
Approaches to Ontology Development by Non Ontology Experts

Guadalupe Aguado de Cea, Elena Montiel-Ponsoda, Mari Carmen Suarez-Figueroa
Ontology Engineering Group, Departamento de Inteligencia Artificial, Facultad de Informdtica,

Vniversidad Politecnica de Madrid,
Campus de Montegancedo s/n, 28660 Boadilla del Monte, Madrid Spain

(lupe, emontiel, mcsuarezj@fi.upm.es

Abstract

Untrained users in the development of ontologies
are challenged by the formal representation languages
that underlie the most common ontology editing tools.
To reduce that barrier, many efforts have gone in the
creation of Controlled Languages (CL) translatable
into ontology structures. However, CLs fall short of
addressing a more profound problem: the selection of
the most appropriate ontology modelling component
for a certain modelling problem, regardless of the
underlying representation paradigm. With the aim of
approaching non ontology expert's difficulties in
selecting the most appropriate modelling solution, we
propose a Natural Language (NL) guided approach
based on a repository of Lexico-Syntactic Patterns
associated to consensual modelling solutions, i.e.,
Ontology Design Patterns. By relying on this
repository, untrained users can formulate in NL what
they want to model in the ontology, and obtain the
corresponding design pattern for the modelling issue.

1. Introduction

In the development of the Semantic Web,
ontologies are the knowledge organization systems that
have shown most suitable for providing meaning or
semantics to the Web. The most quoted definition of
ontology in the Artificial Intelligence literature states
that an ontologly is "an explicit specification of a
conceptualization" [12]. To put it in simple words, we
can define ontologies as consensual machine-readable
models that represent a certain parcel of knowledge by
a) identifying the set of concepts that describe that
knowledge, b) making explicit the main properties and
restrictions of those concepts, and c) establishing
relations among them.

In the last years, institutions and enterprises
worldwide have expressed their interest in organizing

the great amounts of information they manage in
ontologies. The main reason for this is that ontologies
have proven to represent powerful and sound means of
structuring information allowing machines to carry out
complex reasoning operations with the information.
However, constructing an ontology requires to follow
a certain methodology1, to have a good command of
ontology editing tools, and to be proficient in formal
representation languages. Because of this, the
construction of ontologies has been mainly limited to
projects in which domain experts cooperate with
ontology engineers in the development of ontologies.
The main obstacle for domain experts in building
ontologies on their own has been seen in relation with
their understanding of the representation paradigms
used to encode ontology models.

Nowadays, one of the most followed paradigms for
the creation of ontologies is Description Logics (DL)
[2], on which the well-known Web Ontology
Language (OWL)2 relies. DL refers to a set of
knowledge representation languages based on
first-'order predicate logics whose understanding
demands good background in Logics. Most ontology
editors (Protege3, TopBraid Composer4,
NeOnToolkit5, etc.) support DL and are considered
quite inaccessible to all but ontology modelling experts
[8,9,14,15],

With the aim of overcoming the obstacles imposed
by ontology languages, many efforts in the Ontology
Engineering community have been directed to the
creation of simplified syntaxes including elements of
Natural Languages (NL) that try to disguise Logics. In
this sense, research has been devoted to the creation of

For a review on ontology development methodologies see fl 1]

http ://www. w3. org/TR/o wl-features/

http: //protege. Stanford. edit/

http://www. topquadrant com/

http: //www. neon-toolkit, o rg/

mailto:mcsuarezj@fi.upm.es
http://www

Controlled Languages (CLs) to make ontology
languages more readable and understandable to non
ontology experts. A subset of these CLs will be
handled in section 2. There, we will also discuss the
suitability and main drawbacks of a CL approach for
the development of ontologies. After that, we will
comment on the dichotomy CL vs. NL in section 3.
Then, our main goal is to present our approach for the
development of ontologies aimed also at non ontology
experts that introduces two main novelties: 1) it allows
users the formulation of sentences in a NL guided
approach conveying what they want to model in the
ontology, and 2) it enables the reuse of consensual
ontology modelling components guaranteeing the
modelling correctness of the resulting ontology. This
approach is based on a repository of Lexico-Syntactic
Patterns and its correspondence to Ontology Design
Patterns, described in section 4. Section 5 will
exemplify how we expect the proposed NL guided
approach to work. We will also comment on some of
the difficulties imposed by the use of unrestricted NL
and some of the envisioned strategies to overcome
limitations. Finally, we will conclude the paper in
section 6.

2. Controlled languages for ontology
development

Controlled Languages (CLs) in the field of
Knowledge Engineering have been seen as attractive
ways of making formal representations accessible and
understandable to domain experts. Since the early 90s,
many efforts have gone in the design of CLs for the
development of knowledge-based systems [18]. As in
other domains in which CLs have been widely applied
(machine translation, generation of technical
documents, etc.), these are understood as "subsets of
natural languages whose grammars and dictionaries
have been restricted in order to reduce or eliminate
both ambiguity and complexity" [22]. In Ontology
Engineering, CLs are supposed to allow users to
design, create, and manage information spaces without
knowledge of complicated syntax (such as the OWL
syntax) or ontology engineering tools [10].

In this paper, we are going to restrict the state-of-
the-art on CLs to some that have been designed to
facilitate the development of ontologies to non
ontology experts. In this regard, we will consider the
Manchester OWL Syntax [14], Attempto Controlled
English (ACE) [15], the Rabbit syntax [9], the Sydney
OWL Syntax [8], and CLOnE (Controlled Language
for Ontology Editing) [10].

The whole set of CLs handled here has been
designed to express the logical content of ontologies in
OWL DL. However, the formulation of statements in
DL is not natural for users with no background in
Logics. In order to state the properties of ontology
classes and the type of relationships that are permitted
among classes, a set of facts has to be made explicit,
which is otherwise implicit in NL expressions. For
example, in the case of herbivores being animals that
eat plants, it should be made explicit that the relation
"eat" in regard to herbivores can only be established to
"plants". This would be formulated in DL in a
compacted way by means of mathematical symbols as:

H e r b i v o r e V e a t P l a n t

(V meaning "allValuesFrom", i.e., that the object
of the predicate "eat" in this specific relation can only
be "Plant").

With the aim of making this syntax more readable
to non-logicians, the Manchester Syntax came into
existence [14]. Symbols in DL were substituted by NL
keywords in English, so that logical expressions such
as "intersectionOf", "unionOf', "someValuesFrom", or
"allValuesFrom" became "and", "or", "some" and
"only", respectively. In this way, the sentence above
introduced about herbivores, would become
"Herbivore eats only Plant". The main drawback still
remained the artificiality of the formulations that just
managed to somehow disguise the underlying DL
syntax. Users still needed to be conscious of the
importance of explicitly declaring that "it is only plants
that herbivores eat, and nothing else".

Shortly afterwards, some CLs were created
adopting the philosophy behind the Manchester Syntax
of making the OWL syntax accessible to the average
user. These CLs were ACE (or a subset of ACE called
OWL ACE [16]), Rabbit and the Sydney OWL
Syntax. The motivation behind their creation was the
unnaturalness still present in the Manchester Syntax
(lack of determiners, heavy use of parentheses [15])
that posed some obstacles to the domain expert in
authoring ontologies.

ACE, Rabbit and the Sydney OWL Syntax are all
based on well-defined subsets of the English language
that translate directly into OWL, and that leave no
place for ambiguities. ACE and the Sydney OWL
Syntax make use of an intermediate syntax between
the controlled language and OWL (Discourse
Representation Structure in the case of ACE, and
OWL Functional-Style Syntax for the Sydney Syntax)
[21]. Rabbit, however, utilizes the GATE6 Natural

http://gate.ac.uk/

http://gate.ac.uk/

Language Processing (NLP) architecture to convert the
controlled language into OWL. In any case, users are
required to become familiar with the languages before
muxg them for editing ontologies. Whereas ACE and
the Sydney Syntax are intended to people with no
training in formal logics as end users, Rabbit identifies
ss end users domain experts aided by knowledge
engineers, thus somehow hinting at the difficulties
ontology modelling may still impose despite the CL. In
fact, sentences resulting from the use of the three
controlled languages still sound unnatural (cf. Table
I). Examples of sentences or even tool support are
foreseen for helping users to familiarize with the
languages. Regarding these three initiatives, a task
force7 was formed in 2007 to work towards a common
Controlled Natural Language Syntax for OWL 1.1
[2]]. since approaches were found similar in form and
purpose.

lie 1. Examples of sentences in ACE
Rabbit and the Sydney Syntax [21]

*CE

lUroit

;--CTey Syntax

Examples
Every bourne is a stream. Every river-stretch has-
part at most 2 confluences.
Every Bourne is a kind of Stream. Every River
Stretch has part at most two confluences.
Every bourne is a stream. Every river stretch has
at most 2 confluences as a part.

Finally, we will refer to the CLOnE approach and
its software implementation CLIE. CLOnE is also a
controlled language based on the English grammar that
rdies on GATE NLP tools for matching the sentence
m controlled language to a syntactic rule that
determines the nature of the ontology element to be
Modelled. Users are supposed to easily learn the
language by following examples and guiding rules.
Language and editor are intended to users without
expertise in ontology modelling, although resulting
sentences may also remind of the syntax underlying
me ontology, as in the previous examples (see Table
1).

Table 2. Examples of sentences In CLOnE [10]

LGnE

Examples
Universities and agent are types of persons.
Projects have string names.

. 1 . Main limitations of CLs in ontology

Up to now, the reviewed approaches have as
starting point the OWL DL syntax and create a layer
above it, supposedly closer to the syntax of a natural

http ://wiki. webont. org/page/OwlCn f

language than to formal logics. However, they keep
being quite accurate reflections of the ontological
structure.

A part from the unnaturalness of sentences, we see
some drawbacks in the analysed CLs that should be
overcome when aiming at making OWL ontologies
accessible to people with no training in formal logics.
These problems can be summarized as: 1) CLs do not
provide users any help in solving modelling
difficulties; 2) they require some effort on the side of
the user to learn, read and write statements; 3) they
have all been developed as subsets of the English
language.

1) Regarding the first problem we have identified,
we are of the opinion that users may have more
problems finding out which ontology structure or
element allows them to represent certain content in the
ontology, than selecting the rule that the CL offers
them to model it. In order to understand this position,
let us consider the following example. Imagine the user
wants to model the relation between a "river stretch"
and its "confluences", as in some of the examples in
Table 1. The user will have to be previously conscious
of the fact that a meronymy relation (part-of) is
holding between the two concepts. Then, as a second
step, (s)he will search for the corresponding CL
formulation (e.g., "has-part" in ACE, or "has...as part"
in the Sydney Syntax) that allows her or him to model
that relation in the ontology. However, selecting the
ontological relation that the untrained user needs to
solve a certain modelling issue is not a trivial task, as
some experiments have revealed [1], In the mentioned
experiments, Computer Science students with some
background in modelling had to identify the most
appropriate modelling solution given a modelling
problem expressed in NL of the type: A research plan
is composed by a theoretical plan and an experimental
plan. Results showed that nearly half of the solutions
(41 %) were erroneous according to the golden
standard. It is worth mentioning, that the meronymy
relation (part-of) was mainly confused with the
hypernymy-hyponym relation (subclass-of), among
other erroneous solutions.

This gives just some hints of the difficulties
untrained users face when having to choose for the
most appropriate modelling solution. One could argue
that this is to a lesser extent related to CLs in
themselves. However, we consider that most of the
problems domain experts have when developing
ontologies are rather related with modelling decisions,
than with choosing the CL syntax to express it. We
believe mat this is a more demanding and complex
issue not really considered by the approaches to CLs
analysed in section 2, and which should be handled

together. In fact, the analysed approaches on CLs
provide no guidelines to the user for making that kind
of modelling decisions.

2) It must also be noted that learning to use a CL is
by no means trivial, let alone it is fairly close to logics.
The implications are not only limited to learning some
new grammar structures or rules, but to understand
what they represent and imply when modelling. And
this bring us to previous point 1), since the difficulties
in learning new rules is tightly connected with the
content they allow to model in the ontology.

Additionally, some experiments have revealed that
users prefer the use of full NL when interacting with
machines because "they can communicate their
information need in a familiar and natural way without
having to think of appropriate keywords in order to
find what they are looking for" [17]. This result has
been obtained in recent usability studies conducted to
investigate how useful Natural Language Interfaces
(NLI) are to find data in the Semantic Web. From the
four NLIs tested by the 48 users involved in the
experiment, the one that required full English
questions was judged to be the most useful and "best-
liked query interface".

3) To the best of our knowledge, CLs aimed at
helping users to semantically represent domain content
in OWL are only available for the English language.
From our point of view, this represents an obstacle to
domain experts no proficient in English.

Because of these limitations, we propose a novel
approach that will allow domain experts to move away
from ontology modelling paradigms and underlying
representation languages, and permit them to
concentrate on their modelling needs. Our proposal
will be explained in section 4..

3. Controlled Language vs. full Natural
Language

A key debate that takes place once and again is the
dichotomy between "naturalists" vs. "formalist"
approaches to CLs [7]. The set of approaches
presented in section 2 can be said to follow a
"formalist" paradigm, since they comply with the
conditions of being "well-defined, predictable, and
deterministically translatable into a formal
representation". On the other hand, a "naturalist" CL
may be closer to the user, but suffer from language
ambiguities. It is undeniable that language ambiguities
demand sound NLP tools to discern which the correct
interpretation of a sentence is in a certain context.
However, it is unquestionable as well, that formalist

approaches require a great effort on the side of the user
in two aspects:

a) the time and effort the user has to put in learning
the language, as pointed out in section 2.1

b) the idea that the more "controlled" the language
is, the more the user needs to understand the
underlying representation language, or in our case,
ontology modelling issues

For this and other reasons, we will detail in the
following why we have opted for a sort of naturalist
approach in which the way of controlling the user
input is made by means of some recommendations;
otherwise, users can express in NL what they want to
model in the ontology. However, the most innovative
aspect of our approach is that we identify those
linguistic structures that correspond to consensual
modelling components. By doing it so, we allow users
to express in NL a modelling issue, and translate it into
an ontological structure identified as "best practices"
by the Ontology Engineering community.

4. Lexico-Syntactic Patterns for ontology
development

The basis of this approach is a repository of
linguistic structures or Lexico-Syntactic Patterns
(LSPs) identified for different NLs (English, Spanish
and German) and matched to consensual modelling
solutions called Ontology Design Patterns (ODPs),
which are being developed within the NeOn project8.
The identification of linguistic constructs that convey a
relation of interest has been applied in Computational
Linguistics with several purposes. Hearst [13] was the
first in using them for the task of automatically
discovering relations from machine readable
dictionaries. The object of her research was the
hypernyrn-hymponym relation, but her patterns were
extended by other authors for covering relations such
as meronymy, causality, functionality, etc., e.g. [3,5].
In Ontology Engineering, linguistic patterns have been
mainly applied with two objectives: 1) to learn classes,
attributes, or instances for ontology population, or 2)
to learn taxonomic and non-taxonomic relations for
ontology building. For a compendium on techniques
and tools see [6].

Our approach, however, contributes to the research
on LSPs in a novel perspective that focuses on the
support to ontology modelling. In this sense, LSPs are
rather a means than an end in itself, because they serve
the identification of NL expressions that linguistically
realize them, with the end of establishing a

http :/Avww.neon-proj ect. org

correspondence to a modelling component. The set of
modelling components we are considering at this stage of
the research have been developed within the NeOn project
[20]. Specifically, our LSPs combine lexical items with
syntactic dependencies and have verbs as main elements.
A first version of the repository has been published in [1].
The aim of this repository is to serve as basis to a tool for
enabling domain expert's formulations in guided NLs
(English, Spanish and German), giving in return an
ontological structure or ODP. The construction of this
repository is what demands the most effort on the side of
the repository designer, but releases end users of having to
understand ontology representation formalisms. The
current repository is in a more advanced stage for English,
and in a more initial one for Spanish and German.

4.1. L,SPs-ODPs correspondence

With the aim of illustrating the process of
identification of LSPs and the correspondence
establishment to ODPs, let us consider the following
sentences in English:

1. Proteins form part of the cell membrane.
2. Water is made up of hydrogen and oxygene.

Both are fully natural sentences in English
expressing a meronymy relation, In the first one, the
subject of the sentence (proteins) is the "part" element
in the relation, whereas in the second one, the objects
in the relation (hydrogen and oxygene) are the "parts"
or components of "water". We have also identified a
set of verbal forms that behave semantically and
syntactically in the same way, such as: "to contain",
"to hold", or "to consist of, and have grouped them
under Verbs of Composition (COMP). Since we come
across the same linguistic structure for expressing the
relation between "parts" and its "whole" across
different domains, we can identify it as an LSP in
English for the "part-whole" relation, and establish a
correspondence to the ODP for Simple Part-Whole
relation (CP-PW-01), according to the classification in
[20].

Finally, linguistic constructs are formalized as
shown in Table 3, according to a "Backus Naur Form"
extension. The set of restricted symbols and
abbreviations used in die formalization of the LSPs
included here is to be seen in an Appendix at the end
of the paper.

Table 3. LSPs formalization for CP-PW-01 [1]
Formalization

(NP<part>,)* and NP<part> COMP [CN] NP<whole>

However, the correspondence between linguistic
constructs and ontological constructs is not always so
direct and free from ambiguities. Consider the
following examples:

3. Common mass storage devices include disk drives
and tape drives.

4. Reproductive structures in female insects include
ovaries, bursa copulatrix and uterus.

In this case, the same linguistic structure deployed
by the verb to include conveys two different meanings: _
in 3, it expresses a hypernymy-hyponymy relation
between a "Common mass storage device" and its
subtypes "disk drives and tape drives"; and in 4, it
communicates a meronymy relation between
"reproductive structures in female insects" and its parts
"ovaries, bursa copulatrix, uterus".

Both sentences are formalized in the same LSP (see
Table 4). This means to say that the same LSP can
correspond to a hypernymy-hyponymy relation or to a
meronymy relation, i.e. to the ODP for SubclassOf
relation (LP-SC-01) or to the ODP for Simple Part-
Whole relation (CP-PW-01). At this point we need to
rely on sound NLP tools (GATE) and disambiguation
strategies to find the correct modelling solution that we
want to include in the ontology. Some of the
disambiguation strategies being currently developed
will be outlined in section 5.1.

Table 4. LSP formalization for LP-SC-01 / CP-
PW-01

Formalization
NP<ciass> include | comprise) consist of [(NP<ctass >,)* and]

NP<ciass>

Once we have disambiguated if we are dealing with
a hypernymy-hyponymy relation or a meronymy
relation, for a correct modelling in DL we need to
establish if the classes in the hypernym-hyponym
relation are disjoint or exhaustive. In the previous
example Common mass storage devices include disk
drives and tape drives, mis would mean that the
hyponyms in the relation "disk drives and tape drives"
do not share instances (disjointness) and are a
complete enumeration of all the types of "common
mass storage devices" that exist (exhaustiveness). By
determining these features of the hypernym-hyponym
relation, we would be reusing consensual modelling
solutions that guarantee a correct modelling in the
ontology.

NP<whoIe> be COMP [CN] (NP<part>,)* and NP<part>

5. Approach for the development of
ontologies by using LSPs

The repository of LSPs matched to ODPs is the
core element of the NL guided approach we present
here, based on the guidelines proposed in [1]. The
main purpose of the repository is to enable the use of
consensual modelling components to users with little
expertise in Ontology Engineering. The whole process
needs to be supported by a system that automatically
analyses the sentence in NL introduced by the user,
and looks in the LSPs-ODPs repository for the
linguistic structure that best matches the input. We
should keep in mind that by allowing the use of
unrestricted NL, we will have to deal with language
ambiguities. This means that the same linguistic
structure can equally express different ontological
relations (as already exemplified in section 4.1).
Hence, the user input needs to be revised or refined
during the process so that only one option is valid. The
method is mainly divided in three tasks:

Task 1. Formulation. The goal of this task is to
formulate in NL the domain aspect to be modelled.
Since this task is to be included in the wider
framework of an ontology development methodology
(specifically, the NeOn Methodology for Building
Contextualized Ontology Networks [19]), we can assume
that the user has a good command of the knowledge
parcel (s)he wants to model in the ontology. For a
good completion of this task, the user gets a list of
recommendations comparable to some of the rules in
CLs or Simplified Technical English approaches that
specify how to write9 (see Table 5). This is the main
reasonfor referring to this approach as a NL guided
approach.

Table 5. Recommendations for Task 1.
Recommendations

1. Express one topic or idea per sentence.
2. Include in each sentence subject, verb and predicate (Try not to
use pronouns instead of nouns!).
3. Avoid using neither interrogative nor negative sentences.
4. Avoid coordination of phrases, and use only when necessary.
5. Avoid including redundant or unnecessary information that does
not add new content to the idea.
6. Avoid using acronyms.
7. End up each sentence with full stop.
8. In enumerations, use comas to separate elements.

Some of these advices may appear to be
unnecessary, since as has been pointed out in [4],

9

htr^://www.simplifiedenglish.net/en/ste/what_is_simplified_technica
l_en.glish.asp

studies have shown that when users communicate with
machines (specifically, when querying a knowledge
base) they formulate queries in a simple manner, and
"(queries) do not consist of complex sentence
constructs even when users are neither limited by a
conventional search interface nor narrowed by a
restricted query language". In any case,
recommendations in this approach may have the role
of simple reminders.

Task 2. Refinement. The goal of this task is to refine
the linguistic structure the user ha.s introduced because
no correspondence to one ODP has been found. This
might be caused by two reasons: 1) The system does
not recognize the linguistic structure introduced by the
user, because it is not contained in the LSPs-ODPs
repository. 2) The LSPs matched by the system
corresponds to several ODPs that represent different
ontology modelling components, and a disambiguation
process is required. This is the case of the pattern
presented in Table 4.

When confronted with situation 1), users would
have to introduce the input sentence anew. Strategies
to avoid the user being discouraged from using the
system are being investigated. If situation 2) happens,
further information is required to discern among the
possible ODPs. Again, different strategies for the
performance of this task are being investigated, such as
a) interaction with the user; b) search in available
ontologies modelling the same domain of knowledge;
c) search in lexical resources with some semantics
(WordNet10); etc. In section 5.1 we provide an
example of strategy a) for illustration.

Task 2. only takes place if no direct correspondence
to an ODP has been found, otherwise Task 1 is
followed by Task 3.

Task 3. Validation. The goal of this task is to confirm
that the ODP proposed as modelling solution is
correct. The validation is foreseen to be manually
carried out by the user.

5.1. Example of use

In this section, our aim is to exemplify the proposed
NL guided approach for the development of ontologies
reusing consensual modelling components or ODPs.
For better showing the deployment of the three tasks,
we will use the example of a polysemous LSP
conveying hypemymy-hyponymy and meronymy
relations (see Table 4). The method could help in the
following way:

http: //wordnet.princeton. edu/

http://www.simplifiedenglish.net/en/ste/what_is_simplified_technica
http://l_en.glish.asp

Task 1. Formulation. Let us assume that the user
wants to model the hypernymy-hyponymy relation
held between "user-written software" and its subtypes
(spreadsheet templates, word processor macros,
scientific simulations, graphics, animation scripts). The
first task consists in formulating that according to the
recommendations introduced in section 5 (see Table
5). Since the types of "user-written software" are going
to be enumerated, the user will have to take
recommendation number 6 into account, and write
something like: User-written software include
spreadsheet templates, word processor macros,
scientific simulations, graphics, and animation scripts.

Task 2. Refinement. The sentence in NL matches
the LSPs corresponding to hypernymy-hyponymy and
meronymy relations (see Table 4). As already
mentioned, this situation is caused by the ambiguity
present in the polysemous verb to include. An option
would be to interact with the user by means of the so-
called refining questions. In this example, questions
would be:

a) Are spreadsheet templates, word processor
macros, scientific simulations, graphics, and
animation scripts, types of user-written software?

b) Are spreadsheet templates, word processor
macros, scientific simulations, graphics, and
animation scripts, parts of user-written software?

The answer to question a) should be yes, and
question b), no, if the input sentence wants to model a
hypemym-hyponym relation, as we suppose in this
example.

Once the correspondence to the hypernymhyponym
relation ODP (LP-SC-01) has been obtained, this
relation should be further enriched with information
about disjointness and exhaustiveness. A similar
strategy has also been designed, in which the user is
asked:

c) Can certain user-written software belong to the
group of spreadsheet templates, word processor
macros, scientific simulations, graphics, and
animation scripts at the same time? d) Are there any
other types of user-written software? If the answer to
question c) were yes, the system would further model
those hyponyms or subclasses as disjoint classes in the
ontology. If the answer to question

d) were yes, the system would offer the user the
possibility of introducing the missing hyponym(s) in
the input window. On the contrary, the system would
proceed to model those classes as exhaustive.

Task 3. Validation. In return, the system provides a
diagram of the ODP instantiated with the information
of the input sentence in Task 1. Then, the user has to
confirm the suitability of the modelling solution.

This "user-interaction" strategy can be regarded
from a didactic point of view as a way of "teaching"
untrained users how to build ontologies, because users
are made conscious of the sort of information that has
to be made explicit when modelling ontologies.

6. Conclusions

Different approaches to CLs have been created to
enable untrained users in ontology engineering to
understand and formulate formal representations in
ontologies. Although they manage to make the
underlying logic constructs readable in English, they
do not provide any help in the selection process of the
ontology modelling components needed for
representing domain content in the ontology. In the
research presented in this paper, we have tried to
overcome some of the modelling difficulties of non
ontology experts by providing a NL guided approach
that allows the reuse of consensual modelling
solutions, or ODPs, having as a starting point a
description of the modelling problem in NL. We have
discussed some of the limitations imposed by the
analysed CLs as "formalist" approaches versus the
more "naturalist" approach that we suggest. However,
a NL guided approach has some drawbacks as well,
mainly: 1) a great effort has to go on the construction
of a repository of linguistic structures (LSPs) that
correspond to ontology modelling components
(ODPs), and 2) strategies have to be investigated to
cope with NL ambiguities. We are currently working
in the design of strategies to overcome the mentioned
drawbacks, as pointed out in the paper. Further steps in
this research will involve the evaluation of the
proposed approach.

7. Acknowledgements

The research presented here has been supported by
the European project NeOn (FP6-027595), and the
National project GeoBuddies (TSI2007-65677C02).

8. References

[lj G. Aguado de Cea, A. Gomez-Perez, E. Monliel-
Ponsoda, and M.C. Suarez-Figueroa, "Natural Language-
based Approach for Helping in the Reuse of Ontology
Design Patterns", in Proc. of EKAW08, LNCS Springer
5268, 2008, pp. 32-47.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,
and P. F. Patel-Schneider (eds.), The Description Logic
Handbook: Theory, Implementation and Application,
Cambridge University Press, 2002

[3] M. Berland and E. Charniak, "Finding parts in very large
corpora", in Proc. of the 37th Annual Meeting of the ACL,
1999, pp. 57-64.

[4] A. Bernstein, E. Kaufinann, A. Gohring, and C. Kiefer,
"Querying ontologies: A controlled english interface for end-
users", in Proc. of ISWC2005, 2005, pp.112-126.

[5] P. Cimiano, and W. Johanna, "Automatic Acquisition of
Ranked Qualia Structures from the Web", in Proc. of the
Annual Meeting of the ACL, 2007, pp. 888-895.

[6] P. Cimiano, Ontology Learning and Population from
Text. Algorithms, Evaluation and Applications, Springer,
2006.

[7] P. Clark, P. Harrison, W.R. Murray, J. Thompson,
"Naturalness vs. Predictability: A Key Debate in Controlled
Languages", in CNL2009, 2009.

[8] A. Cregan, R. Schwitter, T. Meyer, "Sydney OWL
Syntax -towards a Controlled Natural Language Syntax for
OWL 1.1", in Proc. of OWLED, 2007.

[9] C. Dolbear, G. Hart, J. Goodwin, S. Zhou, K. Kovacs,
"The Rabbit language: description, syntax and conversion to
OWL", Ordenance Survey Research, Technical Report,
2007.

[10] A. Funk, V. Tablan, K. Bontcheva, H. Cunningham, B.
Davis, S. Handschuh, "CLOnE: Controlled Language for
Ontology Editing", in Proc. of ISWC, 2007.

[11] A. Gomez-Perez, M. Fernandez-L6pez, O. Corcho,
Ontological Engineering, Springer Verlag, 2003.

[12] T. R. Gruber, "Toward principles for the design of
ontologies used for knowledge sharing", Pennsylvania:
School of information Sciences and Technology (1ST).
Pennsylvania State University, 1993.

[13] M. A. Hearst, "Automatic Acquisition of Hyponyms
from Large Text Corpora", in Proc. of Coling92, 1992, pp.
539-545.

[14] M. Horridge, N. Drummond, J. Goodwin, A. Rector, R.
Stevens, and 1L H Wang, "The Manchester OWL Syntax", in
Proc. of OWLED, 2006.

[15] K. Kaljurand and N.E. Fuchs, "Verbalizing OWL in
Attempto Controlled English", in Proc. of OWLED, 2007.

[16] K. Kaljurand and N.E. Fuchs, "Bidirectional mapping

between OWL DL and Attempto Controlled English", in 4
Workshop on Principles and Practice of Semantic Web
Reasoning, Budva, Montenegro, 2006.

[17] E. Kaufmann, and A. Berstein, "How Useful Are
Natural Language Interfaces to the Semantic Web for Casual
End-Users?", in K. Aberer et al. (eds.), ISWC/ASWC 2007,
2007, pp. 281-294.

[18] S.G. Pulman, "Controlled Language for Knowledge
Representation", in Proc. of CLAW96, 1996, pp. 233-242.

[19] M.C. Suarez-Figueroa, et al., "NeOn D5.4.2. Revision
and Extension of the NeOn Methodology for Building
Contextualized Ontology Networks", NeOn Project, 2009.

[20] M.C. Suarez-Figueroa, S. Brockmans, A. Gangemi, A.
G6mez-Perez, J. Lehmann, H. Lewen, V. Presutti, and M.
Sabou, "NeOn D5.1.1. NeOn Modelling Components",
NeOn Project, 2007.

[21] R.Schwitter, K. Kaljurand, A. Cregan, C. Dolbear and
Hart, "A Comparison of three Controlled Natural Languages
for OWL 1.1", in Proc. of OWLED 2008 DC, 2008.

[22] Schwitter, R., "Controlled natural languages. Technical
report", Centre for Language Technology, Macquarie
University, 2007

Appendix

SYMBOLS & ABBREVIA TtONS in LSPs

CD

CN

COMP

NP<...
>

PARA

pUAN

!)
*
(]

Cardinal Number.

Class Name. Generic names for semantic roles usually
accompanied by preposition, such as class, type, category.
Verbs of Composition. Set of verbs meaning thai something is
made up of different parts Some of the most representative ones
are: contain, hold, consist of, compose of, make up of, form of/by,
constitute of/by.
Noun Phrase. It is defined as a phrase whose head is a noun or a
pronoun, optionally accompanied by a set of modifiers, and that
functions as the subject or object of a verb. NP is followed by the
semantic role played by the concept it represents in the conceptual
relation in question in <...>, e.g., class, subclass.

Paralinguistic symbols like colon, or more complex structures as
as follows, etc.
Quantifiers such as all, some, most, many, several, every.
Parentheses jnuup two or more elements.
Asterisk indicates repetition.
Elements in brackets are meant to be optional, which means that
they can be present cither at that stage of the sentence or not, and
by default of appearance, the pattern remains unmodified.

