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This paper deals with the definition and description of optimal streaky (S) 
perturbations in a Blasius boundary layer. First, the asymptotic behaviours of 
S-perturbations near the free stream and the leading edge are studied to conclude 
that the former is slaved to the solution inside the boundary layer. Based on these 
results, a quite precise numerical scheme is constructed that allows concluding that 
S-perturbations produced inside the boundary layer, near the leading edge, can be 
defined in terms of just one streamwise-evolving solution of the linearized equations, 
associated with the first eigenmode of an eigenvalue problem first formulated by 
Luchini (J. Fluid Mech., vol. 327,1996, p. 101). Such solution may be seen as an internal 
unstable streaky mode of the boundary layer, similar to eigenmodes of linearized 
stability problems. The remaining modes decay streamwise. Thus, the definition of 
streaks in terms of an optimization problem that is used nowadays is not necessary. 

1. Introduction 
Streaky perturbations of two-dimensional boundary layers are three-dimensional 

waves that show a short-wave spanwise oscillation and a slower streamwise evolution, 
with characteristic lengths comparable to the boundary layer thickness and to distance 
to the leading edge, respectively. This is in contrast to Tollmien-Schlichting (TS) 
modes, which show a short wave streamwise oscillation. S-perturbations were already 
recognized by Crow (1966) and subsequently analysed by Ellingsen & Palm (1975), 
Landhal (1980), Luchini (1996, 2000), Andersson, Berggren & Henningson (1999) 
and Leib, Wundrow & Goldstein (1999) among others. These are somehow the 
(mathematically) natural perturbations of the boundary layer since they exhibit the 
same scaling as the steady state and thus admit a Reynolds-number-independent 
formulation, while Reynolds number cannot be eliminated from the Orr-Sommerfield 
equation that governs TS-modes. Streamwise evolution of S-perturbations first shows 
algebraic growth and then exponential decay due to viscous dissipation. Such 
growth-decay combination, known as transient growth (Hultgren & Gustavsson 
1981; Threfethen et al. 1993; Bagget & Threfethen 1997; Schmid 2007), can still 
be dangerous if algebraic growth is large enough as to enhance nonlinear interaction, 
which may allow a three-dimensional destabilization of TS-modes by S-perturbations 
(Klebanoff, Tidstrom & Sargent 1962) and promote bypass transition (Morkovin 1984; 
Morkovin & Reshotko 1990). S-perturbations, on the other hand, may also have a 
beneficial effect for smaller (than those promoting bypass transition) amplitudes, as 
shown by Cossu & Brandt (2002) (see also Fransson et al. 2004, 2006). 
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FIGURE 1. Sketch of the boundary layer, with the internal (IR) and external (ER) regions. 

Here, we concéntrate on freely propagating streaks that are produced somewhere 
near the leading edge (figure 1), inside the boundary layer. Identifying modes is non-
trivial under transient growth. This is in contrast to the case of exponentially growing 
or decaying eigenmodes, which allow to define/classify modes according to growth 
intensity. In other words, using the real part of the eigenvalues, modes are classified 
according to how dangerous (unstable) they are. The counterpart of this criterium in 
transient growth leads to the somewhat subtle concept of optimal streaks (Andersson 
et al. 1999; Luchini 2000), which are defined as the maximizers (for varying initial 
conditions and spanwise wavenumber) of some streamwise energy gain. The objective 
of this paper is precisely to describe optimal modes through a simpler initial valué 
problem. The main conclusión is that the most dangerous S-perturbations can be con-
sidered as just one unstable streaky mode (USM), in the sense that they can be defined 
in terms of just one streamwise-evolving solution of the linearized equations, with 
well-defined initial conditions near the leading edge. The latter are calculated solving 
an eigenvalue problem already considered by Luchini (1996). In other words, this 
streaky mode is determined by its behaviour near the leading-edge singularity. There 
are additional modes, but these decay streamwise. 

This paper has been strongly inspired by Luchini (1996), Andersson et al. (1999) 
and Luchini (2000). The remaining of the paper is organized as follows. The linearized 
problem yielding S-perturbations is formulated in §2, where some previous results 
are also quoted. The spanwise wavenumber is eliminated from the equations using 
self-similar variables in § 3, where the asymptotic behaviours near the free stream and 
the leading edge are also analysed and a quite efficient numerical scheme to intégrate 
the equations is constructed. All these allow in §4 to provide a natural definition 
of modes and to clarify the structure of optimal perturbations. The paper ends with 
some concluding remarks, in § 5. 

2. Formulation and other preliminaries 
The starting point is incompressible continuity and Navier-Stokes equations in the 

usual boundary layer scaling/approximation, assuming a spanwise oscillation with a 
period comparable to the boundary layer thickness, S*=L*/-s¡Re, where V is the 
distance to the leading edge and Re = u*L*¡v > 1 is the Reynolds number based on 
the free stream velocity u . The streamwise coordínate x is non-dimensionalized with 
L*, the normal and spanwise coordinates with 8*, the streamwise velocity with u\ 
the normal and spanwise components with u /'*jRe and the pressure with p*(w*)2, 
as usually. We consider perturbations of a basic, almost parallel, two-dimensional 
steady state, decompose in normal modes as (u, v, w, p) = (ub, vb, 0, pb)+(U, V, iW, P/ 
Re)elaz + - • • (note that the steady pressure and pressure perturbations scale differently, 



see Luchini 1996) and linearize to obtain 

dxU + dyV-aW = 0, (2.1) 

dX(UbU) + Vb8yU + V8yUb = dyyU — ^ U , (2.2) 

ubdxv + udxvb + dy(vbv) = -dyp + dyyv - a2 v, (2.3) 
M x W + M y W = -aP + dyyW -a2W, (2.4) 

where 3X, 3 y , . . . denote hereafter partial derivatives. The boundary conditions are 

U = V = W = 0 at y = 0 and oo, P = O as y - • oo. (2.5) 

We consider a flat píate at zero incidence boundary layer, whose basic steady state is 
given in (3.1) below and substituted into (2.1)-(2.4) completes the formulation. 

The most dangerous perturbation, known as optimal perturbation, was defined by 
Andersson et al. (1999) and Luchini (2000) as the maximizer of some (kinetic) energy 
gain between a fixed initial section at x = x 0 > í/\¡Re (to avoid the three-dimensional 
leading-edge región) and a generic x-section. Namely, they maximize the ratio 

[U2+Re-\V2 + W2)]dy 
8 = max - p , (2.6) 

/ [ReU2+(V2 + W2)]x=X0dy 
Jo 

for varying a and initial conditions. At large Reynolds number, the (l/Re)-term in 
the numerator can be neglected. Concerning the denominator, Luchini argües that 
this should be as small as possible in optimal perturbations and thus he requires 
that [7 = 0 at x = x0, which yields a Reynolds-number-independent optimization 
problem. Andersson et al. instead retained the whole denominator and found optimal 
perturbations that essentially coincided with those obtained by Luchini and were 
roughly independent of Re in a range that excluded the limiting valué Re = oo. Some 
remarks about these results are now in order: 

(a) Both setting [7 = 0 and retaining the whole denominator with finite Re is 
disturbing because the boundary layer approximation requires that t / 2 > ( y 2 + 
W2)/Re. 

(b) As x—>0, the basic steady state exhibits a characteristic length in the 
normal direction such that f =y/^Jx~l, which makes the normal coordínate y not 
appropriate in this limit. But using the variable f does not solve the difficulty either, 
because the problem also exhibits a second characteristic length, namely y = f ^ x ~ 1, 
which is associated with decay of the variables to zero to match the outer stream. 
These two characteristic lengths (see figure 1) will be taken into account below to 
obtain precise numerical results. 

(c) In spite of remarks (a) and (b), Andersson et al. (1999) obtained quite robust 
results using the variable y, between the initial and final sections x 0 ~0 .01 and 1, 
which coincided with those by Luchini (2000). 

(d) Results showed (figure 5, p. 300 in Luchini 2000) an approximate self-similarity, 
namely the optimal streamwise velocity scaled with its máximum is approximately 
constant for varying a. An explanation of this was intended by Luchini. 

It turns out that the robustness of the results, the approximate self-similarity and the 
relation between the various definitions of optimal perturbations are related between 
each other. But understanding all these requires some care. 



3. The mathematical structure of S-perturbations 

The basic steady state in the Blasius boundary layer is given by 

ub = F'(S), vb = [í;F'(í;)-F(í;)}/(2^), wb = 0, Pb = -u¡/2, (3.1) 

in terms of the self-similar normal coordínate 

f = y/fí, (3-2) 
and the streamfunction F, given by the Blasius equation F'" + FF"/2 = 0 in 0 < f < oo, 
F(0) = F'(0) = 0, F'(oó) = í, which shows the following asymptotic behaviour at the 
free stream (f —>• oo): 

F = f - a + 6>(e-(^a)2/2), with a ~ 1.7208. (3.3) 

3.1. Boundary layer scaling and elimination of the spanwise wavenumber 

Now, we rewrite (2.1)-(2.5) in terms of the boundary layer variable (3.2). In addition, 
we use the self-similarity of the linearized equations, inherited from the boundary 
layer self-similarity, to eliminate the spanwise wavenumber a from the formulation. 
This is done using (3.2) and the self-similar variables: 

x=a2x, V = JxV, W = JxW, P=xP, (3.4) 

which allow rewriting (2.1)-(2.5) as 

I' 
p t F" — 2x 

xdíU = ^d(U-d(V + ^W, (3.5) 

xF'diU = duU + — d¡;U+ ^ „ "~U-F"V, (3.6) 

A , - * F * F-'cF'-^F" ¡;F"-F' + 2x * * , N 

xF'dtV = duV + ^d(V ^ — ? — u - z V - d(P, (3.7) 

F F' — 2x +. ^ * 
xF'diW = duW + —d(W^ W-^P, (3.8) 

U = V = W = 0 at f = 0 and oo, P = O at f = oo. (3.9) 

3.2. Behaviour as £ ^ 1 (external región) 

Invoking (3.3) and noting that the last term in (3.6) decays to zero exponentially fast 
(as exp[—(f — af ¡2\) at the edge of the internal región, (3.5)—(3.8) simplify to 

U = 0, d(V = ^W, (3.10) 

xdiV = d^V + ^ d í V + l - ^ V - d í P , (3.11) 

^ ^ ^ xd^W = d^W + ^——dt-W -\ — W - ^ J x P . (3.12) 

These correspond (as must be) to the transversal free stream problem obtained 
linearizing in (2.1)-(2.4) around the steady state (ub, vb, wb) = (í, a/2^fx,0). 
Proceeding in a standard way (differentiating (3.11) with respect to f, multiplying 
(3.12) by *Jx, subtracting and substituting (3.10)), we obtain 

8((P-xP = 0, (3.13) 

, P rj¿ P — C\ i n A n n i n o l TÍO n a 
Jyy¡ 

or dyyP —a2P = 0 in original variables. Integration of (3.13), excluding exponentially 



divergent solutions, yields P = Pco(x)exp[—v^(f —a)]. Substituting this into (3.10)-
(3.12) and integrating the resulting equations, we obtain 

(V, W, P) = (Vjx), Wjx), Pjx))exp[-jx~(i; -a)], (3.14) 

where Vm, W(a and P(a are such that xV^ = V(a/2 + *JxP(a and V^ + W(a = 0. Conver-
gence to the asymptotic valúes is exponential at the edge of the internal región, namely 
([/, V, W, P) = [(0, Va,, Wca, Pca) + EST] exp(-v^(f -a)) as f ->oo, where EST stands 
for exponentially small terms, of the order of exp[—(f — a)2/2]. This means that the 
variable 

H = W + V, (3.15) 

also behaves as exp[—(f — a)2/2] at large f. And invoking (3.14) H is seen to be 
the transversal divergence in the external región. For convenience, we use this new 
variable instead of W, which requires to replace (3.5) and (3.8) by 

F^ TT F -t,F' -t,2F" 

T 

xdíU = ^d(U-d(V- yi%V + y/ZH, (3.16) 

xF'diH = d((H + -8(H "——-í U 

t F" *. F' — 2x * ^ A 

.^-V + !—^H -8(P- ^xP, (3.17) 

3.3. Behaviour as x <C 1 (leading edge) 
Assuming that the solution behaves as a power of x, the approximation as x —> 0 is 
found to be given by an eigenvalue problem. This limit was already considered by 
Luchini (1996), but the analysis below exhibits two essential differences from Luchini, 
namely we use the variable H instead of W and we take into account the asymptotic 
behaviour as f—>GO (see (3.14) and (3.15)). The asymptotic behaviour is of the 
form 

(U, V,H, P)~x-x(xÜ,xV, jxH,xP)exp[-jx(; -a)], (3.18) 

where, neglecting 0{sjx)-terms, the various coefficients are given by 

^Ü' -V' + (1-Í)Ü + H = 0, (3.19) 

U"+Lu+ tF" + 2(X-\)F' ü_F„y=0^ (32Q) 

H" + ^-H' + XF'H = 0, (3.21) 

# = v = /7 = 0 a U = 0 , t / . V ' . / r - í O a s f - x » . (3.22) 

This eigenvalue problem exhibits two kinds of eigenvalues: (i) Luchini eigenvalues 
(2 = 0.7866,1.694, 2.627,..., see Luchini 1996) are given by (3.21) and (ii) Libby-Fox 
eigenvalues (2 = 1,1.887, 2.814,..., see Libby & Fox 1964) are defined by (3.19) and 
(3.20), with H = 0. Note that only the first Luchini mode provides growth in x. 



Any initial condition, (Üo, %, HQ), can be written as a series expansión of these 
modes. The component on each Luchini mode is given by (cf. (13) of Luchini 1996) 

(F'/F")H0Hdi 
a(Ü,V,H), with a = ^ 5 , (3.23) 

(F'/F")H2 df 
o 

as obtained eliminating V (upon integrating (3.19) and substituting into (3.20)) to 
rewrite the whole problem as i?iÜ + ¿£2H = 0, i?3H = 0. The adjoint of this problem 
is 

3"lÜ*=0, Se^Ü" + ^\H* = 0 , (3.24) 
where i?* stands for the adjoint of the operator i?y-; note that all these apply 
independently of the inner product. Since X is not a Libby-Fox eigenvalue, the first 
equation in (3.24) implies that Ü* =0. Then, (3.19) follows noting that the latter 
equation is self-adjoint with the inner product {H, H2) = J^(HiH2/F")dl;. 

3.4. Numerics 
As anticipated at the end of §3.2, we have replaced (3.5) and (3.8) by (3.16) and 
(3.17), using the new variable (3.15). In order to intégrate the resulting problem in 
the computational domain 0 < f < L, we note that the basic steady-state converges 
to its asymptotic valué at f =<x> extremely fast, and thus the approximation (3.10) 
(3.12) applies as (say) f > 12. Thus, we choose L0 such that 12 < L0 < L, select an 
equispaced N-points mesh in 0 < f < L, and proceed as follows: 

(a) Equation (3.7) is replaced by 

d(P + ^P = 0 i f f > L 0 ) (3.25) 

which is equivalent to (3.13) (which, in conjunction with (3.16)—(3.6) and (3.17), is 
equivalent to (3.7) if £ > Lo) if divergent behaviours as f —>• oo are excluded. 

(b) The operator 3^ is discretized using second-order centred differences, 
(dííq)„=(qn+i — 2q„ + g„_i)/(25^), with 8Í=L/N. The operator 3f is discretized 
in (3.5) and (3.25) (which are first order in f) with second-order forward differences 
(Lambert 2000), (d^q)„ = (q„-2—4q„-i + 3q„)/(28(), and (to avoid upwind instabilities) 
with second-order backward differences, (d^q)„ = {—q„+2 + 4g„+1 — 3q„)/(28(), in 
(3.6)-(3.8). 

(c) After discretizing spatial derivatives and applying the boundary conditions 
U = V = H = 0 at f = 0 and U = H = 0 at f = L (notethat neither the boundary 
conditions for pressure ñor a boundary condition for V at f = L are needed), we 
obtain a system of ordinary differential equations of the form xJíd^q = ¿£{x)q, where 
q = (U, V, H, P) is the 4Nth state vector and ,JÍ and if are (4N) x (4N) matrices. 
Also, we use the new variable s = ln(x/x0) (which replaces xd¿ by 3S), where x0 is the 
initial valué of x. 
Marching in s is performed using second-order forward differences, namely 

Mqm—2 ^qm—l i jqn 

28, 
i^ (3.26) 

which are apphcable after the second í-step; the first step is performed using a 
first-order forward difference, namely (dsq)i =(qi — qo)/Ss. 

The resulting numerical scheme is extremely efficient and robust because it avoids 
numerical instabilities and catches well the behaviour as £ —>• oo. The latter relies 



FIGURE 2. Streamwise, cross-flow velocity profiles and //-profile, of the USM rescaled with 
their máxima in 0 < £ < oo, at x = 1CT5, 10~4, 1CT3, 10~2, 1CT1 and 1; arrows indicate increasing 
x. Luchini's initial conditions, plotted with dashed lines using the same rescaling, are 
indistinguishable from results at x = 10~5. The streamwise velocity of the Stewartson mode is 
also shown in (a) and (c) with dot-dashed line. 

heavily on (3.25). For instance, integrating in x0 = 10 9 < x < 1 (a typical run in next 
section) with L = 15, Lo = 12, N = 150 and 500 í-steps (which means that H = 0.1 
and ás = 91n(10)/500 = 0.0461) only requires 50 CPU seconds using MATLAB in a 
standard desktop computer. Results are exact within plot accuracy and independent 
of L, L0, S¡; and Ss provided that 12 < L - 3 < L0 < L , áf < 0.1, Ss < 0.05 and 
0.2 < S^/Ss < 5. The latter requirement comes from the fact that ájr/á, should be 
neither too small ñor too large because (3.26) is a singular implicit system, namely Jí 
and ifm are both singular. 

4. Results 

The evolution equations (3.5)—(3.7), (3.16)—(3.17) must be completed with initial 
conditions. To begin with, we take as initial condition at xo = 10~9 the first Luchini 
mode, as defined in (3.18). The resulting solution, rescaled with the máximum of \U\ in 
x0 < x < 1, 0 < f < oo, will be called the USM below and denoted as (Uu, Vu, Hu, Pu). 
The streamwise, cross-flow velocity profiles and the //-profile (normalized with their 
máxima in 0 < f < oo) are plotted in figure 2, and the máxima of U, V, W and H 
are plotted versus x with solid lines in figure 3(a). As already noticed by Luchini 
(2000), figure 2{a) shows that the streamwise velocity of the optimal perturbation 
remains approximately constant, up to rescaling, and approximately equal to both the 
streamwise velocity of the first Libby-Fox mode, U = í;F" (Stewartson 1957; Libby & 
Fox 1964; and Luchini 1996) and the streamwise velocity of the first Luchini mode; 
these two are also plotted for comparison. Figure 2 also shows that the new variable 
H introduced above also remains approximately constant and approximately equal to 
U (when rescaled with its máximum), which suggests that a low-dimensional Ordinary 
Differential Equation (ODE) model of streaks should be possible. 
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FIGURE 3. (a) Máxima (in 0 < £ < 00) of U, V, H and W versus x using random initial 
conditions at XQ = 10~8, 10~6 and 1CT4 (dashed lines) and using the projection on Luchini's 
initial conditions (solid lines); the asymptotic behaviours (see (3.18)) W~//~x1//2~Al and 

>1—Ai with l i =0.7866, are plotted with dot-dashed lines. (b) Máximum of 'energy gain' 
L (plotted versus the spanwise wavenumber) between x = 0.01 and x = 1 (thin dot-dashed) 

10~5 and 1 (thin solid); the quotient GL calculated on the USM between and between x 
x =0.01 and x = 1 (thin dashed); the quotient Gu calculated over the USM between x =0.01 
and x = 1 (thick dashed) and between x = 10~5 and 1 (thick solid). In order to facilítate 
comparison between the various curves, all of them are normalized with their máxima in 
0 < a < l . 

In addition, in order to illustrate the effect of general initial conditions, we consider 
initial conditions of the form (U, V, H, P) = (^JXQUO, ^f%VQ, H0, ^fx^Po), which scale 
with the boundary layer scaling (3.18). Here, we set Vb = -Po = 0 and choose UQ and 
HQ randomly as follows 

í/n ^ J ^ C O S ^ f ) 
k=0 

UL, H0 i+X^*cos(*f) 
k=\ 

HL, (4.1) 

where ÜL and HL are the U and H components of the first Luchini eigenfunction 
and yl and yl are chosen randomly in the interval between —1 and 1. Fixing two 
of the four variables makes sense since the initial conditions should satisfy two 
compatibüity conditions (which are selected by the equations after a few integration 
steps if not satisfied initially). One of these is obtained multiplying (3.16) by F' 
and subtracting (3.6), and the other one by substituting equations (3.6)—(3.17) into 
the x-derivative of (3.16). The result is plotted (after rescaling as indicated below) 
with dashed lines in figure 3(a). Now, for each of these initial conditions, we 
consider its projection (defined according to (3.23)) on the USM at this valué of 
x0, (C/0

a, Vo, fío", P$) = ([/"(x0), V"(JCO), Hu(x0), Pu(x0)), namely 

(Ü0, V0, fío, Po)proj =a(US, V0", fí0
a, P0

U), with a 

/>CO 

/ (F'/F")HoH0
udí; 

Jo 

(F'/F")(HS)2di 
(4.2) 

Thus, the projected initial conditions yield a solution that is proportional to the USM; 
for comparison, the original solution is rescaled such that the solution with projected 
initial conditions exactly coincides with the USM. These initial conditions are applied 



several times at various valúes of xo (namely, at xo = 10~8,10~6 and 10~4), obtaining 
the solutions plotted with dashed lines in figure 3(a). Note that: 

(a) After an initial streamwise transient, all solutions approach the USM up to a 
constant amplitude. Equation (4.2) allows us to calcúlate the amplitude of the USM 
for arbitrary initial conditions. It is precisely in this sense that the USM is completely 
similar to what are called modes in equations with constant coefficients. 

(b) Any initial condition can be expanded into the (infinitely many) eigenmodes 
considered in §3.3, to obtain a complete system of initial conditions, which provides 
a complete system of solutions; the first of these, namely that associated with the 
first Luchini eigenvalue, is the USM and is the only one that does not decay as x 
grows. This means that for sufficiently small xo all these solutions contribute to the 
denominator in (2.6) but only the USM contributes to the numerator, which means 
that the maximizer of (2.6) must be precisely the USM. 

(c) Thus transients in figure 3 are associated with the projection of the initial 
condition on the remaining modes considered in §3.3. Since the most dangerous of 
these is the second Luchini mode, which decays as (xo/x)l2~21 ~ (xo/x)0'907, transients 
survive until (say) x/xo ~ 10 if the initial amplitude of the second Luchini mode 
is comparable to that of the first mode; if the former is much larger than the 
latter, transients will enlarge. This is consistent with the experiments by Fransson 
et al. (2004), which showed remarkable agreement with the linear theory whenever 
x/xo = x/xo were larger than 10. Precise description of other experiments in this paper, 
with x/xo = 5, 1.75 and 1.375, would require to consider more modes. 

(d) In order to compare with Luchini's results, we consider the following expressions 

GL 
U2á¡; 

x=c¿1 s~iU 

U2áC 

(V2 + W2)d£ (F'/F")H2 df 
(4.3) 

Here, GL is (invoking (3.4)) precisely the kinetic energy gain maximized by Luchini 
(2000), namely the quotient (2.6), with Re^1 = 0 in the numerator and Re = 0 in 
the denominator. The máximum of this quotient for varying initial conditions at 
x0 = 0.01 (calculated by Luchini) is plotted with thin dot-dashed line in figure 3(fc); 
the máximum of this curve is attained at a = 0.45. For comparison, the quotient GL 

calculated along the USM is plotted with thin dashed line. The difference of both 
curves is just due to the effect of the remaining modes in the maximization process, 
which are not negligible at xo=0.01. At smaller xo both curves coincide, which is 
illustrated at xo = 10~5 (solid thick curve); the máximum of this curve is attained at 
a = 0.484, which is the asymptotic valué of Luchini's optimal wavenumber. The second 
quotient in (4.3) corresponds to substituting the denominator in Luchini by the square 
of the initial amplitude of the USM, as defined in (4.2). The quotient Gu along the 
USM for xo = 10~5 and xo = 0.01 are plotted in figure 3 with thick-solid line and thick-
dashed lines, respectively; note that the former coincides with its counterpart for GL. 

5. Concluding remarks 
We believe that the results above clarify the structure of internal streaky 

perturbations in Blasius boundary layers. In particular, we have shown that this 
structure is quite simple and qualitatively similar to standard eigenmodes in standard 
linear stability theory. The only differences are that growth is algebraic instead of 



exponential and that the streamwise evolution exhibits a growth-decay shape. The 
consequence is that the optimization procedure used so far to define optimal streaks is 
not necessary; modes instead are defined in terms of a well-defined evolution problem, 
with well-defined initial conditions. The results above relied on two main ingredients, 
namely self-similarity of the boundary layer allowed to elimínate the wavenumber 
from the formulation and our quite robust numerical scheme (based on a careful 
analysis of the behaviour of the solutions in the external región, which showed that 
this is slaved to the internal región) and thus allowed to obtain precise results with 
initial conditions at a section extremely cióse to the leading edge. Several additional 
consequences of the results of the paper are in order: 

(a) We expect that other self-similar two-dimensional boundary layers subject to 
three-dimensional internal streaky perturbations be amenable to similar treatment. 
This point is currently under research. 

(b) Self-similarity is not present in general two-dimensional boundary layers, but 
we expect that internal perturbations of these still show a behaviour in the external 
región that is slaved to the behaviour in the internal región; thus, an efficient numerical 
scheme should also be possible. 

(c) The fact that forcing resulted only from internal perturbations, occurring 
near the leading edge was essential in the analysis above. External forcing from 
perturbations in the free stream produces a different behaviour in the external región 
(namely, the velocity components do not decay to zero) and thus requires a different 
treatment. This point is currently under research. 

(d) Internal initial perturbations may result, for instance, from arrays of three-
dimensional objects near the leading edge (figure 1). We expect that the resulting three-
dimensional flow relaxes after several boundary layer thicknesses to a velocity profile 
that exhibits the scaling encountered in §3.3, which can be taken as a streamwise 
initial condition to the equations considered above; but according to our results in § 4, 
the velocity profiles evolve streamwise fairly fast to the unstable streaky mode, which 
dominates downstream. Thus, the effect of the details of the leading-edge obstacles 
should be appreciated only in the amplitude of the unstable streaky mode. 
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