
concepts learnt from the input sources related
before. The ontologist supervises the whole proc-
ess. This is a cyclic process, in the sense that it
is possible to refine and complete the ontology if
we repeat the process.

An important conclusion that we can obtain
in the revision of ontology learning tools is that
it does not exist a fully automatic tool that carries
out the learning process. Some tools are focused
on helping in the acquisition of lexico-semantic
knowledge, others help to elicit concepts or rela-
tions from a pre-processed corpus with the help
of the user, and so forth. A deeper description of
methods and tools can be found in (������������Gómez-Pérez
& Manzano, 2003)�.

Tools that Give Support to Ontology
Alignment and Merge

With regard to ontology alignment tools, we will
describe the QOM toolset, S-Match, Pan and col-
leagues tool and OLA.

The QOM toolset (Ehring & Staab, 2004) gives
support to the QOM method. It is implemented
in Java using the KAON framework. It has been
basically used to make experiments with the
method and compare it with other methods.

S-Match tool translates and preprocesses the
input ontologies. Then, it orders the transformation
of prefixes, the expansions of abbreviations, and
so forth. Later, using resources like Wordnet, it
generates a first mapping base. Finally, using the
SAT solvers, new mappings are generated.

Pan and colleagues (2005) apply their method
combining the Google search engine and text clas-
sifiers (such as Rainbow10 or cbacl11) to calculate
the prior probabilities of the Bayesian network.
Then, the subsequent probability is calculated
using any Bayesian network tool.

OLA12 (Euzenat, 2004) is an API for manipu-
lating alignments between ontologies in OWL.
It allows applying and combining different algo-
rithms, and even adding others new. Currently,
this API has been mainly used with mapping
methods based on lexical similarity measures.
OLA implements a format for expressing align-
ments in RDF.

With regard to ontology merge tools, we will
describe OGSERVER, Chimaera, the Prompt
plug-in, the FCA-Merge toolset and GLUE.

OBSERVER (Mena, Kashyap, Sheth, & Illar-
ramendi, 1996) merges automatically ontologies
of the same domain to access heterogeneous in-
formation sources. However, the merge process is
carried out by an internal module and, therefore,
it is invisible to the user.

Chimaera (McGuinness, Fikes, Rice, &
Wilder, 2000) was built by the Knowledge Systems
Laboratory (KSL) to aid in the process of ontology
merge, and the Prompt plug-in (Noy & Musen,
2000), integrated in Protégé, was built by the
Stanford Medical Informatics (SMI). The added
value of the latter was that it provided support to
the ontology merge method Prompt.

Approximately at the same time, the Institute
AIFB of the University of Karlsruhe developed
the FCA-Merge toolset (Stumme & Maedche,
2001) to support the FCA-Merge method.

Finally, in 2002, GLUE (Doan, Madhavan,
Domingos, & Halevy, 2002) was developed at
the University of Washington. GLUE is a system

 61

Ontological Engineering

that semi-automatically finds mappings between
concepts from two different ontologies.

The current ontology merging approaches
have the following lacks: (1) mappings to perform
the merging are usually established by hand; (2)
all the tools need the participation of the user to
obtain the definitive result of the merging proc-
ess; and (3) no tool allows merging axioms and
rules. The natural evolution of merging tools
should lead to increase the use of knowledge and
to decrease the participation of the people in the
process. This could improve the possibilities of
the merging at run-time.

Ontology Languages

Ontology languages started to be created ������� at the
beginning of the 1990s, normally as the evolu-
tion of existing knowledge representation (KR)
languages. Basically, the KR paradigms under-
lying such ontology languages were based on
first order logic (e.g., KIF (Genesereth & Fikes,
1992)), on frames combined with first order logic
(e.g., Ontolingua (Farquhar et al., 1997) (Gruber,
1992), OCML ����������������������������������� (Motta, 1999)���������������������� and FLogic ���������� (Kifer et
al., 1995)���), and on description logics (e.g., Loom
(MacGregor, 1991)�����������������������������). In 1997, OKBC (Chaudri et
al., 1998) was created as a unifying frame-based
protocol to access ontologies implemented in dif-
ferent languages (Ontolingua, Loom and CycL,
among others). However it was only used in a
small number of applications.

The boom of the Internet led to the creation
of ontology languages for exploiting the charac-
teristics of the Web. Such languages are usually
called Web-based ontology languages or ontol-
ogy markup languages. Their syntax is based
on existing markup languages such as HTML
(Raggett. , Le Hors, & Jacobs, 1999) and XML
(Bray, Paoli, Sperberg-McQueen, & Maler, 2000),
whose purpose is not ontology development but
data presentation and data exchange respectively.
The most important examples of these markup

languages are����������������������������������: SHOE (Luke & Helfin, 2000), XOL
(Karp, ������������������������������������� Chaudhri, & Thomere������������������ , 1999), RDF (Las-
sila & Swick, 1999), RDF Schema (Brickley &
Guha, 2004), OIL (Horrocks, ������������������ Fensel, Harmelen,
Decker, Erdmann, & Klein������������������ , 2000), DAML+OIL
(Horrocks & van Harmelen, 2001), and OWL
(Dean & Schreiber, 2004). From all of them, the
ones that are being actively supported are now
RDF, RDF Schema and OWL. Finally, in the
context of the work on Semantic Web Services
and more specifically in the context of the WSMO
framework, a new ontology language is being
developed, named WSML.

We will describe the most relevant ontology
mark-up languages, since they are the most useful
for the work on Semantic Web Services.

RDF (Lassila & Swick, 1999) was developed by
the W3C (the World Wide Web Consortium) as a
semantic-network based language to describe Web
resources. Finally, the RDF Schema (Brickley &
Guha, 2004) language was also built by the W3C as
an extension to RDF with frame-based primitives.
The combination of both RDF and RDF Schema
is normally known as RDF(S). RDF(S) only al-
lows the representation of concepts, taxonomies
of concepts and binary relations. Some inference
engines and query languages have been created
for this language.

Ontology Web Language (OWL) was proposed
as a W3C recommendation in February 2004.
OWL is built on top of RDF(S), extending its
expressiveness with more primitives that allow
representing complex expressions to describe
concepts and relations. OWL is divided into
three layers (OWL Lite, OWL DL and OWL
Full), each of them providing different levels of
expressiveness that can be used depending on the
representation and inference needs of an ontology.
OWL is based on the description logic language
SHOIN(D+) and has several inference engines that
can be used for constraint checking of concepts,
properties and instances, and for automatic clas-
sification of concepts into hierarchies.

For instance, using OWL we can describe a

62

Ontological Engineering

flight as a kind of travel where the means of trans-
port used is a plane. If we specify this condition
as necessary and sufficient and then we define a
travel where a light aircraft is used as the means
of transport (and we assume that light aircraft is
a specialisation of a plane) then a reasoner will
be able to derive that this travel is a specialisation
of a flight. Similarly, this same principle can be
used for checking the consistency of the defini-
tions provided in an ontology.

Finally, Web Service Modeling Language
(WSML) (de Bruijn, 2006) is being developed
in the context of the WSMO framework.13 This
language is aimed to be used not only for rep-
resenting ontologies, but also for representing
Semantic Web Services; hence it contains many
additional features that are not present in the lan-
guages aforementioned. Like OWL, it is divided
in several layers. Each of these layers is based on
different KR formalisms: description logic, logic
programming and first order logic.

Conclusion

In the beginning of the 1990s ontology develop-
ment was similar to an art: ontology developers did
not have clear guidelines on how to build ontolo-
gies but only some design criteria to be followed.
Work on principles, methods and methodologies,
together with supporting technology, made ontol-
ogy development become an engineering. This
migration process was mainly due to the defini-
tion of the ontology development process and the
ontology lifecycle, which described the steps to
be performed in order to build ontologies and the
interdependencies among all those steps.

In this chapter we have reviewed existing
ontology principles, methods and methodologies,
tools, and languages. The following is a summary
of the chapter:

Ontology engineers have available methodolo-
gies that guide them along the ontology develop-
ment process. Methontology is the methodology

that provides the most detailed descriptions of the
processes to be performed; On-To-Knowledge
is the one that covers most activities, although
with very short descriptions of processes; and
Grüninger and Fox methodology is the most
formal one. All of them consider the reuse of
existing ontologies during the development pro-
cess, but only methontology has recently adapted
its proposal for a lifecycle to the environment of
networked ontologies. In any case, the develop-
ment activities are the most detailed in all of them,
mainly the specification, conceptualisation and
implementation. There is still a lack of proposals
for ontology management activities (scheduling,
control and quality assurance), and for some
pre-development (e.g., environment study) and
post-development activities (e.g., (re)use).

Concerning support activities, some inter-
esting contributions have been done in ontol-
ogy learning, ontology merging and alignment,
ontology evolution, and ontology evaluation.
Nevertheless, important work has to be done in
all of these activities. For example, the time in
which activities like ontology learning or ontology
merging are applied to heavyweight ontologies
is far away.

One of the problems that the ontology engineer
can find when (s)he has to build an ontology is
that (s)he has to use different methods that are
not integrated. For example, ontology learning
methods are not integrated in methodologies
that cover the whole development process (e.g.,
in methontology or On-To-Knowledge). Some
experiences exist in the integration of methods
in methodologies. For example, the OntoClean
method has been integrated in methontology
(Fernández-López & Gómez-Pérez, 2002b).

A similar problem appears in the use of ontol-
ogy tools, given that there is a lack of integrated
environments for ontology development. Tools
are usually created as isolated modules that solve
one type of problems, but neither are fully inte-
grated nor do they interoperate with other tools
that implement other activities of the ontology

 63

Ontological Engineering

lifecycle.
Finally, work on ontology languages has been

in constant evolution since the first languages that
were made available for ontology implementa-
tion, most of them based on existing knowledge
representation languages. The existence of het-
erogeneous networked ontologies has been mainly
considered in the recent language developments
created in the context of the Semantic Web (RDF,
RDF Schema and OWL) and of Semantic Web Ser-
vices (WSML), with the addition of namespaces
that allow referring to ontology components that
have been defined elsewhere and with the use of
import primitives to include an existing model
in an ontology.

Acknowledgments

This work has been partially supported by the
IST project Knowledgeweb (���������������� FP6-507482������) and
by the Spanish project Semantic Services (TIN
2004-02660).

References

Arpírez, J.C., Corcho, O., Fernández-López, M., &
Gómez-Pérez, A. (2003). WebODE in a nutshell.
AI Magazine.

Aussenac-Gilles, N., Biébow, B., & Szulman, S.
(2000a). Revisiting ontology design: A method-
ology based on corpus analysis. In R. Dieng &
O. Corby (Eds.), Proceedings of the 12th Interna-
tional Conference in Knowledge Engineering and
Knowledge Management (EKAW’00), Juan-Les-
Pins, France, (LNAI, 1937 , pp. 172-188). Berlin:
Springer-Verlag.

Aussenac-Gilles, N., Biébow, B., & Szulman, S.
(2000b). Corpus analysis for conceptual model-
ling. In N. Aussenac-Gilles, B. Biébow & S.
Szulman (Eds.), Proceedings 51 of EKAW’00
Workshop on Ontologies and Texts, Juan-Les-

Pins, France. (pp. 1.1-1.8), CEUR Workshop.
Amsterdam, The Netherlands. Retrieved October
23, 2006, from http://CEUR-WS.org/Vol-51/

Aussenac-Gilles, N. & Seguela, P. (2000). Les
relations sémantiques: du linguistique au formel.
In A. Condamines (Ed.), Cahiers de grammaire,
N° spécial sur la linguistique de corpus (Presse
de l’UTM, Vol 25, pp. 175-198). Toulouse.

Bechhofer, S., Horrocks, I., Goble, C., & Stevens,
R. (2001). OilEd: A reasonable ontology editor for
the Semantic Web. In F. Baader, G. Brewka, & T.
Eiter (Eds.), Joint German/Austrian conference
on Artificial Intelligence (KI’01) (pp. 396-408),
Vienna, Austria. Lecture Notes in Artificial Intel-
ligence 2174. Berlin: Springer-Verlag.

Beneventano, D., Bergamaschi, S., Castano, S.,
Corni, A., Guidetti, R., Malvezzi, G., Melchiori,
M., & Vincini, M. (2000). Information integra-
tion: The MOMIS project demonstration. In A. El
Abbadi, M.L. Brodie, S. Chakravarthy, U. Dayal,
N. Kamel, G. Schlageter, & K.Y. Whang (Eds.),
26th International Conference On Very Large
Data Bases (pp. 611-614), El Cairo, Egypt. San
Francisco: Morgan Kaufmann Publishers.

Bernaras, A., Laresgoiti, I., & Corera, J. (1996).
Building and reusing ontologies for electrical net-
work applications. In W. Wahlster (Ed.), European
Conference on Artificial Intelligence (ECAI’96),
Budapest, Hungary, (pp. 298-302). Chichester,
UK: John Wiley and Sons.

Berners-Lee, T. (1999). Weaving the Web: The
original design and ultimate destiny of the World
Wide Web by itsiInventor. New York: HarperCol-
lins Publishers.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., &
Maler, E. (2000). Extensible markup language
(XML) 1.0. W3C Recommendation. Retrieved
October 23, 2006, from http://www.w3.org/TR/
REC-xml

64

Ontological Engineering

Brickley, D., & Guha, R.V. (2004). RDF vocabu-
lary description language 1.0: RDF schema. W3C
Recommendation. Retrieved October 23, 2006,
from http://www.w3.org/TR/PR-rdf-schema

Castano, S., De Antonellis, V., & De Capitani
diVemercati, S. (2001). Global viewing of hetero-
geneous data sources. IEEE Transactions on Data
Knowledge Engineering, 13(2), 277–297.

Corcho, O., Fernández-López, M., Gómez-Pérez,
A., & Vicente, O. (2002). WebODE: An integrated
workbench for ontology representation, reason-
ing and exchange. In A. Gómez-Pérez & V.R.
Benjamins (Eds.), 13th International Conference
on Knowledge Engineering and Knowledge
Management (EKAW’02) (pp. 138-153), Sigüenza,
Spain. Lecture Notes in Artificial Intelligence
2473. Berlin: Springer-Verlag.

Corcho, O., Fernández-López, M., & Gómez-
Pérez, A. (2007). Ontological engineering:
Principles, methods, tools and languages. In C.
Calero, F. Ruiz, & M. Piattini (Eds.), Ontolo-
gies for Software Engineering and Technology.
Springer-Verlag.

Chaudhri, V.K., Farquhar, A., Fikes, R.,
Karp, P.D., & Rice, J.P. (1998). Open
knowledge base connectivity 2.0.3 (Tech.
Rep.). Retrieved October 23, 2006, from
http://www.ai.sri.com/~okbc/okbc-2-0-3.pdf

Chen, P.P. (1976). The entity-relationship model:
Toward a unified view of data. ACM Transactions
on Database Systems, 1(1), 9–36.

Daelemans, W. & Reinberger, M.L. (2004). Shal-
low text understanding for ontology content evalu-
ation. IEEE Intelligence Systems, 19(4), 76-78.

De Bruijn, J. (2006). The Web service model-
ing language WSML (Deliverable D16.1v0.21).
Retrieved October 23, 2006, from http://www.
wsmo.org/TR/d16/d16.1/v0.21/

de Hoog, R. (1998). Methodologies for building
knowledge based systems: Achievements and

prospects. In J. Liebowitz (Ed.), Handbook of
expert systems (Chapter 1). Boca Raton, FL:
CRC Press.

Dean, M. & Schreiber, G. (2004). OWL Web ontol-
ogy language reference. W3C Recommendation.
Retrieved October 23, 2006, from http://www.
w3.org/TR/owl-ref/

Declerck, T. & Uszkoreit, H. (2003). State of the
art on multilinguality for ontologies, annotation
services and user interfaces. ����������������� Esperonto delive-
rable D1.5. Retrieved October 22, 2006, from
http://www.esperonto.net

Doan, A., Madhavan, J., Domingos, P., & Halevy,
A. (2002). Learning to map between ontologies
on the Semantic Web. In D. Lassner (Ed.), Pro-
ceedings of the 11th International World Wide Web
Conference (WWW 2002), Honolulu, Hawaii. Re-
trieved October 23, 2006, from http://www2002.
org/refereedtrack.html

Domingue, J. (1998). Tadzebao and webOnto:
Discussing, browsing, and editing ontologies on
the Web. In B.R. Gaines & M.A. Musen (Eds.),
11th International Workshop on Knowledge Ac-
quisition, Modeling and Management (KAW’98)
(KM4, pp. 1-20), Banff, Canada.

Ehring, M., & Staab, S. (2004). QOM – quick ontol-
ogy mapping. In S.A. McIlraith & D. Plexousakis
(Eds.), 3rd International Semantic Web Confer-
ence (ISWC’04), Hiroshima, Japan, (LNCS 3298,
pp. 683-697). Berlin: Springer-Verlag.

Euzenat, J. (2004). An API for ontology align-
ment. In S.A. McIlraith & D. Plexousakis (Eds.),
3rd International Semantic Web Conference
(ISWC’04), Hiroshima, Japan, (LNCS 3298, pp.
698-712). Berlin: Springer-Verlag.

Farquhar, A., Fikes, R., & Rice, J. (1997). The
ontolingua server: A tool for collaborative ontol-
ogy construction. International Journal of Human
Computer Studies, 46(6), 707–727.

 65

Ontological Engineering

Fernández-López, M., & Gómez-Pérez, A.
(2002a). Overview and analysis of methodologies
for building ontologies. The Knowledge Engineer-
ing Review, 17(2), 129-156.

Fernández-López, M. & Gómez-Pérez, A. (2002b).
The integration of ontoClean in webODE. In J.
Angele & Y. Sure (Eds.), Proceedings 62 of CEUR
Workshop EKAW’02 Workshop on Evaluation
of Ontology-based Tools (EON2002), Sigüenza,
Spain, (pp. 38-52). Amsterdam, The Netherlands.
Retrieved October 23, 2006, from http://CEUR-
WS.org/Vol-62/

Fernández-López, M., Gómez-Pérez, A., &
Juristo, N. (1997). Methontology: From onto-
logical art towards ontological engineering.
Paper presented at the Spring Symposium on
Ontological Engineering of AAAI (pp. 33-40).
Stanford University.

Fernández-López, M., Gómez-Pérez, A., Pazos,
A., & Pazos, J. (1999). Building a chemical ontol-
ogy using methontology and the ontology design
environment. IEEE Intelligent Systems & Their
Applications, 4(1), 37-46.

Gangemi, A., Pisanelli, D.M., & Steve, G. (1999).
An overview of the ONIONS project: Applying
ontologies to the integration of medical termi-
nologies. Data & Knowledge Engineering, 31(2),
183–220.

Genesereth, M.R. & Fikes, R.E. (1992). Knowl-
edge interchange format. Version 3.0. Reference
Manual (Tech. Rep. Logic-92-1). Stanford Uni-
versity, Computer Science Department. Retrieved
October 23, 2006, from http://meta2.stanford.
edu/kif/Hypertext/kif-manual.html

Gómez-Pérez, A. (2004). Evaluating ontology
evaluation. IEEE Intelligence Systems, 19(4),
74-76.

Gómez-Pérez, A. (1994). Some ideas and
examples to evaluate ontologies. Stanford
University, Knowledge Systems Labora-

tory. Retrieved October 23, 2006, from
http://www-ksl.stanford.edu/KSL_Abstracts/
KSL-94-65.html

Gómez-Pérez, A. (1996). A framework to verify
knowledge sharing technology. Expert Systems
with Application, 11(4), 519-529.

Gómez-Pérez, A. (2001). Evaluation of ontolo-
gies. International Journal of Intelligent Systems,
16(3), 391-409.

Gómez-Pérez, A., Fernández-López, M., & Cor-
cho, O. (2003). Ontological engineering. ��������London:
Springer.

Gómez�������������������������������������� -Pérez, A., Fernández-López, M., & de
Vicente, A. (1996). Towards a method to concep-
tualize domain ontologies. In P. van der Vet (Ed.),
ECAI’96 Workshop on Ontological Engineering
(pp. 41-52), Budapest, Hungary.

Gómez-Pérez, A., & Manzano, D. (2003). A survey
of ontology learning methods and techniques.
OntoWeb deliverable D.1.5. Retrieved October
23, 2006, from http://www.ontoweb.org

Gómez-Pérez, A. & Rojas, M.D. (1999). Ontologi-
cal reengineering and reuse. In D. Fensel & R.
Studer (Eds.), 11th European Workshop on Knowl-
edge Acquisition, Modeling and Management
(EKAW’99), Dagstuhl Castle, Germany, (LNAI
1621, pp. 139-156). Berlin: Springer-Verlag.

Gruber, T.R. (1992). Ontolingua: A mechanism
to support portable ontologies (Tech. Rep. No.
KSL-91-66). Stanford University, Knowledge Sys-
tems Laboratory, Stanford, California. Retrieved
October 23, 2006, from ftp://ftp.ksl.stanford.
edu/pub/KSL_Reports/KSL-91-66.ps

Gruber, T.R. (1993). A translation approach to
portable ontology specification. Knowledge Ac-
quisition, 5(2), 199-220.

Grüninger, M. & Fox, M.S. (1995). Methodol-
ogy for the design and evaluation of ontologies.
In D. Skuce (Ed.), IJCAI95 Workshop on Basic

66

Ontological Engineering

Ontological Issues in Knowledge Sharing (pp.
6.1–6.10).

Guarino, N. (2004). Toward formal evaluation
of ontology quality. IEEE Intelligence Systems,
19(4), 78-79.

Guarino, N., Masolo, C., & Vetere, G. (1999).
OntoSeek: Content-based access to the Web.
IEEE Intelligent Systems & Their Applications,
14(3), 70–80.

Guarino, N., & Welty, C. (2002). Evaluating
ontological decisions with ontoClean. Commu-
nications of the ACM, 45(2), 61-65.

Guo, Y., Pan, Z., & Heflin, J. (2004). An evalu-
ation of knowledge base systems for large OWL
datasets. In S.A. McIlraith & D. Plexousakis
(Eds.), 3rd International Semantic Web Conference
(ISWC’04), Hiroshima, Japan, (LNCS 3298, pp.
274-288). Berlin: Springer-Verlag.

Hermenegildo, M., Bueno, F., Cabeza, D., Carro,
M., García, M., López, P., & Puebla, G. (2000).
The ciao logic programming environment. ���In
J.W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.
Lau, C. Palamidessi, L.M. Pereira, Y. Sagiv, &
P.J. Stuckey (Eds.), International Conference
on Computational Logic (CL’00), London, UK,
(LNCS 1861). Berlin: Springer-Verlag.

Horrocks, I., Fensel, D., Harmelen, F., Decker,
S., Erdmann, M., & Klein, M. (2000). OIL in
a nutshell. In R. Dieng & O. Corby (Eds.), 12th
International Conference in Knowledge Engineer-
ing and Knowledge Management (EKAW’00),
Juan-Les-Pins, France, (LNAI 1937, pp. 1-16).
Berlin: Springer-Verlag.

Horrocks, I., & van Harmelen, F. (Eds.) (2001).
Reference description of the DAML+OIL (March
2001) ontology markup language (Tech. Rep.).
Retrieved October 23, 2006, from http://www.
daml.org/2001/03/reference.html

Hustadt, U., Motik, B., & Sattler, U. (2004).
Reducing SHIQ descrption logic to disjunctive

datalog programs. In M.A. Williams (Ed.), 9th
International Conference on the Principles
of Knowledge Representation and Reasoning
(KRR’04) (pp. 152-162), Whistler, Canada.

IEEE. (1996). IEEE standard for developing
software life cycle processes (Std 1074-1995).
New York: IEEE Computer Society.

Joachims, T. (1998). A probabilistic analysis of the
Rocchio Algorithm with TFIDF for text catego-
rization. In D.H. Fisher (Ed.), 14th International
Conference on Machine Learning (ICML’97),
Nashville, Tennessee, (pp. 143-151). San Fran-
cisco: Morgan Kaufmann Publishers.

Kalfoglou, Y., & Robertson, D. (1999a). Use of
formal ontologies to support error checking in
specifications. In D. Fensel & R. Studer (Eds.),
11th European Workshop on Knowledge Acquisi-
tion, Modelling and Management (EKAW’99),
Dagsthul, Germany, (LNAI 1621, pp. 207-224).
Berlin: Springer-Verlag.

Kalfoglou, Y., & Robertson, D. (1999b). Managing
ontological constraints. In V.R. Benjamins, A.
Chandrasekaran, A. Gómez-Pérez, N. Guarino,
& M. Uschold (Eds.), Proceedings 18 of CEUR
Workshop IJCAI99 Workshop on Ontologies
and Problem-Solving Methods (KRR-5), Stock-
holm, Sweden, (pp. 5.1-5.13). Amsterdam, The
Netherlands. Retrieved October 23, 2006, from
http://CEUR-WS.org/Vol-18/

Kalyanpur, A., Parsia, B., & Hendler, J. (2005).
A tool for working with Web ontologies. Interna-
tional Journal of Semantic Web and Information
Systems, 1(1), 36-49.

Karp, P.D., Chaudhri, V., & Thomere, J. (1999).
XOL: An XML-based ontology exchange lan-
guage. Version 0.3 (Tech. Rep.). Retrieved October
23, 2006, from http://www.ai.sri.com/~pkarp/
xol/xol.html

Khan, L. & Luo, F. (2002). Ontology construction
for information selection. In C.V. Ramamoorthy

 67

Ontological Engineering

(Ed.), CV 14th IEEE International Conference on
Tools with Artificial Intelligence. (pp. 122-127),
Washington, DC.

Kietz, J.U., Maedche, A., & Volz, R. (2000). A
method for semi-automatic ontology acquisition
from a corporate intranet. In N. Aussenac-Gilles,
B. Biébow, & S. Szulman (Eds.), Proceedings
51 of EKAW’00 Workshop on Ontologies and
Texts, CEUR Workshop, �������������������� Juan-Les-Pins, Fran-
ce, �� pp. 4.1-4.14. Amsterdam, The Netherlands.
Retrieved October 23, 2006, from http://CEUR-
WS.org/Vol-51/

Kifer, M., Lausen, G., & Wu, J. (1995). Logical
foundations of object-oriented and frame-based
languages. Journal of the ACM, 42(4), 741-843.

Klein, M. & Fensel, D. (2001). Ontology version-
ing on the Semantic Web. In I.F. Cruz, S. Decker,
J. Euzenat, & D.L. McGuinness (Eds.), First In-
ternational Semantic Web Workshop (SWWS’01),
Stanford, California.

Klein, M., Fensel, D., Kiryakov, A., & Ognya-
nov, D. (2002). Ontology versioning and change
detection on the Web. In A. Gómez-Pérez & V.R.
Benjamins (Eds.), 13th International Conference
on Knowledge Engineering and Knowledge
Management (EKAW’02), Sigüenza, Spain. (LNAI
2473, pp. 197-212), . Berlin: Springer-Verlag.

Knublauch, H., Fergerson, R., Noy, N.F., & Mu-
sen, M.A. (2004). The protege OWL plugin: An
open development environment for Semantic Web
applications. In S.A. McIlraith & D. Plexousakis
(Eds.), 3rd International Semantic Web Confer-
ence (ISWC’04) (pp. 229-243), Hiroshima, Japan.
Lecture Notes in Computer Science 3298. Berlin:
Springer-Verlag.

Lassila, O., & Swick, R. (1999). Resource
description framework (RDF) model and
syntax specification. W3C Recommenda-
tion. Retrieved October 23, 2006, from
http://www.w3.org/TR/REC-rdf-syntax/

Lenat, D.B., & Guha, R.V. (1990). Building large
knowledge-based systems: Representation and
inference in the cyc project. Boston: Addison-
Wesley.

Luke, S., & Heflin, J.D. (2000). SHOE 1.01.
Proposed specification (Tech. Rep.). University
of Maryland, Parallel Understanding Systems
Group, Department of Computer Science. Re-
trieved October 23, 2006, from http://www.
cs.umd.edu/projects/plus/SHOE/spec1.01.htm

MacGregor, R. (1991). Inside the LOOM classifier.
SIGART Bulletin, 2(3), 70-76.

Madhavan, J., Bernstein, P.A., & Rahm, E.
(2001). Generis schema matching with Cupid. ���In
P.M.G. Apers, P. Atzeni, S. Ceri, S. Paraboschi,
K. Ramamohanarao, & R.T. Snodgrass (Eds.),
27th International Conference on Very Large Data
Bases (pp. 49-58), Roma, Italy. San Francisco:
Morgan Kaufmann Publishers.

Maedche, A., Motik, B., Stojanovic, L., Studer,
R., & Volz, R. (2003). Ontologies for enterprise
knowledge management. IEEE Intelligent Sys-
tems, 18(2), 26–33.

Maedche, A., & Staab, S. (2000). Semi-automatic
engineering of ontologies from text. In S.K. Chang
& W.R. Obozinski (Eds.), 12th International Con-
ference on Software Engineering and Knowledge
Engineering (SEKE’2000), Chicago, Illinois.

McGuinness, D., Fikes, R., Rice, J., & Wilder, S.
(2000). The chimaera ontology environment. In
P. Rosenbloom, H.A. Kautz, B. Porter, R. Dech-
ter, R. Sutton, & V. Mittal (Eds.), 17th National
Conference on Artificial Intelligence (AAAI’00)
(pp. 1123-1124), Austin, Texas.

Melnik, S., García-Molina, H., & Rahm, E. (2002).
Similarity flooding: A versatile graph matching
algorithm and its application to schema matching.
In D. Georgakopoulos (Ed.), 18th International
Conference on Data Engineering ICDE’2002
(pp. 117-128), ��������������������� San José, California.

68

Ontological Engineering

Mena, E., Kashyap, V., Sheth, A.P., & Illarra-
mendi, A. (1996). OBSERVER: An approach for
query processing in global information systems
based on interoperation across pre-existing ontolo-
gies. In W. Litwin (Ed.), First IFCIS International
Conference on Cooperative Information Systems
(CoopIS’96) (pp. 14-25), Brussels, Belgium.

Mikheev, A., & Finch, A. (1997). A workbench
for finding structure in texts. In R. Grishman
(Ed.), 5th Applied Natural Language Processing
Conference (ANLP’97), Washington, DC.

Miller, G.A. (1995). WordNet: A lexical database
for English. Communications of the ACM, 38(11),
39–41.

Mitra, P., Wiederhold, G., & Kersten. (2000). A
graph-oriented model for articulation of ontology
interdependencies. In P.C. Lockemann (Eds.), 7th
International Conference on Extending Database
Technology, EDBT 2000 (pp. 1777-1786).

Morin, E. (1998). Prométhée un outil d’aide a
l’acquisition de relations semantiques entre temes.
In P. Zweigenbaum (Ed.), 5ème National Conference
on Traitement Automatique des Langues Naturel-
les (TALN’98) (pp. 172-181), Paris, France.

Morin, E. (1999). Acquisition de patrons lexi-
co-syntaxiques caractéristiques dúne relation
sémantique. TAL (Traitement Automatique des
Langues), 40(1), 143-166.

Motta, E. (1999). Reusable components for knowl-
edge modelling: Principles and case studies in
parametric design. Amsterdam, The Netherlands:
IOS Press.

Neches, R., Fikes, R.E., Finin, T., Gruber, T.R.,
Senator, T., & Swartout, W.R. (1991). Enabling
technology for knowledge sharing. AI Magazine,
12(3), 36–56.

Noy, N.F. (2004). Evaluation by ontology consum-
ers. IEEE Intelligence Systems, 19(4), 80-81.

Noy, N.F., Fergerson, R.W., & Musen, M.A. (2000).
The knowledge model of Protege-2000: Combin-
ing interoperability and flexibility. In R. Dieng &
O. Corby (Eds.), 12th International Conference in
Knowledge Engineering and Knowledge Manage-
ment (EKAW’00), Juan-Les-Pins, France, (LNAI
1937, pp. 17-32). Berlin: Springer-Verlag.

Noy, N.F., & Klein, M. (2002). Ontology evolution:
Not the same as schema evolution (Tech. Rep. No.
SMI-2002-0926). Stanford, California. Retrieved
October 23, 2006, from http://smi-web.stanford.
edu/pubs/SMI_Abstracts/SMI-2002-0926.html

Noy, N.F., Kunnatur, S., Klein, M., & Musen,
M.A. (2004). Tracking changes during ontology
evolution. In S.A. McIlraith & D. Plexousakis
(Eds.), 3rd International Semantic Web Conference
(ISWC’04), Hiroshima, Japan, (LNCS 3298, pp.
259-273). Berlin: Springer-Verlag.

Noy, N.F., & Musen, M.A. (2000). PROMPT: Al-
gorithm and tool for automated ontology merging
and alignment. In P. Rosenbloom, H.A. Kautz, B.
Porter, R. Dechter, R. Sutton, & V. Mittal (Eds.),
17th National Conference on Artificial Intelligence
(AAAI’00) (pp. 450-455), Austin, Texas.

Noy, N.F. & Musen, M.A. (2001). Anchor-
PROMPT: Using non-local context for semantic
matching. In A. Gómez-Pérez, M. Grüninger, H.
Stuckenschmidt, & M. Uschold (Eds.), IJCAI’01
Workshop on Ontologies and Information Sharing
(pp. 63-70), Seattle, Washington.

Noy, N.F. & Musen, M.A. (2004a). Specifying
ontology views by traversal. In S.A. McIlraith & D.
Plexousakis (Eds.), 3rd International Semantic Web
Conference (ISWC’04), Hiroshima, Japan, (LNCS
3298, pp. 713-725). Berlin: Springer-Verlag.

Noy, N.F. & Musen, M.A. (2004b). Ontology ver-
sioning in an ontology-management framework.
IEEE Intelligent Systems, 19(4), 6-13.

ODM. (2005). Ontology definition metamodel.
Third Revised Submission to OMG/ RFP ad/2003-

 69

Ontological Engineering

03-40. Retrieved October 23, 2006, from http://
www.omg.org/docs/ad/05-08-01.pdf

Pan, R., Ding, Z., Yu, Y., & Peng, Y. (2005). A
bayesian network approach to ontology mapping.
In Proceedings of the 4th International Semantic
Web Conference (ISWC’05), Galway, Ireland,
(LNCS 3729, pp. 563-577). Berlin: Springer-
Verlag.

Raggett, D., Le Hors, A., & Jacobs, I. (1999).
HTML 4.01 specification. W3C Recommendation.
Retrieved October 23, 2006, from http://www.
w3.org/TR/html401/

Rumbaugh, J., Jacobson, I., & Booch, G. (1998).
The unified modeling language reference manual.
Boston: Addison-Wesley.

Schreiber, A.Th., Wielinga, B.J., & Jansweijer,
W. (1995). The KACTUS view on the “O” world.
In D. Skuce (Ed.), IJCAI95 Workshop on Basic
Ontological Issues in Knowledge Sharing (pp.
15.1–15.10).

Shvaiko, P., Giunchiglia, F., & Yatskevich, M.
(2004). S-Match: An algorithm and an imple-
mentation of semantic matching. In D. Fensel
& R. Studer (Eds.), 1st European Semantic Web
Symposium (ESWS’04), Heraklion, Greece, (LNCS
3053, pp. 61-75). Berlin: Springer-Verlag.

Staab, S., Schnurr, H.P., Studer, R., & Sure, Y.
(2001). Knowledge processes and ontologies. IEEE
Intelligent Systems, 16(1), 26–34.

Steve, G., Gangemi, A., & Pisanelli, D.M. (1998).
Integrating medical terminologies with ONIONS
methodology. In H. Kangassalo & J.P. Charrel
(Eds.), Information Modeling and Knowledge
Bases VIII. Amsterdam, The Netherlands: IOS
Press. Retrieved October 23, 2006, from http://
ontology.ip.rm.cnr.it/Papers/onions97.pdf

Stojanovic, L. (2004). Methods and tools for ontol-
ogy evolution. Doctoral Thesis, FZI, Karlsrhue,
Germany.

Studer, R., Benjamins, V.R., & Fensel, D. (1998).
Knowledge engineering: Principles and methods.
IEEE Transactions on Data and Knowledge En-
gineering, 25(1-2), 161–197.

Stumme, G., & Maedche, A. (2001). FCA-
MERGE: Bottom-up merging of ontologies. In
B. Nebel (Ed.), Proceedings of the Seventeenth
International Joint Conference on Artificial
Intelligence (IJCAI 2001), Seattle, Washington,
(pp. 225-234). San Francisco: Morgan Kaufmann
Publishers.

Sure, Y., Erdmann, M., Angele, J., Staab, S.,
Studer, R., & Wenke, D. (2002). OntoEdit: Col-
laborative ontology engineering for the Seman-
tic Web. In I. Horrocks & J.A. Hendler (Eds.),
First International Semantic Web Conference
(ISWC’02), Sardinia, Italy, (LNCS 2342, pp. 221-
235). Berlin: Springer-Verlag.

Swartout, B., Ramesh, P., Knight, K., & Russ,
T. (1997). Toward distributed use of large-scale
ontologies. In A. Farquhar, M. Gruninger, A. Gó-
mez-Pérez, M. Uschold, & P. van der Vet (Eds.),
AAAI’97 Spring Symposium on Ontological En-
gineering (pp. 138-148). Stanford University.

Uschold, M. (1996). Building ontologies: Towards
a unified methodology. In I. Watson (Ed.), 16th An-
nual Conference of the British Computer Society
Specialist Group on Expert Systems, Cambridge,
UK. Retrieved October 23, 2006, from http://cite-
seer.nj.nec.com/uschold96building.html

Uschold, M., & Grüninger, M. (1996). Ontologies:
Principles, methods and applications. Knowledge
Engineering Review, 11(2), 93–155.

Uschold, M., & King, M. (1995). Towards a meth-
odology for building ontologies. In D. Skuce (Ed.),
IJCAI’95 Workshop on Basic Ontological Issues
in Knowledge Sharing (pp. 6.1-6.10), ����������Montreal,
Canada.

70

Ontological Engineering

Welty, C., & Guarino, N. (2001). Supporting onto-
logical analysis of taxonomic relationships. Data
and Knowledge Engineering, 39(1), 51–74.

Wu, S.H., & Hsu, W.L. (2002). SOAT: A semi-
automatic domain ontology acquisition tool from
chinese corpus. In W. Lenders (Ed.), 19th Interna-
tional Conference on Computational Linguistics
(COLING’02), Taipei, Taiwan.

Endnotes

1	 Component names depend on the formal-
ism. For example, classes are also known
as concepts, entities and sets; relations are
also known as roles and properties; and so
forth.

2	 http://www.omg.org/
3	 In (28) specification is considered as a pre-

development activity. However, following

more strictly the IEEE standard for software
development, the specification activity was
considered part of the proper development
process. In fact, the result of this activity is
an ontology description (usually in natural
language) that will be transformed into a
conceptual model by the conceptualization
activity.

4	 http://www.ontologymatching.org/
5	 http://swoogle.umbc.edu/
6	 http://oyster.ontoware.org/
7	 http://www.daml.org/ontologies/
8	 http://protege.stanford.edu/
9	 Other tools (Ontolingua Server, OntoSaurus,

WebOnto, etc.) are described in (Gómez-
Pérez et al., 2003).

10	 http://www-2-cs-cmu.edu/~mccallum/bow/
rainbow

11	 http://www.lbreyer.com/
12	 http://co4.inrialpes.fr/align
13	 http://www.wsmo.org/

