
A Platform for the Development of Semantic Web Portals
Oscar Corcho

University of Manchester
School of Computer Science

Oxford Road, Manchester, United Kingdom
+44(0)1612756821

Oscar.Corcho@manchester.ac.uk

Angel López Cima(*), Asunción Gómez-Pérez
Universidad Politécnica de Madrid

Facultad de Informática. Campus de Montegancedo, s/n.
28660 Boadilla del Monte, Madrid, Spain

+34913367467

 {alopez, asun}@fi.upm.es

ABSTRACT
A Semantic Web portal is a Web application that offers
information and services related to a specific domain, and that has
been developed with Semantic Web technology. For the time
being, the main difference with respect to a traditional Web portal
is based on technological aspects: traditional Web portals are
based on standard Web technology (HTML, XML, servlets, JSPs,
etc.); semantic portals are based on that technology plus the use of
Semantic Web languages like RDF, RDF Schema and OWL. This
paper describes a unifying architecture for both types of portals,
based on the MVC paradigm, which is implemented in the
ODESeW framework. ODESeW has been used successfully in the
development of a set of portals for the management of European
R&D projects and for the management of research groups.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Data sharing, Web-based
services

General Terms
Management, Documentation, Experimentation, Security,

Keywords
Semantic Web portal, ODESeW, Intranet.

1. INTRODUCTION
An application framework is a set of libraries or classes used to
implement the standard structure of a type of applications. Having
reusable code in a framework means that much time is saved for
developers, since they do not need to rewrite large amounts of
standard code for each new application developed.
Application frameworks are also defined as software components
that model and solve a specific type of problem, providing a set of
extensible and configurable components and an engine to
coordinate and execute them. These components will be extended
in a specific problem by developers.
Both definitions make it clear that application frameworks aim at
reducing the amount of effort needed for developing and
maintaining software, as part of the philosophy of rapid

application development (RAD).
In Web application engineering, there are many open-source and
commercial frameworks available for the development of standard
Web applications. Among them we can cite frameworks like:
Turbine [25], Struts [23], JSF [11], Millstone [15], Wicket [27],
etc. All these frameworks aim at easing the development of Web
applications, by providing reusable, configurable and extensible
components that are commonly used in such applications.
In Semantic Web application engineering there are fewer
frameworks available, due to the fact that this area is less mature.
And in many cases we cannot talk yet about frameworks, but
about specific applications that have been developed from scratch
or by reusing some existing components, but without the notion of
comprehensive application development frameworks. Some of
these emergent frameworks are: the KAON portal [12],
OntoWebber [10], Rhizomik [18], Duontology [4], etc.
Most of the applications developed in this area are the so-called
knowledge portals or semantic portals. They refer to ([13][22])
knowledge-based Web sites for corporate access to information
and applications. In [13] they are defined as Web applications that
“provide the means to select, classify and access, in a
semantically meaningful and ubiquitous way, various information
resources (e.g., sites, documents, data) for diverse target
audiences (corporate, inter-enterprise, e-marketplace, etc.).”
Though both Web and Semantic Web application development
frameworks provide interesting features for the rapid application
development, they also share the fact that they are not specialised
for the development of domain-specific applications. That is, they
only contain generic components that can be included in Web and
Semantic Web applications and these components have to be
extended by developers when they want to create a specific
application in a domain. The places where the framework can be
extended are known as extension points [3].
From this comment it seems interesting to have also reusable
extensions or configurations of such application development
frameworks for those types of applications that a set of developers
normally have to create. In this paper we are interested in
showing how we have configured and extended a Semantic Web
application development framework for the creation of the
Intranets and Extranets of several European R&D projects. The
application development framework that we have used is
ODESeW, whose earlier version was already described in [5].
This paper is structured as follows. Section 2 describes the main
features of ODESeW. Section 3 describes how ODESeW has
been used to create the Semantic Web sites of R&D projects in
the European Union context, with examples extracted from the
Web sites of Esperonto [6], Knowledge Web [14] and OntoGrid
[16]. Finally, section 4 concludes and outlines future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICWE’06, July 11–14, 2006, Palo Alto, California, US.
Copyright 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. The ODESeW Semantic Web application
development framework
ODESeW (Semantic Web Portal based on WebODE) was first
described in [5] as a front-end of the WebODE ontology
engineering workbench that could be used for the automatic
generation of knowledge portals for Intranets and Extranets, using
the same assets and knowledge and providing different functions
in each case:
o If the knowledge portal is used as an Intranet, corporate users

can insert and update content as content providers, browse
the content that they have inserted or that other corporate
members have inserted there, and perform searches and
queries on that content. The ontologies is used for indexing
and searching the knowledge asset more efficiently.

o If the knowledge portal is being used as an Extranet, external
users will only edit very restricted parts of the content stored
in the portal, and browse, query and search only the content
identified as public content by the content providers.

Besides the aforementioned content provision, visualization, and
access functions, ODESeW provided management services to
select the ontologies to be used as the basis for the portals, to
configure read/write permissions over the information, etc.
This first version of ODESeW provided generic views for content
visualisation: hierarchical concept trees, instance lists, instance
attribute and relation visualisation and edition functions, and
RDF, RDF Schema and DAML+OIL export functions. These
views were generic enough to show all the information needed for
providing and accessing content. Therefore, the setup and
maintenance of a knowledge portal required a very low
management effort, which mainly consisted on selecting the set of
ontologies to be used in the portal, and extending and modifying
the default user accounts and read/write persmissions on the
ontology components for both the Intranet and the Extranet.
While the main advantages of having generic views are low setup
and maintenance efforts, there is an important tradeoff with
respect to its extensibility in order to deal with institution-specific
requirements. In this sense, creating specific views that were
needed in some of the portals was a time-consuming task, since
the developer needed to have in-depth knowledge of the API
provided by the portal, of its internal architecture and of the
interaction between the different components.
The current version of ODESeW is not so much focused on the
development of Web portals based on Semantic Web technology,
but on the provision of a framework for building Semantic Web
applications. Hence, it provides reusable but easily extensible
views for different types of applications and users. With this
approach we keep the idea of having a low setup and maintenance
effort while allowing the creation of personalised views with a
view model and view composition model, and the specification of
navigation and visualisation models for different types of users.
In the following sections we describe the main components of this
Semantic Web application development framework.

2.1 Architecture Outline
The architecture of ODESeW 2.0 is based on the design pattern
Model-View-Controller (MVC) [7], which is currently widely
used for developing Web applications.
This pattern or architectural paradigm divides functionality
among three types of objects (the view, the model and the

controller, as shown in figure 1), which are involved in
maintaining and presenting data to minimize the degree of
coupling between the objects. One of the advantages of using this
paradigm is that the clearly separation of these three objects
makes it very useful for developing applications where the same
information has several visualisations. The objects are described
as follows:
o A model represents business data and business logic or

operations that govern access and modification of this
business data. The model notifies views when it changes and
provides the ability for the view to query the model about its
state. It also provides the ability for the controller to access
application functionality encapsulated by the model.

o A view renders the contents of a model. It accesses data from
the model and specifies how that data should be presented. It
updates data presentation when the model changes. A view
also forwards user input to a controller.

o A controller defines application behavior. It dispatches user
requests (button clicks, menu selections, form input texts,
etc.), also known as user gestures or actions, and selects
views for presentation. It interprets user inputs and maps
them into actions to be performed by the model. In a Web
application, they are HTTP GET and POST requests to the
Web tier. A controller selects the next view to display based
on the user interactions and the outcome of the model
operations.

Figure 1. Model-View-Controller pattern (from [20]).

Let’s see now how each of these components are implemented in
the context of ODESeW, and which functionalities are available
for the design of Semantic Web Intranets and Extranets.

2.1.1 Data Model
The ODESeW Data Model contains the information that the
knowledge portals show and the information that the portals use
for their management functions. It is divided in two submodels, as
shown in figure 2: the Domain Model and the User Model.

All these submodels are coordinated by the Data Model Manager,
which receives state change requests from the controller and is
used to feed the queries made by the views. All the state change
requests are filtered by the Permission Layer, which takes into
account the user permissions and profile.

We now describe each of the components of the ODESeW data
model.

Data Model
Permission Layer

User
Model Domain Model

Data Model Manager

Figure 2. The ODESeW Data Model and its components.

2.1.1.1 Domain Model
The Domain Model consists of a set of domain ontologies, which
are the backbone of the information shown in the Semantic Web
applications generated with ODESeW.
Ontologies are accessed using WebODE. As an ontology server,
WebODE provides the functionalities required by ODESeW,
namely the retrieval of ontology components and the storage and
retrieval of concept and relation instances from distributed
ontologies. Besides, it provides support for some additional
functions, such as ontology export to RDF, RDFS and OWL.
The knowledge model of WebODE (and hence of the ODESeW
Domain Model) is described in [2]. Many types of ontologies can
be imported in WebODE by means of its ontology import services
(e.g., ontologies implemented in RDF, RDF Schema,
DAML+OIL, OWL, UML, etc.).

2.1.1.2 User Model
The User Model contains user profiles, normally organised
according to the group and role to which they belong, and which
are tightly related to the application domain. This model is
represented using an ontology about users (and optionally groups
and roles), which contains authentication information about users,
information about the roles that they play in their organisations,
permissions to access specific parts of the information, to present
differen types of views, etc.

There are two types of permissions assigned to individual users,
groups or roles, each of them with different granularity:
- Read permissions. They involve an information flow from

the domain model to a view. These permissions are assigned
over instances and instance attributes and relations.

- Write permissions. They involve an information flow from
the controller to the domain model. These permissions are
assigned over concepts and ontologies.

In both cases, permissions are assigned by the application
administrator.

2.1.1.3 Data Model Manager
The Data Model Manager is the module in charge of coordinating
the access to the domain and user models. As we will describe in
section 2.3, it is also in charge of coordinating the actions of the
External Information Gateway when a user makes a request that
triggers the execution of an action over an external resource in
order to fill in information from the domain model.

This module is generic, since the only pieces of information that
need to be configured in order to use it in an application are: the
ontology that specifies user profiles, the ontologies that are
included in the domain model, and the reference to the connectors
to external information sources, as described in section 2.3.

2.1.1.4 Permission Layer
The Permission Layer filters all the requests to the Data Model
Manager, according to the read and write permissions of the Web
application user (either if it is in the context of the Intranet or of
the Extranet).
The process followed to assign user profiles is similar in the
Intranet and Extranet applications. In the case of the Intranet, the
user will authenticate in the application home page by providing
its user name and password, and its user profile will be
determined according to the information available in the user
model. In the case of the Extranet, the user will be given a default
profile (guest). In both cases a session is maintained for the user
during its visit to the application.
Once the user profile has been determined and the session has
been created, the user profile information (with its information
about permissions) will be used by this component whenever a
request is received by the data model manager.

2.1.2 Views
As aforementioned, the main purpose of views is the renderisation
of the content available in the data model. In Web applications
like the ones that ODESeW is used for, views are also known as
Web pages or documents.
ODESeW provides a set of reusable views and mechanisms for
Web developers to ease the communication with the Data Model,
so as to retrieve information from the ontologies stored in it. Two
groups of views can be identified in ODESeW:

• Views for human agents. They are focused on the generation
of HTML documents that Web browsers in the client
platform can render and show to the user.

• Views for software agents. They are focused on the
generation of documents in Semantic Web languages like
RDF, RDF Schema and OWL.

The first group of views are described using state-of-the-art Web
application design technology, such as JSP (Java Server Pages
[19]), and Tag Extension [19] in conjunction with EL (Expression
Language [19]) and JavaBeans [8]. These technologies allow
defining reusable operations for accessing information stored in
the domain ontologies.
Some of the default views available in the platform are:
- Upper Term View. It is a generic view for rendering

different types of ontology components (concepts, attribute
types, attributes, relations, and instances). This view is
highly reusable and has a low maintenance, but reduces the
usability of the views, since it does not provide application-
specific information about the term that it is rendering (for
instance, if we are rendering an instance of a book, it might
be interesting to show not only the list of attributes that the
book has, but also to provide an image for the book
coverpage, the attributes presented in a specific order, etc.).

- Term View. It is a generic view for rendering the
information of an object, adapted to the ontology component
that it is displaying (a concept, an attribute type, an attribute,

a relation, or an instance). This view is less reusable and
normally has to be extended by the application developer for
different types of concepts, as aforementioned.

Other default views available are: ontology concept trees, instance
lists, etc.
The ODESeW platform contains a set of engines (encapsulated in
the Controller) that are able to interpret the views described at
run-time so as to render appropriately the information coming
from the Data Model, according to the desired views.

2.1.3 Controller
The ODESeW Controller is responsible for several functions, and
is at the core of the platform. It receives the user request, which
contains the actions to be performed, and completes or checks the
request with the information model in the Data Model (including
both the domain model and the user model). Then it reads and
executes the navigation and composition model, described below,
and returns the next view that should be rendered for the user.
We describe the ODESeW Navigation and Composition Model,
and then the steps followed by the Controller to execute actions.

2.1.3.1 The Navigation Model
The navigation model represents the navigation of a user through
the application. This model is explicitly separated from the design
of views so that changes in the navigation do not affect the
implementation of views. Besides, it allows representing
declaratively the navigation of a user, enabling in this way an
easy study of the behaviours of the user of an application.
The navigation model is a directed named graph where nodes
represent views and edges represent navigation actions from one
view to another.

• Nodes have 2 attributes: “precondition” and “view URL”.
The first one specifies preconditions to allow the execution
of a view and the second one specifies the location of the
view. The view can be abstract, what means that it cannot be
rendered directly and has to be specialised by other views.

• Edges identify actions that can be performed by the user
from a view. Besides redirecting users from a view to
another, edges are attached to a task execution: instance
edition, instance removal, message sending, etc. Edges can
be concatenated to perform different tasks in one navigation
step.

The navigation model also allows describing
specialisation/generalisation relations between two views (defined
with the subclass-of relationship). A view is a specialisation of
another if it visualises the same content as the parent view but
providing more specific visualisation items. For instance, a
default view may be used to render attribute values and for other
more specific types of values, such as e-mail addresses, URLs,
image files, sound files, video files, etc., other more specific
views can be created.
Figure 3 shows an example of a navigation model with 9 views
defined and several types of actions and
specialisation/generalisation relations defined between them.

2.1.3.2 The Composition Model
The composition model is similar to the navigation model, though
its rationale is different. Basically, it allows including a set of
views inside another one and is normally used when complex sets
of information have to be presented at once to the user.

View3
URL3

PRECOND3

View2
URL2

PRECOND2

View1
URL1

PRECOND1

View4

PRECOND4

View5
URL5

PRECOND5

View7
URL7

PRECOND7

View8
URL8

PRECOND8

View9
URL9

PRECOND9

subclass-of

subclass-of

subclass-ofsubclass-of

subclass-of
action a

action a

View10
URL10

PRECOND10

action b

Figure 3. Example of a navigation model.

One common example of the use of the composition model is the
main view of the application (aka the application home page).
Here the developer normally includes a header, a footer and an
index. All these components can be different views that are
composed to create a unique one.
The elements used in the composition model are the same as those
for the navigation model: views are represented as nodes, with the
attributes “precondition” and “view URL”; views can be
specialised with other views; and actions are represented as edges.
The only constraint in in the type of actions that can be
represented in this model, which only consists in the action of
inclusion of a view inside another.

2.1.3.3 Controller Execution
Actions received by the Controller contain two elements: task and
control flow operation. The task is the specific operation to be
performed, while the control flow operation specifies what to do
after the execution of the task.
Developers can use any of the default tasks provided by the
ODESeW platform or create new ones, either from scratch or by
reusing and extending any of the default ones. The following
default tasks are available:

• sewView. It is an empty action that renders the view
specified in the user request by redirecting users to it.

• sewRemove. It deletes the set of concept and relation
instances specified in the user request.

• sewEdit. It updates or creates the set of concept and relation
instances specified in the user request.

• sewSearch. It searches for a set of concept and relation
instances that satisfy the query.

• sewRouter. It is an empty action (that is, it does not perform
any action on the data model), which is used to execute
another action from a list specified in the user request. These
actions have a guard condition, and the sewRouter task
selects the first one whose guard condition is satisfied.

• sewLogin. It authenticates a user and loads in the user
session his/her profile.

With respect to control flow operations, there are four available:

• Forward: the user request is concatenated to another action
or view.

• Redirect: the user request ends and a new user request starts.
This new request consists in showing another view or
performing another action.

• Include: the execution of a new action or view is included in
the original view or action, so that it will be performed later.

• Empty: the execution ends without any more control flow
actions. In fact, a view is actually defined as a rendering
action, optionally followed by other additional include
actions, and which has an empty control flow at the end.

When a user requests an action from a view, the Controller
executes the navigation model, following these steps:
- Identify the view from which the user request is originated,

and find it in the navigation model.
- Find the requested action in the source view. The action can

be defined explicitly in the source view or in any of its
ancestor views.

- Select the target view for the requested action. In the
navigation model, an action applied to a specific view may
have several target views, and at least one of them has to be
selected. To perform this selection, the Controller verifies
whether the precondition of any of the target views specified
in the action is satisfied given the request parameters. If no
precondition is satisfied, an exception raises.

- Find whether any of the specialisations of the selected target
view is also valid. Once the controller found a valid
candidate view, it will try to find another one among its
specialisations. To do this, the Controller checks the
preconditions of the view specialisations. If any of them is
satisfied, that view is a new valid candidate view and the
Controller repeats this step with its children views, until a
valid view does not have more specialisations or none of the
preconditions of its specialisations are satisfied. The last
valid candidate view is the final target view.

Let us see an example based on the navigation model presented in
figure 3. Let us assume that the user requests the action a from
the view View3, and that the parameters of the request satisfy the
preconditions Precondition4, Precondition8 and Precondition9
and do not satisfy the preconditions Precondition5 and
Precondition7.

View3
URL3

PRECOND3

View2
URL2

PRECOND2

View1
URL1

PRECOND1

View4

PRECOND4

View5
URL5

PRECOND5

View7
URL7

PRECOND7

View8
URL8

PRECOND8

View9
URL9

PRECOND9

subclass-of

subclass-of

subclass-ofsubclass-of

subclass-of
action a

action a

View10
URL10

PRECOND10

action b

1

2

1.1
1.2

1.3

2.1

2.2

Figure 4. Example of a navigation model execution.

First, the Controller finds the source view (View3). Taking into
account that the user wants to perform action a, the possible
candidate views are the View4 and View8.
The first candidate to be checked is View4. However, View4 is
abstract, so the Controller has to check the preconditions of its
specialisations (View5 and View7). Neither of them satisfy the
preconditions, so View4 nor its specialisations are valid target
views. Hence, View4 is discarded by the Controller and the next
candidate view (View8) is analysed. The Precondition8 is
satisfied, hence the View8 is a valid candidate view. Then, the
Controller starts looking for its specialisations (View9). The
precondition of View9 is also satisfied and, since View9 does not
have specialisations, the final target view for the execution of
action a from View3 is the View9 (see figure 4).

2.2 ODESeW Extensions to the MVC
Architecture
ODESeW provides two extensions to the MVC design pattern: the
External Information Gateway, which is used to feed the data
model with information available in external information sources,
hence improving the interoperability of ODESeW applications
with other similar applications; and the Notification Service,
which is used for sending asynchronous messages about changes
in the data model.

The complete ODESeW architecture is depicted in figure 5,
including these two modules.

Data Model

View Controller

Notification
Service

Navigation
and

Composition
Model

External
Information
Gateway

Communicators

Mappers

Figure 5. ODESeW extended-MVC design pattern.

2.2.1 External Information Gateway
This system collects information from external sources and maps
it to the domain model, regardless of the communication protocols
(HTTP, FTP, CORBA, Web services, etc.) and formats (relational
databases, texts in natural language, XML documents, RDF files,
etc.) needed to access such information.
The External Information Gateway works as follows. Some of the
domain ontologies used in the application may have connectors
attached. These connectors identify the information sources that
can provide information about the instances of some of their
classes or relations, in case these are needed in a user query.
When the Data Model Manager receives a query that involves

instances from such concepts or relations, the External
Information Gateway is contacted so that the information from the
information source is provided as if it was available inside the
internal ODESeW data model.
The External Information Gateway supports two information
provision models. They are used depending on the characteristics
of the information sources (availability, cost model, processability
of information, dynamicity of information, etc.), and are specified
by the application developer. They are the following:

• Runtime provision model. The external information source
is accessed on real time when the application requests
information from it. This model is used with information
sources that provide a low latency between the request and
the response and where the information changes frequently.

• Cached provision model. The external information source is
accessed periodically and the information retrieved is stored
locally. When the user requests this information it is
provided from the local store. This model is used with
information sources that provide a big latency between the
request and the response, and when the information does not
change frequently.

To retrieve information from external sources, the External
Information Gateway uses two types of components:

- Communicators. They provide an abstraction layer on top of
the different communication protocols that may be needed to
access information sources.

- Mappers. They deal with representation and semantic
mismatches between the external information source and the
domain model.

2.2.1.1 Communicators
Communicators connect to the external information source using
a specific protocol (HTTP, FTP, etc.), and provide also an
abstraction layer over the access interface (CORBA, Web
services, etc.). They are also in charge of abstracting the provision
model used for accessing the information available in the external
source (runtime or cached).
ODESeW includes by default two communicators (for the
protocols HTTP and FTP), using the runtime and cached
provision models. Application developers can also create new
communicators and plug them easily into the system.

2.2.1.2 Mappers
Mappers transform the information from the external source into
concept and relation instances of the domain ontologies,
overcoming any mismatches that may occur between the origin
and target models.
A mapper is configured with the following elements:

• Input. It identifies how to obtain the information from the
external information source.

• Output. It identifies the result that will be obtained as a result
of the execution.

• Mapping. The mapping is the function that transforms the
input to the ouput.

• Mapping Engine. The mapping engine interprets the
specified mappings and transforms the input to the output.

• Instance consistency checker. The mapper, optionally, can
have a consistency checker that resolves conflicts with other
information available in the domain model of the application.

The mapper is coordinated with type of communicator that it uses
to get the information from the external source. Hence if the
communicator retrieves the information on runtime, then the
mapper also executes on runtime, while if the communicator
caches the information, the mapper also creates a cache of the
output result of the mapping process.
Mapper chains can be created to improve reusability of mappers
that perform simple mapping functions. In these chains the output
of a mapper is used as the input of the next one in the pipeline.
Finally, off-the-shelf mapping engines and consistency checkers
can be used or new ones can be created from scratch. Mapping
engines are normally reusable across applications. The following
set of default mapping engines are provided in ODESeW:
- A XSLT engine.
- An engine to transform RDF triples to RDF/XML

documents.
- An engine to transform HTML documents to XHTML

documents.
- An extended XSLT engine that allows executing RQL

queries [26].
Web applications can extend these mapping engines or create new
ones. On the contrary, consistency checkers are less reusable
across applications and no default consistency checkers are
provided in the framework.
It is very important to remark that the framework is in charge of
coordinating the different components and each application can
implement its own components or reuse the default ones.

2.2.2 Notification Service
The Notification Service is an asynchronous system that can be
used to send and receive messages based on the subscribe/notify
model. Any system can subscribe to any set of topics from those
available in the system (the list of topics is dynamic, that is, it can
be updated at any time by any of the systems that make use of it).
When a system sends a message regarding a specific topic, all the
systems subscribed to that topic receive a notification with this
message. The service uses Java Message Service [20].
In ODESeW the Notification Service is widely used by the
Controller, which sends messages whenever a user visits a view,
edits or removes an instance, or when a message has to be sent as
part of an action. Three default topics are available in ODESeW:

• NewInstance. It is used when a user creates an instance in the
domain model. The message sent to the Notification Service
contains: the user inserting the instance, the timestamp and
the instance itself.

• UpdateInstance. It is used when a user modifies the value(s)
of any of the attributes or relations of an instance from the
domain model. The message sent to the Notification Service
contains: the user updating the instance, the timestamp, the
old instance with the old attribute and relation values and the
new instance with the new attribute and relation values.

• RemoveInstance. It is used when a user removes an instance
from the domain model. The message sent to the Notification
Service contains: the user removing the instance, the
timestamp and the instance removed.

3. Applying ODESeW for the development of
R&D projects Web portals
Different versions of the ODESeW platform have been used in the
development of the Web portals of diverse European R&D
projects. The most relevant were already pointed out in the
introduction (Esperonto [6], Knowledge Web [14] and OntoGrid
[16]). Furthermore, the platform has been also used in part of the
AgentLink III portal [1] and in the web site of the Ontological
Engineering Group at UPM [17].

All these applications have been developed as knowledge portals
with a twofold function: first, to serve as an Intranet for the
compilation of all the knowledge generated, and second, to serve
as an Extranet for the dissemination of the project results.

3.1 R&D project Web portal design
The following tasks were perfromed for the development of the
portals: model the domain, identify the types of users, identify the
content to publish, identify the site map of the portal content and
implement the visualisation. In the following section we focus on
the domain and navigation models.

3.2 Domain of the R&D projects
The R&D project domain had been described with five
ontologies: project, documentation, person, organization, and
meeting. These ontologies describe respectively R&D projects
and their structure, documents that are generated in a project,
people and organizations participating in it, and meetings
(administrative, technical, etc.) held during a project lifecycle.
Each portal extends these ontologies according to its
characteristics.
According to the ODESeW data model, all the ontologies belong
to the domain model except for the ontology about persons, which
is partially used to define the user model of the application.
An important aspect that makes ODESeW more robust than other
existing technologies and platforms for Semantic Web application
development is that changes in the ontologies are automatically
incorporated in the application. Therefore, even if these
ontologies do not normally change due to the fact that they have
been already used for several years and projects, any change in
the ontology can be made at any time.

3.3 Users of the R&D Projects
In projects like Esperonto and OntoGrid, which involve a smaller
amount of partners, there are three different types of user profiles
that are considered for the generation of specific types of views
and navigation models. These are:
- Guest users. These are users that are external to the project

and only visit its Extranet.
- Project partners. These are users that belong to any of the

organisations involved in the project and that work on it,
accessing its Intranet and performing tasks of visualisation
and edition of instances.

- Project officer. This is a user profile for which the most
important information to be shown are the project
deliverables and other administrative documents.

Each of these user profiles has different navigation models and
have also different levels of permissions in the portal. For
instance, the guest user cannot insert instances in the portal,

cannot access the restricted and private deliverables, can only
access the PDF versions of public deliverables, etc.; the Intranet
users have full read and write permissions for all the concepts,
instances and attributes in the five ontologies; and the project
officer can access all types of deliverables but cannot insert nor
edit instances in the portal.
In larger projects like the Knowledge Web network of excellence,
the number of user profiles is larger. Besides the previous user
profiles we identify different types of area managers (Industrial
Area Manager, Educational Area Manager, Research Area
Manager, and Management Area Manager). Each of these
managers have different navigation models as well, and different
sets of permissions so that they can read and modify different
types of documents.

3.4 Content and navigation
The key content to be visualised in all projects is: list of partners,
list of persons working for each partner, list of deliverables,
workplan and related events. Besides, the home page shows direct
links to the most recent and more requested information.
Most of the content accessible from the home page is indexed by
ontology concepts and consists of links to instances. For example,
the list of partners is the list of instances of the concept
Organization, the list of deliverables is the list of instances of the
concept Deliverable, etc. Therefore, the default navigation model
has been created according to concepts and instances. In the
navigation model, there is a node reprensenting the home page
and a navigation edge, viewTerm, to an abstract node Term, which
is specialised in Concept and Instance. These two nodes are also
specialized in different nodes according to the information that
can be requested: Organization, Person, Deliverables,
Workpackages, etc. Besides, from the Concept view there are
links to a list of instances and from the Instance view there are
links to related instances.
To satisfy the need to have the information available for software
agents, these views have another link to the implementation in
RDF of the visualised list of instances. This link is modelled as an
edge from the node Term to the abstract node RDF, which has
three specialisations depending on whether it has to provide all
ontology instances, all concept instances or only an instance.
Figure 7 shows the top nodes of this navigation model and, as a
representation of specilization, the nodes that visualized a
instance and a list of instance of concept Organization.

CONCEPT
URL

exist concept

INSTANCE
URL

exist instance

TERM RDF

RDFConcept
URL

exist concept

RDFInstance
URL

exist instance

RDFOntology
URL

exist ontology

viewTerm

viewRDF
viewTerm

Organization
Concept
URL

concept.subclassOf
[‘Organization’]

Organization
instance
URL

instance.instanceOf
[‘Organization’]

Figure 6. Reusable fragment of a navigation model.

Besides the previous views, which are used throughout the portal,
there are also specific views that are predefined for different types

of users. For instance, there is a specific view for the project
officer that generates a report with all the deliverables produced
in the project. And there is a specific view for guest users that
generates a report with all the public deliverables produced. These
views are specified in the model as specialized nodes in which the
precondition of each node is a user type check.

4. Conclusions and Future Work
We have presented the main features of the Semantic Web
application development framework ODESeW, focusing on how
it extends the Model-View-Controller design pattern and how it
eases the interoperation with other similar applications, by means
of the External Information Gateway.

Besides, we have described how this framework has been
configured for the creation of the Web portals of several EU R&D
projects, facilitating many of the tasks done by project partners
and providing a common view for all of them, according to the
usual structure that they share.

We have not provided a comparison with other similar
approaches. Only a few project Web portals are based on similar
technology (the OntoWeb portal [21] and the SWWS portal [24],
among others). The main differences between these portals and
ODESeW are related to the fact that interoperation with other
information sources cannot be easily performed with them and
that the Intranet features are less advanced.

Among the features that will be included in the next versions of
ODESeW, we can cite the following:

- Improvements in user authentication. We will incorporate
single sign-on capabilities, using not only username and
password pairs, but also user credentials (digital certificates,
Intranet user profiles, etc.). With these we aim at making it
easier to integrate the project Intranet with each of the
organisation’s Intranets.

- Inclusion of localisation functions, so as to have more types
of external users than the default user guest.

- Provision of a more powerful set of mappers and
communicators, including state-of-the-art ontology mapping
techniques for a better interoperation with other knowledge-
based portals, as well as other communication protocols to
deal with Web Services and Semantic Web Services.

5. ACKNOWLEDGMENTS
This work has been supported by the EU IST Network of
Excellence Knowledge Web. We would like to thank all the
project partners from this and other projects (Esperonto and
OntoGrid) for their comments, which have been so useful to
improve the ODESeW technology and its usability.

6. REFERENCES
[1] AgentLink: http://www.agentlink.org/

[2] Arpírez JC, Corcho O, Fernández-López M, Gómez-Pérez A.
WebODE in a nutshell. AI Magazine 24(3):37-48. Fall 2003

[3] Cavaness C. Programming Jakarta Struts.O’Reilly.
November 2002. ISBN 0-596-00328-5

[4] Contreras J, Benjamins VR, Blázquez M, Losada S, Salla R,
Sevilla J, Navarro D, Casillas J, Mompó A, Patón D, Corcho
O, Tena P. A Semantic Portal for the International Affairs

Sector. EKAW'04. Springer-Verlag. Lecture Notes in
Computer Science (LNCS) 3257:203-215. October 2004.

[5] Corcho O, Gómez-Pérez A, López-Cima A, López-García V,
Suárez-Figueroa MC. ODESeW. Automatic Generation of
Knowledge Portals for Intranets and Extranets. The Semantic
Web - ISWC 2003. Springer-Verlag LNCS 2870: 802-817.

[6] Esperonto. http://www.esperonto.net/

[7] Gamma E, Helm R, Vlissides J, Jhonson R. Design Patterns:
Elements of Reusable Object-Oriented Software. Boston:
Addison-Wesley, 1995.

[8] Hamilton G. JavaBeans v1.01. 1997
http://java.sun.com/products/javabeans/

[9] Java Message Services.
http://java.sun.com/products/jms/tutorial/

[10] Jin Y, Decker S, Wiederhold G. OntoWebber: Model-Driven
Ontology-Based Web Site Management. 1st International
Semantic Web Working Symposium (SWWS'01), Stanford
University, Stanford, CA, July 29-Aug 1, 2001.

[11] JSF 1.1. Craig McClanahan, Ed Burns, Roger Kitain.
JavaServer Faces. http://jcp.org/en/jsr/detail?id=127

[12] KAON. http://kaon.semanticweb.org

[13] Karvounarakis G, Christophides V, Plexousakis D, Alexaki S
(2000) Querying community web portals. Technical report,
Institute of Computer Science, FORTH, Heraklion, Greece.
http://www.ics.forth.gr/proj/isst/RDF/RQL/rql.pdf

[14] Knowledge Web. http://knowledgeweb.semanticweb.org/

[15] Millstone. http://www.millstone.org/

[16] OntoGrid. http://www.ontogrid.net/

[17] Ontological Engineering Group. http://www.oeg-upm.net/

[18] Rhizomik. http://www.rhizomik.net/

[19] Roth M, Pelegrí-Llopart E. JavaServer Pages Specification.
Version 2.0. 2003 http://java.sun.com/products/jsp/

[20] Singh I, Stearns B, Johnson M. Designing Enterprise
Applications with the J2EETM Platform, Second Edition.
http://java.sun.com/blueprints/guidelines/designing_enterpris
e_applications_2e/

[21] Spyns P, Oberle D, Volz R, Zheng J, Jarrar M, Sure Y,
Studer R, Meersman R (2003). Ontoweb - a Semantic Web
Community Portal. Fourth International Conference on
Practical Aspects of Knowledge Management (PAKM), 2-3
December, 2002, Vienna, Austria, pp. 189-200

[22] Staab S, Angele J (2000) AI for the Web - Ontology-based
Community Web Portals. 17th National Conference on
Artificial Intelligence and 12th Innovative Applications of
Artificial Intelligence Conference (AAAI 2000/IAAI 2000),
Menlo Park/CA, Cambridge/MA, AAAI Press/MIT Press.

[23] Struts. http://struts.apache.org/index.html

[24] SWWS: http://swws.semanticweb.org/

[25] Turbine. http://jakarta.apache.org/turbine/

[26] Walsh N. RDF Twig: Accessing RDF Graphs in XSLT.
Extreme Markup Languages, Canada, 2003

[27] Wicket. http://wicket.sourceforge.net/

