
RDF(S) INTEROPERABILITY RESULTS FOR
SEMANTIC WEB TECHNOLOGIES

RAÚL GARCÍA-CASTRO and ASUNCIÓN GÓMEZ-PÉREZ

Ontology Engineering Group, Departamento de Inteligencia Artificial
Facultad de Informática, Universidad Politécnica de Madrid

Campus de Montegancedo, Boadilla del Monte, 28660, Madrid, Spain

Received 31 October 2007
Revised 15 December 2008
Accepted 13 January 2009

Interoperability among difierent development tools is not a straightforward task since
ontology editors rely on specific internal knowledge models which are translated into
common formats such as RDF(S). This paper addresses the urgent need for interoper­
ability by providing an exhaustive set of benchmark suites for evaluating RDF(S) import,
export and interoperability. It also demonstrates, in an extensive field study, the state-
of-the-art of interoperability among six Semantic Web tools. From this field study we
have compiled a comprehensive set of practices that may serve as recommendations for
Semantic Web tool developers and ontology engineers.

Keywords: RDF(S); interoperability; benchmarking; benchmark suite.

1. Introduction

Ontologies enable interoperability among heterogeneous applications. The develop­
ment and deployment of ontologies and ontology-based applications follows method-
ological guidelines and is supported by Semantic Web tools such as ontology editors
and repositories.

Ideally, one could use all existing Semantic Web technologies seamlessly and
thus benefit from all the functionalities they offer. However, as shown in previous
workshops on Evaluation of Ontology-based Tools (EON), interoperability among
different Semantic Web technologies is not straightforward. For instance, ontology
editors usually rely on specific internal knowledge models that have to be translated
into common formats, such as RDF(S) [1].

Finding out why interoperability fails is cumbersome and not at all trivial, since
any assumption made for the translation within one tool may easily prevent suc-
cessful interoperability with other tools. Furthermore, not to be aware of the inter­
operability capabilities of the existing Semantic Web tools may cause important

problems when more complex tools and applications are built reusing existing tools:
this ignorance regarding interoperability is mainly due to the fact that tool interop­
erability has not still been evaluated because we do not have an easy way of making
this evaluation.

This paper addresses the urgent need for interoperability evaluation. We pro-
vide three exhaustive benchmark suites for evaluating the RDF(S) import, export
and interoperability of Semantic Web technologies. These benchmark suites were
designed to support the evaluation and improvement of Semantic Web tool interop­
erability and have been developed as part of the EU IST Knowledge Web Network
of Excellence.3

In an extensive ñeld study we have explored the state-of-the-art of interoperabil­
ity among six Semantic Web tools. Three of the tools are ontology editors (KAON.
Protege, WebODE), whereas the other three are repositories (Córese, Jena, Sesame),
thus we have covered a wide range of tool support for ontology development and
deployment. The ñeld study has helped us gain a deep understanding of the import
and export functionalities of Semantic Web tools. Our ñndings may serve as guide-
lines for developing tools and are summarised in comprehensive best practices on
interoperability.

Our work can beneñt Semantic Web tool developers since it provides guidelines
to design their import and export functionalities and a concrete set of benchmarks
against which they can evalúate their import and export functionalities. Our work
can also beneñt ontology engineers since it provides an overview of to which extend
interoperability is ensured when combining speciñc tools. It is expected that future
generations of Semantic Web tools will provide smoother interoperability and thus
fulñl the key promise of ontologies.

This paper is structured as follows: Sec. 2 presents the motivation behind bench-
marking software, a description of the interoperability problem treated in this
paper, and other interoperability evaluation initiatives. Section 3 examines how
the RDF(S) Interoperability Benchmarking was conducted and how the RDF(S)
benchmark suites were designed. Sections 4 and 5 summarise the results of exe-
cuting the export, import and interoperability benchmarks. Section 6 provides the
recommendations extracted from benchmarking for Semantic Web tool developers,
ontology engineers, and all those interested in carrying out a benchmarking activity.
Finally, Sec. 7 presents the conclusions derived from this work and future lines of
work.

2. Related Work

2.1. Evaluation vs. benchmarking

According to the ISO 14598 standard [2], software evaluation is the systematic exarn-
ination of the extent to which an entity is capahle of fulfilling specified requirements.

Benchmarking of severa I systems

Evaluation of several systems \

Evaluation of a system

• Compliance with requirements
v» Weaknesses)

• Comparative analysis
\ ; Recommendations on systems (users) y

• Continuous improvement
• Recommendations on practices (developers)

^« Best practices J

Fig. 1. Benchmarking beneflts.

considering software not just as a set of computer programs but also as the produced
procedures, documentation and data.

The idea of benchmarking as a process that searches for improvement and best
practices derives from the idea of benchmarking in the business management com-
munity [3,4]. This notion of benchmarking can be found in some Software Engi-
neering approaches [5] but it differs from those in which benchmarking is viewed as
a software evaluation method for system comparison [6,7],

In this paper, software benchmarking is deñned as a collaborative and continuous
process for improving software producís, services, and processes by systematically
evaluating and comparing them to those considered to be the best [8].

The reason for benchmarking software producís instead of jusí evaluaíing íhem
is ío obíain several beneñís íhaí cannoí be obíained from software evaluaíions.
As Fig. 1 illusíraíes, software evaluaíion shows íhe weaknesses of íhe software or
iís compliance ío qualiíy requiremenís. If several software producís are involved in
íhe evaluaíion, we also obíain a comparaíive analysis of íhese producís and rec-
ommendaíions for users. However, when benchmarking several software producís,
in addiíion ío all íhe beneñís commeníed, we also gain coníinuous improvemení of
íhe producís, recommendaíions for developers on íhe pracíices used when devel-
oping íhese producís and, from íhese pracíices, íhose íhaí can be considered besí
pracíices.

2.2. The interoperability problem

According ío íhe Insíiíuíe of Elecírical and Elecíronics Engineers (IEEE), iníeroper-
abiliíy is íhe abiliíy of íwo or more sysíems or componenís ío exchange informaíion
and ío use íhis informaíion [9]. Duval proposes a similar deñniíion by síaíing íhaí
iníeroperabiliíy is íhe abiliíy of independeníly developed software componenís ío
exchange informaíion so íhey can be used íogeíher [10]. For us, iníeroperabiliíy is
íhe abiliíy íhaí Semaníic Web íechnologies have ío iníerchange oníologies and use
íhem.

One of the factors affecting interoperability is heterogeneity. Sheth [11] classiñes
the levéis of heterogeneity of any information system into information heterogeneity
and system heterogeneity. In this paper, only information heterogeneity (and, there-
fore, interoperability) is considered, whereas system heterogeneity, which includes
heterogeneity due to differences in information systems or platforms (hardware or
operating systems) is disregarded.

Furthermore, interoperability is treated in this paper in terms of knowledge
reuse and must not be confused with the interoperability problem caused by the
integration of resources, being the latter related to the ontology alignment problem
[12], that is, the problem of how to ñnd relationships between entities in different
ontologies.

Semantic Web technologies appear in different forms (ontology development
tools, ontology repositories, ontology alignment tools, reasoners, etc.); interoper­
ability is a must for these technologies since they need to be in communication
to interchange and use ontologies in the distributed and open environment of the
Semantic Web.

On the other hand, interoperability is a problem for the Semantic Web due
to the heterogeneity of the knowledge representation formalisms of the different
existing systems, since each formalism provides different knowledge representation
expressiveness and different reasoning capabilities, as it occurs in knowledge-based
systems [13].

Current Semantic Web technologies manage different representation models,
e.g., the W3C recommended languages RDF(S) and OWL, models based in Frames
or in the different families of Description Logics, or other models, such as the Uni-
fied Modeling Languageb (UML), the Ontology Deñnition MetamodeP (ODM), or
the Open Biomedical Ontologiesd (OBO) language.

Figure 2 shows the two common ways of interchanging ontologies within Seman­
tic Web tools: directly by storing the ontology in the destination tool, or indirectly

Direct

O.^O.+a-a'

Indirect

Ol=0.+a-(x' 0"=0.'+^f

Ou=0.+a-a'+P-P

Fig. 2. Ontology interchanges within Semantic Web tools.

by storing the ontology in a shared resource, such as a ñleserver, a web server, or
an ontology repository.

Ontology interchange should pose no problems when a common representation
formalism is used by all the systems involved in the interchange and no differences
should exist between the original and the ñnal ontologies (Le., the as and /3s in the
figure should be nuil).

However, in the real world, to use a single system is not feasible, as each
system provides different functionalities, ñor it is feasible to use a single repre­
sentation formalism, since some representation formalisms are more expressive than
others and different formalisms provide different reasoning capabilities, as previously
mentioned.

Most of the Semantic Web technologies natively manage a W3C recommended
language, either RDF(S), OWL, or both; but some systems manage other repre­
sentation formalisms. If the systems participating in an interchange (or the shared
resource) have different representation formalisms, the interchange requires at least
a translation from one formalism to the other. These ontology translations from
one formalism to another with different expressiveness cause information additions
or losses in the ontology (the as and /3s in Fig. 2), once in the case of a direct
interchange and twice in the case of an indirect one.

Due to the heterogeneity between representation formalisms in the Semantic
Web scenario, the interoperability problem is highly related to the ontology trans­
lation problem that occurs when common ontologies are shared and reused over
múltiple representation systems [14],

2.3. Previous interoperability evaluations

In the Semantic Web área, technology interoperability has been punctually evalu-
ated. Some qualitative analyses have been performed in [15] concerning ontology
development tools, ontology merge and integration tools, ontology evaluation tools,
ontology-based annotation tools, and ontology storage and querying tools; and in
[16] concerning ontology-based annotation tools. These analyses provide informa­
tion about the interoperability capabilities of the tools (such as the platforms where
they run, the tools they interoperate with, or the data and ontology formats they
manage), but they do not provide empirical studies to support their conclusions.

The only exceptions are the experiments carried out in the Second International
Workshop on Evaluation of Ontology-based Tools (EON2003). The central topic of
this workshop was the evaluation of ontology development tools interoperability
using an interchange language [17],

In this workshop, the participants were asked to model ontologies with their
ontology development tools and to perform different tests for evaluating the import,
export and interoperability of the tools.

The experiment had no restrictions on the interchange language, different lan-
guages (RDF(S), OWL, DAML, and UML) were used in different experiments, or

on how to model the ontology to be interchanged, a natural language description
of a domain was provided and each experimenter modelled the ontology in different
ways.

The EON2003 experiments were a ñrst and valuable step toward evaluating
interoperability since they highlighted the interoperability problems in the existing
tools using the W3C recommended languages for ontology interchange. Neverthe-
less, further evaluations of Semantic Web technology interoperability are required
because

• Interoperability is a main problem for the Semantic Web that is still unsolved.
• The workshop experiments concerned only few tools and focused only on ontology

development tools.
• Some experiments evaluated export functionalities, others import functionalities,

and only a few evaluated interoperability. Fürthermore, interoperability from one
tool to the same tool using an interchange language was not considered.

• No systematic evaluation was performed; each experiment used different evalua-
tion procedures, interchange languages, and principies for modelling ontologies.
Therefore, the results were not comparable and only speciñc comments and rec-
ommendations for each ontology development tool that participated were made.

We learnt many lessons from the results of the initial EON experiments, and
they enabled us to do a systematic evaluation on a technical level, as it is the
evaluation we present in this paper.

3. RDF(S) Interoperability Benchmarking

The RDF(S) Interoperability Benchmarking started in Knowledge Web as an effort
to improve the interoperability of Semantic Web technologies and to provide com-
prehensive recommendations for industry on how to use these tools. The benchmark­
ing was organized and carried out following the software benchmarking methodology
developed in Knowledge Web [18] by the authors; this methodology provides the
general guidelines that have to be adapted to each case. We now present the main
decisions and outcomes of instantiating such a methodology.

The goal of the benchmarking was to evalúate and improve the interoper­
ability of Semantic Web technologies using RDF(S) as the interchange
language.

As mentioned above, achieving interoperability between Semantic Web tech­
nologies is not straightforward when these tools do not share a common knowledge
model and, nowadays, their users do not to know the effects of interchanging an
ontology from one tool to another.

The beneñts pursued through our goal are related to the expected outcomes of
the benchmarking and involve different communities dealing with Semantic Web

technologies, namely, the research community, the industrial community, and tool
developers. Such beneñts are

• To créate consensual processes and mechanisms for evaluating the interoperability
of these tools.

• To produce user and developer recommendations on the interoperability of these
tools.

• To acquire a deep understanding of the practices used to develop these tools and
of how the practices used affect their interoperability.

• To extract from these practices those that can be considered best practices when
developing the tools.

3.1. Metrics and criterio.

As the goal presented in the previous section was too general, we reñned the scope
to cover a concrete interoperability scenario. From the different ways that Semantic
Web technologies have to interoperate, presented in Sec. 2.2, the most commonly
used and, therefore, the one considered here, is the indirect interchange of ontologies
by storing them in a shared resource. A direct interchange of ontologies would
require developing interchange mechanisms for each pair of tools, which would be
very costly

In our case, the shared resource is a local ñlesystem where ontologies are stored in
text ñles using RDF(S); such ontologies are serialized using the RDF/XML syntax
because this is the syntax most widely employed in Semantic Web technologies. A
future benchmarking activity inside Knowledge Web will cover the case of using
OWL [19] as the interchange language.

In this scenario, interoperability depends on two different tool functionalities:
one that reads an ontology stored in the tool and writes it into an RDF(S) ñle
(RDF(S) exporter from now on), and another that reads an RDF(S) ñle with an
ontology and stores this ontology into the tool (RDF(S) importer from now on).

The evaluation metrics must describe thoroughly the interoperability between
an origin tool and a destination one. Therefore, to obtain detailed information on
tool interoperability using an interchange language, we need to know

• The components of the knowledge model of an origin tool that can be interchanged
with a destination tool.6

• The secondary effects of Ínterchanging ontologies that include these components,
such as insertion or loss of information.

• The subset of the knowledge models of the tools that such tools can use to
correctly interoperate.

• The problems that arise when ontologies are interchanged between two tools and
the causes of these problems.

Some speciñc evaluation criteria should be established for each experiment to
assess the interoperability of the tools. The experiments to be performed should
yield data informing how the tools comply with these criteria.

3.2. Partner search

Participation in the benchmarking was open to any organisation irrespective of
being a Knowledge Web partner or not. To involve other organisations in the pro-
cess, with the goal of having the best-in-class tools participating, the following
actions were taken:

• A benchmarking proposal, that is, a document being used as a reference along
the benchmarking, was published as a public web pagef; this web page includes
all the relevant information about the benchmarking: motivation, goals, beneñts
and costs, tools and people involved, planning, related events, and a complete
description of the experimentation and the benchmark suites.

• Research was performed on the existing ontology development tools, both freely
available and commercial ones, which could export and import to and from
RDF(S); besides, their developers were contacted.

• The interoperability benchmarking was announced with a cali for participation
through the main mailing lists of the Semantic Web área and through lists speciñc
to ontology development tools.

Any Semantic Web tool capable of importing and exporting RDF(S) could par­
ticípate in the RDF(S) Interoperability Benchmarking. In this benchmarking activ-
ity, not only ontology development tools, but also RDF repositories participated.

Table 1 shows the six tools that took part in the RDF(S) Interoperability Bench­
marking, three of which are ontology development tools: KAON,g Protégéh (using
its RDF backend), and WebODE1; the other three are RDF repositories: Córese,•>
Jenak and Sesame.1

As Table 1 shows, benchmarking was not always performed by the tool develop­
ers. Furthermore, the participating tools presented a variety of knowledge models.
Next, we present an enumeration of the knowledge models of the tools:

• Corese's knowledge model enables to process RDF(S) and OWL Lite within the
Conceptual Graphs formalism [20],

Table 1. Tools participating in the RDF(S) interoperability benchmarking.

Tool

Córese
Jena
KAON
Protege
Sesame
WebODE

Versión

2.1.2
2.3
1.2.9
3.2 beta build 230
2.0 alpha 3
2.0 build 109

Developer

INRIA
HP
U. Karlsruhe
Stanford U.
Aduna
U. Politécnica de Madrid

Experimenter

INRIA
U. P. Madrid
U. Karlsruhe
U. P. Madrid
U. P. Madrid
U. P. Madrid

Jena's knowledge model supports RDF and the following ontology formalisms
built on top of RDF: RDF(S), the varieties of OWL, and the now-obsolete
DAML+OIL [21].
KAON's knowledge model is an extensión of RDF(S) that contains the essential
modelling primitives of frame-based systems [22].
Protégé's knowledge model is based on a flexible metamodel, which is comparable
to object-oriented and frame-based systems [23],
Sesame's knowledge model allows managing RDF(S) [24],
WebODE's knowledge model is based in frames and is extracted from the inter­
medíate representations of METHONTOLOGY [25],

3.3. Experiment definition

The interoperability of Semantic Web tools using an interchange language depends
on the capabilities of such tools to import and export ontologies from/to this lan­
guage. Therefore, as Fig. 3 shows, the experiments included not only an interop­
erability evaluation but also a previous evaluation of the RDF(S) importers and
exporters. Thus, the RDF(S) importer and exporter evaluation results are used in
helping to interpret the interoperability results.

Regarding the experiments, any group of ontologies can be used as input, but
having real, large or complex ontologies is useless if we do not know whether the

Export:Ol=0+a-a' Import:OII=O.I+0-0'

Interchange: O.n=O+a-a'+0-0'

tools can interchange simple ontologies correctly. However, because one of the goals
of benchmarking is the improvement of the tools, the ontologies must be simple so
as to isolate problem causes and to identify possible new problems.

Therefore, to obtain the required experiment data, three benchmark suites were
deñned for evaluating the import, export and interoperability capabilities of the
tools [26], which were common for all the tools.

As the tools participating in the benchmarking had different internal knowledge
models, both the experimentation and the analysis of the results were based on a
common group of ontology modelling primitives, available in RDF(S) and in these
tools. However, since tackling this common group exhaustively would yield a huge
number of benchmarks, we only considered the components used most for modelling
ontologies in ontology development tools: classes, instances, properties with domain
and range, literals, and class and property hierarchies. The rest of the components
have not been dealt with so far.

In this setting, it is recommended to perform the import and export experiments
before the interoperability ones, because tool interoperability highly depends on
the functioning of their importers and exporters and because the effort required to
execute the interoperability experiments diminishes when the ñles produced in the
export experiments are used.

The quality of the benchmark suites used is essential for the results of the bench­
marking. Therefore, once the benchmark suites were deñned, they were published
on the benchmarking web pagef so that they could be reviewed by the partici-
pants. The benchmark suites were also validated and reñned in reviews performed
by Knowledge Web partners in several meetings.

The benchmarking web page contains, besides the detailed description of the
benchmark suites, all the ñles to be used in the experiments, templates for collecting
the results, and the experimentation results obtained.

The benchmark suites were intended to be executed manually but, as they con-
tain many benchmarks, it is highly recommended to execute them (or part of them)
automatically. In the cases of Córese, Jena, Sesame, and WebODE, most of the
experimentation was automated. In the other cases, it was performed manually.

3.3.1. The RDF(S) import benchmark suite

The RDF(S) Import Benchmark Suite contains benchmarks that deñne a simple
RDF(S) ontology serialized in an RDF/XML ñle that must be loaded into the tool.

To isolate the factors influencing the correct import of an ontology, we have
deñned two types of import benchmarks: those that evalúate the import of the
different combinations of components of the RDF(S) knowledge model, and those
that evalúate the import of the different variants of the RDF/XML syntax, as stated
in the RDF/XML speciñcation.

Table 2 shows the 10 groups of the RDF(S) Import Benchmark Suite, which
comprises 82 benchmarks. The table contains both the number of benchmarks and
the RDF(S) components used in each group.

Table 2. Groups of the RDF(S) import benchmarks.

Group No. Components used

Class
Metaclass
Subclass
Class and property
Property
Subproperty
Property with domain

and range

Instance
Instance and property
Syntax and

abbreviation

2
5
5
6
2
5

24

4
14
15

rdfs: Class
rdfs: Class, rdf:type
rdfs:Class, rdfs:subClassOf
rdfs: Class, rdf:Property, rdfs:Literal
rdf:Property
rdf:Property, rdfs:subPropertyOf
rdfs: Class, rdf:Property, rdfs:Literal,

rdfs:dorn,ain, rdfs:range
rdfs: Class, rdf:type
rdfs: Class, rdf:type, rdf:Property, rdfs:Literal
rdfs: Class, rdf:type, rdf:Property, rdfs:Literal

Total 82 rdfs:Class, rdf:type, rdfs:subGlassOf.
rdf:Property, rdfs:dorn,ain, rdfs:range, rdfs:subPropertyOf

rdfs:Literal

Identifler

Table 3. An example of an RDF(S) import benchmark deflnition.

109

Description

Graphical representation

RDF/XML file

Import one class that is subclass of several classes

Cl

<rdf:RDF xmlns="http://www.w3.org/2000/01/rdf-schema#"
xmlns: rdf-"http: //www. w3. org/1999/02/22-rdf-syntax-ns#"
xmlns: rdf s="http: //www. w3. org/2000/01/rdf -schema#">
<Class rdf:about="http://www.nothing.org/graph09#Cl">
<subClassOf rdf:resource="http://www.nothing.org/graph09#C2"/>
<subClasBDf rdf :resource="http://www.nothing. org/graph09#C3"/>

</Clasa>
<Class rdf: about= "http: //www.nothing. org/graph09#C2">
</Class>
<Class rdf:about-"http://www.nothing.org/graph09#C3">
</Class>

</rdf:HDF>

The deñnition of each benchmark in the benchmark suite, as Table 3 shows,
includes the following ñelds:

• An identifler for tracking the different benchmarks.
• A description of the benchmark in natural language.
• A graphical representation of the ontology to be imported.
• A file containing the ontology to be imported in the RDF/XML syntax.

The steps to follow for executing each import benchmark are

(1) To specify the result expected from importing the ñle with the RDF(S) ontology
into the tool, either by modelling the expected ontology in the tool or by deñning
the ontology informally (e.g., in natural language).

http://www.w3.org/2000/01/rdf-schema%23
http://www.nothing.org/graph09%23Cl
http://www.nothing.org/graph09%23C2%22/
http://www.nothing
http://www.nothing
http://www.nothing.org/graph09%23C3

(2) To import into the tool the RDF(S) file that contains the RDF(S) ontology
defined in the benchmark.

(3) To compare the imported ontology with the expected ontology specified in the
first step and to check whether there is some addition or loss of information.

3.3.2. The RDF(S) export benchmark suite

The RDF(S) Export Benchmark Suite contains benchmarks that define an ontology
that must be modelled in the tool and saved to an RDF(S) file.

We have defined two types of benchmarks for isolating the two factors that
influence the correct export of an ontology. One group of benchmarks evaluates the
correct export of the combinations of components of the ontology development tool
knowledge model, whereas the other group evaluates the export of ontologies with
concepts and properties whose ñames include characters restricted by RDF(S), such
as those not allowed for representing RDF(S) or XML URIs.

The composition of the RDF(S) Export Benchmark Suite is similar to the com-
position of the Import one, but instead of taking as input the knowledge model of
RDF(S), it takes the common core of knowledge modelling components of KAON,
Protege, WebODE, and RDF(S) and, therefore, we obtained a different number of
benchmarks.

Table 4 shows the 11 groups of the RDF(S) Export Benchmark Suite, which
comprises 66 benchmarks. The table contains the number of benchmarks and the
components used in each group.

The definition of each benchmark, as Table 5 shows, includes the following fields:

• An identifier for tracking the different benchmarks.
• A description of the benchmark in natural language.
• A graphical representation of the ontology to be exported by the tool.
• The instantiation of the ontology in each of the participating tools, using the

vocabulary and components of these tools.

The steps to follow for executing each of the export benchmarks are:

(1) To specify the expected ontology that results from exporting the ontology, either
in RDF(S) or by defining it informally (e.g., in natural language).

(2) To model in the tool the ontology described in the benchmark.
(3) To export the ontology modelled with the tool to RDF(S).
(4) To compare the exported RDF(S) ontology with the expected RDF(S) ontology

specified in the first step, examining whether there is some addition or loss of
information.

3.3.3. The RDF(S) interoperability benchmark suite

The RDF(S) Interoperability Benchmark Suite evaluates the interchange of ontolo­
gies from one origin tool to a destination one and vice versa. Each benchmark in

Table 4. Groups of the RDF(S) export benchmarks.

Group

Class
Metaclass
Subclass
Class and object

property
Class and datatype

property
Object property
Datatype property
Instance
Instance and

object property
Instance and

datatype
property

URI character

No.

2
5
5
4

2

14
12
4
9

5

4

Components used

class
class, instanceOf
class, subClassOf
class, object property

class, datatype property, literal

object property
datatype property
class, instanceOf
class, instanceOf, object property

class, instanceOf, datatype property, literal

class, instanceOf, object property, datatype
restrictions literal

Total 66 class, instanceOf, subClassOf, object property, datatype
property, literal

Table 5. An example of an RDF(S) export benchmark deflnition.

Identifler E09

Description Export one class that is subclass of several classes

Graphical representation

WebODE's instantiation Export one concept that is subclass of several concepts

Protégé's instantiation Export one class that is subclass of several classes

the benchmark suite defines an ontology that must be modelled in the origin tool.
saved to an RDF(S) file, and loaded into the destination tool.

Since the factors influencing the correct interchange of an ontology (besides
the correct functioning of the importers and exporters) as well as the knowledge
model used for defining the ontologies are the same as those in the RDF(S) Export
Benchmark Suite, the ontologies defined in the RDF(S) Interoperability Benchmark
Suite are identical to those of the RDF(S) Export Benchmark Suite.

The steps to follow for executing each of the interoperability benchmarks are:

(1) To specify the expected ontology resulting from interchanging the ontology in
the destination tool, either by modelling the expected ontology in the destina­
tion tool or by defining it informally (e.g., in natural language).

(2) To model the ontology described in the benchmark in the source tool.

(3) To export the ontology modelled with the source tool to an RDF(S) ñle.

(4) To import the RDF(S) ñle (exported by the source tool) into the destination

tool.

(5) To compare the interchanged ontology with the expected one, which is speciñed

in the ñrst step, checking whether there is some addition or loss of information.

If the tools have already executed the RDF(S) Export Benchmark Suite, then

steps (2) and (3) can be ignored, as the RDF(S) exported ñles of all the tools will

be available from the export experiments; therefore, part icipants will only have to

import the exported ñles into their tools.

3.3.4. Evaluation criteria

The evaluation criteria are common for the three benchmark suites and are deñned

as follows:

• M o d e l l i n g (YES/NO). The tool can model the ontology components described

in the benchmark.

• E x e c u t i o n (OK/FAIL). The execution of the benchmark is carried out without

any problem, and the tool always produces its expected result. But when an

execution fails, the following information is required:

— Reasons for the benchmark execution failure.

— If the tool was ñxed to pass a benchmark, which corrections the tool required.

• In format ion a d d e d or lost . The information added or lost during the ontology

interchange.

In the export and interoperability benchmark suites, if a benchmark defines an

ontology tha t cannot be modelled in a certain tool, such a benchmark cannot be

executed in the tool, being the Execution result N.E. (Non Executed).

Since Semantic Web tools have different knowledge models, there is no Ríght or

Wrong result. On the other hand, any combination of the Modelling and Execution

results can be possible since results depend on the decisions taken by the tool

developers:

• It models and executes (Modelling=YES and Execution=OK).

• It does not model and executes (Modelling=NO and Execution=OK).

• It models and fails (Modelling = YES and Execution=FAIL).

• It does not model and fails (Modelling=NO and Execution=FAIL).

• It does not model (Modelling=NO and Execution=Non Executed).

It is clear tha t different tools have different strategies for dealing with the com­

ponents not allowed in their knowledge models. For example, metaclasses can be

modelled in RDF(S) , but a tool tha t cannot represent metaclasses has two alterna-

tives when importing an RDF(S) metaclass: either to import it as a class, or not

Table 6. Fictitious results of executing the benchmark 146.

Tool

A
B
C
D
E

Modelling

YES
YES
NO
NO
NO

Execution

OK
FAIL
OK
OK
FAIL

Information added

A label in all the components

—
The range String

The range rdfs:Literal

—

Information lost

—
The property's range
The range xsd:string
The range xsd:string

The property

to do it. However, even if a tool cannot model some components of the ontology, it

should be able to import the other components correctly.

Table 6 shows an example of executing the benchmark 146 (Import just one

property that has a class as domain and the XML Schema datatype "string" as

range, with the class defined in the ontology) in ñve ñctitious tools identiñed as A.

B, C, D, and E.

In the example, tools A and B can model the XML Schema data type string

as range and, therefore, their Modelling result is YES; on the other hand, tools

C, D and E cannot model such a data type and, therefore, their Modelling result

is NO.

The result expected from tools A and B is a property whose domain is a class

and whose range is the XML Schema data type string. Tool A imports all these

components and adds a label with the ñame of the component to all the components:

therefore, the Execution result of tool A is OK; besides, A inserts new information

into the ontology. Tool B imports the property, but it does not import the range.

Since tool B does not produce the expected result, its Execution result is FAIL and

B loses information when it imports the ontology.

Because tools C, D and E cannot model the XML Schema da ta type string as

range, even though they can model string ranges, the expected result of these tools

is to have a property whose domain is a class and whose range is string. Tools C

and D produce the expected result and their Execution result is OK; both tools

lose information about the range being the XML Schema data type string, though

tool C creates the range as its own data type String and tool D creates the range

as rdfs:Literal; therefore, these two tools, C and D, insert new information in the

ontology. Finally tool E does not import the property at all, although its expected

result is the import of the property with a string range. The Execution result of tool

E is FAIL, while E loses all the information about the property when it imports

the ontology.

4. R D F (S) I m p o r t and E x p o r t R e s u l t s

Tables 7 and 8 m present a quanti tat ive analysis of the global results of the last

execution of the RDF(S) Import and Export Benchmark Suites, carried out in

m The tool ñames have been abbreviated in the tables: K = KAON, P = Protege, W = WebODE,
C = Córese, J = Jena, S = Sesame.

Table 7. Final RDF(S) import results.

Models and executes
Does not model and executes
Models and fails
Does not model and fails

Table 8. Final

K

Models and executes 54
Models and fails 3
Does not model 9

K

79

1
2

P

48
24

2
8

RDF(S) export

P

40
8

18

W

25

41

W

47
25

3
7

results.

C

62

4

C

82

J

62

4

J S

82 82

S

62

4

January 2006. The tables show the number of benchmarks that fall into each possible
combination of the Modelting and Executíon results for each tool.

The results obtained when importing from and exporting to RDF(S) depend
mainly on the knowledge model of the tool that executed the benchmark suite.

The tools that natively support the RDF(S) knowledge model (Córese, Jena and
Sesame, i.e., the RDF repositories) do not need to perform any translation in the
ontologies when importing/exporting them from/to RDF(S). The RDF repositories
import and export correctly from/to RDF(S) all the combinations of components.
as these operations do not require any translation.

In the case of tools with non-RDF knowledge models (KAON, Protege and
WebODE, the ontology development tools), some of their knowledge model compo­
nents can also be represented in RDF(S) whereas some others cannot; on the other
hand, tools do need to transíate ontologies between their knowledge models and
RDF(S). Besides, not all the combinations of components of the RDF(S) knowl­
edge model that have been considered in the benchmarking can be modelled into
all the tools.

Next, we present an analysis of the import and export results of the participating
ontology development tools. A detailed analysis of the RDF(S) import and export
results can be found in [27],

4.1. Import results

In general, ontology development tools import correctly from RDF(S) all or almost
all the combinations of components that they model, seldom adding or losing
information. The only exceptions are

• Protege, which poses problems only when importing classes or instances that are
instances of múltiple classes.

• WebODE, which poses problems only when importing properties with a XML
Schema datatype as range.

When the ontology development tools import ontologies with combinations of
components that they cannot model, they lose the information on these components.
Nevertheless, they usually try to represent such components by partially using other
components from their knowledge models. In most cases, the import is performed
correctly. The only exceptions are:

• KAON, which poses problems when it imports class hierarchies with cycles.
• Protege, which poses problems when it imports class and property hierarchies

with cycles and properties with múltiple domains.
• WebODE, which poses problems when it imports properties with múltiple

domains or ranges.

When dealing with the different variants of RDF/XML syntax, ontology devel­
opment tools

• Import correctly resources with the different URI reference syntaxes.
• Import correctly resources with the different syntaxes (shortened and unshort-

ened) of empty nodes, of múltiple properties, of typed nodes, of string literals.
and of blank nodes. The only exceptions are: KAON when it imports resources
with múltiple properties in the unshortened syntax; and Protege when it imports
resources with empty and blank nodes in the unshortened syntax.

• Do not import language identiñcation attributes (xmtlang) in tags.

4.2. Export resulta

In general terms, ontology development tools export correctly to RDF(S) all or
nearly all of the combinations of components that they model without losing infor­
mation; whereas in speciñc terms:

• KAON poses problems only when exporting to RDF(S) datatype properties with­
out range and datatype properties with múltiple domains and a XML Schema
datatype as range.

• Protege presents problems only when exporting to RDF(S) classes or instances
that are instances of múltiple classes and témplate slots with múltiple domains.

Furthermore, the lower the number of not-modelled benchmarks is, the more
similar is the knowledge model of the tool to the common knowledge model con-
sidered, which contains the subset of common components in KAON, Protege,
WebODE, and RDF(S). In our case, the knowledge models of the RDF reposi-
tories are the most similar, followed by those of KAON, Protege, and WebODE
(in this order).

The number of benchmarks not modelled that appears in the RDF repository
results corresponds with the benchmarks that check the component naming restric­
tions. As these restrictions cannot be modelled in RDF(S), such benchmarks cannot
be executed in the RDF repositories.

When we disregard these benchmarks, we can observe that the common knowl­
edge model is totally compatible with the RDF(S) knowledge model and partially
compatible with KAON, Protege and WebODE (listed in decreasing compatibility
order).

When these tools export components that are present in their knowledge model
but cannot be represented in RDF(S), as is the case of their own datatypes, they
usually insert new information in the ontology even though some information is
lost.

When dealing with concepts and properties whose ñames do not fulñl URI char-
acter restrictions, each ontology development tool behaves differently:

• When ñames do not start with a letter or "_", some tools leave the ñame
unchanged, while others replace the ñrst character with "_".

• Spaces in ñames are replaced by "-" or "_", depending on the tool.
• URI reserved characters and XML delimiter characters are left unchanged,

replaced by "_", or encoded, depending on the tool.

5. Interoperability Results

The RDF repositories (Córese, Jena and Sesame) interoperate correctly among
themselves as they always import and export from/to RDF(S) correctly. This fact
causes that interoperability between the ontology development tools and the RDF
repositories depends only on the capabilities of the former to import and export
from/to RDF(S) and, therefore, the results about this interoperability are identical
to those presented in the previous section.

Table 9 shows a quantitative analysis of the global results of executing the
RDF(S) Interoperability Benchmark Suite. The table shows the results obtained
when one tool is the origin and another tool is the destination of the interchange.
The table shows the number of benchmarks that fall into each of the possible com-
binations of the Modelting and Executíon results for each tool.

The import and export results presented in the previous section showed that
few problems occur when importing and exporting ontologies. Nevertheless, inter­
operability results present more problems.

As a general comment, interoperability between the tools depends on:

Table 9. Global RDF(S) interoperability results.

From

To

Models and executes
Does not model and executes
Models and fails
Does not model and fails
Not executed

K

56

10

P W

KAON

35

13

18

24

1

41

K

29
3

14
10
10

P

Protege

34
2
7
5

18

W

23
2

41

K

36
7

13
10

P W

WebODE

35 25
3

10
18 41

(a) The correct working of their RDF(S) importers and exporters.
(b) The mode chosen for serializing the exported ontologies in the RDF/XML

syntax.

Fürthermore, we have observed that some problems in any of these factors affect
the results of not just one but of several benchmarks. This means that, in some
cases, ñxing a single import or export problem or changing the mode of serializing
ontologies can cause signiñcant interoperability improvements.

Next, the components that can be interchanged between the tools are listed in
Table 10. The table illustrates the different combinations of components classiñed
into categories; each column shows whether the combination of components in that
category can be interchanged between a group of tools.

In the table abovementioned, "Y" means that all the benchmarks in the category
have an Execution valué of OK, "N" means that at least one of the benchmarks
in the category has an Execution valué of FAIL, and the "-" character means that
the component cannot be modelled in some of the tools and, therefore, cannot be
interchanged between them.

It must be noted that a benchmark can be part of several categories. For exam-
ple, benchmark In35 (Interchange just one object property that has as domain
several classes, with the classes deñned in the ontology) belongs to the "Object
properties without domain or range" and to the "Object properties with múltiple
domains or ranges" categories.

Table 10. Components interchanged between the tools.

Combination of components K-K P-P W-W K-P K-W P-W K-P-W

Classes Y Y Y Y Y Y Y
...instance of a single metaclass
...instance of a múltiple metaclasses
Class hierarchies without cycles Y Y Y Y Y Y Y

Y
Y
N
Y
Y

Y
—

Y
—
—
Y
—

Y
Y

Y
N
N
Y
N

N
—

Y
—
—
Y
—

N
Y

Datatype properties without domain
or range

...with múltiple domains

...whose range is String Y Y Y N N Y

...whose range is a XML Schema
datatype

Object properties without domain or Y Y Y
range

...with múltiple domains or ranges

...with a domain and range
Instances of a single class
...of múltiple classes
...related via object properties
...related via datatype properties
...related via datatype properties

whose range is a XML Schema
datatype

Y
Y
N
Y
Y

—

Y
Y
—
Y
Y
Y

Y
Y
N
Y
N

—

Y
Y
—
Y
Y

—

Y
Y
—
Y
Y

—

Y
Y
—
Y
N

—

5.1. Interoperability using the same tool

Ontology development tools seem not to encounter problems when the source and
the destination of an ontology interchange are the same tool. The only exception is
Protege when it interchanges classes that are instances of múltiple metaclasses and
instances of múltiple classes, because Protege does not import resources that are
instances of múltiple metaclasses.

5.2. Interoperability between each pair of tools

Interoperability between different tools varies depending on the tools. Furthermore.
in some cases the tools are able to interchange certain components from one tool
to another, but not the other way round.

When K A O N interoperates with Protege , both tools can correctly interchange
some of the common components that they are able to model. But problems occur
with classes that are an instance of a single metaclass or of múltiple metaclasses,
with datatype properties without domain or range, with datatype properties whose
range is Stríng, with instances of múltiple classes, and with instances related through
datatype properties.

When K A O N interoperates with WebODE, they can correctly interchange
almost all the common components that both tools can model. The only exception
occurs when they interchange datatype properties with domain and whose range is
String.

When Pro tege interoperates with WebODE, they can correctly interchange
all the common components that both tools can model.

5.3. Interoperability between all the tools

Interoperability between KAON, Pro tege and W e b O D E can be achieved through
nearly all the common components that all these tools can model: classes, class
hierarchies without cycles, object properties with a domain and a range, instances
of a single class, and instances related through object properties. The common
components that these tools cannot use are (1) datatype properties with domain
and whose range is Stríng and (2) instances related through datatype properties.

5.4. Interoperability regarding URI character restrictions

Interoperability is low when tools interchange ontologies containing URI character
restrictions in class and property ñames. This is mainly due to the fact that tools
usually encode some or all the characters that do not comply with these restrictions,
which provokes changes in class and property ñames.

6. Recommendat ions

From the benchmarking results, we have compiled a comprehensive set of practices
that may serve as recommendations for Semantic Web tool developers, for ontology
engineers, and for anybody interested in carrying out a benchmarking activity.

6.1. Recommendations for semantic web tool developers

This section includes general recommendations for improving the interoperability
of Semantic Web tools when developing them. In [27], we provide more detailed
recommendations to improve each of the participating tools.

Interoperability between Semantic Web tools using an interchange language
depends on how the importers and exporters of these tools work. In their turn,
how these importers and exporters work depends on the development deci-
sions made by tool developers, who are different people with different needs.
Therefore, it is not easy to provide general recommendations for developers
since many issues are involved. However, some recommendations for Semantic
Web tool developers can be extracted from the analysis of the benchmarking
results.

The ñrst requirement for achieving interoperability is that the importers and
exporters of the tools be robust and work correctly when dealing with unexpected
inputs. Although this is an evident recommendation, the results show that this
requirement is not always fulñlled by the tools and that some tools even crash when
they import some combinations of components.

Above all, tools should correctly work with the combinations of components that
are present in the interchange language but that cannot be modelled in them. For
example, cycles in class and property hierarchies cannot be modelled in ontology
development tools; these tools, however, should be able to import these hierarchies
by eliminating the cycles.

When exporting components commonly used by Semantic Web tools, they
should be completely deñned in the ñle; for example, in RDF(S), metaclasses and
classes in class hierarchies should be deñned as instances of rdfs: Class, properties
should be deñned as instances of rdf:Property, etc.

Exporting complete deñnitions of components seldom used by the tools can
cause problems if such components are later imported by other tools; for example,
not every tool deals with datatypes deñned as instances of rdfs:Datatype in the ñle
or with rdf:datatype attributes in properties.

Every exported resource should have a namespace if the document does not
deñne a default namespace.

In a few development decisión will improve interoperability with some
tools but produce loss with others; for example, when exporting to RDF(S) classes
that are instances of a metaclass, some tools require that the class be deñned as
instance of rdfs:Class while some other tools require the opposite, being the two
options correct.

The collateral consequences of the development decisions should be analysed
by the tool developers. For example, if a datatype is imported as a class in the
ontology, then the literal valúes of this datatype should be imported as instances in
the ontology, which would complícate the management of these valúes.

Semantic Web tool developers should be aware of the semantic equivalences
and differences between the knowledge models of their tool and the interchange
language; additionally, tools should notify the user when the semantics is changed.

6.2. Recommendations for ontology engineers

This section offers recommendations for ontology engineers who expect to use their
ontologies in more than one tool. Depending on the tools used, the level of interop-
erability may be greater or lower, as can be seen in Sec. 5.

Ontology engineers should be aware of the components that can be represented
in the knowledge models of the tools and in the interchange languages. Henee, they
should try to use the common components of these tools in their ontologies in order
to avoid the already-known knowledge losses.

Ontology engineers should also be aware of the equivalences and differences
between the knowledge models of the tools and the knowledge model of the inter­
change language. For example, in Protege múltiple domains in témplate slots are
considered the unión of all the domains, while in RDF(S) múltiple domains in
properties are considered the intersection of all the domains; in WebODE instance
attributes are local to a single concept, while in RDF(S) properties are global and
can be used in any class.

It is not recommended to ñame resources by including in their ñames spaces or
any character that is restricted in the RDF(S), OWL, URI or XML speciñeations.

With respect to interoperability in the RDF repositories, although these repos-
itories export and import correctly to RDF(S), ontology engineers should consider
the limitations that other tools have when exporting their ontologies to RDF(S)
with the aim of Ínterchanging them.

6.3. Recommendations for benchmarking

This section offers recommendations to perform benchmarking activities; such
recommendations were extracted from the lessons learnt while instantiating the
methodology

First of all, the participation of relevant experts of the community during the
whole benchmarking process is crucial, and the inclusión of the best-in-class tools
is a must, even in those cases in which the organizations that develop these tools
do not participate in the process.

Benchmarking takes a long time as it requires tasks that are not immediate, Le.,
announcements, agreements, etc. Therefore, its planning should consider a realistic
duration of the benchmarking and should provide the necessary resources.

The effort to be devoted to benchmarking is a main criterion for any orga-
nization (especially companies) when it has to decide whether to participate in
benchmarking. Resources are needed mainly in four tasks: benchmarking organi­
zaron, deñnition of the experiment, execution of the experiments, and analysis of

the results. Therefore, the tasks to be performed in benchmarking, particularly the
experiment-related tasks, should be automated as much as possible.

Benchmarking is not about comparing the results of the tools but the practices
leading to these results. Therefore, experiments should be designed to obtain these
practices as well as the results. In our case, developer practices were obtained both
by providing speciñc questions to the experimenters, so that they could identify the
practices used to develop the tools, and by allowing the experimenters to comment
on the tools behaviour.

7. Conclusions and Future Work

Seamless interoperability among Semantic Web technologies greatly facilitates the
development and deployment of ontologies. In this paper we present a set of concrete
benchmark suites for evaluating RDF(S) import, export and interoperability as well
as the results and best practices obtained after employing such benchmark suites
in a number of well-known Semantic Web tools.

As the three benchmark suites are publicly available on the Web, they can be
used both by tool developers to evalúate and improve the interoperability of their
tools, provided that these tools have import and export functionalities, and by
ontology engineers to select the appropriate tool for their ontology development
activities.

It must be noted that the benchmark suites presented here have been deñned
with the goal of evaluating interoperability. Therefore, even if these benchmark
suites can be used to evalúate tool importers and exporters, they are not exhaustive
for these tasks and should be extended. An exhaustive evaluation of the RDF(S)
import capabilities of a tool should take into account the whole RDF(S) model,
whereas an exhaustive evaluation of the export capabilities of a tool should take
into account the whole knowledge model of the tool.

The benchmarking results are publicly available. Nevertheless, it must be noted
that these results are valid for the speciñc versions of the tools in which the exper­
iments were performed and, because the development of these tools continúes, the
results are expected to change. This highlights the need of a continuous evaluation
of the technology

From the RDF(S) interoperability results, we have observed that only Córese,
Jena, KAON, Sesame, and WebODE can interoperate with themselves using
RDF(S) as the interchange language and that the only clusters of RDF(S)-
interoperable tools are Córese with Jena and with Sesame, and Protege with
WebODE; using in all the cases the common knowledge model components that
both tools can model.

Furthermore, interoperability using an interchange language highly depends on
the knowledge models of the tools. This said, we can add that interoperability is
better when the knowledge model of the tools is similar to that of the interchange
language. This can be observed in the results; the tools that better interoperate are

those whose knowledge models fully cover the knowledge model of the interchange
language.

In the cases where the knowledge models differ, interoperability can be only
achieved by means of lightweight ontologies. For example, when Protege interoper-
ates with WebODE using RDF(S) as the interchange language, both tools can only
interchange ontologies that include a limited set of components, and they are not
able to use a richer expressiveness as their knowledge models allow.

We should add that some of the participating tools have been improved even
before the Improvement phase of the methodology. Because the goal was improve-
ment, modiñcations on the participating tools were allowed at any time and, in
some cases, tools were improved while the experiments were being executed.

Therefore, real interoperability in the Semantic Web requires the involvement
of tool developers. The developers of the tools participating in the benchmarking
have been informed of the results of these activities and of the recommendations
proposed for improving their tools.

During this benchmarking activity, tool developers sometimes automated the
execution of the benchmark suites, but the experimentation was mainly done by
hand. Carrying out experiments manually and analysing the results involves spend-
ing signiñcant resources. Besides, the results manually obtained depend on the
expertise of the people performing the experiments and can be influenced by human
errors.

Therefore, experiments in benchmarking should be automated as much as pos-
sible. This automatization can minimise human errors and, whenever human inter-
vention is needed, mechanisms should be set up to detect this kind of errors.

With regard to participation, we should explain that some research institutions
and companies chose not to particípate because they could not afford the expenses.
Thus, their absence affected the number of participants in the benchmarking, which
was fairly low (3 organizations and 6 tools). We think that it would be desirable
for the future to continué these benchmarking activities with a higher number of
tools, and this involves to develop means of automatizing experimentation as much
as possible.

To increase the usability of the benchmarking results, it would be important to
facilítate effective ways of analysing and exploiting the results by means of a web
application, so that users could perform complex analyses of these results. This
requires a previous translation of the results from the spreadsheets where they were
collected to a machine-processable format. The IRIBAn application allows analysing
the RDF(S) interoperability results of the tools in different moments.

Future work includes the development of appropriate OWL benchmark suites
for benchmarking the interoperability of Semantic Web technologies using OWL as
the interchange language.

A c k n o w l e d g e m e n t s

This work is partially supported by a FPI grant from the Spanish Ministry of Edu-

cation (BES-2005-8024), by the IST project Knowledge Web (IST-2004-507482) and

by the CICYT project Infraestructura tecnológica de servicios semánticos para la

web semántica (TIN2004-02660). Thanks to all the people tha t have participated in

the RDF(S) Interoperability Benchmarking: Olivier Corby, Jesús Prieto-González.

York Sure, Moritz Weiten, and Markus Zondler. Thanks to Rosario Plaza for review-

ing the grammar of this paper.

References

1. D. Brickley and R. V. Guha (eds.), RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, 10 February 2004 (2004).

2. ISO/IEC, ISO/IEC 14598-1: Software product evaluation — Part 1: General overview,
1999.

3. R. Camp, Benchmarking: The Search for Industry Best Practices that Lead to Superior
Performance (ASQC Quality Press, Milwaukee, 1989).

4. M. Spendolini, The Benchmarking Book (AMACOM, New York, NY, 1992).
5. C. Wohlin, A. Aurum, H. Petersson, F. Shull and M. Ciolkowski, Software inspection

benchmarking — a qualitative and quantitative comparative opportunity, in Proceed-
ings of 8th International Software Metrics Symposium, 2002, pp. 118-130.

6. B. Kitchenham, DESMET: A method for evaluating software engineering methods
and tools, Technical Report TR96-09, Department of Computer Science, University
of Keele, Staffordshire, UK, 1996.

7. A. Weiss, Dhrystone benchmark: History, analysis, scores and recommendations,
White paper, EEMBC Certification Laboratories, LLC, 2002.

8. R. García-Castro, Keynote: Towards the improvement of the Semantic Web technol-
ogy, in Proceedings of the Second International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2006), Athens, GA, USA (2006).

9. IEEE-STD-610: ANSI/IEEE Std 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology, IEEE (1991).

10. E. Duval, Learning technology standardization: Making sense of it all, Int. J. Com­
puter Science and Information Systems 1 (2004) 33-43.

11. A. Sheth, Changing focus on interoperability in information systems: From system,
syntax, structure to semantics, in Interoperating Geographic Information Systems
(Kluwer, 1998), pp. 5-30.

12. J. Euzenat, T. L. Bach, J. Barrasa, P. Bouquet, J. D. Bo, R. Dieng-Kuntz, M. Ehrig,
M. Hauswirth, M. Jarrar, R. Lara, D. Maynard, A. Napoli, G. Stamou, H. Stucken-
schmidt, P. Shvaiko, S. Tessaris, S. V. Acker and I. Zaihrayeu, D2.2.3 State of the art
on ontology alignment, Technical report, Knowledge Web (2004).

13. R. Brachmann and H. Levesque, A fundamental tradeoff in knowledge representation
and reasoning, in Readings in Knowledge Representation (Morgan Kaufmann, San
Mateo, 1985), pp. 31-40.

14. T. Gruber, A translation approach to portable ontology specifications, Knowledge
Acquisition 5 (1993) 199-220.

15. OntoWeb, OntoWeb Deliverable 1.3: A survey on ontology tools, Technical report,
OntoWeb Thematic Network, 2002.

16. D. Maynard, S. Dasiopolou, S. Costache, K. Eckert, H. Stuckenschmidt, M. Dzbor
and S. Handschuh, DI.2.2.1.3 Benchmarking of annotation tools, Technical report,
KnowledgeWeb (2007).

17. Y. Sure, O. Corcho (eds.), Proceedings of the 2nd International Workshop on Evalu-
atíon of Ontology-based Tools (EON2003), Vol. 87 of CEUR-WS, Florida, USA.

18. R. García-Castro and A. Gómez-Pérez, Guidelines for benchmarking the performance
of ontology management APIs, in Proceedings of the l^th International Semantic
Web Conference (ISWC2005), LNCS 3729, Galway, Ireland (Springer-Verlag, 2005),
pp. 277-292.

19. D. McGuiness and F. van Harmelen, OWL Web Ontology Language Overview. W3C
Recommendation 10 February 2004, Technical report (2004).

20. O. Corby and C. Faron-Zucker, Córese: A Corporate Semantic Web Engine, in Pro­
ceedings of the International Workshop on Real World RDF and Semantic Web Appli­
cations, l l t h International World Wide Web Conference, Hawai, USA, 2002.

21. B. McBride, Jena: Implementing the RDF Model and Syntax Specification, in Pro­
ceedings of the Second International Workshop on the Semantic Web (SemWeb200í),
2001.

22. B. Motik, A. Maedche and R. Volz, A conceptual modeling approach for semantics-
driven enterprise applications, in Proceedings of the Ist International Conference on
Ontologies, Databases and Application of Semantics (ODBASE2002), 2002.

23. N. Noy, R. Fergerson and M. Musen, The knowledge model of Protégé-2000: Combin-
ing interoperability and flexibility, in Proceedings of the 2th International Conference
on Knowledge Engineering and Knowledge Management (EKAW2000), Juan-les-Pins,
France, 2000.

24. J. Broekstra, A. Kampman and F. van Harmelen, Sesame: A generic architecture for
storing and querying RDF and RDF schema, in Proceedings of the Ist International
Semantic Web Conference (ISWC2002), Vol. 2342 (Springer, 2002), pp. 54-68.

25. J. Arpírez, O. Corcho, M. Fernández-López and A. Gómez-Pérez, WebODE in a nut-
shell, AI Magazine 24 (2003) 37-47.

26. R. García-Castro and A. Gómez-Pérez, Benchmark suites for improving the RDF(S)
importers and exporters of ontology development tools, in Proceedings of the 3rd
European Semantic Web Conference (ESWC2006), LNCS 4011, Budva, Montenegro
(Springer-Verlag, 2006).

27. R. García-Castro, Y. Sure, M. Zondler, O. Corby, J. Prieto-González, E. P. Bontas,
L. Nixon and M. Mochol, DI.2.2.1.1 Benchmarking the interoperability of ontology
development tools using RDF(S) as interchange language, Technical report, Knowl­
edge Web (2006).

