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Abstract. Information coming from sensor networks is being increasingly used 
in a variety of systems (decision support systems, information portals, etc), 
normally combined with information coming from more traditional sources 
(e.g., relational databases, web documents, etc). However, existing ontology-
based information integration approaches cannot be easily used for this 
combination task since they are mainly focused on the integration of 
information coming from these traditional sources, and do not support sensor 
network data. In this paper we make a first step towards enabling the inclusion 
of sensor network data into these integration approaches, with the automatic 
generation of data wrapping ontologies for sensor networks. Our approach 
extends existing ones used for extracting data wrapping ontologies from 
relational databases, using the schema of sensor network queries and external 
ontology search and relation discovery services.  
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1   Introduction 

Sensor networks generate large amounts of heterogeneous data that can be used in a 
range of systems, from providing information about temperature and humidity in a 
piece of land to monitoring the heart rate of a person, to give a few examples. With 
this increase in the amount of data available, and with the subsequent increase in the 
range of applications that make use of this data, new challenges in data access and 
integration arise. Traditionally, many data integration problems have been approached 
through the use of ontologies [1], which provide views over existing data sources or 
which are described according to how the sources cover them (global-as-view and 
local-as-view approaches, respectively). In all these approaches, the concepts of 
mediators and wrappers [2] are commonly used, and in some cases it is also common 
the usage of different layers of ontologies (global and local). 

If we focus on local ontologies, more commonly known as putative [3] or data 
wrapping ontologies, these are automatically extracted from the underlying data 
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sources, usually resembling their structure. This automatic generation is done by 
applying a variety of ontology learning methods [4, 5], which allow the construction 
of lightweight ontologies from non-structured, semi-structured and structured data. It 
is worth noting that these types of ontologies depend on the structure of the 
underlying relational schema are prone to ambiguity and may be considered 
controversial. 

None of these methods has focused though on the automatic construction of 
ontologies from data coming from heterogeneous sensor networks, even considering 
that the problem of automatically generating ontologies from sensors is similar to the 
case of extracting ontologies from relational databases. Hence, we propose to use and 
extend one of these approaches for the specific case of sensor data. More specifically, 
we use and extend Tirmizi et al’s approach [6] because it is the only one that is 
formally described in first order logic. 

In order to illustrate our approach, we present an example of how to derive a data 
wrapping ontology from a sensor network system based on a well-known benchmark 
(the Linear Road benchmark [7]). First, we apply techniques used to automatically 
generate ontologies from relational databases schemas to sensors. This is then 
complemented with an approach to generate ontologies from derived queries, which 
are a series of intermediate queries used to formulate a final query, and the use of 
external ontology search and relation discovery services.  We finalize by presenting 
future challenges in how this process can be completely automated. 

This paper is organized as follows: In Section 2 we present the Linear Road 
Benchmark, which is the running example, used throughout this paper. Section 3 
describes how an ontology can be generated from a sensor network. This section is 
divided in several blocks according to the degree of complexity of the ontology that is 
being generated. Finally, Section 4 we present conclusions and future work 

2   Running example: Linear Road Benchmark 

The Linear Road Benchmark is a well-established benchmark for Data Stream 
Management Systems [7]. This benchmark specifies a variable tolling system by 
determining changing factors of car congestion on a highway. Each car on the 
highway is equipped with a sensor that emits the vehicle’s exact location and speed 
every 30 seconds. The data emitted by the sensors are sent as streams to a central 
system where statistics are generated about traffic conditions on the highways. The 
central system aggregates the data received from the vehicles, computes the toll in 
real time, and transmits the tolls back to the vehicles. This tolling system is designed 
to discourage drivers to use already congested roads because they have an increased 
toll. Consequently, it would encourage drivers to use less congested roads because 
they would have decreased tolls.  

Arasu et al describes the Linear Road benchmark, which is used as basis of a 
running example for queries in the Continuous Query Language (CQL) language [8]. 
This benchmark only has one base input stream, which contains measurements of 



speed and positions using the highway. The schema of this input stream1 is shown in 
Figure 1.  

 
PosSpeedStr(vehicle_id/* unique car identifier       */ 
          speed,     /* speed of the car            */ 

x-pos);   /* coordinate in express way   */ 

Fig. 1. Schema of PosSpeedStr stream. 

We also expand our running example by adding a new base relation Vehicles, 
which would be a relation with details of vehicles. This base relation is not part of the 
original benchmark, however we find the need to add this relation in order to show 
results in the following sections.  

 
Vehicle(vehicle_id, /* primary key                  */ 
        model,       /* model of the vehicle         */ 

license_plate); /* license plate of vehicle */ 
Fig. 2. Schema of PosSpeedStr stream. 

 
This benchmark considers a 100 mile long highway divided in one hundred 1-mile 
segments. Vehicles only pay a toll when they enter a congested segment. A segment 
is congested when the average speed of all vehicles in a segment over the last 5 
minutes is less than 40 mph. The objective of this benchmark is to calculate the toll 
that each vehicle is supposed to pay. Due to the fact that calculating tolls for each 
vehicle is fairly complex, the final desired query is expressed using several derived 
queries, as shown in Figure 2. For example, the query TollStr is created by a 
combination of queries on VehicleSegEntryStr, SegVolRel and 
CongestedSegRel.  
 

 
Fig. 3. Graph of the derived queries generated to create the final query TollStr. 

 

                                                           
1 http://infolab.stanford.edu/stream/cql-benchmark.html 



We describe the meaning of each query in Table 1. Each of these queries results in 
either a Stream or a Relation. The exact queries in CQL and the different type of 
Stream and relation operators can be found in [9].  
 

Table 1.  Description of each query from Fig. 3.  

Query Description 
PosSpeedStr(vehicleID, speed, xPos) A stream that contains the exact 

location of a vehicle and its current 
speed 

SegSpeedStr(vehicleID, speed, segNo) A stream that contains the segment 
in which a vehicle is located and its 
current speed 

ActiveVechileSegRel(vehicleID, segNo) At a time t, a relation that contains 
which vehicles are in which segments 

VehicleSegEntryStr(vehicleID, segNo) At a time t, a stream that contains 
the vehicles that are entering a specific 
segment 

CongestedSegRel(segNo) At a time t, a relation the contains 
the congested segments 

SegVolRel(segNo, numVehicles) At a time t, a relation that contains 
the current amount of vehicles in each 
segment 

TollStr(vehicle, toll) The final output stream which 
contains the toll that each vehicle 
should pay 

 

3   Generating Ontologies from Sensors 

This section presents our proposed method of generating an OWL data wrapping 
ontology from sensors. We assume the following formal definitions of Arasu et al [8].  

 
Definition 1 (Stream) A stream S is a (possibly infinite) bag (multiset) of 
elements (s, t), where s is a tuple belonging to Q, the schema of S and t ∈ T is the 
timestamp of the element. 

 
Definition 2 (Relation) A relation R is a mapping from each time instant in T to a 
finite but unbounded bag of tuples belonging to Q, the schema of R. It is similar to 
the relation of the standard relation model. 

 
Definition 3 (Base Streams) The source data stream that arrives at the Data 
Stream Management System (i.e PosSpeedStr) 

 



Definition 4 (Derived Streams) The intermediate streams produced by operators 
in a query (i.e. SegSpeedStr, VehicleSegEntryStr, TollStr) 

 
Definition 5 (Base Relations) The input relations (i.e. Vehicle) 

 
Definition 6 (Derived Relations) The relations produced by query operators (i.e. 
ActiveVechileSegRel, CongestedSegRel, SegVolRel) 
 
Definition 7 (Derivation of Queries) A derivation of queries (DoQ) is a directed 
graph D = (V, A) where V is a set of base or derived streams S and base or derived 
relations R, which act like nodes, and A is a set of ordered pairs of vertices. Figure 
2 is a DoQ. 

 
Our proposed method consists of three phases. First, we generate an ontology from 
the base streams and base relations. This phase is very similar to the generation of 
ontologies from relational databases, hence the same technique will be applied. 
Second, we generate another ontology from the set of derived streams and derived 
relations through a novel approach. Finally, both ontologies are combined into the 
final data wrapping ontology. 
 

 
Fig. 4. Phases of the method to generate an ontology from sensors. 

3.1   Phase 1: Generating Ontologies from Base Streams and Base Relations  

We have defined a number of predicates to aid in the process of defining 
transformation from base streams and base relations to an ontology. There are two 
sets of predicates: Sensor predicates and Ontology predicates. The sensor predicates 
(see Table 2) determine whether an argument matches a construct in the domain of 
sensors.  



Table 2.  Sensor Predicates.  

Predicate Description 
BaseStr(s) s is a Base Stream 
BaseRel(r) r is a Base Relation 
Attr(x, s) x is an attribute in s and either BaseRel(s) or 

BaseStr(s) holds 
FK(x,r,x,s) x is the same attribute in r and s and either BaseRel(r) 

or BaseStr(r) holds and either BaseRel(s) or BaseStr(s) 
holds.   

NonFK(x,s) x is an attribute in s and either BaseRel(s) or 
BaseStr(s) holds and x does not as an attribute in any 
other Streams or Relations.  

 
The ontology predicates (see Table 3) determine whether an argument matches a 
construct that can be represented in an OWL ontology. 

Table 3.  OWL Ontology Predicates.  

Predicate Description 
Class(c) c is an OWL Class 
ObjP(p,d,r) p is an OWL Object Property with domain d and 

range r 
DataTP(p,d,r) p is an OWL Datatype Property with domain d and 

range r 
 

This phase consists of three steps. First, identifying OWL classes, then OWL 
Object Properties and finally OWL Datatype properties. 

 
Step 1.1. Identifying OWL Classes 

Following [7], we can consider that all base relations and base streams can be 
mapped to an OWL class, as stated in the following rules: 

 
Rule 1. 

Class(x)  BaseStr(x) 
 

Rule 2. 
Class(x)  BaseRel(x) 

 
Example of Rules 1 and 2: 

Rule 1 identifies the base stream PosSpeedStr as an OWL class.  
 
Step 1.2. Identifying OWL Object Properties 

An object property is a relationship between two classes in a particular direction. 
Because sets of sensors are not explicitly related, as it occurs with relational tables 



through foreign keys, the existing rules from Tirmizi et al. cannot be similarly 
applied.  

 
The primary key of the base relation Vehicle has the same identifiers used in the 

PosSpeedStr base stream. Taking this assumption into consideration, if base 
streams and base relations share the same attributes, then that attribute can be mapped 
to an OWL Object Property. The domain and range of the property could be any of 
the resulting OWL Classes. 

 
Rule 2. 

ObjP(x,r,s)  FK(x,r,x,s) 
 

Example of Rule 2: 
Given the stream PosSpeedStr and the relation Vehicle, Rule 1 and 2 would 

map PosSpeedStr and Vehicle as OWL classes. Furthermore, because 
PosSpeedStr and Vehicle have the attribute vehicleID in common, this 
attribute would be mapped to an OWL Object Property. PosSpeedStr could be the 
domain and Vehicle the range, or vice-versa. 

 
Step 1.3. Identifying OWL Datatype Properties 

A datatype property is a relationship between a class and a literal.  Every attribute 
of a base stream or base relation is mapped to an OWL Datatype Property. 

 
Rule 3. 

DataTP(x,s,type(x))  NonFK(x,s) 
 

where type(x) is a function that maps an attribute x to its corresponding XML 
datatype. 

 
Example of Rule 3: 

The attributes speed and xPos from PosSpeedStr would get mapped as OWL 
Datatype Properties with domain PosSpeedStr. 

 
The resulting ontology from this approach is shown in Figure 5. The ovals are 

OWL classes and the squares are the range of the OWL Datatype properties. These 
squares are blank because in this phase, it is not possible to identify the range (integer, 
float, etc) because it is not specified in the schemas. This issue will be dealt with in 
the following phases.  

 

 
Fig. 5. Resulting Ontology from Base Stream and Base Relation schemas. 



3.2   Phase 2: Generating Ontologies from Derived Streams and Derived 
Relations 

Derived streams and derived relations are produced by query operators, and have been 
derived originally from base relations and/or base streams [8].  Applying the rules 
presented in the previous phase to the derived streams and derived relations would 
result in a repetition of classes and properties, because the elements of the queries are 
reoccurring. However, the rules presented in the previous phase are not sufficient to 
generate an expressive ontology because base relations and base streams of sensors do 
not have varied relationships in the schema. 

In this second phase, we intend to identify more semantics through the derived 
streams and relations. This phase makes use of external ontology search such as 
Watson [9] and relation discovery services like Scarlet [10] to enhance the ontology.  
Usually complex queries can only be generated by a series of previous derived 
queries, which are originally derived from the base stream and base relations.  

The ontology generated in phase 1 lacks important classes and relationships in this 
domain. For example, requirements such as: a vehicle has a speed, unit of speed 
(km/h or mph), a vehicle pays a toll, or a vehicle is located in a segment, are not 
represented in the ontology from phase 1. In this step, we present a heuristic that 
analyzes the derivation of queries in order to identify these types of missing classes 
and relationships. 

 
Step 2.1. Identify attributes of the queries in a DoQ 

Table 1 shows all the queries used in order to derive the final query. Figure 2 
shows a graph that represents the derivation of the queries shown in Table 1.  In this 
step, we proceed to extract the unique attributes across all the queries in a DoQ. For 
our running example, these attributes would be: 

 
{ VehicleID, Speed, XPos, SegNo, NumVehicles, Toll} 

 
Step 2.2. Consider each attribute as a generic entity 

The previous step extracted all the unique attributes from the queries. However, at 
this moment, there is no way to identify the role of these attributes in an existing 
ontology because these could be either classes or properties. Therefore we consider 
these attributes as entities.  

 
Definition 7 (Entity) An entity is a unique attribute x extracted from a DoQ which 
may correspond to an OWL Class, OWL Object Property, OWL Datatype 
Property or instance. 
 

Step 2.3. Identify relationships between attributes of each query 
Each query in a DoQ is either a stream or a relation. The schema Q of the stream or 

relation has a series of attributes. We proceed to create binary relationships between 
all the attributes of each schema Q, which have at least two attributes. 



Table 4.  Relationships among the attributes of a DoQ.  

Query Description 
PosSpeedStr(vehicleID, speed, xPos) VehicleId ↔ Speed 

VehicleId ↔ xPos 
Speed ↔ xPos 

SegSpeedStr(vehicleID, speed, segNo) VehicleID ↔ Speed 
VehicleID ↔ segNo 
Speed ↔ segNo 

ActiveVechileSegRel(vehicleID, segNo) VehicleID ↔ segNo 
VehicleSegEntryStr(vehicleID, segNo) VehicleId ↔ segNo 
CongestedSegRel(segNo)  No relationships 
SegVolRel(segNo, numVehicles) segNo ↔ numVehicle 
TollStr(vehicle, toll) vehicleID ↔ toll 

 
 
Step 2.4. Add the unique relationships between the entities and create a graph 

Given all the entities from Step 2.2 and the relationships between the entities from 
Step 2.3, we identify the unique relationships and consequently create an unlabeled 
bidirectional graph as shown in Figure 6. 

Table 5.  Unique relationships among attributes of a DoQ. 

VehicleId ↔ Speed 
VehicleId ↔ xPos 
Speed ↔ xPos 
VehicleID ↔ segNo 
Speed ↔ segNo 
segNo ↔ numVehicle 
vehicleID ↔ toll 

 

 
Fig. 6. Unlabeled bidirectional graph generated from a DoQ. 

 



Step 5. Refine graph and convert into an Ontology 
Ontologies can be considered as directed graphs with labeled edges. However, the 

graph in Figure 6 is not an ontology for several reasons. First, in order for it to be 
converted into an ontology, we need to determine what each node means. For 
example, the node speed makes sense being an OWL Datatype property with 
domain Vehicle. This would mean that the node vehicleID makes sense to become 
an OWL Class.  

Second, the edges are bidirectional and unlabeled; therefore there is no knowledge 
about the domain and ranges. For example, the nodes vehicleID and segNo could 
be both considered as OWL Classes. Therefore the edge between the two nodes 
would be considered as an OWL Object Property. This property could then have a 
label isLocatedIn with domain vehicleID and range segNo. Identifying the 
labels of the edges is another issue. Either a relationship discovery system can give 
you a series of possible labels (hasSpeed, hasMaximumSpeed, etc), or a human user 
needs to label the edges manually.  

Third, this graph presents nodes and edges that may not make sense in the real 
world to a user, for example the relationship between the nodes “segNo” and “speed”.  

 
In this step, these mismatches need to be identified and the graph refined into an 

ontology. In order to do so, we identify the relationship between two entities relying 
on existing background knowledge and ontologies on the Semantic Web. One way to 
do this is using Scarlet [10], which is a service for discovering relations between two 
concepts by making use of ontologies on the Semantic Web. However, Scarlet is 
limited because it does not discover relationships between generic entities. On the 
other hand, the Watson Semantic Web search engine [9], which is the back-end for 
Scarlet, allows searching for entities inside ontologies.   

Our future work is to take the lessons learned from Scarlet and extend the use case 
in order to discover relationships between two generic entities. For example, given 
two entities vehicle and speed, there is sufficient background knowledge on the 
Semantic Web to determine that vehicle is a concept and hasSpeed is a datatype 
property with domain vehicle and range float. Furthermore, it would be possible to 
discover the appropriate labels for classes and properties. This approach would then 
fully automate the process of refining the graph into an ontology. The final result of 
this step is the ontology shown in Figure 7. 

 

 
Fig. 7. Resulting Ontology from Phase 2. 



3.3   Phase 3: Combining Ontologies 

The outcomes of phase 1 and phase 2 are two different ontologies that complement 
each other. The final step of this process it to merge both of these ontologies. The 
result of this process is shown in Figure 8. 

 

 
Fig. 8. Final Ontology by combining the ontologies from Phase 1 and Phase 2. 

 

4   Conclusions and Future Work 

We have described a method for the automatic generation of data wrapping ontologies 
from sensor network data. By automating this generation process during runtime 
instead of design time, it may become easier to integrate data from sensor networks 
that are not known a priori. This method extends one of the existing methods for the 
generation of data wrapping ontologies from relational data sources, making 
appropriate extensions that are related to some of the specific characteristics of 
sensor-based data. We have illustrated the application of our method with an example 
coming from a well-known benchmark for data stream management systems, the 
Linear Road Benchmark, so as to highlight the main differences with respect to 
ontology extraction from relational data sources and to provide examples of some of 
these characteristics. 

This is still work in progress, hence there are many limitations and open challenges 
that need to be addressed in the future. First, our illustrative example has only shown 
the feasibility of applying our method in simple scenario. In order to be able to claim 
the adequacy of our method for a more generic kind of settings involving sensor 
networks, we need to make more extensive tests in other scenarios. For this reason, 
we will analyze data coming from sensor networks available in services like 
sensorbase2 or pachube3, and we will make more extensive tests that will allow us 
determine the quality of the generated ontologies, especially in terms of their 
adequacy for the task of enabling better data integration. The design (and subsequent 
execution) of these experiments is complex, due to the high variety in the amount and 

                                                           
2 http://sensorbase.org/ 
3 http://www.pachube.com/ 



complexity of data integration tasks that can involve these sensor networks. Besides, 
another open problem with this type of information is that it is still difficult to find 
good public sources for sensor network information. 

Second, proposed method does not take advantage of the fact that it is dealing with 
sensor-based information. Although, as expressed in the introduction, the domains in 
which sensors are used are very broad, most of the measurements that they take are 
related to physical quantities (temperature, speed, humidity, etc.). Hence restricting or 
prioritizing somehow the domains in which the external ontology search and relation 
discovery services are used may increase the accuracy of the obtained results. This 
could be also done by allowing simple annotations from human users to be used also 
as inputs. 

 Spatio-temporal aspects of sensor-based information are also very relevant when it 
comes to processing (and integrating) information from them. Every tuple generated 
by a sensor network in response to a query will normally have a timestamp associated, 
together with, possibly, some additional spatial information (e.g., GPS coordinates). 
Hence every instance of the data wrapping ontology that may be generated from the 
sensor network should have that additional information associated to it, and this 
information may be used in the integration process. The ontological representation of 
time and space may be done in different ways, either by using specific spatio-
temporal ontologies, or by using extensions of the RDF and OWL models, such as the 
one proposed for time by Gutiérrez et al [11]. 

Finally, measurement units are also a major source of heterogeneity when dealing 
with this type of information. It is not always easy to determine which is the 
measurement unit that a sensor network is using when providing data for an 
observation. In fact, this information comes in many occasions attached to the written 
specifications and manuals of the deployed sensors, and is not available as part of the 
schema or metadata that is attached to it. This problem would be easier to deal with if 
sensor networks provided a more homogeneous set of metadata to describe the 
measurement units that they use, together with any other type of useful information. 
Other possibilities would be related to the combination of data with existing relational 
data whose units are known, although this is not the most common case either. 
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