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Abstract: This paper presents a negotiation protocol for simultaneous task subdivision and
assignment in a heterogeneous multi-robot system. The protocol is based on an abstraction of
the concept of task that allows it to be applied independently on the actual task, and adopts
Rubinsteins’s alternate offers protocol extended with a co-evolutionary step in search for the
best (counter)-offer. The protocol has been tested on computer simulated application scenarios.

1. INTRODUCTION

Multi-robot systems (MRS) are a very active field of re-
search. A variety of techniques have been proposed in order
to approach the problem of coordination in different kinds
of applications [Parker, 2003]. Cooperation applications
can be roughly divided in two classes: tight cooperation
requires a continuous coordination between the robots, like
for instance in box pushing and formation keeping. Loose
cooperation requires coordination at the beginning of the
mission for planning a division of labour, and at given mo-
ments of times, when re-planning may be needed. Explo-
ration and mapping are typical applications. Behaviour-
based ?] and schemas [Arkin, 1992] are examples of tech-
niques suitable for the first class of coordination problems,
while market-based [Dias and Stentz, 2003] and auction
[Gerkey and Mataric, 2002] techniques are commonly used
in the second class of problems.

Here, we focus in loose cooperation. In this class of prob-
lems, a given task has to be partitioned in sub-tasks, and
sub-tasks have to be assigned to individual team-members
for being executed. Most of the coordination techniques
assume that the task subdivision step is done at a high
level, and focus on the sub-task allocation problem. Alter-
natively, an element of the team is given the main task
and is responsible of partitioning it, and then the sub-task
assignment step is performed. This approach, although ap-
plied with success in many applications, has two principal
drawbacks: first, it is not really distributed, since the task
partitioning is done in one place (either a command and
control station or a specific team-member) and second,
the partitioning algorithm is usually considered outside
the coordination protocol. Often, the details of how the
original task is partitioned are not given at all. Moreover,
the robots preferences and limitation are considered only
in the assignment stage, when the robots decide whether
to accept (or opt for) a task or not.

Such features do not suit our need of a fully distributed
approach that should consider robots capabilities already
at the task partitioning stage. We have developed a new
negotiation protocol that performs a simultaneous task

subdivision and allocation, taking into account robots
preferences.

Negotiations have been widely studied in the context of
socio-economic studies [Chatterjee and Samuelson, 1987]
using, amongst others, Game Theory [Osborne and Rubin-
stein, 1994]. An example of recent application is electronic
commerce using agents [Sugasaka et al., 2000]. The main
problem with game theory approaches is that the theoret-
ical results obtained refer to very simplified models that
are not immediately applicable to complex applications.
The protocol we propose is based of Rubinsteins alternate-
offers protocol [Rubinstein, 1983]. Since such protocol is
based on a uni-dimensional good, a search mechanism for
the best (counter)-offer had to be devised for the protocol
to be applied in real multi-dimensional tasks. To the best
of the authors knowledge, the only similar approach has
been proposed in Soo and Wu [2000] and Chen et al.
[2002], where a co-evolutionary genetic algorithm is used to
negotiate the payoff matrix of a coordination game (using
a trusted third party), and then find an optimal agreement
between the parts reasoning on the matrix.

In this paper we will use the terms robot, vehicle and agent
as synonymous, as this makes no difference for the scope
of the discussion.

In the following, we will first present our definition of tasks
and how agents take into account costs and rewards to
evaluate (sub-)tasks. Section 3 briefly describes Rubin-
stein’s alternate offers paradigm and the negotiation pro-
tocol we have developed based on this, and its extension to
the case of more than two negotiators. Finally, in Section
4 we describe the tests we have performed on different
instantiations of tasks and analyze the results.

2. TASKS

In order to design a negotiation algorithm that is general
enough to work with different kind of tasks (cf. Fig. 1),
an abstract task concept should be defined. A negotiation
algorithm based on such an abstraction allows different
applications with minimal changes. First of all, let us
clarify that, in the context of loose cooperation, with task
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Fig. 1. Examples of instantiation of tasks: Areas, foraging, communication ranges and Box Pushing. In the box pushing,
tasks are force vectors. Their union is the projection of the resulting vector in the desired direction of motion, and
the intersection its projection in the orthogonal direction.

we mean the object to be divided, and not the activity
to be performed on such object. For example, if the task
is surveying a given area, we are mainly interested in
partitioning the area and assigning sub-areas to the agents.

Of course, the activity the agents will have to perform
and their preferences (for instance w.r.t. their capabilities)
have an important role in the negotiation. This role is
encapsulated in the cost/reward the agents associate to
the task (see e.g. Fig.4, where two agents give different
values to a given area).

We define a task T as an element of a set TT, T ∈ TT.
An element of TT is described by a set of k parameters
x ∈ IPk1

1 × . . . × IPkh

h ,
∑

i ki = k, and IPi, i = 1 . . . h,
being parameters types. Without loss of generality we can
assume they are all of the same type, as in most practical
cases x will be an array of real numbers: x ∈ IRk . Then
we can write T = T (x), that is, we consider that a task T
is the product of a function that maps a set of parameters
into a task: T : IPk → TT. A task T has to be divided in R
subtasks: T (x) = {T1, . . . , TR}. Each subtask Ti, i = 1..R,
can in turn be described by a set of parameters xi:

T (x) = {T1(x1), . . . , TR(xR)}
In general a good subdivision is such that there is min-
imum overlapping between sub-tasks (ideally null), and
such that the subtasks cover the original task. That is,

Ti ∩ Tj = �, ∀i, j = 1 . . . R and
R⋃

i=1

Ti = T

where the operators ∩,∪ : TT × TT → TT are to be defined
according to the meaning of the task. Note that there can
be exceptions, depending on the application. For example,
in a communication relay application, the overlapping
between the range of action of two robots must not be
null. Let g : TT → IR be a reward function, giving the value
of a (sub)task. Then, the function

f : IPk → IR = T ◦ g

associates a reward to a set of parameters describing a
task. We associate to a subdivision T = {T1, . . . , TR} an
index called global coverage G, that takes into account
the total coverage of the subtasks and their pair wise
overlapping.

Fig. 2. Architecture of the negotiation module. The search
level is implemented with an Evolutionary Algorithm.

G =
R∑

r=1

f(xr)−
∑

i

∑
j �=i g(T (xi) ∩ T (xj))

2

Then, the problem of task subdivision can be formulated
in the following way:

Given a task T and a number R of agents, find the R sets
of parameters xi, i = 1 . . . R, such that G is maximized:

maxx1...xr
(G).

Note that G is a global performance index. During the
negotiation, each robot will give a different value to the
same task, depending on its characteristics (locomotion,
sensors, status, etc.). In other words, each robot uses its
own reward function gi to evaluate a task. To this aim,
gi takes into account its internal parameters to evaluate
the cost of executing the task, the start-up cost (for
instance, to reach the execution site), specific constraints
(e.g. forbidden zones, turn angles, sensors), penalty for
exceeding task limits (i.e. Ti\T ) and the reward associated
to the task, expressed as function g.

3. TASK NEGOTIATIONS

A given task T can be executed by a team of R robots,
after a suitable subdivision of the task has been performed,
and an assignment of the subtasks to the robots have
been established. Our aim is to perform these two actions
simultaneously and in a distributed way. In our system, the
number of sub-tasks is determined by the number of robots
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Receive negotiation request and task info

Calculate first counteroffer (=maximum)

Send ok to negotiate

LOOP

Receive offer

Estimate other agent’s delta

Estimate max possible share

Search for best share

IF(best share < estimated max possible share)

Update counteroffer

Send counteroffer

ELSE

Accept and exit loop

END LOOP

Fig. 3. Negotiation protocol. The first counteroffer is
the maximum possible for robot i. The counteroffer
update tries to produce a value that is close to a factor
of δi smaller than the previous.

willing to participate to the negotiation. Let us first discuss
the case R = 2. We assume that robots are not lazy, in
the sense that they are willing to perform as much as they
can of the given task (hence maximizing their reward), the
only limitations being their available resources (endurance,
computation power, battery consumption etc.). Thus, in a
negotiation, each agent will try to maximise its reward
by (i) trying to get an as big as possible subtask and (ii)
minimizing overlapping with other agents task. Each agent
starts proposing the biggest possible share for itself, and
reduces it until the counterpart finds it acceptable. In this
way a good near-optimal solution, although not optimum
in general, can be achieved.

Global index G is optimized in a distributed way, without
even being computed explicitly (see Fig. 8).

In the alternate-offers protocol proposed by Rubinstein,
each part of the bilateral negotiation, in turn, propose
a subdivision of a uni-dimensional good of size 1. The
responder can agree with the subdivision, or disagree with
it, and in this case it has to propose a counteroffer. The
protocol assumes that each part has a target (desired)
reward, and a negotiation cost, that makes the target
reward decrease at each step, imposing a time pressure to
the reaching of an agreement. Such protocol has interesting
theoretical properties. By applying discount factors as
negotiation cost, it guarantees a termination and can
forecast the final agreement, which will be a perfect
equilibrium in the sense of game theory. Let the discount
factors be 0 < δ1 ≤ 1 and 0 < δ2 ≤ 1, and let
yt+1 = yt · δ, t = 1 . . . n be the update rule of target
share y. Rubinstein’s theory guarantees that one perfect
equilibrium point exists such that the share y the initiator
agent will get is:

y =
1− δ2

1− δ1δ2
.

If the discount factors were known to both parts, each
could know without negotiating at all which will be its
share. However, these are not immediately applicable to
the multi-dimensional case. In the uni-dimensional case,
when an agent makes a proposal p of what it would
like to get, it is immediate that the other would get
1 − p. In the multidimensional case, given a proposal
x ∈ IPk on the whole task T0, an agent shall search
the space T0\T (x) to decide if the share it would get

is acceptable and to generate a counteroffer, since many
different configurations are possible.

Thus, we divide the negotiation in two levels: the protocol
level and the proposals evaluation and generation level (see
Fig. 2). The protocol level is governed by parameters such
as impatience to reach an agreement (time pressure as dis-
count factor) and desired target reward. Moreover, at each
new offer received, it estimates the other agents discount
factor δ in order to estimate the maximum possible share it
can expect, according to Rubinstein’s theory, and update
its desired share accordingly. Supposing agent 1 is the first
who makes a proposal, it can estimates δ̂2 and forecast its
share will be

ŷ =
1− δ̂2

1− δ1δ̂2

. (1)

The proposal generation level searches the space for a good
share given a proposal from the other part, taking into ac-
count its own resources, parameters and limitations. This
level is also responsible for updating counteroffers. In fact,
in a multi-dimensional space there are may ways offers
can be updated. The update function aims at reducing
the offer in such a way to reduce the overlapping. In order
to comply with Rubinsteins’ theory hypothesis, the new
offer should have a dimension dim(T t) = δ · dim(T t−1).
Currently, the search step is performed by an Evolutionary
Algorithm, which adopts a specialized mutation operator
that generate solutions that comply with this constraint
within a given tolerance. Since we have two Evolutionary
Algorithms each searching a space that is changed by the
solution of the other one, we talk of co-evolution. However,
other search methods could be applied.

When an agreement has been reached, the result is a
subdivision of the original task and at the same time an
assignment of the sub-tasks. Note that in this way one
agent does not need to know information about the private
characteristics of the team-mates. The only information it
needs is their offers, in form of an array of parameters
x ∈ IPk.

In case all agents desire a similar amount of work w, and
this is known a priori (e.g., divide the task equally between
all participants), the value of w can be used directly
instead of ŷ, and the agents will end the negotiation when
such value is reached.

3.1 Extending to more than two negotiators

When there are more than two agents, the proposed
negotiation protocol can be extended in several ways. It
is important to point out that the difference between two
and three negotiators reflects a basic qualitative difference
between the types of processes that take place within the
negotiation. The involvement of more the three parties can
be seen as an extension of a three-party process [Caplow,
1968]. Hence, let us focus on the case R = 3.

The simplest extension is to do negotiation rounds where
each agent, in turn, makes its proposal. At the end of the
round, if all agents are satisfied the negotiation is closed,
otherwise another round starts. The problem in this case
is the estimation of the expected maximum share ŷ (Eq.
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Fig. 4. Negotiation with forbidden area (shaded area).
Black agent, an aerial vehicle, refuses all proposals
including the no-fly zone.

1), which determines the termination of the negotiation.
During rounds, each agent can estimate the discount factor
of each of the other agents, but there is no straightforward
way to combine such discount factors as in Eq. 1. Simply
applying Eq. 1 to both the opponent and averaging the
results to obtain the estimated share would not work as
the sum of all estimations is not guaranteed do be equal
to 1. In the current implementation of the protocol, we are
adopting a simple heuristic rule derived by the analysis of
the outcome during the early testing of the algorithm.

ŷj =
1
n

∑
i �=j

(
1− δ̂i

1− δj δ̂i

)
j = 1 . . . n. (2)

We are currently studying the theoretical properties of
the model extended to three parties to formulate more
grounded estimations.

4. EXPERIMENTAL RESULTS

In order to assess the effectiveness of the proposed pro-
tocol, we have performed several simulations using the
robotics tool Webots[Michel, 2007].

Figure 4 show how an hard constraint (a forbidden area)
makes the agents agree on a subdivision that exclude such
area from the area to be surveyed by the constrained
vehicle. The subdivision of an area among three agents is
depicted in Figure 5. The figures have been post-processed
to enhance visibility in black and white printing.

Table 1 shows that negotiations only take tho order of
seconds to conclude and that the global performance index
G is optimized. Each figure is the average of 10 runs. Note
that not always the optimum value for G is reached, but
this is due to time pressure: agents are forced to reach
an agreement soon. In applications where more precision
is needed, this can be reached by imposing a lower time

Fig. 5. Negotiation with three agents using rounds.

pressure. In the communications relay experiments (Fig.
6), dim(T ) is the distance between the two points to
connect, and G is the length of the shortest path between
agents obtained, which is longer due to the presence of an
obstacle. In this case, the vehicles negotiate positions.

Fig. 6. Communication relays. Three aerial vehicles have
to negotiate how to position themselves in order to
guarantee communications between two fixed rovers’
positions (leftmost and rightmost spheres). Spheres
represent signal range. Note the presence of an obsta-
cle in the middle (power tower).

Experiment Agents Steps Time (sec.) dim(T) G

No fly zone 2 28 1.82 0.67 0.66
Area Survey-2 2 53 2.72 1.00 1.02
Area Survey-3 3 82 3.53 1.00 0.99
Comm relay 5 9 0.36 0.90 1.02

Table 1. Summary of experiments. In the
”Comm relay” test, two of the agents (source
and destination) were constrained to remain in

a fixed position.

Figure 8 shows an example of the shares of area partition-
ing between two agents. The left plot shows how the shares
the agents obtain is actually close to values predicted by
Rubinstein’s theory. The plot on the right shows how the
overlapping task is reduced during the negotiation, and
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Fig. 7. Detail of negotiation steps between 4 agents: best offers at step 1, 25, 100. The search step move the vertices of
the polygons in order to reduce overlapping.

Fig. 8. Negotiation on how to partition an area. Best share and Rubinstein predictions (left). Total area T and global
coverage G (right). δ1 = 0.988, δ2 = 0.99, both agents start claiming 1.

Fig. 9. Example of negotiation with three agents (δ1 = 0.988, δ2 = 0.99, δ3 = 0.986). Best share and predictions of Eq.
2 (left). Total area T and global coverage G (right).

how global coverage G is very close to the optimum value
(in this, case the total area T ). Also, note how global cov-
erage is maintained throughout the negotiation. In other
words, the whole area is covered by the two robots at all
times. Figure 9 shows similar results for three agents. In
the plots, a value of G greater than T means that the
current offers cover an area outside the target area. This

was allowed in the simulations. This effect can be seen in
Figure 7, that shows the detail of the negotiation process
between four agents. At the beginning all agents claim the
same share. During the negotiations the vertices of the
polygons are adapted in order to minimize overlapping,
and some of the offers may partially lay outside the target
area. Offers can be forced not to lay outside the target task
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by increasing the penalty factor associated to exceeding
the task in the evaluation functions gi, according to the
particular application constraints.

5. CONCLUSION AND FUTURE WORK

The main contributions of this paper are two. First, we
propose a formal definition of the concept of task, general
enough that allows expressing different problems. The
negotiation algorithm implemented using such formulation
then applies to a vast variety of multi-robot tasks. Second,
a negotiation protocol that takes advantage of theoretical
results that guarantee some important properties such as
termination and prediction of the outcome.

Experiments conducted in computer simulations show the
effectiveness of the proposed approach, and the adherence
of the numerical results with the theoretical results coming
from game theory.

The main objection that can be done is the need of
multiple communications between the agents in order to
reach an agreement. This is certainly true with respect to,
e.g., the contract net protocol [Smih, 1980], which is the
base for many protocols that can be found in the literature.
However, as mentioned earlier, such protocols assume a
task partitioning step that is not taken into account.
Such step is mostly centralized and needs information
of the full status of the system, and it may require
complex algorithms and more computing power. We may
say that in our approach we exchange computing power for
communications in order to distribute the task subdivision
and assignment problem amongst the team members, with
the advantage that complete information of the whole
system’s status is not needed. Thus, it can be concluded
that our method is more suitable when a central node
with enough power is not available or recommended (for
instance, in security applications) and communications can
be guaranteed at least during the negotiation process.
On the other hand, contract net-based protocol are to
be preferred when communications cannot be guaranteed,
and if amongst the team members there is a team leader
(perhaps a command and control station) that can take
the charge of finding a good task splitting and manage the
auction.

We are currently working on two fronts. On the practical
side, we will deploy the negotiation algorithms on our
fleet of aerial and ground autonomous vehicles for testing
with real robots, and perform tests with different kind of
tasks. Although at the moment all experimentation has
been done on simulation, we believe that the deployment
of the algorithms on real robots will not influence in an
important way the general idea on the negotiation protocol
we propose, although some tuning of the penalty and cost
parameters may be needed to adjust the algorithm to the
real performances of the robots.

As far as the theoretical aspect is concerned, we are inves-
tigating the properties of the multiple-rounds extension, in
order to have a more grounded estimation of the expected
shares on the basis of the estimation of the opponents
discount factors in the case R > 2.
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