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Abstract—An analysis of the error signal of the Least-Mean-
Square (LMS) algorithm is conducted from the robust control 
theory viewpoint. The difference equation that relates the input of 
the LMS algorithm and the error signal is presented. This equa­
tion is used to build the matrix S that maps the input vector to 
the error vector. It is shown that S has at least one singular value 
greater than 1. Therefore, the system may amplify noise at high 
frequencies. Nevertheless, the tap-weight vector may be chosen 
to prevent that noise amplification and improve the disturbance 
rejection performance of the LMS algorithm. 

Index Terms—Error signal, LMS algorithm, singular values, 
tap-weight vector. 

I. INTRODUCTION 

T HE LMS algorithm has the diversity to be used in a broad 
range of applications [1], [2]. However, testing the robust­

ness of such an algorithm has not been an easy task and several 
researchers have tried it from the control theory point of view 
[2]-[9]. Also, in [10] the authors carried out a study of the sta­
bility of the algorithm. 

In this paper, we formulate the LMS as usual [2], [7]. The 
entries of the algorithm are u(n) (the tap-reference vector at the 
time instant n), d{n) (the primary input at the time instant n) and 
w(0) (the initial value of the tap-weight vector of the transversal 
filter). After N iterations (starting from n = 0), we obtain the 
error vector e = [e(0)...e(iV — 1)] and the vector r given by 

u(n) 

r = 

d(0)-wff(0)u(0) 

d(N - 1) -wH(0)u(N - 1) 

(1) 

Here we show that, under certain conditions, 

\ j r e . — > 1. (2) 

By taking into consideration the one degree-of-freedom con­
trol configuration for the LMS algorithm shown in [3], from [11] 
it can be seen that Gre is equal to or less than the oo-norm of the 
sensitivity function [3]-[5]. Therefore, for the case under anal-
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Fig. 1. General block diagram of LMS adaptive filter. 

ysis, the magnitude of such a function may be greater than 1. 
What is more, as this function is the same as the transfer function 
from the disturbance on the plant output to the estimate of the im­
portant information [2] (i.e., the output signal in [3]), (2) means 
that the LMS algorithm may amplify measurement noise and 
disturbances on the plant output at high frequencies [11], [12]. 

Moreover, in this paper it is shown that in spite of the fact 
that the designer chooses the value of the step-size parameter 
for H°° optimality as given in [2], [8], [9], Gre may still be 
greater than 1. The methods developed in [3]-[7] are only valid 
for deterministic or stationary signals. They use modern control 
(stochastic control) or classical control technics [13], [14], and 
they do not guarantee that Gre < 1. 

Finally, we show that this problem may be solved by choosing 
a suitable initial value of the tap-weight vector of the transversal 
filter w(0). 

II. PROBLEM FORMULATION 

We consider the closed-loop system shown in Fig. 1 (see [2, 
Fig. 5.1]). 

At the time instant n, d{n) and u(n) are samples of the input 
signals -primary and reference signals, respectively- of the al­
gorithm used to build the input vector r defined in (1), where 
the tap-reference vector u(n) is given by 

u(n) = [u(n) u(n-M+l)f (3) 

and M is the length of the transversal filter. Also, d(n) is an 
estimate of the important information, and e(n) is the control 
error. 

The gain from the input r to the error e is defined by 

Kjre — ||e| 
llrll 

(4) 

The problem is to design an LMS adaptive filter such that the 
gain Gre given by (4) meets the performance requirement that 
Gre < 1. 

III. ERROR SIGNAL OF THE LMS ALGORITHM 

For the analysis of the LMS algorithm, let us consider the 
input and output signals as they are defined in Section II and 



shown in Fig. 1. Also, at the time instant n, the tap-weight vector 
of the transversal filter is given by 

IV. ANALYSIS OF THE ERROR SIGNAL 

OF THE LMS ALGORITHM 

w(n) = [w0(n) wi(n) ••• wM-i(n)] (5) 

and the estimate of the important information is 

d(n) = wH(n)u(n). (6) 

According to [1], [2], the LMS algorithm can be summarized 
in the following two steps: 

1) The algorithm should be initialized by using a prior knowl­
edge of w(0) if available or, if not, set w(0) = 0. 

2) From n — 0 , . . . . N — 1 compute the error signal and 
update the tap-weight vector of the transversal filter by 
using (7): 

e(n) — d(n) — d(n) 

w(n + 1) = w(n) + /xe*(n)u(n) (7) 

where /J, is the step-size parameter. 
Therefore, by iterating (7) w(n) and d(n) can be written as 

n - l 

Before presenting the fundamental theorems of this section, 
recall that the norm of a matrix A is defined as 

sup 
x#0 

lAxll 

xl 

and this supremum is achieved [15]. Also, ||A|| = amax 

(largest singular value of A). If A is invertible, then 

. - H . (A" 1) 
.(A) 

(14) 

(A) 

(15) 

w ( n ) = w ( 0 ) + /x^V(fc)u(A) (8) 
fc=0 

n — 1 

d(n) = e(n) + wH (O)u(n) + /x ^ e(k)uH(k)u(n). (9) 
k=0 

Thus, if the LMS algorithm is run for N iterations, starting 
from n = 0, and we define c(n) = w i f(0)u(n), then (9) can be 
written in matrix form as follows 

d = c + Qe (10) 

where e is the error vector, d = [d(0) • • • d(N - 1)] , c = 
=(0) s ( i V - l ) ] \ Q = I + /xTand 

0 
uff(0)u(l) 
uff(0)u(2) 

0 
0 

uff(l)u(2) 

... o 

... o 

... o 

uH(0)u(N - 1) uH(l)u(N-l) 0 

(11) 

T is a strictly lower triangular matrix and it does not vanish 
unless the reference input signal is a Delta signal. However, this 
case will not be taken into consideration in this paper. So, from 
now on, T / O . 

Since Q is invertible, the error vector can be given by 

e = C T 1 ( d - c ) . (12) 

Finally, defining S = Q 1 and recalling that r = d - c we 
obtain 

Sr. (13) 

where <rmin(A) is the least singular value of A. 
Having made the above statements, at this point it is impor­

tant to highlight that the performance behavior of the LMS al­
gorithm is related to the value of the quotient given by (4): 
Gre = ||e||/||r|| and the aim of this section is to analyze the 
gain Gre of the LMS algorithm. 

Theorem 1: Let L ^ 0 be a square strictly lower triangular 
matrix (i.e., lij = 0. i < j) and I the identity matrix; define 
A := I + L then 

0 < <rmin(A) < 1 < a max 
(A). (16) 

Proof: Let Lj ^ 0 be the j t h column of L and write it as 

0 
b , 

(17) 

If lj is the unit vector with 1 in the jtli position, we have 

<(A) IAII > HAL-

= A/1 b j | | 2 > l . (18) 

The other inequality follows easily taking into account that 
the norm of A - 1 is greater than 1 because A - 1 has the same 
structure as A, i.e., lower triangular with l's on the diagonal. 
Then | |A_ 1 | | > 1 and 

,(A) 
1 

< 1. (19) 

Theorem 2: For any choice of w(0), (i ^ 0 and u (with at 
least two nonzero components), there exists a vector d0 such 
that the corresponding r0 and the error e0 verify 

|e0| 

IMI > I. (20) 

Proof: The algorithm admits the matrix expression e = Sr 
of (13). Taking norms, we consider the relative error 

llfll 
Ii'l 

ISrll 
< nasi (21) 

and, in accordance with (14), the spectral norm of S is achieved 
for a vector r0 and following Theorem 1, it is greater than 1: 

|Sr0 | 

IMI 
= ||S|| = <rmax(5) > 1. (22) 



Once r0 is given, for the reference signal d0 = r0 + c, the 
corresponding gain [see (2)] verifies Groeo > 1. • 

Remark 1: 
• Note that being T a nilpotent matrix of order N, one has 

y V - l / V - l r r u V - l S = (I + /xT)-1 = I - /xT + • • • + ( - l ) J V - y v - 1 T J ' 

It is obvious that the j t h column of S can be written as 

0 
1 (23) 

for some vector v,- depending (polynomially) itself on [i. 
Hence, for any value of /J, ^ 0, 

ISII > IIS; (l + \tf\\vj\\2)V2>l. (24) 

• Considering the LMS algorithm as a system that trans­
forms the excitation r into the error e, it can be said that 
the gain of such a system may be greater than 1 regardless 
the choice of w(0) and / J / 0 . 

Corollary 1: Given the matrix S, for each value of a € 
[cmm(S); (Tmax(S)] there exists a vector x such that 

ISxIl 

xl 
a. (25) 

In particular, for a < 1, if x = d — c for some w(0) (recall 
that the components of c are c(n) = wH(0)u(n)), then the 
corresponding error e = S(d - c) will be bounded in norm by 
|| d - c||. The aim of next section is to discuss the best choice of 
w(0) and when it is feasible. 

V. BEST CHOICE OF W ( 0 ) 

As we have shown, given any d, u, /i and w (0), the error 
norm ||e|| is not always guaranteed to be bounded by ||r||: ac­
cording to Corollary 1, for some choices of w (0) we may ob­
tain ||e|| > ||r||, and for other choices of w (0) we may ob­
tain ||e|| < ||r||. Hence, the key question arises: how can we 
choose w (0) such that the associate vector c guarantees that 
||e|| < | | d - c | | ? 

To this aim, let us compute the singular value decomposition 
of S : S = U S V f f where U, V are unitary matrices, and 
S = diag (<JI, . . . , <TJV) is the diagonal matrix which contains 
the singular values of S, in decreasing order. As we know, some 
of them are greater than 1, and some others are less than 1. Let 
K denote the number of singular values greater than 1: 

(J\ > • • • > UK > 1 > &K+1 > • • • > • • • > <7JV. 

With this notation we state that 

||e|| = ||Sr|| = | |UEV H r | | = | |SV H r | | = ||Sy|| (26) 

where we have defined y = V ^ r , and we have used the fact 
that the unitary matrices U, V preserve the Euclidean norm. By 
the same reason, ||y|| = llV^rll = ||r||. Hence, 

and this property is fulfilled if and only if 

N N 

5>?M2<Eiwi2. (28) 
i = l . 7 = 1 

Unfortunately, not every vector y satisfies this condition, be­
cause not every <jj is less than or equal to 1. 

But not everything is lost: if we impose the K first compo­
nents of y to be null, then condition (28) is satisfied: 

N 

E -, 
j=K+l 

2 I |2 s- E \vA 
j=K+l 

(29) 

since tjj < 1 for K + 1 < j < N. In other words, it suffices to 
choose c such that y = VHr verifies y\ = • • • = yx = 0; in 
this case, ||e|| < ||r|| will be guaranteed. 

This sufficient condition is equivalent to the matrix equation 

Vf-r = 0 (30) 

where V^ is the submatrix of VH containing its first K rows. 
As r = d - c, it suffices to solve the linear system 

Vf c = Vgd. (31) 

But c cannot be any arbitrary vector: recall that c(n) 
wH (0) u (n) = u T (n) w* (0). Matricially, 

u T (0 ) 
u T ( l ) 

u T (N - 1) 

(0) 

u (0) 0 

u(l) w(0) '•• 

u(N-l) ... ••• 

Mw* (0) 

0 

0 

u (N - M) 

?*(Q) 

(32) 

where M is an iV-by-M lower triangular Toeplitz matrix whose 
j t h row contains vector u T (;/); besides, its columns contain the 
signal u, windowed by a shifted window of width N. 

By introducing(32) in (31), we have proven the following re­
sult: 

Theorem 3: If w (0) verifies 

VgMw* (0) = V g d (33) 

then w (0) is the best choice for initial vector of the LMS algo­
rithm, since it guarantees that ||e|| < ||r||. 

If the system (33) is consistent but has infinite solutions, we 
consider the minimal-norm one. If (33) is inconsistent, we com­
pute the minimal-norm least-squares solution. 

Alternatively, for the inconsistent cases, we also propose to 
reduce the linear system(33) by only considering its first M 
equations: 

e < r l|Sy|| < ||y| (27) V&Mw* (0) = V&d (34) 



where matrix V ^ is used instead of V|£. This way, the new coef­
ficient matrix V ^ M is M-by-M; if it is invertible, we compute 
the unique solution w (0) of the system (34). Although it is not 
the best choice, because it is not a solution of (33), we have used 
it satisfactorily in the Matlab simulations of the next section. 

VI. MATLAB SIMULATIONS 

In order to show the importance of choosing an appropriate 
value of w(0) to meet the requirement that 

TABLE I 
GAIN Gre FOR DIFFERENT CHOICES OF H AND W ( 0 ) 

Grp — < 1 (35) 

the results of several Matlab simulations for different choices of 
\i and w(0) are presented in this section. In these simulations 
the LMS adaptive filter shown in Fig. 1 is used as an adaptive 
noise canceller [1], [2]. 

Here primary signal d consists of a relevant signal that is a 
sinusoid of amplitude 2 V at 20 Hz corrupted by additive noise. 
Thus, d is given by 

d = 2sin(27r20£) + ni, 

where the interval of time of analysis is 0.1 seconds, the sam­
pling frequency is 10 kHz, t = 0 : 0.0001 : 0.1. Also, let us 
assume both that part of the noise corrupts the primary signal 
without passing through any transfer function, and that part of 
the noise reaches the primary signal via a transfer function [7] 
that is a second order low-pass Butterworth filter with cutoff fre­
quency equal to 100 Hz: 

ni = lsim(Dl, Nl, randn(size(t)), t) + 0.5 randn(size(t)) 

where [D1,N1] = butter(2,27rl00,V). 
In addition, assume both that part of the noise goes directly 

to the reference signal u without passing through any transfer 
function, and that part of the noise reaches the reference signal 
via a transfer function [7] that is a second order low-pass But­
terworth filter with cutoff frequency equal to 50 Hz, 

u = lsim (D2, N2, randn(size(t)), t) + 0.5 randn(size(t)) 

and [D2,N2] = butter(2, 2TT50,V) . 

In these simulations, the length of the filter is M — 20 and, 
for any value of the parameter a of Table I, the values of JJL are 
given by 

^ = a , , NIIO -0 .0001. 
max 

0<n<N-l 

|u(r 

In Table I, for each value of a a value of ji is obtained. Then, 
the gain Gre is displayed for three different choices of the initial 
value of the tap-weight vector: 

• w(0)0 = 0; 
• w(0)i is the conjugate of the minimal-norm least-squares 

solution of (33); 
• w(0)2 is the conjugate of the solution of (34). 
Note that, in this example, when choosing w(0)o = 0 the en­

ergy gain Gre is always greater than 1. However, for w(0)i Gre 

is less than 1 for small enough values of ji (0.1 < a < 2.5) 
and for w(0)2 Gre is less than 1 for almost all the values of 
fi (0.1 < a < 5.0). 

In order to show how different tap-weight vectors affect the 
convergence rate of the LMS algorithm, additional simulations 

| a 

T~oT~ 
0.5 
1.0 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 

J± | 
9.20-10-3 

3.77-10-* 
9A2-10-'2 

1.6M0-1 

2.00-10-l 

2.76-10-1 

3.0M0- 1 

4.19-10-1 

4.50-10-1 

5.00-10"1 

6.00-10-1 

| w(0)0 

HTOl 
1.11 
1.27 
1.49 
1.90 
3.38 
12.41 
85.88 
1.15-10° 
6.76-1011 

1.06-10ib 

| w(0)i | 

~048 
0.46 
0.28 
0.49 
0.68 
1.48 
4.37 
27.92 
3.38-105 

2.14-1011 

9.29-1015 

w(0)2 | 

~047 [ 
0.22 
0.16 
0.13 
0.13 
0.11 
0.11 
9.82-10-* 
8.37-10-* 
9.76-10-2 

4.61 

were carried out. As a result, the fastest convergence rate was 
achieved with w(0)i and the second fastest with w(0)2. When 
a = 0.1, for w(0)o the LMS algorithm converged in 1057 iter­
ations, for w(0)i it converged in 162 iterations, and for w(0)2 

it converged in 719 iterations. Finally, when a = 3.5, for w(0)o 
the LMS algorithm did not converge, for w(0)i it converged in 
68 iterations, and for w(0)2 it converged in 140 iterations. 

VII. CONCLUSION 

In this paper, it has been shown that for the LMS algorithm 
the gain from the input signal to the error signal may be greater 
than 1 regardless of the value of /x ^ 0. Also, in order to di­
minish such a gain and guarantee it to be less than or equal to 
1, a novel approach has been presented. Finally, it has also been 
shown that, for reasonable values of \i, choosing the right initial 
value of the tap-weight vector w(0) is the key issue to avoid am­
plification of the linear system from the input to the error signal. 
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