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A paradigm for Hall discharge modeling is presented whereby only the time scale of the lowest-frequency 
mode is explicitly resolved. The ability of such a low-frequency model to reproduce with excellent accuracy 
the breathing mode is demonstrated through comparisons with a fully time-dependent numerical model. Based 
on this formalism, an approximate linearized model is derived which essentially constitutes a one-dimensional 
generalization of the classical zero-dimensional predator-prey model. The model highlights the interaction of 
standing plasma waves with the transport of neutral species, which involves standing and convective waves of 
similar magnitude. It predicts a frequency which is in cióse agreement with the frequency of the small 
perturbation modes observed in simulations. Finally, it is shown that unstable modes are in general strongly 
nonlinear and characterized by frequencies obeying a scaling law different from that of linear modes. 

I. INTRODUCTION 

Plasma accelerators based on Hall discharges have be-
come a fuel-efficient alternative to conventional rocket en-
gines for various space propulsión applications, ranging from 
satellite positioning to deep space probes propulsión. Hall 
discharges are typically realized within an annular ceramic 
channel in the presence of an applied radial magnetic field 
(Fig. 1). The electric field created between an inner anode 
and an external cathode drives electrons into the channel 
where they are partially confined by the magnetic field and 
ionize the working gas (most commonly xenón) introduced 
near the anode. The ions thus created are too heavy to be 
magnetized and are accelerated towards the channel exit by 
the axial electric field up to velocities on the order of 
20 kms" 1 . 

A worldwide surge of interest for this technology has 
prompted in the past 10 years a sizable intensification of 
theoretical and experimental studies devoted to discharge os­
cillations. Arguably the most ubiquitous among them are 
low-frequency (LF) plasma oscillations observable in the 
10-30 kHz band. They are characterized by wide ac fluctua-
tions of the discharge current that may at times exceed the 
level of the de current [1]. Although the first reports of this 
low-frequency mode date back from the 1970s [2], its inter-
pretation as an ionization instability has gained wide accep-
tance only in the late 1990s [3,4]. Following the observation 
of a back-and-forth motion of the ionization front in numeri­
cal simulations [4,5], these oscillations are now commonly 
referred to as breathing oscillations. 

Despite recent attempts to explain low-frequency oscilla­
tions with semiempirical approaches [6,7], the very simple 
predator-prey model suggested by Fife et al. [4] remains the 
most favored model to interpret breathing oscillations. Its 
intrinsic zero-dimensional (0D) character is difficult, how-

ever, to reconcile with the common view that oscillations 
result from a motion of the ionization front [5]. Breathing 
oscillations are, on the other hand, reasonably well repro-
duced by most time-dependent (TD) numerical models of 
Hall discharges [5,8-13]. Such numerical models rely, how-
ever, on complex physical descriptions that incorpórate a 
number of unrelated time scales, making it difficult to iden-
tify the root phenomenon responsible for breathing oscilla­
tions. Following Einstein's dictum that "everything should 
be made as simple as possible, but no simpler," this work 
strives to develop a low-frequency formalism which isolates 
the essential time-dependent mechanisms of the breathing 
mode while preserving a multidimensional and physically 
aecurate description. This formalism is applied in Sec. II to a 
conventional one-dimensional (ID) fluid model of Hall dis-
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FIG. 1. Schematic of a typical Hall thruster. 



charges, and the relevance of the model thus obtained is 
assessed with the help of numerical simulations. A small per-
turbation model is subsequently derived in Sec. III, which is 
contrasted to the model of Fife et al. The predicted frequency 
is compared to the frequency of the linear modes observed in 
numerical simulations. Finally, nonlinear modes are briefly 
discussed. 

mechanism while remaining tractable from the perspective of 
mathematical analysis. Plasma magnitudes represent radially 
averaged valúes and the interaction of the plasma with the 
lateral walls is modeled by means of effective source terms 
[10,17]. The plasma model includes the continuity and axial 
momentum equations for both ions and electrons as well as 
the azimuthal momentum and energy equations for electrons, 

II. LOW-FREQUENCY MODEL 

A. Motivation and methodology 

The breathing mode is known to involve time scales that 
are much longer than the characteristic relaxation and flight 
times of charged species [14], but comparable to the flight 
time of neutrals. This observation readily leads to the con-
jecture that for low-frequency phenomena, charged species 
effectively behave as if they were at any moment in a qua-
sisteady equilibrium with a slowly evolving background of 
neutrals. A simplistic interpretation of this postúlate might 
convey, however, the inaccurate view that the discharge cur-
rent and plasma density reach a steady state whenever the 
flow of neutrals is considered frozen. In fact, for a constant 
discharge voltage, any sustained excess (depletion) of neu­
trals induces instead a steady temporal growth (decay) of the 
discharge current / and of the plasma density n. This behav-
ior follows directly from the fact that the production rate of 
charged species is itself proportional to the density of these 
species. Having this in mind, we shall argüe that a quasi-
steady state for charged species does exist whenever the flow 
of neutrals is steady, although not in terms of / and n but in 
terms of quantities 

vi~-
]_dl_ 

I dt 
n 
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Use that shall be made of this hypothesis in the derivation of 
a low-frequency one-dimensional fluid model proceeds as 
follows. Section II B introduces a conventional fully time-
dependent fluid description of the transport of electrons and 
singly charged ions. Changing then variables / and n for 
variables v¡ and n, a quasisteady counterpart of the time-
dependent model is obtained in Sec. II C. Section II D out-
lines in turn a simple time-dependent model for the evolution 
of neutrals, which, in conjunction with the quasisteady 
model of charged species, eventually leads to a self-
consistent low-frequency model of the discharge. The low-
frequency model is compared in Sec. I I E to a fully time-
dependent model by means of numerical simulations. 

B. Time-dependent model for charged species 

The main features of breathing oscillations highlighted by 
simulations appear to be largely independent from the 
plasma description (fluid [10], kinetic [9,15], or hybrid 
[4,5,9]) or from the consideration of physical dimensions 
other than the axial one (compare in particular purely axial 
[5,9,10], axial-radial [4,11,12], and axial-azimuthal [15] 
models). A quasineutral one-dimensional fluid formulation 
based on earlier works [10,16] is therefore adopted, aimed at 
providing a reasonably accurate picture of the oscillation 
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where n is the density of electrons and singly charged ions, N 
is the density of neutrals, /? is the ionization rate, viw is the 
colusión frequency for ions impacting the walls, E is the 
axial electric field, wce=eB/me is the electrón cyclotron fre­
quency associated with the local magnetic field B, v¡ is the 
axial mean velocity of ions, vex and ve# are, respectively, the 
axial and azimuthal mean velocities of electrons, Te is the 
temperature of electrons, y;e¡ is the effective ionization cost, 
and me and m¡ refer to the mass of electrons and ions, re­
spectively. The total momentum-transfer collision frequency 
for electrons, ve, the electron-wall and ion-wall collision 
transfer frequencies vew and viw, and the effective energy loss 
at the walls, ew, are given in Appendix A as functions of the 
thermal and drift energies of electrons. 

The model implicitly assumes that the cross section A of 
the discharge column is constant. Subtracting Eq. (2) from 
Eq. (3), it can be noted that the total current through the 
channel, 

I=eAn(v¡-vex), (8) 

is independent of x. Eliminating the electric field using 
Ohm's law (5), the plasma equations are recast into a system 
of equations of the form 

dn d 
— + —{nvi) = n{pN- viw) = nhu 
dt dx 

(9) 
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Integrating Eq. (5), the discharge potential satisfies 

u---
x=t 

Edx-
x=0 

x=t 

x=0 

1 d{nTe) 

en dx 
+ hs dx, (13) 

where all hk terms (k=l, . . . , 5 ) are such that dhkldn=0, i.e., 
are functions of x, N, v¡, vex, ve# and Te only. Note that Eq. 
(13) implicitly neglects the potential across the anode sheath, 
which is much smaller than the discharge voltage and is 
found to play no significant role in the analysis to come. 

The above equations are complemented by the boundary 
conditions 
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veMx=e -

3 m¡ 

vexMB 

ve + (3N-vh 

•• const, 
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where positions x=0 and x=í, respectively, refer to the lo-
cations of the anode sheath edge and of the virtual cathode. 
Equation (14) is the Bohm condition for ions at the anode 
sheath edge. Boundary condition (15) for ve$ derives from 
the usual local approximation where inertial terms are ig-
nored [16]. Although the problem could be formally closed 
by assuming a constant current source (/= const), a more 
realistic constant voltage boundary condition is assumed, 

U= const. 

C. Quasisteady model for charged species 

(17) 

The derivation of a quasisteady model based on Eqs. 
(3)-(7) requires special care. Indeed, dropping altogether the 
time derivatives in these equations fails to provide a consis-
tent model: it is then easily seen that if a steady solution 
existed with I=I0 and n=n0, then an infinite number of valid 
steady solutions could be generated by simultaneously vary-
ing / and n proportionally to I0 and n0. The root of this 
problem lies in the incorrect assumption that / and n reach a 
steady state when the density of neutrals, N, is an arbitrary 
input: it actually turns out that a well-defined steady state 
exists only for the ratio nll and for the growth rate of /. 
Introducing thus variables v¡ and n defined by Eq. (1) into 
Eqs. (8)—(13) and subsequently dropping all explicit time 
derivatives, the following quasisteady model is obtained: 
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while the expressions of boundary conditions (14)—(17) re-
main unchanged. Unlike the steady-state form of Eqs. 
(8)—(17), the present system is well posed if N(t,x) is an 
arbitrary input. Neither / ñor n appears explicitly in the 
present model, which shows that the low-frequency solution 
is instead determined in terms of v¡ and n. 

D. Transport of neutrals 

Following Refs. [5,9], the dynamics of the neutral gas is 
described by a simple advection model, assuming that the 
mean axial velocity of neutrals is constant and equal to the 
thermal velocity at the gas feed, 

V= const. (24) 

This assumption could be improved upon by including the 
effect of diffusion at the walls, the apparent acceleration in-
herent to the preferential depletion of low-velocity neutrals 
by ionization, and the incomplete thermal accommodation of 
ions neutralized at the walls. The first two effects may be 
responsible for an increase in the mean velocity on the order 
of 50% between the gas feed and the end of the ionization 
zone [18]. All three phenomena are accounted for in two-
dimensional (2D) hybrid models [8,11,12] and can be effec-
tively introduced into one-dimensional models [10,15]. Since 
they do not appear to qualitatively affect the breathing mode 
mechanism displayed by models based on simple advection 
transport [5], these effects are neglected in the present study 
for the sake of simplicity. The transport of neutrals therefore 
reduces to a single continuity equation, 

dN M 
— + V— = -/3Nn+v¡wn. 
dt dx 

(25) 

The density of neutrals at the anode (x=0) is mainly set 
by the flux of injected propellant with a small contribution 
from ions recombined on the anode surface, leading to the 
boundary condition 

i 1 [ M , M 

^ u = vUr ( w U i ) U (26) 

where M is the mass flow rate of propellant injected through 
the anode. 
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FIG. 2. Evolution of the discharge current /. Solutions for U 
= 180 V and Bmax=22 mT using (a) the fully time-dependent 
model and (b) the low-frequency model. Ion transit-time oscilla­
tions can be distinguished on subfigure (a), superimposed on the 
low-frequency signal. 

E. Numerical study of the low-frequency model 

The fully TD and LF models are readily obtained by cou-
pling the model for neutrals of Sec. II D with, respectively, 
the model for charged particles of Sec. II B and its quasi-
steady counterpart of Sec. II C. The details of their numerical 
implementation is deferred to Appendix B. These two mod­
els are compared for the case U= 180 V and ¿?max=22 mT 
where the amplitude of oscillations is modérate enough to 
clearly distinguish the important features of the breathing 
mode; the quantitative agreement between the two models 
remains similar, however, notwithstanding the amplitude of 
oscillations. 

The low-frequency behavior of the TD and LF models 
shown on Figs. 2-5 appear almost identical in terms of am­
plitude and frequency and are qualitatively very similar to 
earlier results of the literature [5,10]. Consistent with the 
simulations of Boeuf et al. and with experimental results 
[19], the breathing mode affects mostly / (Fig. 2) and n 
which exhibits a near-standing-wave pattern in phase with / 
(Fig. 4). To a lesser extent, low-frequency oscillations also 
affect N, Te, v¡, vex, and ve#. The plots of N on Fig. 3 high-
light the characteristic back-and-forth motion of the ioniza-
tion zone described earlier in simulations [5]. 

Self-excited oscillations are observed only within a cer-
tain parametric range of the discharge voltage and magnetic 
field. It is worth mentioning that no self-excited oscillations 
are observed with an ideal current source (7=const). The 
sensitivity of voltage stability thresholds toward various pa-
rameters of the model, in particular toward Bohm-type 
anomalous conductivity coefficients, unfortunately prevenís 
meaningful comparisons with experiments in this regard. 
This is congruent with the mitigated success of former at-
tempts at recovering the oscillation regions observed experi-
mentally [10,11,20]. Incidentally, recent numerical simula­
tions suggest that replacing the usual boundary condition U 

200 

FIG. 3. Evolution of the density of neutrals N in the conditions 
of Fig. 2. Solutions for (a) the fully time-dependent model and (b) 
the low-frequency model. 

= const with a more realistic model of power supply strongly 
modifies the stability thresholds [21,22]. 

For the TD model, Figs 2(a), 4(a), and 5(a) show fast 
oscillations in the range of several hundreds of kHz super­
imposed on the low-frequency signal. They affect primarily 
n, Te, v¡, vex, ve$ and to a lower extent /, but are too fast to 
induce observable changes in the density of neutrals, as wit-
nessed by Fig. 3(a). The propagation velocity of these oscil­
lations lies very cióse to the velocity of ions, which leaves 
little doubt as to their relationship to the so-called ion transit 
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FIG 4. Evolution of the plasma density n in the conditions of 
Fig. 2. Solutions for (a) the fully time-dependent model and (b) the 
low-frequency model. Note the presence of ion transit-time waves 
on subfigure (a). 



Te[eW] i 1 1 
j i I 

10 12 14 

11 

S 2 

200 

FIG. 5. Evolution of the temperature of electrons Te in the con-
ditions of Fig. 3. Solutions for (a) the fully time-dependent model 
and (b) the low-frequency model. Note the presence of ion transit-
time waves on subfigure (a). 

instability [23,24]. These fast oscillations are markedly ab-
sent in the LF model. 

In conclusión, the LF approximation can be viewed as a 
mean to effectively isolate low-frequency phenomena from 
extraneous fast scale phenomena. The conceptual simplicity 
of the low-frequency approximation can be fully measured 
by noting that the plasma state in the LF model is at any 
moment solely determined by the instantaneous valúes of / 
and N, which are the only time-dependent quantities explic-
itly resolved. This is in stark contrast to the TD model where 
N, n, v¡, ved, and Te are all governed by time-dependent 
equations. 

III. THEORETICAL ANALYSIS 

A. Functional form of the low-frequency model 

By virtue of Eq. (1), the continuity equation (25) can be 
rewritten as 

dN dN 
— + V— = -I(/3Nn-viwn). 
dt dx 

(27) 

Since the quasisteady state for charged species 
(n,v¡,ve#,Te,...) obtainable from Eqs. (18)-(23) and (14)-
(16) can be fully determined from v¡ and N and from the 
boundary conditions, Eq. (27) can be in turn written formally 
as 

dN dN , 
— + V— = -IS(Vl,N), 
dt dx 

(28) 

where S is an operator acting on C , E R andN: [0 ,€ ] —• R; in 
other words, ion production at a given time í0 and location x0 

is proportional to the instantaneous current I(t0) and to a 

term that depends only on the instantaneous growth rate of 
the current v¡(t0) and on the instantaneous profile N(t0,x) 
within the whole domain. Likewise, an alternative expression 
of the discharge potential equation (23) can be obtained as 

U = U{v¡,N), (29) 

where U is a functional acting on C , E R and N:[0,€]—¡-R. 
Accounting then for boundary condition f/=const, it be-
comes obvious from Eq. (29) that in order to keep the dis­
charge voltage constant, changes in N are accommodated at 
any instant by v¡=d ln IIdt. This is an important finding that 
contradicts the common view that these changes are accom­
modated by / itself. 

Equations (28) and (29) constitute a faithful generaliza-
tion of Eqs. (14)-(23) and (25). In order to cióse this equa­
tion system, a slight simplification is introduced to Eq. (26) 
where the contribution of ions recombined at the anode is 
ignored, leading to the boundary condition 

N\ x=0 • : const. (30) 

B. Linear modes 

/. Theoretical model 

Appendix C carries out a linear mode analysis of Eqs. 
(28)-(30) by considering small perturbations around the 
steady state. The system henee obtained is expanded in terms 
of the small parameter 

«o 

N() 

(31) 

with «o a n d N0 characteristic valúes of the steady-state den-
sities; in practice, e = O(10"2). For e ^ 0 , the solution of the 
linear system raises a simple approximation of the modal 
frequeney 

w 0
: y(x)^(x)dx, (32) 

where y{x) is the effective steady-state ionization frequeney, 
which is defined in terms of the steady-state density of neu-

trals N as 

VdN 
yl 

N dx 
(33) 

Function ty(x) can be viewed as a weighting function for the 

impact of a small relative perturbation SN/N from the steady 
state on the instantaneous growth rate of /, 

íd¿ 
I dt 

t SN 
yr—dx. 

N 
(34) 

It can be shown that ty exists and is uniquely defined, but no 
analytical expression of ty can be given in the general case. 
For illustration purposes, function ^P, obtained from numeri-
cal computations in the conditions of Sec. I IE , is plotted 
together with y on Fig. 6. 
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FIG. 6. Functions y and "ty determined numerically in the con-
ditions of Figs. 2-5. The oscillations of "ty in the neighborhood of 
the sonic point (x ~ 1 cm) are believed to constitute a numerical 
artifact. 

Let us now examine the orders of magnitudes of the dif-
ferent plasma parameters. Appendix C shows that the angular 
frequency of Eq. (32) is of magnitude 

Wo = | o ( e - 1 / 2 ) , (35) 

which suggests that it grows with the root of the ratio of gas 
density to plasma density. Furthermore, it can be established 
that the perturbation of the plasma density is, at the leading 
order, a standing wave synchronized with current oscilla­
tions, 

ñ 7' 
(36) 

which is in agreement with the results of Figs. 2 and 4 and 
with earlier studies [5,11]. In contrast, the leading-order per­
turbation of the gas density consists of a standing wave with 
a quarter-cycle delay with respect to SI, superimposed on a 
traveling wave of the same order of magnitude, 

M**j-
SI 

y(x)N(x)-y(0)N(0)cxJ-jc 
V 

(37) 

This is consistent with the view that oscillations are accom-
panied by a motion of the ionization front. Finally, the rela-
tive perturbation of N is found to be of lesser magnitude than 
that of n or /, 

SN_ 

Ñ 
0{e), (38) 

which was clearly apparent in simulations (compare Figs. 2 
and 4 with Fig. 3). 

2. Comparison of the predicted frequency with simulations 

The linear modes of the low-frequency numerical model 
are easily obtained by observing the short-term evolution of 
the system when starting simulations from a slightly per-
turbed steady state. The low-frequency model responds then 
as a damped or excited harmonic oscillator and w can be 
directly inferred by matching the oscillation pattern of I(t) to 
the ideal response 
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FIG. 7. Comparison between (a) the frequency of small pertur­
bation modes of the low-frequency simulation and (b) the predic-
tion from the linear approximation [Eq. (32)]. Linearly unstable 
modes [Im(oi) < 0] are emphasized with black markers on subfigure 
(a). 

lit) —1+ a exp[Im(w)í]cos[Re(w)í]. 

In order to compare to the theoretical frequency predicted by 
Eq. (32), functions y and ty must be determined numerically 
for each operating point investigated. Function y is directly 
obtained from Eq. (33), based on the steady state computed 
by the low-frequency model. Function ty is computed by 
taking the steady state as initial condition for the simulation, 
with a pulse perturbation of N at position x where ty is to be 
computed; the ensuing current growth rate is then used to 
determine ty(x). 

The frequency of the small amplitude modes of the simu­
lation and the prediction of Eq. (32) are compared on Fig. 7 
for various valúes of discharge potential and applied mag-
netic field. The agreement between the two is in general 
excellent, which provides strong support for the expansión in 
e = n0/N0 upon which Eq. (32) relies. 

3. Predator-prey interpretation of linear modes 

It is interesting to compare this one-dimensional treatment 
of the breathing mode with the linearized zero-dimensional 
predator-prey model of Fife et al. [4]. This latter model ana-
lyzes the temporal cycles of growth and decay of the spa-
tially averaged gas and plasma densities, (N) and (n). The 
model yields marginally stable ionization oscillations of fre­
quency 

(ñ) 

(Ñ}(ñ): 
(39) 

where (ñ) is the steady-state ion production rate. In Hall 
thrusters, the relation ñ~NV/£ holds and the following or­
der of magnitude can thus be deduced: 
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FIG. 8. Average valúes (solid lines) and standard deviations 
(vertical bars) of the discharge current for the periodic modes of the 
low-frequency simulation. The steady-state discharge current is 
plotted with a dashed line. 

(40) 

which coincides qualitatively with Eq. (35). 
The coincidence of the frequency scaling may appear 

somewhat surprising at first, considering the incapacity of 
the zero-dimensional model to reproduce the traveling wave 
component of SN in Eq. (37). The reason for this is that, even 
though the amplitude of the convective wave is comparable 
to that of the standing wave, the overall contribution of the 
convective wave to the growth rate of the discharge current 
nearly caneéis in the integral of Eq. (34) owing to its rela-
tively short wavelength. 

C. Nonlinear modes 

In both simulations and experiments, the saturated breath-
ing instability appears as a nearly periodic signal (Le., a 
stable limit eyele). Nonlinearities are thus to be expected, 
which will modify the frequency compared to that obtained 
with the small perturbation approach. In many cases, peri­
odic solutions can be found even though the mode is linearly 
stable, provided that the initial conditions are far enough 
from the steady state. This can be observed by comparing the 
linearly unstable región in Fig. 7(a) to the regions where 
periodic solutions are observed in simulations, shown in Fig. 
8. Periodic solutions typically arise from the lower threshold 
voltage, but remain alive beyond the upper threshold voltage 
for linear stability. 

The detailed theory of periodic modes will be the subject 
of a sepárate work; we shall only reproduce here an approxi-
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FIG. 9. Comparison between (a) the frequency of periodic solu­
tions of the low-frequency simulation and (b) the prediction of Eq. 
(41) for highly nonlinear modes [25], 

mation of the theoretical frequency of highly nonlinear 
modes [25], 

^(x)y(x)dx 

f~V-FT-
2 ^(x) I y(x')dx'dx 

Jo Jo 

(41) 

where y and ty are the quantities introduced earlier in Sec. 
III B 1. Noting that the inverse of the ratio of integráis de­
fines a characteristic length, it can be expected that the fre­
quency of nonlinear modes scales proportionally to the tran­
sit frequency of neutrals. 

The corresponding frequency is compared in Fig. 9 to the 
frequency of the periodic solutions obtained in simulations. 
We observe that the frequency of saturated modes signifi-
cantly differs from that of linear modes, except cióse to the 
lower stability threshold where oscillation levéis are modér­
ate and nonlinearities are presumably small. Just as in the 
case of linear modes, the theoretical prediction is in very 
good agreement with numerical simulations and correctly 
prediets that the frequency of periodic solutions remains 
fairly constant when the discharge voltage and magnetic field 
are changed. This finding is consistent with the observation 
in other simulations that the frequency seems related to the 
transit time for neutrals [5]. 

IV. CONCLUSIÓN 

Using the low-frequency paradigm and an asymptotic ap­
proach based on the parameter e = n0/N0, a general picture 
of the breathing mode for small perturbations has been out-
lined. It is shown that at the leading order, the plasma density 
is a standing wave while the transport of neutrals involves 
both a standing wave and a convective wave. However, be-
cause the convective wave changes sign within the ID do-
main, its instantaneous effect on ionization is dominated by 



the sranding-wave componenr and rhe frequency scaling of 
linear modes is indeed rhar suggesred by rhe OD model of 
Fife et al. [4]. 

While rhis scaling is in excellenr agreemenr wirh rhe small 
perrurbarion modes found in simulations, ir is no longer ad-
equare when ir comes to rhe acrual frequency of unsrable 
modes (i.e., rhe sarurared periodic soluüons). The frequency 
of rhese nonlinear modes is largely independenr from rhe 
discharge volrage and magneric field and is lower rhan rhar of 
linear modes. Instead, ir appears to scale proporüonally ro 
rhe rransir frequency of neurrals, as suggesred by Boeuf and 
Garrigues [5]. A rheory of such nonlinear modes based on rhe 
low-frequency paradigm shall be developed in a separare 
work [25]. 
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APPENDIX A: PARAMETERS OF THE SIMULATION 

The effecrive frequency for ion recombinarion ar rhe 
walls, rhe frequency for momenrum rransfer of elecrrons ar 
rhe walls, rhe radial shearh potential, and ner elecrron energy 
loss ar rhe walls are given by a simplified rheory of rhe radial 
shearh and preshearh [10,26], 

1 
for x < íc 

0 for x > €, 

l - o -

-\OÍ 
2mn 

- ( l - o - ) 

fw = 2 r e + -me(v
¿
ex+v¿J + (1 - o-)c*M 

(Al) 

(A2) 

(A3) 

(A4) 

where in our simulations, € c=2.5 cm is rhe lengrh of rhe 
channel, Rci = 3 cm and 7?c2 = 5 cm are rhe inner and ourer 
channel radii, and <x is rhe effecrive elecrron secondary emis-
sion yield from rhe walls. Assuming a linear dependence of 
rhe secondary emission ro rhe energy of impacring elecrrons 
and raking into accounr a possible space charge sarurarion of 
rhe shearh for a xenón plasma [27], rhe expression for rhe 
effecrive secondary emission yield reads 

Í2T 
o-=min ^ , 0 . 9 8 6 (A5) 

where rhe energy corresponding ro a uniry yield is ser ro e* 
= 50 eV, which lies wirhin rhe rypical range for boron nirride 
based insulators. 

The toral momenrum-rransfer frequency for elecrrons is in 
rurn 

ve = 0m)N+aBMce+vew, (A6) 

where / ? W = 2.5X 10"1J m s is rhe assumed momenrum 
rransfer rate for elecrron-neurral collisions in xenón and aB 

= 1/160 srands for rhe coefficienr of Bohm-rype elecrron dif-
fusion. 

The single ionization cosr for xenón is ser to e¡ 
= 12.1 eV and rhe effecrive ionization cosr factor to y¡ = 3. 
The ionizarion rare is approximared as a function of rhe roral 
energy of elecrrons by rhe empirical formula 

P = Pi 
£ 1/4 

exp -
2f¡ 
£ 

(A7) 

wirh £=lTe+\meiv
2
ex+v2J and /?0=1.8X 10"13 m3 s"1, 

which reasonably firs experimenral dará [28] assuming a 
shifted Maxwellian disrriburion wirh mean velociry compo-
nenrs {vex,ved). 

The working gas is xenón, injected wirh mass flow rate 

M = 5 mg s"1 and velociry V=200 m s"1. The applied volr­
age in all simulations is Í7=220 V. The profile of rhe ap­
plied radial magneric field is given by a Gaussian curve, 

\2~ 

fi(x)=JBmaxexp 
x - l t 

(A8) 

wirh €B=1.25 cm and ¿?max=22 mT in rhe nominal case. 
The virtual carhode plañe is located beyond rhe channel exir 
ar a disrance € = 3.5 cm from rhe anode. The remperarure of 
elecrrons in rhe carhode plañe is ser ro Te\x=(=5 eV. 

APPENDIX B: NUMERICAL METHODS 

For rhe rime-dependenr model, Eqs. (25) and (12) for neu­
rrals and elecrron remperarure are integrated independentiy 
from orher equations, wirh rime-explicir upwind schemes. 
The remaining rransport equations for charge species 
(9)—(11) form a conservative hyperbolic system solved wirh 
rhe Harten-Lax-van Leer (HLL) scheme [29], using rhe ve­
lociry bounds proposed by Davis [30]. Time integration is 
explicir, excepr for rhe source term of Eq. (6) where rhe 
linear dependence on / is accounted for wirh an implicir 
merhod ro ensure stability. 

The implemenrarion of rhe low-frequency model is less 
srraighrforward and deserves some commenrs. Its workings 
are illusrrared wirh a firsr-order explicir rime-marching 
scheme as follows: 

(i) / and N are known ar í0; n, fi, and viw are determined 
ar í0 by solving rhe quasisteady system for charged particles 
(18)-(22) and (14)—(16), and i^is simulraneously determined 
by satisfying Eq. (23); 

(ii) rhe source term for neurrals is computed using rhe 
quantities determined ar stop (i) and rhe valué of / ar í0; 

(iii) N is advanced from í0 to t1 = t0 + dt using Eqs. (25) 
and (26) wirh rhe source term computed ar stop (ii); 

(iv) / is advanced from í0 to íj using rhe valué v¡ 
= d ln IIdt computed ar step (i); and 



(v) return to step (i) with the updated / and N. 
Note, however, that a second-order predictor-corrector 

time-marching scheme is actually used in simulations. The 
quasisteady solution of step (i) is determined using the same 
solver as the time-dependent model, applied to a time-
dependent generalization of Eqs. (19)-(22). The convergence 
to the quasisteady state is forced by a combination of under-
relaxation for the electrón energy equation (aimed at damp-
ing transit-time oscillations) and proportional-integral con­
trol for Eq. (23), whereas v¡ is the process variable and U is 
the set point of the system. 

For both models, the spatial domain is discretized into 81 
nodes. The time step is adaptively determined so as to al-
ways satisfy the Courant-Friedrichs-Lewy condition (for 
charged species in the case of the TD model and for neutrals 
in the case of the LF model). 

APPENDIX C: ASYMPTOTIC LINEAR MODEL 

Let us assume small harmonic perturbations of N and / 
around the steady state, 

N(x,t) = N(x) + N(x)exp(jwt), (Cl) 

I(t)=I+Íexp(jwt). (C2) 

The model (28)-(30) can be subsequently linearized as 

dN — -
joN+V— = -SI-I 

dx 
- I - ~ 

I 

uK](o^ + UNÑ=0, 
I 

N(0) = 0, 

(C3) 

(C4) 

(C5) 

where S = S(0,N) is a function of x that corresponds to the 

valué of S in the steady state. Sv is a function of x that arises 
from the Fréchet differentiation of operator S with respect to 
v¡. Likewise, SN is a linear operator obtained by differentia­
tion of S with respect to N, üv is a scalar that stands for the 
derivative of U with respect to v¡=d\n I/dt, and UN is a 
linear functional obtained by differentiation of U with respect 

to N. Defining operator JC = lSN-ISvü~lAN and functional 
G = -ü~ IÁN, Eqs. (C3) and (C4) can be rewritten in the sim-
pler form 

dN -I -~ 
ja)N+ V— = - yNz-ICN, 

dx T 

J(oZ=QN, 
I 

(C6) 

(C7) 

where y= SI/N simply stands for the steady-state effective 
ionization frequency. Part of the mathematical abstraction 
associated with the linear model can be lifted using the 

Schwartz kernel representation for operator K. and the Riesz 
representation for functional Q, 

[fCN](x)= k(x,x')N(x')dx', 
'o 

'o N(x) 
dx, 

(C8) 

(C9) 

which carries the idea that K. and Q are merely weighting 

functions for N and specified in terms of uniquely defined 

distributions k and "^IN. 
Proceeding now to the nondimensionalization of the lin­

ear system, it appears reasonable to assume that a perturba-
tion of N will introduce relative perturbations on the order of 

N/N on the quasisteady state of charged particles, meaning 
in particular that 

1 - . N 
zSNN=0\ -
S \N/ 

1 - . N 
-UNN=0\ -
U \N/ 

(CIO) 

In order to estimate the response of the quasisteady state of 
charged particles to oscillations of /, let us observe that 
electron-density conservation equation DnlDt=IS can be ex-
pressed in terms of the scaled plasma density n^n/I as 

SDt 
oc 1 

n 1 di 

ISIdt' 
(cu) 

where DIDt stands for the convective derivative. Since the 
left-hand side of Eq. (CU) is a function of S and n which are 
both quasisteady quantities, the second term in the right-hand 
side makes it apparent that small oscillations of / introduce 

relative perturbations on the order of (ñ/IS) X (jwl/l) on the 
quasisteady state variables for charged species, meaning in 
particular that 

(C12) 

Having in mind that IS=-VdÑ/dx and making use of Eqs. 
(CIO) and (C12), the following nondimensional quantities of 
order unity are introduced: 

* x 

u,, n\ 

- = o{-), u \IS 

S,, / n 

— = o — S \IS 

y*(x*) = -y(x), 

* V ) = ^°^(X), 
VN0 

k*(x*,x*') = —k(x,x'), 

where n0 and JV0 are characteristic densities for the plasma 
and for neutrals. The frequency and the state variables are 



made nondimensional irrespective of their actual orders of 
magnitude as follows: 

O) = ~0), 
V 

N*(x*) 

r 

N(x) 

N() ' 

I 

The linear breathing model is now expressed in a nondimen­
sional form, 

JÜ/N* + — ^ = - y*N*r - K,*N* 
dx 

jw*I*=-\ ^—dx, 
fiJo iV* 

(C13) 

(C14) 

N*(0) = 0, (C15) 

which highlights the presence of a small parameter 

«o <s 1. (C16) 

Turning now to the solution of the linearized model, we shall 
admit a priori the orderings Re(w*)í> 1 and lm(<i>*) = 0 ( l ) ; 
their consistency with the solution arrived at is eventually 
verified. The exact solution of Eqs. (C13) and (C15) is of the 
form 

N*(X*) : {y*(x"W(x")r+ [)C*N*](x")} 

Xexp[/w*(x*' -x*)]dx*', (C17) 

which can be integrated by parts as 

Ñ*(x*) =jra>*-\y\x)Ñ*(x) - / (0) iV*(0)exp(-Ja ,V)] 

+jco*-1{(ÍC*Ñ*](x*) - ()C*Ñ*](0)ex.p(-jw*x*)} 

+ Í*0((o*-2)+Ñ*0(M*-2). (C18) 

Remembering that k* is of order unity and assuming that it is 
a sufficiently well-behaved function of x* and x*', it can be 

stated that ~JC*Ñ* is of order Ñ*. Therefore, Ñ* is O{í*o>*~1) at 
the leading order, 

Ñ*(x*) =jÍ*co*-1[f(x)Ñ*(x) - y*(0)Ñ*(0)exp(-jco*x*)] 

+ Í*0(w*-2). (C19) 

The perturbation of neutral density consists thus of a short-
wavelength oscillatory wave [term in exp(-jw*x*)], superim-
posed on a standing wave. Injecting Eq. (C19) into Eq. (C14) 
and provided that 'íf* is a sufficiently well-behaved function 
of x*, the integral of the short-wave oscillatory component 
becomes a residual of order 0(&)*_1) and w* satisfies 

a/2 = y{x*W{x*)dx* + -0{ca*-1) + O ( l ) . 

(C20) 

Since y* and 'íf* are real-valued functions of order unity, the 
above relation implies that Re(<w*)^e"raí> 1 and Im(&>*) 
< C ( 1 ) , thus confirming the premises on which the approxi-

mation of N* was derived. A corollary of this analysis is that 

operator K. can be neglected in Eq. (C6) if only the leading-

order expansions of w and N are sought. 
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